1
|
Wang F, Zhou W, Yang M, Niu J, Huang W, Chen Z, Chen Y, Wang D, Zhang J, Wu S, Yan S. Structure-guided discovery of novel AflG inhibitors for aflatoxin contamination control in aspergillus flavus. Front Microbiol 2024; 15:1425790. [PMID: 39070265 PMCID: PMC11272468 DOI: 10.3389/fmicb.2024.1425790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Aflatoxins (AFs) are highly carcinogenic metabolites produced by Aspergillus species that can contaminate critical food staples, leading to significant health and economic risks. The cytochrome P450 monooxygenase AflG catalyzes an early step in AF biosynthesis, resulting in the conversion of averantin (AVN) to 5'-hydroxy-averantin. However, the molecular mechanism underlying the AflG-AVN interaction remains unclear. Here, we sought to understand the structural features of AflG in complex with AVN to enable the identification of inhibitors targeting the AflG binding pocket. To achieve this goal, we employed a comprehensive approach combining computational and experimental methods. Structural modeling and microsecond-scale molecular dynamics (MD) simulations yielded new insights into AflG architecture and unveiled unique ligand binding conformations of the AflG-AVN complex. High-throughput virtual screening of more than 1.3 million compounds pinpointed specific subsets with favorable predicted docking scores. The resulting compounds were ranked based on binding free energy calculations and evaluated with MD simulations and in vitro experiments with Aspergillus flavus. Our results revealed two compounds significantly inhibited AF biosynthesis. Comprehensive structural analysis elucidated the binding sites of competitive inhibitors and demonstrated their regulation of AflG dynamics. This structure-guided pipeline successfully enabled the identification of novel AflG inhibitors and provided novel molecular insights that will guide future efforts to develop effective therapeutics that prevent AF contamination.
Collapse
Affiliation(s)
- Fenghua Wang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Weijie Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Jinlu Niu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenjie Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhaofu Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yuanyuan Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | | - Jun Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Shaowen Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | | |
Collapse
|
2
|
Grabarczyk M, Duda-Madej A, Romanenko F, Maciejewska G, Mączka W, Białońska A, Wińska K. New Hydroxylactones and Chloro-Hydroxylactones Obtained by Biotransformation of Bicyclic Halolactones and Their Antibacterial Activity. Molecules 2024; 29:2820. [PMID: 38930886 PMCID: PMC11206757 DOI: 10.3390/molecules29122820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study was to obtain new halolactones with a gem-dimethyl group in the cyclohexane ring (at the C-3 or C-5 carbon) and a methyl group in the lactone ring and then subject them to biotransformations using filamentous fungi. Halolactones in the form of mixtures of two diasteroisomers were subjected to screening biotransformations, which showed that only compounds with a gem-dimethyl group located at the C-5 carbon were transformed. Strains from the genus Fusarium carried out hydrolytic dehalogenation, while strains from the genus Absidia carried out hydroxylation of the C-7 carbon. Both substrates and biotransformation products were then tested for antimicrobial activity against multidrug-resistant strains of both bacteria and yeast-like fungi. The highest antifungal activity against C. dubliniensis and C. albicans strains was obtained for compound 5b, while antimicrobial activity against S. aureus MRSA was obtained for compound 4a.
Collapse
Affiliation(s)
- Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (F.R.); (W.M.); (K.W.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Fedor Romanenko
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (F.R.); (W.M.); (K.W.)
| | - Gabriela Maciejewska
- Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland;
| | - Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (F.R.); (W.M.); (K.W.)
| | - Agata Białońska
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland;
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland; (F.R.); (W.M.); (K.W.)
| |
Collapse
|
3
|
Dos Santos VHP, Andre RS, Dos Anjos JP, Mercante LA, Correa DS, Silva EO. Biotransformation of progesterone by endophytic fungal cells immobilized on electrospun nanofibrous membrane. Folia Microbiol (Praha) 2024; 69:407-414. [PMID: 37979123 DOI: 10.1007/s12223-023-01113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Biotransformation of steroids by fungi has been raised as a successful, eco-friendly, and cost-effective biotechnological alternative for chemical derivatization. Endophytic fungi live inside vegetal tissues without causing damage to the host plant, making available unique enzymes that carry out uncommon reactions. Moreover, using nanofibrous membranes as support for immobilizing fungal cells is a powerful strategy to improve their performance by enabling the combined action of adsorption and transformation processes, along with increasing the stability of the fungal cell. In the present study, we report the use of polyacrylonitrile nanofibrous membrane (PAN NFM) produced by electrospinning as supporting material for immobilizing the endophytic fungus Penicillium citrinum H7 aiming the biotransformation of progesterone. The PAN@H7 NFM displayed a high progesterone transformation efficiency (above 90%). The investigation of the biotransformation pathway of progesterone allowed the putative structural characterization of its main fungal metabolite by GC-MS analysis. The oxidative potential of P. citrinum H7 was selective for the C-17 position of the steroidal nucleus.
Collapse
Affiliation(s)
| | - Rafaela S Andre
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970, Brazil
| | - Jeancarlo Pereira Dos Anjos
- University Center SENAI CIMATEC, Salvador, 41650-010, Brazil
- INCT in Energy and Environment, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Luiza A Mercante
- Institute of Chemistry, Federal University of Bahia, Salvador, 40170-115, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentation, São Carlos, 13560-970, Brazil
| | - Eliane Oliveira Silva
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador, 40170-115, Brazil.
| |
Collapse
|
4
|
Cai J, Muhammad I, Chen B, Xu P, Li Y, Xu H, Li K. Whole genome sequencing and analysis of Armillaria gallica Jzi34 symbiotic with Gastrodia elata. BMC Genomics 2023; 24:275. [PMID: 37217849 DOI: 10.1186/s12864-023-09384-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Armillaria species are plant pathogens, but a few Armillaria species can establish a symbiotic relationship with Gastrodia elata, a rootless and leafless orchid, that is used as a Chinese herbal medicine. Armillaria is a nutrient source for the growth of G. elata. However, there are few reports on the molecular mechanism of symbiosis between Armillaria species and G. elata. The genome sequencing and analysis of Armillaria symbiotic with G. elata would provide genomic information for further studying the molecular mechanism of symbiosis. RESULTS The de novo genome assembly was performed with the PacBio Sequel platform and Illumina NovaSeq PE150 for the A. gallica Jzi34 strain, which was symbiotic with G. elata. Its genome assembly contained ~ 79.9 Mbp and consisted of 60 contigs with an N50 of 2,535,910 bp. There were only 4.1% repetitive sequences in the genome assembly. Functional annotation analysis revealed a total of 16,280 protein coding genes. Compared with the other five genomes of Armillaria, the carbohydrate enzyme gene family of the genome was significantly contracted, while it had the largest set of glycosyl transferase (GT) genes. It also had an expansion of auxiliary activity enzymes AA3-2 gene subfamily and cytochrome P450 genes. The synteny analysis result of P450 genes reveals that the evolutionary relationship of P450 proteins between A. gallica Jzi34 and other four Armillaria was complex. CONCLUSIONS These characteristics may be beneficial for establishing a symbiotic relationship with G. elata. These results explore the characteristics of A. gallica Jzi34 from a genomic perspective and provide an important genomic resource for further detailed study of Armillaria. This will help to further study the symbiotic mechanism between A. gallica and G. elata.
Collapse
Affiliation(s)
- Jinlong Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Ikram Muhammad
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Bilian Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Peng Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Yiguo Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Huini Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 650500, Kunming, China.
| |
Collapse
|
5
|
Permana D, Kitaoka T, Ichinose H. Conversion and synthesis of chemicals catalyzed by fungal cytochrome P450 monooxygenases: A review. Biotechnol Bioeng 2023. [PMID: 37139574 DOI: 10.1002/bit.28411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
Cytochrome P450s (also called CYPs or P450s) are a superfamily of heme-containing monooxygenases. They are distributed in all biological kingdoms. Most fungi have at least two P450-encoding genes, CYP51 and CYP61, which are housekeeping genes that play important roles in the synthesis of sterols. However, the kingdom fungi is an interesting source of numerous P450s. Here, we review reports on fungal P450s and their applications in the bioconversion and biosynthesis of chemicals. We highlight their history, availability, and versatility. We describe their involvement in hydroxylation, dealkylation, oxygenation, C═C epoxidation, C-C cleavage, C-C ring formation and expansion, C-C ring contraction, and uncommon reactions in bioconversion and/or biosynthesis pathways. The ability of P450s to catalyze these reactions makes them promising enzymes for many applications. Thus, we also discuss future prospects in this field. We hope that this review will stimulate further study and exploitation of fungal P450s for specific reactions and applications.
Collapse
Affiliation(s)
- Dani Permana
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Research Center for Environmental and Clean Technology, The National Research and Innovation Agency of the Republic of Indonesia (Badan Riset dan Inovasi Nasional (BRIN)), Bandung Advanced Science and Creative Engineering Space (BASICS), Kawasan Sains dan Teknologi (KST) Prof. Dr. Samaun Samadikun, Bandung, Indonesia
| | - Takuya Kitaoka
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
6
|
Pereira Dos Santos VH, Luiz JHH, Dos Anjos JP, de Oliveira Silva E. Oxidative potential of two Brazilian endophytic fungi from Handroanthus impetiginosus towards progesterone. Steroids 2022; 187:109101. [PMID: 35970224 DOI: 10.1016/j.steroids.2022.109101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022]
Abstract
Biotransformation has been successfully employed to conduct uncommon reactions, which would hardly be carried out by chemical synthesis. A wide diversity of compounds may be metabolized by fungi, leading to chemical derivatives through selective reactions that work under ecofriendly conditions. Endophytic fungi live inside vegetal tissues without causing damage to the host plant, making available unique enzymes for interesting chemical derivatization. Biotransformation of steroids by endophytic fungi may provide new derivatives as these microorganisms came from uncommon and underexplored habitats. In this study, endophytic strains isolated from Handroanthus impetiginosus leaves were assayed for biotransformation of progesterone, and its derivatives were identified through GC-EI-MS analysis. The endophyte Talaromyces sp. H4 was capable of transforming the steroidal nucleus selectively into four products through selective ene-reduction of the C4-C5 double bond and C-17 oxidation. The best conversion rate of progesterone (>90 %) was reached with Penicillium citrinum H7 endophytic strain that transformed the substrate into one derivative. The results highlight endophytic fungi's potential to obtain new and interesting steroidal derivatizations.
Collapse
Affiliation(s)
| | | | - Jeancarlo Pereira Dos Anjos
- University Center SENAI CIMATEC, Salvador, BA, Brazil; INCT in Energy and Environment, Federal University of Bahia, Salvador, BA, Brazil
| | - Eliane de Oliveira Silva
- Departament of Organic Chemistry, Chemistry Institute, Federal University of Bahia, Salvador, BA, Brazil.
| |
Collapse
|
7
|
Dong Y, Miao R, Feng R, Wang T, Yan J, Zhao X, Han X, Gan Y, Lin J, Li Y, Gan B, Zhao J. Edible and medicinal fungi breeding techniques, a review: Current status and future prospects. Curr Res Food Sci 2022; 5:2070-2080. [PMID: 36387595 PMCID: PMC9640942 DOI: 10.1016/j.crfs.2022.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Mushrooms of the edible and medicinal which are highly nutritious and environmentally friendly crops carry numerous medicinal benefits. For the abundant and high diversity of bioactive metabolites they possess, which are considered to be an important pool of bioresources. The efficient breeding technique is always a challenging task in mushrooms for obtaining better character strains, which are essential for developing healthy products and even consumption. This review comprehensively summarizes the breeding techniques applied to the edible and medicinal mushrooms. Including the traditional mutagenesis method, and even modern gene-editing breeding techniques, the effects of each method, and the comparison of each breeding technique are systematic illustrations. Strategies for mushroom breeding techniques in the future are also discussed in this review paper. With the ongoing sequencing of the mushroom genome, knowledge of the gene background of the strains and functions can be available for developing better markers for gene-editing breeding as CRISPR/Cas9 systems. Combine the metabolism engineering and in-silico tools analysis was the rational design of the novel strains. Modern physical mutagenesis techniques such as the ARTP and the combination of the other physical, and chemical breeding mutagens with cross-breeding techniques or the protoplasts fusion will also lead to superior strains for cultivation and pave the way for higher quality and yield.
Collapse
Affiliation(s)
- Yating Dong
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Renyun Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Rencai Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Tao Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Junjie Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Xu Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
- Gansu Academy of Agricultural Engineering Technology, 234 Xinzhen Road, Huangyang Town, Liangzhou District, Wuwei City, Gansu Province, 733006, China
| | - Xing Han
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Ying Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Junbin Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Yujia Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Bingcheng Gan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| | - Jin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center (NASC), 9 Hupan West Road, Tianfu New Area, Chengdu, 610000, China
| |
Collapse
|
8
|
Effect of samarium oxide nanoparticles on virulence factors and motility of multi-drug resistant Pseudomonas aeruginosa. World J Microbiol Biotechnol 2022; 38:209. [PMID: 36040540 DOI: 10.1007/s11274-022-03384-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/09/2022] [Indexed: 10/14/2022]
Abstract
Biofilm formation and quorum sensing (QS) dependent virulence factors are considered the major causes of the emergence of drug resistance, therapeutic failure and development of Pseudomonas aeruginosa infections. This study aimed to investigate the effects of samarium oxide nanoparticles (Sm2O3NPs) on biofilm, virulence factors, and motility of multidrug-resistant P. aeruginosa. Sm2O3NPs were synthesized using curcumin and characterized by Transmission Electron Microscopy, X-ray diffractometer, Field Emission Scanning Electron Microscopy, and Energy-dispersive X-ray spectroscopy. Minimum inhibitory concentration (MIC) was determined using broth microdilution method. The antibiofilm potential of Sm2O3NPs was also evaluated by crystal violet staining and light microscopy examination. Then, the effect of sub-MICs concentrations of Sm2O3NPs on the proteolytic and hemolytic activities of P. aeruginosa was investigated. Finally, the effect of Sm2O3NPs on various types of motility including swarming, swimming, and twitching was studied. Our results showed that Sm2O3NPs significantly inhibited biofilm formation of P. aeruginosa by 49-61%. Additionally, sub-MICs concentrations of Sm2O3NPs effectively decreased virulence factors including pyocyanin (33-55%), protease (24-45%), and hemolytic activity (22-41%). Moreover, swarming, swimming, and twitching motility remarkably was reduced after exposure to the NPs. The findings of this work showed that Sm2O3NPs have a high potential in inhibiting QS-dependent virulence of P. aeruginosa, which could be considered for antibacterial chemotherapy after further characterization.
Collapse
|
9
|
Zhang Z, Chang Y, Wen M, Zhao H, Chen X, Tian G, Liu G, Cai J, Jia G. Rapid detoxification of
Jatropha curcas
cake by fermentation with a combination of three microbial strains and characterization of their metabolic profiles. J Appl Microbiol 2022; 133:743-757. [DOI: 10.1111/jam.15606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Zhenyu Zhang
- Animal Nutrition Institute Sichuan Agricultural University Chengdu China
- Institute of Animal Husbandry and Veterinary Medicine Meishan Vocational Technical College Meishan China
| | - Yaqi Chang
- Animal Nutrition Institute Sichuan Agricultural University Chengdu China
| | - Min Wen
- Institute of Agriculture, Forestry and Food Engineering Yibin University Yibin China
| | - Hua Zhao
- Animal Nutrition Institute Sichuan Agricultural University Chengdu China
| | - Xiaoling Chen
- Animal Nutrition Institute Sichuan Agricultural University Chengdu China
| | - Gang Tian
- Animal Nutrition Institute Sichuan Agricultural University Chengdu China
| | - Guangmang Liu
- Animal Nutrition Institute Sichuan Agricultural University Chengdu China
| | - Jingyi Cai
- Animal Nutrition Institute Sichuan Agricultural University Chengdu China
| | - Gang Jia
- Animal Nutrition Institute Sichuan Agricultural University Chengdu China
| |
Collapse
|
10
|
Dai L, Xie J, Liu Y, Chen H, Zheng J. The cytochrome P450s of Leptographium qinlingensis: Gene characteristics, phylogeny, and expression in response to terpenoids. Fungal Biol 2022; 126:395-406. [DOI: 10.1016/j.funbio.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 04/26/2022] [Accepted: 05/05/2022] [Indexed: 11/04/2022]
|
11
|
Permana D, Niesel K, Ford MJ, Ichinose H. Latent Functions and Applications of Cytochrome P450 Monooxygenases from Thamnidium elegans: A Novel Biocatalyst for 14α-Hydroxylation of Testosterone. ACS OMEGA 2022; 7:13932-13941. [PMID: 35559141 PMCID: PMC9088945 DOI: 10.1021/acsomega.2c00430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/05/2022] [Indexed: 05/21/2023]
Abstract
Cytochrome P450 monooxygenases (P450s) are ubiquitous enzymes with high availability and diversity in nature. Fungi provide a diverse and complex array of P450s, and these enzymes play essential roles in various secondary metabolic processes. Besides the physiological impacts of P450s on fungal life, their versatile functions are attractive for use in advanced applications of the biotechnology sector. Herein, we report gene identification and functional characterization of P450s from the zygomycetous fungus Thamnidium elegans (TeCYPs). We identified 48 TeCYP genes, including two putative pseudogenes, from the whole-genome sequence of T. elegans. Furthermore, we constructed a functional library of TeCYPs and heterologously expressed 46 TeCYPs in Saccharomyces cerevisiae. Recombinants of S. cerevisiae were then used as whole-cell biocatalysts for bioconversion of various compounds. Catalytic potentials of various TeCYPs were demonstrated through a functionomic survey to convert a series of compounds, including steroidal substrates. Notably, CYP5312A4 was found to be highly active against testosterone. Based on nuclear magnetic resonance analysis, enzymatic conversion of testosterone to 14α-hydroxytestosterone by CYP5312A4 was demonstrated. This is the first report to identify a novel fungal P450 that catalyzes the 14α-hydroxylation of testosterone. In addition, we explored the latent potentials of TeCYPs using various substrates. This study provides a platform to further study the potential use of TeCYPs as catalysts in pharmaceutical and agricultural industries and biotechnology.
Collapse
Affiliation(s)
- Dani Permana
- Faculty
of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Research
Center for Environmental and Clean Technology, The National Research and Innovation Agency of the Republic of Indonesia
(BRIN), Bandung Advanced Science and Creative Engineering Space (BASICS), Jl. Cisitu, Bandung 40135, Indonesia
| | - Ksenia Niesel
- Bayer
AG, Industriepark Höchst, Frankfurt am Main 65926, Germany
| | | | - Hirofumi Ichinose
- Faculty
of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Góralczyk-Bińkowska A, Długoński A, Bernat P, Długoński J, Jasińska A. Environmental and molecular approach to dye industry waste degradation by the ascomycete fungus Nectriella pironii. Sci Rep 2021; 11:23829. [PMID: 34903810 PMCID: PMC8669018 DOI: 10.1038/s41598-021-03446-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/26/2021] [Indexed: 11/15/2022] Open
Abstract
Textile industry effluents and landfill leachate contain chemicals such as dyes, heavy metals and aromatic amines characterized by their mutagenicity, cytotoxicity and carcinogenicity. The aim of the present study was investigation of the ascomycete fungus N. pironii isolated from urban postindustrial textile green space for its ability to grow and retain metabolic activity in the presence of the dye industry waste. Research focused mainly on dyes, heavy metals and aromatic amines, which had been detected in landfill leachate via HPLC-MS/MS analysis. Presence of all tested compounds as well as leachate in the growth medium clearly favored the growth of fungal biomass. Only slight growth limitation was observed in the presence of 50 mg L-1 o-tolidine. The fungus eliminated o-tolidine as well as dyes at all tested concentrations. The presence of metals slightly influenced the decolorization of the azo dyes; however, it was still similar to 90%. During fungal growth, o-tolidine was hydroxylated and/or converted to toluidine and its derivatives. Laccase and cytochrome P450 involvement in this process has been revealed. The results presented in the paper provide a valuable background for the development of a fungus-based system for the elimination of toxic pollutants generated by the textile industry.
Collapse
Affiliation(s)
- Aleksandra Góralczyk-Bińkowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237, Łódź, Poland
| | - Andrzej Długoński
- Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University in Warsaw, 1/3 Wóycickiego Street, 01-938, Warsaw, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237, Łódź, Poland
| | - Jerzy Długoński
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237, Łódź, Poland.
| | - Anna Jasińska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, 12/16 Banacha Street, 90-237, Łódź, Poland.
| |
Collapse
|
13
|
Jiang JH, Wu SH, Zhou LW. The First Whole Genome Sequencing of Sanghuangporus sanghuang Provides Insights into Its Medicinal Application and Evolution. J Fungi (Basel) 2021; 7:jof7100787. [PMID: 34682209 PMCID: PMC8537844 DOI: 10.3390/jof7100787] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 01/06/2023] Open
Abstract
Sanghuangporus is a medicinal macrofungal genus typified by S. sanghuang, the very species utilized in traditional Chinese medicines by Chinese ancient people. To facilitate the medicinal application of S. sanghuang, we, for the first time, perform its genome sequencing and analyses from a monokaryon strain. A 33.34 Mb genome sequence was assembled to 26 contigs, which lead to the prediction of 8278 protein-coding genes. From these genes, the potential biosynthesis pathway of sesquiterpenoids was, for the first time, identified from Sanghuangporus, besides that of triterpenoids. While polysaccharides are the main medicinal metabolites in S. sanghuang, flavonoids are especially abundant medicinal metabolites comparing with other medicinal macrofungal groups. From the genomic perspective, S. sanghuang has a tetrapolar heterothallic mating system, and has its special nutritional strategy and advantageous medicinal properties compared with S. baumii and S. vaninii. A phylogenomics analysis indicates that Sanghuangporus emerged 15.39 million years ago and S. sanghuang has a closer phylogenetic relationship with S. baumii than S. vaninii. However, S. sanghuang shares a higher region of synteny and more orthologous genes, including carbohydrate-active enzymes with S. vaninii than S. baumii. A comparative genomics analysis with S. baumii and S. vaninii indicates that species diversification within Sanghuangporus may be driven by the translocation and translocation plus inversion of genome sequences, while the expansion and contraction of gene families may contribute to the host specificity of Sanghuangporus species. In general, the genome sequence of S. sanghuang provides insights into its medicinal application and evolution.
Collapse
Affiliation(s)
- Ji-Hang Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Sheng-Hua Wu
- Department of Biology, National Museum of Natural Science, Taichung 404, China;
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- Correspondence:
| |
Collapse
|
14
|
Schempp FM, Strobel I, Etschmann MMW, Bierwirth E, Panten J, Schewe H, Schrader J, Buchhaupt M. Identification of Fungal Limonene-3-Hydroxylase for Biotechnological Menthol Production. Appl Environ Microbiol 2021; 87:e02873-20. [PMID: 33637576 PMCID: PMC8117750 DOI: 10.1128/aem.02873-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/24/2021] [Indexed: 11/20/2022] Open
Abstract
More than 30,000 tons of menthol are produced every year as a flavor and fragrance compound or as a medical component. So far, only extraction from plant material and chemical synthesis are possible. An alternative approach for menthol production could be a biotechnological-chemical process with ideally only two conversion steps, starting from (+)-limonene, which is a side product of the citrus processing industry. The first step requires a limonene-3-hydroxylase (L3H) activity that specifically catalyzes hydroxylation of limonene at carbon atom 3. Several protein engineering strategies have already attempted to create limonene-3-hydroxylases from bacterial cytochrome P450 monooxygenases (CYPs, or P450s), which can be efficiently expressed in bacterial hosts. However, their regiospecificity is rather low compared to that of the highly selective L3H enzymes from the biosynthetic pathway for menthol in Mentha species. The only naturally occurring limonene-3-hydroxylase activity identified in microorganisms so far was reported for a strain of the black yeast-like fungus Hormonema sp. in South Africa. We have discovered additional fungi that can catalyze the intended reaction and identified potential CYP-encoding genes within the genome sequence of one of the strains. Using heterologous gene expression and biotransformation experiments in yeasts, we were able to identify limonene-3-hydroxylases from Aureobasidium pullulans and Hormonema carpetanum Further characterization of the A. pullulans enzyme demonstrated its high stereospecificity and regioselectivity, its potential for limonene-based menthol production, and its additional ability to convert α- and β-pinene to verbenol and pinocarveol, respectively.IMPORTANCE (-)-Menthol is an important flavor and fragrance compound and furthermore has medicinal uses. To realize a two-step synthesis starting from renewable (+)-limonene, a regioselective limonene-3-hydroxylase enzyme is necessary. We identified enzymes from two different fungi which catalyze this hydroxylation reaction and represent an important module for the development of a biotechnological process for (-)-menthol production from renewable (+)-limonene.
Collapse
Affiliation(s)
- Florence M Schempp
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Frankfurt am Main, Germany
- Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ingmar Strobel
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Frankfurt am Main, Germany
| | - Maria M W Etschmann
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Frankfurt am Main, Germany
| | - Elena Bierwirth
- Faculty Biological Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johannes Panten
- Symrise AG, S&C Innovations Technology Scouting, Holzminden, Germany
| | - Hendrik Schewe
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Frankfurt am Main, Germany
| | - Jens Schrader
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Frankfurt am Main, Germany
| | - Markus Buchhaupt
- DECHEMA-Forschungsinstitut, Industrial Biotechnology, Frankfurt am Main, Germany
| |
Collapse
|
15
|
Pereira JCV, Serbent MP, Skoronski E. Application of immobilized mycelium-based pellets for the removal of organochlorine compounds: a review. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:1781-1796. [PMID: 33905352 DOI: 10.2166/wst.2021.093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organochlorines have diverse structures and applications and are included in the list of persistent organic pollutants (POPs) due to their toxicity and environmental persistence. The reduced capacity of conventional wastewater treatment plants to remove these compounds encourages the development of cost-effective and efficient remediation approaches. Fungal biotechnology can contribute to the development of these technologies through their enzymatic machinery but faces several drawbacks related to the use of dispersed mycelium. In this sense, investigations concerning the degradation of organochlorines using immobilized fungi demonstrated an increase in contaminant removal efficiency compared with degradation by free cells. Despite this interest, the mechanisms of immobilized fungi have not been comprehensively reviewed. In this paper, recent advances of laboratory and field studies in organochlorine compounds removal by fungi are reviewed, focusing on the role of immobilization techniques. Firstly, the mechanisms of organochlorines bioconversion by fungi and the factors affecting enzyme activity are elucidated and discussed in detail. Then, the main targeted compounds, fungi, technics, and materials used for immobilization are discussed, as well as their advantages and limitations. Furthermore, critical points for future studies of fungi immobilization for organochlorine removal are proposed.
Collapse
Affiliation(s)
- J C V Pereira
- Department of Sanitary Engineering, State University of Santa Catarina, 2822 Dr Getúlio Vargas Road, Ibirama, Brazil E-mail:
| | - M P Serbent
- Department of Sanitary Engineering, State University of Santa Catarina, 2822 Dr Getúlio Vargas Road, Ibirama, Brazil E-mail:
| | - E Skoronski
- Department of Environmental and Sanitary Engineering, State University of Santa Catarina, 2090 Luís de Camões Avenue, Lages, Brazil
| |
Collapse
|
16
|
New Bromo- and Iodo-Hydroxylactones with Two Methyl Groups Obtained by Biotransformation of Bicyclic Halolactones. Catalysts 2021. [DOI: 10.3390/catal11010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The subject of the research was to determine the ability of the filamentous fungi to biotransform bicyclic halolactones containing two methyl groups in their structure. By chemical synthesis three bicyclic halolactones with two methyl groups, one in the cyclohexane ring and one in the lactone ring, were obtained: 2-chloro-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one, 2-bromo-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one, and 2-iodo-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one. These compounds were formed as mixtures of two diastereoisomers. The obtained halolactones (as mixture of two diastereoisomers) were subjected to screening biotransformation with the use of eight strains of filamentous fungi: Fusarium culmorum AM10, F. avenaceum AM12, F. semitectum AM20, F. solani AM203, Absidia coerulea AM93, A. cylindrospora AM336, Penicillium chermesinum AM113, P. frequentans AM351. Two of the substrates, 2-bromo-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one and 2-iodo-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one, were hydroxylated without removing the halogen atom from the molecule, giving 2-bromo-7-hydroxy-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one, 2-bromo-5-hydroxy-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one, and 2-iodo-7-hydroxy-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one as products. The hydroxylation capacity was demonstrated by strains of Absidia cylindrospora AM336, Fusarium avenaceum AM12, and F. solani AM203. The structures of all lactones were determined on the basis spectroscopic data.
Collapse
|
17
|
Pereira dos Santos VH, Coelho Neto DM, Lacerda Júnior V, Borges WDS, de Oliveira Silva E. Fungal Biotransformation: An Efficient Approach for Stereoselective Chemical Reactions. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201111203506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is great interest in developing chemical technologies to achieve regioselective
and stereoselective reactions since only one enantiomer is required for producing the
chiral leads for drug development. These selective reactions are provided by traditional
chemical synthetic methods, even under expensive catalysts and long reaction times. Filamentous
fungi are efficient biocatalysts capable of catalyzing a wide variety of reactions with
significant contributions to the development of clean and selective processes. Although some
enzymes have already been employed in isolated forms or as crude protein extracts as catalysts
for conducting selective reactions, the use of whole-cell provides advantages regarding
cofactor regenerations. It is also possible to carry out conversions at chemically unreactive
positions and to perform racemic resolution through microbial transformation. The current
literature contains several reports on the biotransformation of different compounds by fungi, which generated chemical
analogs with high selectivity, using mild and eco-friendly conditions. Prompted by the enormous pharmacological
interest in the development of stereoselective chemical technologies, this review covers the biotransformations catalyzed
by fungi that yielded chiral products with enantiomeric excesses published over the period 2010-2020. This
work highlights new approaches for the achievement of a variety of bioactive chiral building blocks, which can be a
good starting point for the synthesis of new compounds combining biotransformation and synthetic organic chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Eliane de Oliveira Silva
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
18
|
In Vitro Enzymatic Conversion of Glibenclamide Using Squalene Hopene Cyclase from Pseudomonas mendocina Expressed in E. coli BL21 (DE3). Mol Biotechnol 2020; 62:456-465. [PMID: 32757148 DOI: 10.1007/s12033-020-00264-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Squalene hopene cyclases catalyse the conversion of a linear substrate squalene to a cyclic product with high stereo-selectivity.The enzyme squalene hopene cyclase from Pseudomonas mendocina expressed in E. coli BL21 (DE3) was evaluated for its synthetic drug transforming ability. Nine synthetic drugs were selected as substrates for biotransformation reactions by the enzyme. The homology modelling of the protein and docking of the selected ligands were performed using GOLD suite docking software. The drug which showed maximum binding with the active-site residues of the enzyme was selected for biotransformation studies. On transformation with the enzyme, Glibenclamide, the selected antidiabetic drug alone showed significant changes in the FT/IR spectra; hence, it was selected for LCMS analysis to confirm the transformations. From the chromatogram and MS spectra, the mono-oxygenation of the product due to the enzymatic activity was confirmed. The drug transforming ability of the purified SHC could be used as an ideal tool for the generation of new and active substrate derivatives.
Collapse
|
19
|
Zhao MA, Gu H, Zhang CJ, Jeong IH, Kim JH, Zhu YZ. Metabolism of insecticide diazinon by Cunninghamella elegans ATCC36112. RSC Adv 2020; 10:19659-19668. [PMID: 35515422 PMCID: PMC9054078 DOI: 10.1039/d0ra02253e] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/23/2020] [Indexed: 02/04/2023] Open
Abstract
The fungal metabolism of diazinon was investigated and the microbial model (Cunninghamella elegans ATCC36112) could effectively degrade the organophosphorus pesticide (diazinon) mediated by cytochrome P450, which was mainly involved in oxidation and hydrolysis of phase I metabolism. Approximately 89% of diazinon was removed within 7 days and was not observed after 13 days with concomitant accumulation of eight metabolites. Structures of the metabolites were fully or tentatively identified with GC-MS and 1H, 13C NMR. The major metabolites of diazinon were diethyl (2-isopropyl-6-methylpyrimidin-4-yl) phosphate (diazoxon) and 2-isopropyl-6-methyl-4-pyrimidinol (pyrimidinol), and formation of minor metabolites was primarily the result of hydroxylation. To determine the responsible enzymes in diazinon metabolism, piperonyl butoxide and methimazole were treated, and the kinetic responses of diazinon and its metabolites by Cunninghamella elegans were measured. Results indirectly demonstrated that cytochrome P450 and flavin monooxygenase were involved in the metabolism of diazinon, but methimazole inhibited the metabolism less effectively. Based on the metabolic profiling, a possible metabolic pathway involved in phase I metabolism of diazinon was proposed, which would contribute to providing insight into understanding the toxicological effects of diazinon and the potential application of fungi on organophosphorus pesticides.
Collapse
Affiliation(s)
- Mei-Ai Zhao
- College of Life Sciences, Qingdao Agricultural University Changcheng Rd, Chengyang Qingdao City Shandong Province 266-109 China
| | - Hao Gu
- College of Chemistry and Pharmacy, Qingdao Agricultural University Changcheng Rd, Chengyang Qingdao City Shandong Province 266-109 China +86-532-8803-0220 +86-133-5532-5000
| | - Chuan-Jie Zhang
- College of Animal Science and Technology, Yangzhou University Yangzhou Jiangsu Province 225-009 China
| | - In-Hong Jeong
- Division of Crop Protection, National Institute of Agricultural Science, Rural Development Administration Jeollabuk-do 55365 Republic of Korea
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology, Seoul National University 599 Gwanak-ro, Silim-dong, Gwanak-Gu Seoul 151-742 Republic of Korea
| | - Yong-Zhe Zhu
- College of Chemistry and Pharmacy, Qingdao Agricultural University Changcheng Rd, Chengyang Qingdao City Shandong Province 266-109 China +86-532-8803-0220 +86-133-5532-5000
| |
Collapse
|