1
|
Qin Y, Xia Y. Melanin in fungi: advances in structure, biosynthesis, regulation, and metabolic engineering. Microb Cell Fact 2024; 23:334. [PMID: 39696244 DOI: 10.1186/s12934-024-02614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/03/2024] [Indexed: 12/20/2024] Open
Abstract
Fungi can synthesize a diverse range of melanins with appropriate physicochemical and biological characteristics for numerous applications in health, environmental protection, energy, and industry. Gaining deeper insights into the chemical structures, biosynthetic pathways, and regulatory mechanisms of fungal melanin would establish a basis for metabolic engineering approaches, aimed at enhancing production efficiency and creating custom-designed melanin with desirable material properties. Due to growing interest in their beneficial effects and applications, research on the structure, biosynthesis, and regulation of fungal melanin has significantly advanced. This review highlighted recent progress in fungal melanin production and applications, concentrating on structure, biosynthesis, and regulatory networks, and suggested how an improved understanding of melanin biosynthesis could enable efficient production for future applications.
Collapse
Affiliation(s)
- Yanping Qin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, 401331, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, China.
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, 401331, China.
| |
Collapse
|
2
|
Xie L, Liu Y, Zhang Y, Chen K, Yue Q, Wang C, Dun B, Xu Y, Zhang L. The divergence of DHN-derived melanin pathways in Metarhizium robertsii. World J Microbiol Biotechnol 2024; 40:323. [PMID: 39292329 DOI: 10.1007/s11274-024-04134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/07/2024] [Indexed: 09/19/2024]
Abstract
The important role of dihydroxynaphthalene-(DHN) melanin in enhancing fungal stress resistance and its importance in fungal development and pathogenicity are well-established. This melanin also aids biocontrol fungi in surviving in the environment and effectively infecting insects. However, the biosynthetic origin of melanin in the biocontrol agents, Metarhizium spp., has remained elusive due to the complexity resulting from the divergence of two DHN-like biosynthetic pathways. Through the heterologous expression of biosynthetic enzymes from these two pathways in baker's yeast Saccharomyces cerevisiae, we have confirmed the presence of DHN biosynthesis in M. roberstii, and discovered a novel naphthopyrone intermediate, 8, that can produce a different type of pigment. These two pigment biosynthetic pathways differ in terms of polyketide intermediate structures and subsequent modification steps. Stress resistance studies using recombinant yeast cells have demonstrated that both DHN and its intermediates confer resistance against UV light prior to polymerization; a similar result was observed for its naphthopyrone counterpart. This study contributes to the understanding of the intricate and diverse biosynthetic mechanisms of fungal melanin and has the potential to enhance the application efficiency of biocontrol fungi such as Metarhizium spp. in agriculture.
Collapse
Affiliation(s)
- Linan Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yujie Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Kang Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Qun Yue
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Chen Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Baoqing Dun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Yuquan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Liwen Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| |
Collapse
|
3
|
Han DM, Baek JH, Choi DG, Jeon MS, Eyun SI, Jeon CO. Comparative pangenome analysis of Aspergillus flavus and Aspergillus oryzae reveals their phylogenetic, genomic, and metabolic homogeneity. Food Microbiol 2024; 119:104435. [PMID: 38225047 DOI: 10.1016/j.fm.2023.104435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/25/2023] [Indexed: 01/17/2024]
Abstract
Aspergillus flavus and Aspergillus oryzae are closely related fungal species with contrasting roles in food safety and fermentation. To comprehensively investigate their phylogenetic, genomic, and metabolic characteristics, we conducted an extensive comparative pangenome analysis using complete, dereplicated genome sets for both species. Phylogenetic analyses, employing both the entirety of the identified single-copy orthologous genes and six housekeeping genes commonly used for fungal classification, did not reveal clear differentiation between A. flavus and A. oryzae genomes. Upon analyzing the aflatoxin biosynthesis gene clusters within the genomes, we observed that non-aflatoxin-producing strains were dispersed throughout the phylogenetic tree, encompassing both A. flavus and A. oryzae strains. This suggests that aflatoxin production is not a distinguishing trait between the two species. Furthermore, A. oryzae and A. flavus strains displayed remarkably similar genomic attributes, including genome sizes, gene contents, and G + C contents, as well as metabolic features and pathways. The profiles of CAZyme genes and secondary metabolite biosynthesis gene clusters within the genomes of both species further highlight their similarity. Collectively, these findings challenge the conventional differentiation of A. flavus and A. oryzae as distinct species and highlight their phylogenetic, genomic, and metabolic homogeneity, potentially indicating that they may indeed belong to the same species.
Collapse
Affiliation(s)
- Dong Min Han
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Dae Gyu Choi
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Min-Seung Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
4
|
Rudhra O, Gnanam H, Sivaperumal S, Namperumalsamy V, Prajna L, Kuppamuthu D. Melanin depletion affects Aspergillus flavus conidial surface proteins, architecture, and virulence. Appl Microbiol Biotechnol 2024; 108:291. [PMID: 38592509 PMCID: PMC11004046 DOI: 10.1007/s00253-024-13107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 03/06/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Melanin is an Aspergillus flavus cell wall component that provides chemical and physical protection to the organism. However, the molecular and biological mechanisms modulating melanin-mediated host-pathogen interaction in A. flavus keratitis are not well understood. This work aimed to compare the morphology, surface proteome profile, and virulence of melanized conidia (MC) and non-melanized conidia (NMC) of A. flavus. Kojic acid treatment inhibited melanin synthesis in A. flavus, and the conidial surface protein profile was significantly different in kojic acid-treated non-melanized conidia. Several cell wall-associated proteins and proteins responsible for oxidative stress, carbohydrate, and chitin metabolic pathways were found only in the formic acid extracts of NMC. Scanning electron microscopy (SEM) analysis showed the conidial surface morphology difference between the NMC and MC, indicating the role of melanin in the structural integrity of the conidial cell wall. The levels of calcofluor white staining efficiency were different, but there was no microscopic morphology difference in lactophenol cotton blue staining between MC and NMC. Evaluation of the virulence of MC and NMC in the Galleria mellonella model showed NMC was less virulent compared to MC. Our findings showed that the integrity of the conidial surface is controlled by the melanin layer. The alteration in the surface protein profile indicated that many surface proteins are masked by the melanin layer, and hence, melanin can modulate the host response by preventing the exposure of fungal proteins to the host immune defense system. The G. mellonella virulence assay also confirmed that the NMC were susceptible to host defense as in other Aspergillus pathogens. KEY POINTS: • l-DOPA melanin production was inhibited in A. flavus isolates by kojic acid, and for the first time, scanning electron microscopy (SEM) analysis revealed morphological differences between MC and NMC of A. flavus strains • Proteome profile of non-melanized conidia showed more conidial surface proteins and these proteins were mainly involved in the virulence, oxidative stress, and metabolism pathways • Non-melanized conidia of A. flavus strains were shown to be less virulent than melanised conidia in an in vivo virulence experiment with the G. melonella model.
Collapse
Affiliation(s)
- Ondippili Rudhra
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Hariharan Gnanam
- Department of Proteomics, Aravind Medical Research Foundation, Madurai, Tamil Nadu, India
| | - Sivaramakrishnan Sivaperumal
- Department of Biotechnology and Genetic Engineering, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Lalitha Prajna
- Department of Ocular Microbiology, Aravind Eye Hospital, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | | |
Collapse
|
5
|
Bush DS, Calla B, Berenbaum MR. An Aspergillus flavus strain from bee bread of the Western honey bee ( Apis mellifera) displays adaptations to distinctive features of the hive environment. Ecol Evol 2024; 14:e10918. [PMID: 38389995 PMCID: PMC10883247 DOI: 10.1002/ece3.10918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 02/24/2024] Open
Abstract
Aspergillus fungi are ubiquitous inhabitants of colonies of the western honey bee (Apis mellifera), where they interact with bees in associations ranging from parasitism to possible mutualism. Aspergillus Flavi fungi are frequently found in bee bread (pollen processed for longterm storage) and are thought to contribute to food preparation, processing, preservation, and digestion. Conditions in the hive are challenging for fungi due, in part, to xeric and acidic properties of bee bread and the omnipresence of propolis, an antimicrobial product manufactured by bees from plant resins. We used quantitative and qualitative assays to determine whether A. flavus isolated from bee bread demonstrates tolerance for hive environmental conditions in terms of temperature, pH, osmotic pressure, and propolis exposure. Comparisons made use of three strains of A. flavus: a fungal biocontrol product not known from beehives (AF36), a strain isolated from bee bread (AFBB) in hives from central Illinois, and a pathogenic strain from a honey bee colony displaying symptoms of stonebrood (AFPA). Strain AFBB displayed higher tolerance of acidic conditions, low matric potential (simulating xeric substrate), and propolis exposure than did other strains. A genomic comparison between this new strain and the reference NRRL-3357 showed that AFBB, like AF36, might be blocked from carrying out aflatoxin biosynthesis. Sequence comparisons also revealed several missense variants in genes that encode proteins regulating osmotolerance and osmotic pressure in Aspergillus spp., including SakA, SskB, GfdA, and TcsB/Sln1. Collectively, results of our laboratory assays and genetic analyses are consistent with the suggestion that the strain isolated from bee bread is adapted to the bee bread environment and may have persisted due to a coevolutionary relationship between Aspergillus and A. mellifera. This finding bolsters recent concerns about the effects of fungicide use near bee colonies and broadens the ecological importance of highly adaptable fungal strains.
Collapse
Affiliation(s)
- Daniel S. Bush
- Deparment of EntomologyUniversity of IllinoisUrbanaIllinoisUSA
| | - Bernarda Calla
- USDA‐ARS Pacific Shellfish Research UnitCorvallisOregonUSA
| | | |
Collapse
|
6
|
Oakley CE, Barton TS, Oakley BR. Identification of the chaA and fwA Spore Color Genes of Aspergillus nidulans. J Fungi (Basel) 2024; 10:104. [PMID: 38392776 PMCID: PMC10890192 DOI: 10.3390/jof10020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Wild-type Aspergillus nidulans asexual spores (conidia) are green due to a pigment that protects the spores against ultraviolet light. The pigment is produced by a biosynthetic pathway, the genes of which are dispersed in the genome. The backbone molecule of the pigment is a polyketide synthesized by a polyketide synthase encoded by the wA gene. If wA is not functional, the conidia are white. The polyketide is modified by a laccase encoded by the yA gene and inactivation of yA in an otherwise wild-type background results in yellow spores. Additional spore color mutations have been isolated and mapped to a locus genetically, but the genes that correspond to these loci have not been determined. Spore color markers have been useful historically, and they remain valuable in the molecular genetics era. One can determine if a transforming fragment has been successfully integrated at the wA or yA locus by simply looking at the color of transformant conidia. The genes of the potentially useful color loci chaA (chartreuse conidia) and fwA (fawn conidia) have not been identified previously. We chose a set of candidate genes for each locus by comparing the assembled genome with the genetic map. By systematically deleting these candidate genes, we identified a cytochrome P450 gene (AN10028) corresponding to chaA. Deletions of this gene result in chartreuse conidia and chartreuse mutations can be complemented in trans by a functional copy of this gene. With fwA, we found that the existing fawn mutation, fwA1, is a deletion of 2241 base pairs that inactivates three genes. By deleting each of these genes, we determined that fwA is AN1088, an EthD domain protein. Deletion of AN1088 results in fawn conidia as expected. Neither deletion of chaA nor fwA restricts growth and both should be valuable target loci for transformations. Combinations of deletions have allowed us to investigate the epistasis relationships of wA, yA, chaA and fwA.
Collapse
Affiliation(s)
- C Elizabeth Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Thomas S Barton
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| | - Berl R Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
| |
Collapse
|
7
|
Liu S, Lu X, Dai M, Zhang S. Transcription factor CreA is involved in the inverse regulation of biofilm formation and asexual development through distinct pathways in Aspergillus fumigatus. Mol Microbiol 2023; 120:830-844. [PMID: 37800624 DOI: 10.1111/mmi.15179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/17/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
The exopolysaccharide galactosaminogalactan (GAG) contributes to biofilm formation and virulence in the pathogenic fungus Aspergillus fumigatus. Increasing evidence indicates that GAG production is inversely linked with asexual development. However, the mechanisms underlying this regulatory relationship are unclear. In this study, we found that the dysfunction of CreA, a conserved transcription factor involved in carbon catabolite repression in many fungal species, causes abnormal asexual development (conidiation) under liquid-submerged culture conditions specifically in the presence of glucose. The loss of creA decreased GAG production independent of carbon sources. Furthermore, CreA contributed to asexual development and GAG production via distinct pathways. CreA promoted A. fumigatus GAG production by positively regulating GAG biosynthetic genes (uge3 and agd3). CreA suppressed asexual development in glucose liquid-submerged culture conditions via central conidiation genes (brlA, abaA, and wetA) and their upstream activators (flbC and flbD). Restoration of brlA expression to the wild-type level by flbC or flbD deletion abolished the abnormal submerged conidiation in the creA null mutant but did not restore GAG production. The C-terminal region of CreA was crucial for the suppression of asexual development, and the repressive domain contributed to GAG production. Overall, CreA is involved in GAG production and asexual development in an inverse manner.
Collapse
Affiliation(s)
- Shuai Liu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyan Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
8
|
Qiu M, Qiu L, Deng Q, Fang Z, Sun L, Wang Y, Gooneratne R, Zhao J. L-Cysteine hydrochloride inhibits Aspergillus flavus growth and AFB 1 synthesis by disrupting cell structure and antioxidant system balance. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132218. [PMID: 37552922 DOI: 10.1016/j.jhazmat.2023.132218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Aflatoxin B1 (AFB1) is the most potent known naturally occurring carcinogen and pose an immense threat to food safety and human health. L-Cysteine hydrochloride (L-CH) is a food additive often used as a fruit and vegetable preservative and also to approved bread consistency. In this study, we investigated the effects and mechanisms of L-CH as an antimicrobial on the growth of Aspergillus flavus (A. flavus) and AFB1 biosynthesis. L-CH significantly inhibited A. flavus mycelial growth, affected mycelial morphology and AFB1 synthesis. Furthermore, L-CH induced glutathione (GSH) synthesis which scavenged intracellular reactive oxygen species (ROS). RNA-Seq indicated that L-CH inhibited hyphal branching, and spore and sclerotia formation by controlling cell wall and spore development-related genes. Activation of the GSH metabolic pathway eliminated intracellular ROS, leading to hyphal dwarfing. L-CH treatment downregulated most of the Aflatoxin (AF) cluster genes and aflS, aflR, AFLA_091090 transcription factors. This study provides new insights into the molecular mechanism of L-CH control of A. flavus and AFB1 foundation. We believe that L-CH could be used as a food additive to control AFB1 in foods and also in the environment.
Collapse
Affiliation(s)
- Mei Qiu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lihong Qiu
- Department of Clinical Laboratory, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jian Zhao
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Barashkova AS, Ryazantsev DY, Zhuravleva AS, Sharoyko VV, Rogozhin EA. Recombinant Fusion Protein Containing Plant Nigellothionin Regulates the Growth of Food-Spoiling Fungus ( Aspergillus niger). Foods 2023; 12:3002. [PMID: 37628001 PMCID: PMC10453017 DOI: 10.3390/foods12163002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to obtain a recombinant chimeric protein named trx-NsW2 via theheterologous expression of the multifunctional antimicrobial peptide nigellothionin from black cumin (Nigella sativa L.) seeds in the Escherichia coli system. The protein was purified using a combination of Ni-NTA affinity chromatography and reversed-phase HPLC. Based on the HPLC calibration, the total yield of the protein was calculated to be 650 mg/L of bacterial culture. The fungistatic activity of trx-NsW2 against the food-spoiling fungus Aspergillus niger was demonstrated as itinhibited the maturation of conidiawithout affecting conidial germination or fungal growth. In contrast to mature nigellothionin NsW2, the fusion protein showeda low level of cytotoxicity towards both normal and tumor cell lines at concentrationsof up to 100-200 µM. Interestingly, at lower concentrations, it even stimulated cytokinesis. These findings are of critical importance for applying chimeric antimicrobial proteins obtained via microbiological synthesis in applied science.
Collapse
Affiliation(s)
- Anna S. Barashkova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117937, Russia; (A.S.B.); (D.Y.R.)
- All-Russian Institute for Plant Protection, Pushkin 196608, Russia
| | - Dmitry Yu. Ryazantsev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117937, Russia; (A.S.B.); (D.Y.R.)
| | | | - Vladimir V. Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russia;
| | - Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow 117937, Russia; (A.S.B.); (D.Y.R.)
- All-Russian Institute for Plant Protection, Pushkin 196608, Russia
| |
Collapse
|
10
|
Dual Transcriptome Analysis Reveals That ChATG8 Is Required for Fungal Development, Melanization and Pathogenicity during the Interaction between Colletotrichum higginsianum and Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24054376. [PMID: 36901806 PMCID: PMC10002072 DOI: 10.3390/ijms24054376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 01/26/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Anthracnose disease of cruciferous plants caused by Colletotrichum higginsianum is a serious fungal disease that affects cruciferous crops such as Chinese cabbage, Chinese flowering cabbage, broccoli, mustard plant, as well as the model plant Arabidopsis thaliana. Dual transcriptome analysis is commonly used to identify the potential mechanisms of interaction between host and pathogen. In order to identify differentially expressed genes (DEGs) in both the pathogen and host, the conidia of wild-type (ChWT) and Chatg8 mutant (Chatg8Δ) strains were inoculated onto leaves of A. thaliana, and the infected leaves of A. thaliana at 8, 22, 40, and 60 h post-inoculation (hpi) were subjected to dual RNA-seq analysis. The results showed that comparison of gene expression between the 'ChWT' and 'Chatg8Δ' samples detected 900 DEGs (306 upregulated and 594 down-regulated) at 8 hpi, 692 DEGs (283 upregulated and 409 down-regulated) at 22 hpi, 496 DEGs (220 upregulated and 276 down-regulated) at 40 hpi, and 3159 DEGs (1544 upregulated and 1615 down-regulated) at 60 hpi. GO and KEGG analyses found that the DEGs were mainly involved in fungal development, biosynthesis of secondary metabolites, plant-fungal interactions, and phytohormone signaling. The regulatory network of key genes annotated in the Pathogen-Host Interactions database (PHI-base) and Plant Resistance Genes database (PRGdb), as well as a number of key genes highly correlated with the 8, 22, 40, and 60 hpi, were identified during the infection. Among the key genes, the most significant enrichment was in the gene encoding the trihydroxynaphthalene reductase (THR1) in the melanin biosynthesis pathway. Both Chatg8Δ and Chthr1Δ strains showed varying degrees of reduction of melanin in appressoria and colonies. The pathogenicity of the Chthr1Δ strain was lost. In addition, six DEGs from C. higginsianum and six DEGs from A. thaliana were selected for real-time quantitative PCR (RT-qPCR) to confirm the RNA-seq results. The information gathered from this study enriches the resources available for research into the role of the gene ChATG8 during the infection of A. thaliana by C. higginsianum, such as potential links between melanin biosynthesis and autophagy, and the response of A. thaliana to different fungal strains, thereby providing a theoretical basis for the breeding of cruciferous green leaf vegetable cultivars with resistance to anthracnose disease.
Collapse
|
11
|
Chang PK. A Simple CRISPR/Cas9 System for Efficiently Targeting Genes of Aspergillus Section Flavi Species, Aspergillus nidulans, Aspergillus fumigatus, Aspergillus terreus, and Aspergillus niger. Microbiol Spectr 2023; 11:e0464822. [PMID: 36651760 PMCID: PMC9927283 DOI: 10.1128/spectrum.04648-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
For Aspergillus flavus, a pathogen of considerable economic and health concern, successful gene knockout work for more than a decade has relied nearly exclusively on using nonhomologous end-joining pathway (NHEJ)-deficient recipients via forced double-crossover recombination of homologous sequences. In this study, a simple CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease) genome editing system that gave extremely high (>95%) gene-targeting frequencies in A. flavus was developed. It contained a shortened Aspergillus nidulans AMA1 autonomously replicating sequence that maintained good transformation frequencies and Aspergillus oryzae ptrA as the selection marker for pyrithiamine resistance. Expression of the codon-optimized cas9 gene was driven by the A. nidulans gpdA promoter and trpC terminator. Expression of single guide RNA (sgRNA) cassettes was controlled by the A. flavus U6 promoter and terminator. The high transformation and gene-targeting frequencies of this system made generation of A. flavus gene knockouts with or without phenotypic changes effortless. Additionally, multiple-gene knockouts of A. flavus conidial pigment genes (olgA/copT/wA or olgA/yA/wA) were quickly generated by a sequential approach. Cotransforming sgRNA vectors targeting A. flavus kojA, yA, and wA gave 52%, 40%, and 8% of single-, double-, and triple-gene knockouts, respectively. The system was readily applicable to other section Flavi aspergilli (A. parasiticus, A. oryzae, A. sojae, A. nomius, A. bombycis, and A. pseudotamarii) with comparable transformation and gene-targeting efficiencies. Moreover, it gave satisfactory gene-targeting efficiencies (>90%) in A. nidulans (section Nidulantes), A. fumigatus (section Fumigati), A. terreus (section Terrei), and A. niger (section Nigri). It likely will have a broad application in aspergilli. IMPORTANCE CRISPR/Cas9 genome editing systems have been developed for many aspergilli. Reported gene-targeting efficiencies vary greatly and are dependent on delivery methods, repair mechanisms of induced double-stranded breaks, selection markers, and genetic backgrounds of transformation recipient strains. They are also mostly strain specific or species specific. This developed system is highly efficient and allows knocking out multiple genes in A. flavus efficiently either by sequential transformation or by cotransformation of individual sgRNA vectors if desired. It is readily applicable to section Flavi species and aspergilli in other sections ("section" is a taxonomic rank between genus and species). This cross-Aspergillus section system is for wild-type isolates and does not require homologous donor DNAs to be added, NHEJ-deficient strains to be created, or forced recycling of knockout recipients to be performed for multiple-gene targeting. Hence, it simplifies and expedites the gene-targeting process significantly.
Collapse
Affiliation(s)
- Perng-Kuang Chang
- Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, Louisiana, USA
| |
Collapse
|
12
|
Zhang D, Yang Y, Yao B, Hu T, Ma Z, Shi W, Ye Y. Curcumin inhibits Aspergillus flavus infection and aflatoxin production possibly by inducing ROS burst. Food Res Int 2023; 167:112646. [PMID: 37087237 DOI: 10.1016/j.foodres.2023.112646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Aspergillus flavus contamination is common in various food and feed ingredients, and it poses to serious threats to human and animal health. Curcumin is a plant-derived polyphenol that exhibits antifungal activity. In this study, the antifungal effect of curcumin on A. flavus was evaluated, and the underlying mechanism was investigated. Curcumin effectively decreased aflatoxin B1 synthesis and suppressed A. flavus infection in peanut. Curcumin inhibited the mycelial growth and sporulation of A. flavus. Ergosterol biosynthesis in A. flavus was suppressed, and cell membrane permeability was enhanced. The pathogenicity of A. flavus was also reduced by curcumin treatment. Curcumin induced ROS burst in the hyphae of A. flavus, and those damages could be reversed by exogenous superoxide dismutase, suggesting that curcumin inhibited A. flavus possibly via inducing oxidative stress. These results indicate that curcumin has the potential to be used as a preservative to control A. flavus contamination in food and feedstuff.
Collapse
|
13
|
Lin L, Xu J. Production of Fungal Pigments: Molecular Processes and Their Applications. J Fungi (Basel) 2022; 9:44. [PMID: 36675865 PMCID: PMC9866555 DOI: 10.3390/jof9010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/25/2022] [Indexed: 12/30/2022] Open
Abstract
Due to the negative environmental and health effects of synthetic colorants, pigments of natural origins of plants and microbes constitute an abundant source for the food, cosmetic, textile, and pharmaceutical industries. The demands for natural alternatives, which involve natural colorants and natural biological processes for their production, have been growing rapidly in recent decades. Fungi contain some of the most prolific pigment producers, and they excel in bioavailability, yield, cost-effectiveness, and ease of large-scale cell culture as well as downstream processing. In contrast, pigments from plants are often limited by seasonal and geographic factors. Here, we delineate the taxonomy of pigmented fungi and fungal pigments, with a focus on the biosynthesis of four major categories of pigments: carotenoids, melanins, polyketides, and azaphilones. The molecular mechanisms and metabolic bases governing fungal pigment biosynthesis are discussed. Furthermore, we summarize the environmental factors that are known to impact the synthesis of different fungal pigments. Most of the environmental factors that enhance fungal pigment production are related to stresses. Finally, we highlight the challenges facing fungal pigment utilization and future trends of fungal pigment development. This integrated review will facilitate further exploitations of pigmented fungi and fungal pigments for broad applications.
Collapse
Affiliation(s)
- Lan Lin
- Medical School, School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Diseases (MOE), Southeast University, Nanjing 210009, China
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
14
|
Non-thermal treatments for the control of endogenous formaldehyde from Auricularia auricula and their effects on its nutritional characteristics. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Harpke M, Pietschmann S, Ueberschaar N, Krüger T, Kniemeyer O, Brakhage AA, Nietzsche S, Kothe E. Salt and Metal Tolerance Involves Formation of Guttation Droplets in Species of the Aspergillus versicolor Complex. Genes (Basel) 2022; 13:genes13091631. [PMID: 36140799 PMCID: PMC9498632 DOI: 10.3390/genes13091631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Three strains of the Aspergillus versicolor complex were isolated from a salty marsh at a former uranium mining site in Thuringia, Germany. The strains from a metal-rich environment were not only highly salt tolerant (up to 20% NaCl), but at the same time could sustain elevated Cs and Sr (both up to 100 mM) concentrations as well as other (heavy) metals present in the environment. During growth experiments when screening for differential cell morphology, the occurrence of guttation droplets was observed, specifically when elevated Sr concentrations of 25 mM were present in the media. To analyze the potential of metal tolerance being promoted by these excretions, proteomics and metabolomics of guttation droplets were performed. Indeed, proteins involved in up-regulated metabolic activities as well as in stress responses were identified. The metabolome verified the presence of amino sugars, glucose homeostasis-regulating substances, abscisic acid and bioactive alkaloids, flavones and quinones.
Collapse
Affiliation(s)
- Marie Harpke
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Sebastian Pietschmann
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
| | - Nico Ueberschaar
- Mass Spectrometry Platform, Friedrich Schiller University Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Thomas Krüger
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Adolf-Reichwein-St. 23, 07745 Jena, Germany
| | - Olaf Kniemeyer
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Adolf-Reichwein-St. 23, 07745 Jena, Germany
| | - Axel A. Brakhage
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Leibniz Institute for Natural Product Research and Infection Biology, Department of Molecular and Applied Microbiology, Adolf-Reichwein-St. 23, 07745 Jena, Germany
| | - Sandor Nietzsche
- Elektronenmikroskopisches Zentrum, Universitätsklinikum Jena, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
16
|
Effects of Volatile Organic Compounds Produced by Pseudomonas aurantiaca ST-TJ4 against Verticillium dahliae. J Fungi (Basel) 2022; 8:jof8070697. [PMID: 35887453 PMCID: PMC9315757 DOI: 10.3390/jof8070697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/09/2022] [Accepted: 06/26/2022] [Indexed: 02/04/2023] Open
Abstract
Verticillium dahliae is one of the most destructive fungal pathogens, causing substantial economic losses in agriculture and forestry. The use of plant growth-promoting rhizobacteria (PGPR) is an effective and environmentally friendly strategy for controlling diseases caused by V. dahliae. In this study, 90 mm in diameter Petri plates were used to test the effect of volatile organic compounds (VOCs) produced by different concentrations of Pseudomonasaurantiaca ST-TJ4 cells suspension on V. dahliae mycelia radial growth and biomass. The mycelial morphology was observed by using scanning electron microscopy. The conidia germination and microsclerotia formation of V. dahliae were evaluated. The VOCs with antifungal activity were collected by headspace solid-phase microextraction (SPME), and their components were analyzed by gas chromatography-mass spectrometry (GC-MS). The VOCs produced by strain ST-TJ4 significantly inhibited the growth of mycelium of V. dahliae. The morphology of the hyphae was rough and wrinkled when exposed to VOCs. The VOCs of strain ST-TJ4 have a significant inhibitory effect on V. dahliae conidia germination and microsclerotia formation. At the same time, the VOCs also reduce the expression of genes related to melanin synthesis in V. dahliae. In particular, the expression of the hydrophobin gene (VDAG-02273) was down-regulated the most, about 67-fold. The VOCs effectively alleviate the severity of cotton root disease. In the volatile profile of strain ST-TJ4, 2-undecanone and 1-nonanol assayed in the range 10–200 µL per plate revealed a significant inhibitory effect on V. dahliae mycelial radial growth. These compounds may be useful to devise new control strategies for control of Verticillium wilt disease caused by V. dahliae.
Collapse
|
17
|
Fungal morphology: a challenge in bioprocess engineering industries for product development. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2021.100729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Tamano K, Takayama H, Yasokawa S, Sano M, Baker SE. Major involvement of two laccase genes in conidial pigment biosynthesis in Aspergillus oryzae. Appl Microbiol Biotechnol 2021; 106:287-300. [PMID: 34889980 DOI: 10.1007/s00253-021-11669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
Wild-type strains of Aspergillus oryzae develop yellow, yellow-green, green, or brown conidia. Previous reports suggested that the conidiation initiates with the biosynthesis of a yellow pigment YWA1 from acetyl-CoA by a polyketide synthase encoded by wA (AO090102000545). This is followed by the conversion to other pigment by a laccase encoded by yA (AO090011000755). Based on orthologous pathways in other Aspergilli, it is reasonable to hypothesize that in addition to yA, AO090102000546 encoding laccase and AO090005000332 encoding Ayg1-like hydrolase play a role in A. oryzae conidial pigment biosynthesis. However, the involvement of these two genes in conidial pigmentation remains unclear. In this study, we tested this hypothesis by assessing the conidial colors of both disruption and overexpression mutants to verify whether AO090102000546 and AO090005000332 were associated with the conidial pigmentation. Observation of single, double, and triple disruptants of these three genes suggested that conidial pigments were synthesized by two laccase genes, AO090011000755 and AO090102000546, whereas Ayg1-like hydrolase gene AO090005000332 was proven to have no obvious association with the synthesis. This was corroborated by observing the phenotype of each overexpression mutant. Interestingly, AO090005000332 overexpression mutant produced smoky yellow-green conidia, different from the wild-type strain. Thus, the AO090005000332-encoded protein is likely to maintain the enzymatic activity. However, the expression level was observed to be one-third of that of AO090102000546 and one-seventh of that of AO090011000755. Consequently, apparent lack of obvious contribution of AO090005000332 to conidial pigmentation could be attributed to its low expression level. Expression analysis indicated similar profiles in several wild-type strains. KEY POINTS: • Conidial pigment biosynthesis after YWA1 mainly involves two laccases in A. oryzae. • Ayg1-like hydrolase in A. oryzae is not obviously involved in conidial pigmentation. • Conidial color is deemed dependent on expression level of two laccases and hydrolase.
Collapse
Affiliation(s)
- Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan. .,AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), AIST, 5-20, Building 63, Nishi-Waseda Campus, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| | - Haruka Takayama
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan
| | - Saeko Yasokawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan
| | - Motoaki Sano
- Genome Biotechnology Laboratory, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan, Ishikawa, 924-0838, Japan
| | - Scott E Baker
- Pacific Northwest National Laboratory, PO Box 99, Richland, WA, 99352, USA
| |
Collapse
|
19
|
The Heterotrimeric Transcription Factor CCAAT-Binding Complex and Ca 2+-CrzA Signaling Reversely Regulate the Transition between Fungal Hyphal Growth and Asexual Reproduction. mBio 2021; 12:e0300721. [PMID: 34781745 PMCID: PMC8593669 DOI: 10.1128/mbio.03007-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The life cycle of filamentous fungi generally comprises hyphal growth and asexual reproduction. Both growth and propagation processes are critical for invasion growth, spore dissemination, and virulence in fungal pathogens and for the production of secondary metabolites or for biomass accumulation in industrial filamentous fungi. The CCAAT-binding complex (CBC) is a heterotrimeric transcription factor comprising three subunits, HapB, HapC, and HapE, and is highly conserved in fungi. Previous studies revealed that CBC regulates sterol metabolism by repressing several genes in the ergosterol biosynthetic pathway in the human fungal pathogen Aspergillus fumigatus. In the present study, we found dysfunction of CBC caused the abnormal asexual reproduction (conidiation) in submerged liquid culture. CBC suppresses the activation of the brlA gene in the central regulatory pathway for conidiation combined with its upstream regulators fluG, flbD, and flbC by binding to the 5'-CCAAT-3' motif within conidiation gene promoters, and lack of CBC member HapB results in the upregulation of these genes. Furthermore, when the expression of brlA or flbC is repressed, the submerged conidiation does not happen in the hapB mutant. Interestingly, deletion of HapB leads to enhanced transient cytosolic Ca2+ levels and activates conidiation-positive inducer Ca2+-CrzA modules to enhance submerged conidiation, demonstrating that CrzA works with CBC as a reverse regulator of fungal conidiation. To the best of our knowledge, the finding of this study is the first report for the molecular switch mechanism between vegetative hyphal growth and asexual development regulated by CBC, in concert with Ca2+-CrzA signaling in A. fumigatus. IMPORTANCE A precisely timed switch between vegetative hyphal growth and asexual development is a crucial process for the filamentous fungal long-term survival, dissemination, biomass production, and virulence. However, under the submerged culture condition, filamentous fungi would undergo constant vegetative growth whereas asexual conidiation rarely occurs. Knowledge about possible regulators is scarce, and how they could inhibit conidiation in liquid culture is poorly understood. Here, we demonstrated that the transcription factor heterotrimeric CBC dominantly maintains vegetative growth in liquid-submerged cultures by directly suppressing the conidiation-inductive signal. In contrast, calcium and the transcription factor CrzA, are positive inducers of conidiation. Our new insights into the CBC and Ca2+-CrzA regulatory system for transition control in the submerged conidiation of A. fumigatus may have broad repercussions for all filamentous fungi. Moreover, our elucidation of the molecular mechanism for submerged conidiation may support new strategies to precisely control vegetative growth and asexual conidiation in aspergilli used in industry.
Collapse
|
20
|
Nóbrega BB, Soares DMM, Zamuner CK, Stevani CV. Optimized methodology for obtention of high-yield and -quality RNA from the mycelium of the bioluminescent fungus Neonothopanus gardneri. J Microbiol Methods 2021; 191:106348. [PMID: 34699864 DOI: 10.1016/j.mimet.2021.106348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Neonothopanus gardneri, also known as coconut flower mushroom (flor-de-coco), is a Brazilian bioluminescent basidiomycete found in Palm Forest, a transitional biome between the Amazonian Forest and Caatinga (Savanna-like vegetation) in Northeast Brazil, especially in Piauí State. Recent advances toward the elucidation of fungal bioluminescence have contributed to the discovery of four genes (hisps, h3h, luz and cph) involved with the bioluminescence process, the so-called Caffeic Acid Cycle (CAC) and to develop biotechnological applications such autoluminescent tobacco plants and luciferase-based reporter genes. High-yield and -quality RNA-extraction methods are required for most of these purposes. Herein, four methods for RNA isolation from the mycelium of N. gardneri were evaluated: RNeasy® kit (QIAGEN), TRI+, TRI18G+, and TRI26G+. Highest RNA yield was observed for TRI18G+ and TRI26G+ methods, an increase of ~130% in comparison to the RNeasy® method and of ~40% to the TRI+ protocol. All the RNA samples showed good purity and integrity, except by gDNA contamination in RNA samples produced with the RNeasy® method. High quality of RNA samples was confirmed by successful cDNA synthesis and PCR amplification of the coding sequence of h3h gene, responsible for the hydroxylation of the precursor of fungal luciferin (3-hydroxyhispidin). Similarly, RT-qPCR amplification of ef-tu gene, related to the protein biosynthesis in the cell, was demonstrated from RNA samples. This is the first report of a reproducible, time-saving and low-cost optimized method for isolation of high-quality and -yield, DNA-free RNA from a bioluminescent fungus, but that can also be useful for other basidiomycetes.
Collapse
Affiliation(s)
- Bianca B Nóbrega
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas M M Soares
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Caio K Zamuner
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Cassius V Stevani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
21
|
Abstract
The resistance markers could ensure the entry of the CRISPR/Cas9 system into Aspergillus niger cells instead of gene editing. To increase the efficiency of positive colony screening on the primary transformation plates, we designed a visualized multigene editing system (VMS) via a unique tRNA-guide RNA (gRNA) array containing the gRNAs of a pigment gene albA and target genes. Disruption of albA produces white colonies, and the sequences of the endogenous tRNAAla, tRNAPhe, tRNAArg, tRNAIle, and tRNALeu enhance gRNA release. The disruption efficiencies of multigene were analyzed in the A. niger strain AG11 using ammA, amyA, prtT, kusA, and glaA as reporters. In white colonies on the primary transformation plates, the disruption rates of one-, two-, three-, four-, and five-target genes reached 89.2, 70.91, 50, 22.41, and 4.17%, respectively. The VMS developed here provides an effective method for screening homokaryotic multigene editing strains of A. niger.
Collapse
Affiliation(s)
- Cen Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Guocheng Du
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
22
|
Christiansen JV, Isbrandt T, Petersen C, Sondergaard TE, Nielsen MR, Pedersen TB, Sørensen JL, Larsen TO, Frisvad JC. Fungal quinones: diversity, producers, and applications of quinones from Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. Appl Microbiol Biotechnol 2021; 105:8157-8193. [PMID: 34625822 DOI: 10.1007/s00253-021-11597-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Quinones represent an important group of highly structurally diverse, mainly polyketide-derived secondary metabolites widely distributed among filamentous fungi. Many quinones have been reported to have important biological functions such as inhibition of bacteria or repression of the immune response in insects. Other quinones, such as ubiquinones are known to be essential molecules in cellular respiration, and many quinones are known to protect their producing organisms from exposure to sunlight. Most recently, quinones have also attracted a lot of industrial interest since their electron-donating and -accepting properties make them good candidates as electrolytes in redox flow batteries, like their often highly conjugated double bond systems make them attractive as pigments. On an industrial level, quinones are mainly synthesized from raw components in coal tar. However, the possibility of producing quinones by fungal cultivation has great prospects since fungi can often be grown in industrially scaled bioreactors, producing valuable metabolites on cheap substrates. In order to give a better overview of the secondary metabolite quinones produced by and shared between various fungi, mainly belonging to the genera Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium, this review categorizes quinones into families such as emodins, fumigatins, sorbicillinoids, yanuthones, and xanthomegnins, depending on structural similarities and information about the biosynthetic pathway from which they are derived, whenever applicable. The production of these quinone families is compared between the different genera, based on recently revised taxonomy. KEY POINTS: • Quinones represent an important group of secondary metabolites widely distributed in important fungal genera such as Aspergillus, Penicillium, Talaromyces, Fusarium, and Arthrinium. • Quinones are of industrial interest and can be used in pharmacology, as colorants and pigments, and as electrolytes in redox flow batteries. • Quinones are grouped into families and compared between genera according to the revised taxonomy.
Collapse
Affiliation(s)
- J V Christiansen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - T Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - C Petersen
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - T E Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, 9220, Aalborg, Denmark
| | - M R Nielsen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T B Pedersen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - J L Sørensen
- Department of Chemistry and Bioscience, Aalborg University, 6700, Esbjerg, Denmark
| | - T O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - J C Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
23
|
Raman Characterization of Fungal DHN and DOPA Melanin Biosynthesis Pathways. J Fungi (Basel) 2021; 7:jof7100841. [PMID: 34682262 PMCID: PMC8540899 DOI: 10.3390/jof7100841] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/16/2022] Open
Abstract
Fungal melanins represent a resource for important breakthroughs in industry and medicine, but the characterization of their composition, synthesis, and structure is not well understood. Raman spectroscopy is a powerful tool for the elucidation of molecular composition and structure. In this work, we characterize the Raman spectra of wild-type Aspergillus fumigatus and Cryptococcus neoformans and their melanin biosynthetic mutants and provide a rough “map” of the DHN (A. fumigatus) and DOPA (C. neoformans) melanin biosynthetic pathways. We compare this map to the Raman spectral data of Aspergillus nidulans wild-type and melanin biosynthetic mutants obtained from a previous study. We find that the fully polymerized A. nidulans melanin cannot be classified according to the DOPA pathway; nor can it be solely classified according to the DHN pathway, consistent with mutational analysis and chemical inhibition studies. Our approach points the way forward for an increased understanding of, and methodology for, investigating fungal melanins.
Collapse
|
24
|
Wen G, Tan L, Cao R, Wan Q, Xu X, Wu G, Wang J, Huang T. Inactivation of waterborne fungal spores by 1-bromo-3-chloro-5,5-dimethylhydantoin: Kinetics, influencing factors and mechanisms. CHEMOSPHERE 2021; 274:129764. [PMID: 33545590 DOI: 10.1016/j.chemosphere.2021.129764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Fungal contamination in drinking water source has become a problem worth studying, as waterborne fungi may cause deterioration of water quality and outbreak of diseases. Various disinfection methods have been explored to control fungal spores in drinking water, such as chlor(am)ination, ozonation, chlorine dioxide treatment, but these methods are not appropriate for remote areas, owing to the difficulties in preparation, carriage and storage. In this study, a powdery disinfectant of 1-bromo-3-chloro-5,5-dimethylhydantoin (BCDMH), which facilitated transportation and preservation, was firstly chosen to inactivate opportunistic pathogens of Aspergillus niger (A. niger) and Penicillium polonicum (P. polonicum). The results revealed that the inactivation kinetics of fungal spores by BCDMH fitted to Chick-Watson model well, with the inactivation rate constant of 0.011 and 0.034 L mg-1 min-1 for A. niger and P. polonicum, respectively. Acidic condition and high temperature promoted the inactivation by BCDMH. Compared with chlorine, BCDMH showed relative weaker ability on inactivation of fungal spores. However, it was demonstrated that the inactivation efficiency of BCDMH was obviously enhanced by adding halide ions, with 11 or 36 folds for A. niger and 4 or 15 folds for P. polonicum by adding 40 μM Br- or I-. The inactivation mechanisms were detected by flow cytometry and scanning electron microscope. Fungal spores lost their culturability firstly, then membrane integrity was damaged. Meanwhile, the esterase activity and intracellular reactive oxygen species level changed, and finally intracellular adenosine triphosphate released.
Collapse
Affiliation(s)
- Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| | - Lili Tan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| |
Collapse
|
25
|
Ma H, Yang J, Chen X, Jiang X, Su Y, Qiao S, Zhong G. Deep convolutional neural network: a novel approach for the detection of Aspergillus fungi via stereomicroscopy. J Microbiol 2021; 59:563-572. [PMID: 33779956 DOI: 10.1007/s12275-021-1013-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022]
Abstract
Fungi of the genus Aspergillus are ubiquitously distributed in nature, and some cause invasive aspergillosis (IA) infections in immunosuppressed individuals and contamination in agricultural products. Because microscopic observation and molecular detection of Aspergillus species represent the most operator-dependent and time-intensive activities, automated and cost-effective approaches are needed. To address this challenge, a deep convolutional neural network (CNN) was used to investigate the ability to classify various Aspergillus species. Using a dissecting microscopy (DM)/stereomicroscopy platform, colonies on plates were scanned with a 35× objective, generating images of sufficient resolution for classification. A total of 8,995 original colony images from seven Aspergillus species cultured in enrichment medium were gathered and autocut to generate 17,142 image crops as training and test datasets containing the typical representative morphology of conidiophores or colonies of each strain. Encouragingly, the Xception model exhibited a classification accuracy of 99.8% on the training image set. After training, our CNN model achieved a classification accuracy of 99.7% on the test image set. Based on the Xception performance during training and testing, this classification algorithm was further applied to recognize and validate a new set of raw images of these strains, showing a detection accuracy of 98.2%. Thus, our study demonstrated a novel concept for an artificial-intelligence-based and cost-effective detection methodology for Aspergillus organisms, which also has the potential to improve the public's understanding of the fungal kingdom.
Collapse
Affiliation(s)
- Haozhong Ma
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jinshan Yang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaolu Chen
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Xinyu Jiang
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yimin Su
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Shanlei Qiao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Guowei Zhong
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
26
|
Lim S, Bijlani S, Blachowicz A, Chiang YM, Lee MS, Torok T, Venkateswaran K, Wang CCC. Identification of the pigment and its role in UV resistance in Paecilomyces variotii, a Chernobyl isolate, using genetic manipulation strategies. Fungal Genet Biol 2021; 152:103567. [PMID: 33989788 DOI: 10.1016/j.fgb.2021.103567] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/19/2022]
Abstract
Fungi produce secondary metabolites that are not directly involved in their growth, but often contribute to their adaptation to extreme environmental stimuli and enable their survival. Conidial pigment or melanin is one of the secondary metabolites produced naturally by a polyketide synthesis (PKS) gene cluster in several filamentous fungi and is known to protect these fungi from extreme radiation conditions. Several pigmented or melanized fungi have been shown to grow under extreme radiation conditions at the Chernobyl nuclear accident site. Some of these fungi, including Paecilomyces variotii, were observed to grow towards the source of radiation. Therefore, in this study, we wanted to identify if the pigment produced by P. variotii, contributes to providing protection against radiation condition. We first identified the PKS gene responsible for synthesis of pigment in P. variotii and confirmed its role in providing protection against UV irradiation through CRISPR-Cas9 mediated gene deletion. This is the first report that describes the use of CRISPR methodology to create gene deletions in P. variotii. Further, we showed that the pigment produced by this fungus, was not inhibited by DHN-melanin pathway inhibitors, indicating that the fungus does not produce melanin. We then identified the pigment synthesized by the PKS gene of P. variotii, as a naptho-pyrone Ywa1, by heterologously expressing the gene in Aspergillus nidulans. The results obtained will further aid in understanding the mechanistic basis of radiation resistance.
Collapse
Affiliation(s)
- Sujeung Lim
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Swati Bijlani
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Adriana Blachowicz
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States; Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Ming-Shian Lee
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States
| | - Tamas Torok
- Ecology Department, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kasthuri Venkateswaran
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States
| | - Clay C C Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, United States; Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
27
|
Takahashi H, Umemura M, Ninomiya A, Kusuya Y, Shimizu M, Urayama SI, Watanabe A, Kamei K, Yaguchi T, Hagiwara D. Interspecies Genomic Variation and Transcriptional Activeness of Secondary Metabolism-Related Genes in Aspergillus Section Fumigati. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:656751. [PMID: 37744138 PMCID: PMC10512231 DOI: 10.3389/ffunb.2021.656751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/23/2021] [Indexed: 09/26/2023]
Abstract
Filamentous fungi produce various bioactive compounds that are biosynthesized by sets of proteins encoded in biosynthesis gene clusters (BGCs). For an unknown reason, many BGCs are transcriptionally silent in laboratory conditions, which has hampered the discovery of novel fungal compounds. The transcriptional reactiveness of fungal secondary metabolism is not fully understood. To gain the comprehensive view, we conducted comparative genomic and transcriptomic analyses of nine closely-related species of Aspergillus section Fumigati (A. fumigatus, A. fumigatiaffinis, A. novofumigatus, A. thermomutatus, A. viridinutans, A. pseudoviridinutans, A. lentulus, A. udagawae, and Neosartorya fischeri). For expanding our knowledge, we newly sequenced genomes of A. viridinutans and A. pseudoviridinutans, and reassembled and reannotated the previously released genomes of A. lentulus and A. udagawae. Between 34 and 84 secondary metabolite (SM) backbone genes were identified in the genomes of these nine respective species, with 8.7-51.2% being unique to the species. A total of 247 SM backbone gene types were identified in the nine fungi. Ten BGCs are shared by all nine species. Transcriptomic analysis using A. fumigatus, A. lentulus, A. udagawae, A. viridinutans, and N. fischeri was conducted to compare expression levels of all SM backbone genes in four different culture conditions; 32-83% of SM backbone genes in these species were not expressed in the tested conditions, which reconfirmed that large part of fungal SM genes are hard to be expressed. The species-unique SM genes of the five species were expressed with lower frequency (18.8% in total) than the SM genes that are conserved in all five species (56%). These results suggest that the expression tendency of BGCs is correlated with their interspecies distribution pattern. Our findings increase understanding of the evolutionary processes associated with the regulation of fungal secondary metabolism.
Collapse
Affiliation(s)
- Hiroki Takahashi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Molecular Chirality Research Center, Chiba University, Chiba, Japan
- Plant Molecular Science Center, Chiba University, Chiba, Japan
| | - Maiko Umemura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Akihiro Ninomiya
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yoko Kusuya
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Masaaki Shimizu
- Department of Biology, Faculty of Science, Chiba University, Chiba, Japan
| | - Syun-ichi Urayama
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| | - Akira Watanabe
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Katsuhiko Kamei
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Takashi Yaguchi
- Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Daisuke Hagiwara
- Medical Mycology Research Center, Chiba University, Chiba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
28
|
Soliman TN, Wahba MI, Badr AN. Fungal Pigments for Food Industry. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Strycker BD, Han Z, Duan Z, Commer B, Wang K, Shaw BD, Sokolov AV, Scully MO. Identification of toxic mold species through Raman spectroscopy of fungal conidia. PLoS One 2020; 15:e0242361. [PMID: 33227000 PMCID: PMC7682877 DOI: 10.1371/journal.pone.0242361] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
We use a 785 nm shifted excitation Raman difference (SERDS) technique to measure the Raman spectra of the conidia of 10 mold species of especial toxicological, medical, and industrial importance, including Stachybotrys chartarum, Penicillium chrysogenum, Aspergillus fumigatus, Aspergillus flavus, Aspergillus oryzae, Aspergillus niger, and others. We find that both the pure Raman and fluorescence signals support the hypothesis that for an excitation wavelength of 785 nm the Raman signal originates from the melanin pigments bound within the cell wall of the conidium. In addition, the major features of the pure Raman spectra group into profiles that we hypothesize may be due to differences in the complex melanin biosynthesis pathways. We then combine the Raman spectral data with neural network models to predict species classification with an accuracy above 99%. Finally, the Raman spectral data of all species investigated is made freely available for download and use.
Collapse
Affiliation(s)
- Benjamin D. Strycker
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas, United States of America
- Baylor University, Waco, Texas, United States of America
| | - Zehua Han
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Zheng Duan
- Center for Optical and Electromagnetic Research, South China Academy of Advanced, Optoelectronics, South China Normal University, Guangzhou, China
| | - Blake Commer
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Kai Wang
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas, United States of America
| | - Brian D. Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, United States of America
| | - Alexei V. Sokolov
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas, United States of America
- Baylor University, Waco, Texas, United States of America
| | - Marlan O. Scully
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, Texas, United States of America
- Baylor University, Waco, Texas, United States of America
| |
Collapse
|
30
|
Lin L, Xu J. Fungal Pigments and Their Roles Associated with Human Health. J Fungi (Basel) 2020; 6:E280. [PMID: 33198121 PMCID: PMC7711509 DOI: 10.3390/jof6040280] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Fungi can produce myriad secondary metabolites, including pigments. Some of these pigments play a positive role in human welfare while others are detrimental. This paper reviews the types and biosynthesis of fungal pigments, their relevance to human health, including their interactions with host immunity, and recent progresses in their structure-activity relationships. Fungal pigments are grouped into carotenoids, melanin, polyketides, and azaphilones, etc. These pigments are phylogenetically broadly distributed. While the biosynthetic pathways for some fungal pigments are known, the majority remain to be elucidated. Understanding the genes and metabolic pathways involved in fungal pigment synthesis is essential to genetically manipulate the production of both the types and quantities of specific pigments. A variety of fungal pigments have shown wide-spectrum biological activities, including promising pharmacophores/lead molecules to be developed into health-promoting drugs to treat cancers, cardiovascular disorders, infectious diseases, Alzheimer's diseases, and so on. In addition, the mechanistic elucidation of the interaction of fungal pigments with the host immune system provides valuable clues for fighting fungal infections. The great potential of fungal pigments have opened the avenues for academia and industries ranging from fundamental biology to pharmaceutical development, shedding light on our endeavors for disease prevention and treatment.
Collapse
Affiliation(s)
- Lan Lin
- School of Life Science and Technology, Department of Bioengineering, Key Laboratory of Developmental Genes and Human Diseases (MOE), Southeast University, Nanjing 210096, Jiangsu, China;
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
31
|
Feng Y, Yin Z, Wu Y, Xu L, Du H, Wang N, Huang L. LaeA Controls Virulence and Secondary Metabolism in Apple Canker Pathogen Valsa mali. Front Microbiol 2020; 11:581203. [PMID: 33250871 PMCID: PMC7674932 DOI: 10.3389/fmicb.2020.581203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/07/2020] [Indexed: 01/31/2023] Open
Abstract
Apple Valsa canker is a destructive disease caused by the ascomycete Valsa mali and poses a serious threat to apple production. Toxins synthesized by secondary metabolite biosynthetic gene clusters (SMBGCs) have been proven to be crucial for pathogen virulence. A previous study showed that V. mali genome contains remarkably expanded SMBGCs and some of their genes were significantly upregulated during infection. In this study, we focus on LaeA, a known regulator of secondary metabolism, for its role in SMBGC regulation, toxin production, and virulence of V. mali. Deletion of VmLaeA led to greatly reduced virulence with lesion length reduced by 48% on apple twigs. Toxicity tests proved that toxicity of secondary metabolites (SMs) produced by VmLaeA deletion mutant (ΔVmlaeA) was markedly decreased in comparison with wild-type (WT). Transcriptomic and proteomic analyses of WT and ΔVmlaeA indicated that a portion of transporters and about half (31/60) SMBGCs are regulated by VmLaeA. Function analysis of eight gene clusters including PKS7, PKS11, NRPS14, PKS16, PKS23, PKS31, NRPS/PKS33, and PKS39 that were differentially expressed at both transcriptional and translational levels showed that four of them (i.e., PKS11, PKS16, PKS23, and PKS31) were involved in pigment production and NRPS14 contributed to virulence. Our findings will provide new insights and gene resources for understanding the role of pathogenicity-related toxins in V. mali.
Collapse
Affiliation(s)
- Yaqiong Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhiyuan Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuxing Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hongxia Du
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Nana Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
- College of Life Science, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Pacelli C, Cassaro A, Maturilli A, Timperio AM, Gevi F, Cavalazzi B, Stefan M, Ghica D, Onofri S. Multidisciplinary characterization of melanin pigments from the black fungus Cryomyces antarcticus. Appl Microbiol Biotechnol 2020; 104:6385-6395. [DOI: 10.1007/s00253-020-10666-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/23/2020] [Accepted: 05/02/2020] [Indexed: 02/07/2023]
|
33
|
Cortesão M, de Haas A, Unterbusch R, Fujimori A, Schütze T, Meyer V, Moeller R. Aspergillus niger Spores Are Highly Resistant to Space Radiation. Front Microbiol 2020; 11:560. [PMID: 32318041 PMCID: PMC7146846 DOI: 10.3389/fmicb.2020.00560] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
The filamentous fungus Aspergillus niger is one of the main contaminants of the International Space Station (ISS). It forms highly pigmented, airborne spores that have thick cell walls and low metabolic activity, enabling them to withstand harsh conditions and colonize spacecraft surfaces. Whether A. niger spores are resistant to space radiation, and to what extent, is not yet known. In this study, spore suspensions of a wild-type and three mutant strains (with defects in pigmentation, DNA repair, and polar growth control) were exposed to X-rays, cosmic radiation (helium- and iron-ions) and UV-C (254 nm). To assess the level of resistance and survival limits of fungal spores in a long-term interplanetary mission scenario, we tested radiation doses up to 1000 Gy and 4000 J/m2. For comparison, a 360-day round-trip to Mars yields a dose of 0.66 ± 0.12 Gy. Overall, wild-type spores of A. niger were able to withstand high doses of X-ray (LD90 = 360 Gy) and cosmic radiation (helium-ion LD90 = 500 Gy; and iron-ion LD90 = 100 Gy). Drying the spores before irradiation made them more susceptible toward X-ray radiation. Notably, A. niger spores are highly resistant to UV-C radiation (LD90 = 1038 J/m2), which is significantly higher than that of other radiation-resistant microorganisms (e.g., Deinococcus radiodurans). In all strains, UV-C treated spores (1000 J/m2) were shown to have decreased biofilm formation (81% reduction in wild-type spores). This study suggests that A. niger spores might not be easily inactivated by exposure to space radiation alone and that current planetary protection guidelines should be revisited, considering the high resistance of fungal spores.
Collapse
Affiliation(s)
- Marta Cortesão
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Aram de Haas
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Rebecca Unterbusch
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Tabea Schütze
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Vera Meyer
- Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Ralf Moeller
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| |
Collapse
|