1
|
Sasakura Y, Yuzawa N, Yamasako J, Mori K, Horie T, Nonaka M. Environment-Mediated Vertical Transmission Fostered Uncoupled Phylogenetic Relationships between Longicorn Beetles and Their Symbionts. Zoolog Sci 2024; 41:363-376. [PMID: 39093282 DOI: 10.2108/zs230034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 03/26/2024] [Indexed: 08/04/2024]
Abstract
The Coleoptera Cerambycidae (longicorn beetles) use wood under different states (living healthy, freshly snapped, completely rot, etc.) in a species-specific manner for their larval diet. Larvae of some Cerambycidae groups have mycetomes, accessory organs associated with the midgut that harbor fungal symbiont cells. The symbionts are thought to improve nutrient conditions; however, this has yet to be shown experimentally. To deduce the evolutionary history of this symbiosis, we investigated the characteristics of the mycetomes in the larvae of longicorn beetles collected in Japan. Lepturinae, Necydalinae, and Spondylidinae are the only groups that possess mycetomes, and these three groups' mycetomes and corresponding fungal cells exhibit different characteristics between the groups. However, the phylogenetic relationship of symbiont yeasts does not coincide with that of the corresponding longicorn beetle species, suggesting they have not co-speciated. The imperfect vertical transmission of symbiont yeasts from female to offspring is a mechanism that could accommodate the host-symbiont phylogenetic incongruence. Some Lepturinae species secondarily lost mycetomes. The loss is associated with their diet choice, suggesting that different conditions between feeding habits could have allowed species to discard this organ. We found that symbiont fungi encapsulated in the mycetomes are dispensable for larval growth if sufficient nutrients are given, suggesting that the role of symbiotic fungi could be compensated by the food larvae take. Aegosoma sinicum is a longicorn beetle classified to the subfamily Prioninae, which does not possess mycetomes. However, this species contains a restricted selection of yeast species in the larval gut, suggesting that the symbiosis between longicorn beetles and yeasts emerged before acquiring the mycetomes.
Collapse
Affiliation(s)
- Yasunori Sasakura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka 415-0025, Japan,
| | | | - Junsuke Yamasako
- Institute for Plant Protection, National Agriculture and Research Organization, Tsukuba, Ibaraki 305-8517, Japan
| | | | - Takeo Horie
- Laboratory for Single-cell Neurobiology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaru Nonaka
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
2
|
Li Z, Tong H, Ni M, Zheng Y, Yang X, Tan Y, Li Z, Jiang M. An at-leg pellet and associated Penicillium sp. provide multiple protections to mealybugs. Commun Biol 2024; 7:580. [PMID: 38755282 PMCID: PMC11099121 DOI: 10.1038/s42003-024-06287-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Beneficial fungi are well known for their contribution to insects' adaptation to diverse habitats. However, where insect-associated fungi reside and the underlying mechanisms of insect-fungi interaction are not well understood. Here, we show a pellet-like structure on the legs of mealybugs, a group of economically important insect pests. This at-leg pellet, formed by mealybugs feeding on tomato but not by those on cotton, potato, or eggplant, originates jointly from host secretions and mealybug waxy filaments. A fungal strain, Penicillium citrinum, is present in the pellets and it colonizes honeydew. P. citrinum can inhibit mealybug fungal pathogens and is highly competitive in honeydew. Compounds within the pellets also have inhibitory activity against mealybug pathogens. Further bioassays suggest that at-leg pellets can improve the survival rate of Phenacoccus solenopsis under pathogen pressure, increase their sucking frequency, and decrease the defense response of host plants. Our study presents evidences on how a fungi-associated at-leg pellet provides multiple protections for mealybugs through suppressing pathogens and host defense, providing new insights into complex insect × fungi × plant interactions and their coevolution.
Collapse
Affiliation(s)
- Zicheng Li
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Haojie Tong
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Meihong Ni
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Yiran Zheng
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Xinyi Yang
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Yumei Tan
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Zihao Li
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Mingxing Jiang
- Institute of Insect Sciences, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Nicoletti R, Russo E, Becchimanzi A. Cladosporium-Insect Relationships. J Fungi (Basel) 2024; 10:78. [PMID: 38276024 PMCID: PMC10820778 DOI: 10.3390/jof10010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
The range of interactions between Cladosporium, a ubiquitous fungal genus, and insects, a class including about 60% of the animal species, is extremely diverse. The broad case history of antagonism and mutualism connecting Cladosporium and insects is reviewed in this paper based on the examination of the available literature. Certain strains establish direct interactions with pests or beneficial insects or indirectly influence them through their endophytic development in plants. Entomopathogenicity is often connected to the production of toxic secondary metabolites, although there is a case where these compounds have been reported to favor pollinator attraction, suggesting an important role in angiosperm reproduction. Other relationships include mycophagy, which, on the other hand, may reflect an ecological advantage for these extremely adaptable fungi using insects as carriers for spreading in the environment. Several Cladosporium species colonize insect structures, such as galleries of ambrosia beetles, leaf rolls of attelabid weevils and galls formed by cecidomyid midges, playing a still uncertain symbiotic role. Finally, the occurrence of Cladosporium in the gut of several insect species has intriguing implications for pest management, also considering that some strains have proven to be able to degrade insecticides. These interactions especially deserve further investigation to understand the impact of these fungi on pest control measures and strategies to preserve beneficial insects.
Collapse
Affiliation(s)
- Rosario Nicoletti
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Elia Russo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (E.R.); (A.B.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| |
Collapse
|
4
|
Zhu Z, Yang C, Keyhani NO, Liu S, Pu H, Jia P, Wu D, Stevenson PC, Fernández-Grandon GM, Pan J, Chen Y, Guan X, Qiu J. Characterization of Terpenoids from the Ambrosia Beetle Symbiont and Laurel Wilt Pathogen Harringtonia lauricola. J Fungi (Basel) 2023; 9:1175. [PMID: 38132776 PMCID: PMC10744799 DOI: 10.3390/jof9121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1-6) and three hopane triterpenes (7-9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54-26.06 μM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 μg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 μg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2-), with IC50 values of compounds 2, 4, and 6 ~3.45-14.04 μg/mL and 22.87-53.31 μg/mL towards DPPH and O2-, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Chenjie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA;
| | - Sen Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Huili Pu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Peisong Jia
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
| | - Philip C. Stevenson
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (P.C.S.); (G.M.F.-G.)
| | | | - Jieming Pan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China;
| | - Yuxi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junzhi Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| |
Collapse
|
5
|
Wang Z, Liu Y, Wang H, Roy A, Liu H, Han F, Zhang X, Lu Q. Genome and transcriptome of Ips nitidus provide insights into high-altitude hypoxia adaptation and symbiosis. iScience 2023; 26:107793. [PMID: 37731610 PMCID: PMC10507238 DOI: 10.1016/j.isci.2023.107793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/15/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
Ips nitidus is a well-known conifer pest that has contributed significantly to spruce forest disturbance in the Qinghai-Tibet Plateau and seriously threatens the ecological balance of these areas. We report a chromosome-level genome of I. nitidus determined by PacBio and Hi-C technology. Phylogenetic inference showed that it diverged from the common ancestor of I. typographus ∼2.27 mya. Gene family expansion in I. nitidus was characterized by DNA damage repair and energy metabolism, which may facilitate adaptation to high-altitude hypoxia. Interestingly, differential gene expression analysis revealed upregulated genes associated with high-altitude hypoxia adaptation and downregulated genes associated with detoxification after feeding and tunneling in fungal symbiont Ophiostoma bicolor-colonized substrates. Our findings provide evidence of the potential adaptability of I. nitidus to conifer host, high-altitude hypoxia and insight into how fungal symbiont assist in this process. This study enhances our understanding of insect adaptation, symbiosis, and pest management.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | - Ya Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Huimin Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, EXTEMIT-K and EVA.4.0 Unit, Czech University of Life Sciences, Kamýcká 1176, Prague 6, 165 00 Suchdol, Czech Republic
| | - Huixiang Liu
- Shandong Research Center for Forestry Harmful Biological Control Engineering and Technology, College of Plant Protection, Shandong Agricultural University, Tai’an 271018, China
| | | | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
6
|
Joseph R, Bansal K, Keyhani NO. Host switching by an ambrosia beetle fungal mutualist: Mycangial colonization of indigenous beetles by the invasive laurel wilt fungal pathogen. Environ Microbiol 2023; 25:1894-1908. [PMID: 37190943 DOI: 10.1111/1462-2920.16401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Ambrosia beetles require their fungal symbiotic partner as their cultivated (farmed) food source in tree galleries. While most fungal-beetle partners do not kill the host trees they inhabit, since their introduction (invasion) into the United states around ~2002, the invasive beetle Xyleborus glabratus has vectored its mutualist partner (but plant pathogenic) fungus, Harringtonia lauricola, resulting in the deaths of over 300 million trees. Concerningly, indigenous beetles have been caught bearing H. lauricola. Here, we show colonization of the mycangia of the indigenous X. affinis ambrosia beetle by H. lauricola. Mycangial colonization occurred within 1 h of feeding, with similar levels seen for H. lauricola as found for the native X. affinis-R. arxii fungal partner. Fungal mycangial occupancy was stable over time and after removal of the fungal source, but showed rapid turnover when additional fungal cells were available. Microscopic visualization revealed two pre-oral mycangial pouches of ~100-200 × 25-50 μm/each, with narrow entry channels of 25-50 × 3-10 μm. Fungi within the mycangia underwent a dimorphic transition from filamentous/blastospore growth to yeast-like budding with alterations to membrane structures. These data identify the characteristics of ambrosia beetle mycangial colonization, implicating turnover as a mechanism for host switching of H. lauricola to other ambrosia beetle species.
Collapse
Affiliation(s)
- Ross Joseph
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Kamaldeep Bansal
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
7
|
Alder-Rangel A, Bailão AM, Herrera-Estrella A, Rangel AEA, Gácser A, Gasch AP, Campos CBL, Peters C, Camelim F, Verde F, Gadd GM, Braus G, Eisermann I, Quinn J, Latgé JP, Aguirre J, Bennett JW, Heitman J, Nosanchuk JD, Partida-Martínez LP, Bassilana M, Acheampong MA, Riquelme M, Feldbrügge M, Keller NP, Keyhani NO, Gunde-Cimerman N, Nascimento R, Arkowitz RA, Mouriño-Pérez RR, Naz SA, Avery SV, Basso TO, Terpitz U, Lin X, Rangel DEN. The IV International Symposium on Fungal Stress and the XIII International Fungal Biology Conference. Fungal Biol 2023; 127:1157-1179. [PMID: 37495306 DOI: 10.1016/j.funbio.2023.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 04/24/2023] [Indexed: 07/28/2023]
Abstract
For the first time, the International Symposium on Fungal Stress was joined by the XIII International Fungal Biology Conference. The International Symposium on Fungal Stress (ISFUS), always held in Brazil, is now in its fourth edition, as an event of recognized quality in the international community of mycological research. The event held in São José dos Campos, SP, Brazil, in September 2022, featured 33 renowned speakers from 12 countries, including: Austria, Brazil, France, Germany, Ghana, Hungary, México, Pakistan, Spain, Slovenia, USA, and UK. In addition to the scientific contribution of the event in bringing together national and international researchers and their work in a strategic area, it helps maintain and strengthen international cooperation for scientific development in Brazil.
Collapse
Affiliation(s)
| | - Alexandre Melo Bailão
- Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Alfredo Herrera-Estrella
- Unidad de Genómica Avanzada-Langebio, Centro de Investigación y de Estudios Avanzados Del IPN, Irapuato, Guanajuato, Mexico
| | | | - Attila Gácser
- HCEMM-USZ Fungal Pathogens Research Group, Department of Microbiology, University of Szeged, Szeged, Hungary
| | - Audrey P Gasch
- Center for Genomic Science Innovation, University of Wisconsin Madison, Madison, WI, USA
| | - Claudia B L Campos
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José Dos Campos, SP, Brazil
| | - Christina Peters
- Deutsche Forschungsgemeinschaft (DFG), Office Latin America, São Paulo, SP, Brazil
| | - Francine Camelim
- German Academic Exchange Service (DAAD), DWIH, Sao Paulo, SP, Brazil
| | - Fulvia Verde
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland, UK
| | - Gerhard Braus
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Goettingen, Goettingen, Germany
| | - Iris Eisermann
- The Sainsbury Laboratory, University of East Anglia, Norwich, England, UK
| | - Janet Quinn
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, England, UK
| | - Jean-Paul Latgé
- Institute of Molecular Biology and Biotechnology FORTH and School of Medicine, University of Crete Heraklion, Greece
| | - Jesus Aguirre
- Departamento de Biología Celular y Del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autonoma de México, Mexico City, Mexico
| | - Joan W Bennett
- Department of Plant Biology, Rutgers, State University of New Jersey, New Brunswick, NJ, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Joshua D Nosanchuk
- Departments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, The Bronx, NY, USA
| | | | - Martine Bassilana
- Institute of Biology Valrose, University Côte D'Azur, CNRS, INSERM, Nice, France
| | | | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Michael Feldbrügge
- Institute of Microbiology, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Nancy P Keller
- Department of Medical Microbiology, Department of Plant Pathology, University of Wisconsin, Madison, WI, USA
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Raquel Nascimento
- Deutsche Forschungsgemeinschaft (DFG), Office Latin America, São Paulo, SP, Brazil
| | - Robert A Arkowitz
- Institute of Biology Valrose, University Côte D'Azur, CNRS, INSERM, Nice, France
| | - Rosa Reyna Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Sehar Afshan Naz
- Lab of Applied Microbiology and Clinical Mycology, Department of Microbiology, Federal Urdu University of Arts, Science and Technology, Gulshan Iqbal, Karachi, Pakistan
| | - Simon V Avery
- School of Life and Environmental Sciences, University of Nottingham, Nottingham, England, UK
| | - Thiago Olitta Basso
- Department of Chemical Engineering, Escola Politécnica, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ulrich Terpitz
- Department of Biotechnology and Biophysics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-Universität Würzburg, Wuerzburg, Germany
| | - Xiaorong Lin
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
8
|
Feng L, Du Z, Zhang S, Zhang S, Meng Q, Tajovský K. Omnivorous Notoxus trinotatus Pic (Coleoptera: Anthicidae) is a newly recognized vector of northern leaf blight in maize. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 112:e21991. [PMID: 36533994 DOI: 10.1002/arch.21991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
The adaptations of omnivorous insects to food are manifested in a multifaceted manner, and the availability of food resources directly determines insect feeding tendencies, which contribute to a complex insect-food relationship and impact insect functionality in the environment. Stable isotope analysis was applied to test the feeding preference and further define the functional role of omnivorous beetles in cropland. Our results confirmed that as an omnivorous beetle, the fungivorous nature of Notoxus trinotatus accounted for a prominent proportion food selection at the adult stage, and more importantly, this dietary feature contributed to the dispersal of the northern corn leaf blight in maize (NLB) during the feeding trials. In addition to the preference for fungi, water supplementation was an essential element extending adult longevity, which directly prolonged the contact time of adults with pathogenic fungi in agricultural fields. Consistent with the herbivorous characteristics of beetles, before the emergence of NLB fungal pathogens, corn tissues served as the main food, which provided the beetles with more opportunities to transmit fungal pathogen propagules. We conclude that the role of N. trinotatus in carrying NLB pathogen is due to its feeding on this plant mycopathogen, and an increased abundance of beetles carrying the pathogen may increase the rate of NLB disease infestation. More focus should be concentrated on the functions of fungivorous beetles, not only as pathogen-transmitting pests, but also as an element among the balanced biotic factors in farmland.
Collapse
Affiliation(s)
- Lichao Feng
- Department of Plant Protection, Jilin Agricultural Science and Technology University, Jilin, China
- Forestry College, Beihua University, Jilin, China
- Biology Centre, Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, České Budějovice, Czech Republic
| | - Zhiqi Du
- Forestry College, Beihua University, Jilin, China
| | - Shuang Zhang
- Department of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shaoqing Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Qingfan Meng
- Forestry College, Beihua University, Jilin, China
| | - Karel Tajovský
- Biology Centre, Czech Academy of Sciences, Institute of Soil Biology and Biogeochemistry, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Santamaria B, Verbeken A, Haelewaters D. Mycophagy: A Global Review of Interactions between Invertebrates and Fungi. J Fungi (Basel) 2023; 9:163. [PMID: 36836278 PMCID: PMC9968043 DOI: 10.3390/jof9020163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Fungi are diverse organisms that occupy important niches in natural settings and agricultural settings, acting as decomposers, mutualists, and parasites and pathogens. Interactions between fungi and other organisms, specifically invertebrates, are understudied. Their numbers are also severely underestimated. Invertebrates exist in many of the same spaces as fungi and are known to engage in fungal feeding or mycophagy. This review aims to provide a comprehensive, global view of mycophagy in invertebrates to bring attention to areas that need more research, by prospecting the existing literature. Separate searches on the Web of Science were performed using the terms "mycophagy" and "fungivore". Invertebrate species and corresponding fungal species were extracted from the articles retrieved, whether the research was field- or laboratory-based, and the location of the observation if field-based. Articles were excluded if they did not list at least a genus identification for both the fungi and invertebrates. The search yielded 209 papers covering seven fungal phyla and 19 invertebrate orders. Ascomycota and Basidiomycota are the most represented fungal phyla whereas Coleoptera and Diptera make up most of the invertebrate observations. Most field-based observations originated from North America and Europe. Research on invertebrate mycophagy is lacking in some important fungal phyla, invertebrate orders, and geographic regions.
Collapse
Affiliation(s)
- Brianna Santamaria
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Annemieke Verbeken
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Centro de Investigaciones Micológicas (CIMi), Universidad Autónoma de Chiriquí, David 0427, Panama
| |
Collapse
|
10
|
Diehl JMC, Keller A, Biedermann PHW. Comparing the succession of microbial communities throughout development in field and laboratory nests of the ambrosia beetle Xyleborinus saxesenii. Front Microbiol 2023; 14:1151208. [PMID: 37152720 PMCID: PMC10159272 DOI: 10.3389/fmicb.2023.1151208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023] Open
Abstract
Some fungus-farming ambrosia beetles rely on multiple nutritional cultivars (Ascomycota: Ophiostomatales and/or yeasts) that seem to change in relative abundance over time. The succession of these fungi could benefit beetle hosts by optimal consumption of the substrate and extended longevity of the nest. However, abundances of fungal cultivars and other symbionts are poorly known and their culture-independent quantification over development has been studied in only a single species. Here, for the first time, we compared the diversity and succession of both fungal and bacterial communities of fungus gardens in the fruit-tree pinhole borer, Xyleborinus saxesenii, from field and laboratory nests over time. By amplicon sequencing of probed fungus gardens of both nest types at three development phases we showed an extreme reduction of diversity in both bacterial and fungal symbionts in laboratory nests. Furthermore, we observed a general transition from nutritional to non-beneficial fungal symbionts during beetle development. While one known nutritional mutualist, Raffaelea canadensis, was occurring more or less stable over time, the second mutualist R. sulphurea was dominating young nests and decreased in abundance at the expense of other secondary fungi. The quicker the succession proceeded, the slower offspring beetles developed, suggesting a negative role of these secondary symbionts. Finally, we found signs of transgenerational costs of late dispersal for daughters, possibly as early dispersers transmitted and started their own nests with less of the non-beneficial taxa. Future studies should focus on the functional roles of the few bacterial taxa that were present in both field and laboratory nests.
Collapse
Affiliation(s)
- Janina M. C. Diehl
- Chair of Forest Entomology and Protection, Institute of Forestry, University of Freiburg, Freiburg im Breisgau, Germany
- Insect-Fungus Interactions Research Group, Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
- *Correspondence: Janina M. C. Diehl,
| | - Alexander Keller
- Faculty of Biology, Cellular and Organismic Networks, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Peter H. W. Biedermann
- Chair of Forest Entomology and Protection, Institute of Forestry, University of Freiburg, Freiburg im Breisgau, Germany
- Peter H. W. Biedermann,
| |
Collapse
|
11
|
Menocal O, Cruz LF, Kendra PE, Berto M, Carrillo D. Flexibility in the ambrosia symbiosis of Xyleborus bispinatus. Front Microbiol 2023; 14:1110474. [PMID: 36937297 PMCID: PMC10018145 DOI: 10.3389/fmicb.2023.1110474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Ambrosia beetles maintain strict associations with specific lineages of fungi. However, anthropogenic introductions of ambrosia beetles into new ecosystems can result in the lateral transfer of their symbionts to other ambrosia beetles. The ability of a Florida endemic ambrosia beetle, Xyleborus bispinatus, to feed and establish persistent associations with two of its known symbionts (Raffaelea subfusca and Raffaelea arxii) and two other fungi (Harringtonia lauricola and Fusarium sp. nov.), which are primary symbionts of invasive ambrosia beetles, was investigated. Methods The stability of these mutualisms and their effect on the beetle's fitness were monitored over five consecutive generations. Surface-disinfested pupae with non-developed mycangia were reared separately on one of the four fungal symbionts. Non-treated beetles (i.e., lab colony) with previously colonized mycangia were used as a control group. Results Xyleborus bispinatus could exchange its fungal symbionts, survive, and reproduce on different fungal diets, including known fungal associates and phylogenetically distant fungi, which are plant pathogens and primary symbionts of other invasive ambrosia beetles. These changes in fungal diets resulted in persistent mutualisms, and some symbionts even increased the beetle's reproduction. Females that developed on Fusarium sp. nov. had a significantly greater number of female offspring than non-treated beetles. Females that fed solely on Harringtonia or Raffaelea symbionts produced fewer female offspring. Discussion Even though some ambrosia beetles like X. bispinatus can partner with different ambrosia fungi, their symbiosis under natural conditions is modulated by their mycangium and possibly other environmental factors. However, exposure to symbionts of invasive beetles can result in stable partnerships with these fungi and affect the population dynamics of ambrosia beetles and their symbionts.
Collapse
Affiliation(s)
- Octavio Menocal
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
- *Correspondence: Octavio Menocal,
| | - Luisa F. Cruz
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
| | - Paul E. Kendra
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States
| | - Marielle Berto
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
| | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL, United States
- Daniel Carrillo,
| |
Collapse
|
12
|
Woodring T, Deepe GS, Levitz SM, Wuethrich M, Klein BS. They shall not grow mold: Soldiers of innate and adaptive immunity to fungi. Semin Immunol 2023; 65:101673. [PMID: 36459927 PMCID: PMC10311222 DOI: 10.1016/j.smim.2022.101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 11/30/2022]
Abstract
Fungi are ubiquitous commensals, seasoned predators, and important agents of emerging infectious diseases [1 ]. The immune system assumes the essential responsibility for responding intelligently to the presence of known and novel fungi to maintain host health. In this Review, we describe the immune responses to pathogenic fungi and the varied array of fungal agents confronting the vertebrate host within the broader context of fungal and animal evolution. We provide an overview of the mechanistic details of innate and adaptive antifungal immune responses, as well as ways in which these basic mechanisms support the development of vaccines and immunotherapies.
Collapse
Affiliation(s)
- Therese Woodring
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA
| | - George S Deepe
- Department of Medicine, Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Marcel Wuethrich
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA
| | - Bruce S Klein
- Departments of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA; Departments of Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA; Departments of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison WI, USA.
| |
Collapse
|
13
|
Lai S, Zhao C, Li Y, Zhou Y, Zhong L, Qiu C, Wang H, Pan Y, Dai L, Hao D. Three novel Fusarium mutualists of ambrosia beetle Euwallacea interjectus in China. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Fungal Flora in Adult Females of the Rearing Population of Ambrosia Beetle Euwallacea interjectus (Blandford) (Coleoptera: Curculionidae: Scolytinae): Does It Differ from the Wild Population? DIVERSITY 2022. [DOI: 10.3390/d14070535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ambrosia beetles bore into host trees, and live with fungi symbiotically that serve as a food source. However, it is challenging to directly observe these beetles in the wild. In this study, Euwallacea interjectus (Blandford) (Coleoptera: Curculionidae: Scolytinae), a pest of fig trees in Japan, were reared under artificial conditions to emulate the behavior of ambrosia beetle. Fungi were isolated from the adult females of E. interjectus to identify the species associated with secondary symbiosis. In total, nine filamentous fungi and one yeast were identified using morphological characteristics and DNA sequence data. Neocosmospora metavorans (Hypocreales: Nectriaceae), Fusarium sp. (Hypocreales: Nectriaceae), that is undescribed, and Meyerozyma guilliermondii (Saccharomycetes: Saccharomycetales) (yeast) were isolated more frequently from the head (including from mycangia, the fungus-carrying organ) than from the thorax and abdomen of adult beetles. Neocosmospora metavorans was the dominant species isolated from 12 out of 16 heads at 200 to 3300 CFUs/head, compared to the primary mycangia fungus from wild beetles, i.e., Fusarium kuroshium (Hypocreales: Nectriaceae). Temperature had a marked effect on fungal growth in the three symbiont species. Our results represent a major paradigm shift in understanding beetle–fungal interactions, as they show specific symbiont switching can occur in different nesting places.
Collapse
|
15
|
Cavalieri D, Valentini B, Stefanini I. Going wild: ecology and genomics are crucial to understand yeast evolution. Curr Opin Genet Dev 2022; 75:101922. [PMID: 35691146 DOI: 10.1016/j.gde.2022.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
Improved and more accessible genome-sequencing approaches have allowed the analysis of large sets of natural yeast isolates. As a consequence, this unprecedented level of description of yeast-genome characteristics and variations in natural environments has provided crucial insights on yeast ecology and evolution. Here, we review some of the most relevant and intriguing aspects of yeast evolution pointed out, thanks to the combination of yeast ecology and genomics, and critically examine the resulting improvement of our knowledge on this field. Only integrated approaches, taking into consideration not only the characteristics of the microbe but also those of the hosting environment, will significantly move forward the exploration of yeast diversity, ecology, and evolution.
Collapse
Affiliation(s)
| | - Beatrice Valentini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Irene Stefanini
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy.
| |
Collapse
|
16
|
Barcoto MO, Rodrigues A. Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Front Microbiol 2022; 13:812143. [PMID: 35685924 PMCID: PMC9171207 DOI: 10.3389/fmicb.2022.812143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities have extensively transformed the biosphere by extracting and disposing of resources, crossing boundaries of planetary threat while causing a global crisis of waste overload. Despite fundamental differences regarding structure and recalcitrance, lignocellulose and plastic polymers share physical-chemical properties to some extent, that include carbon skeletons with similar chemical bonds, hydrophobic properties, amorphous and crystalline regions. Microbial strategies for metabolizing recalcitrant polymers have been selected and optimized through evolution, thus understanding natural processes for lignocellulose modification could aid the challenge of dealing with the recalcitrant human-made polymers spread worldwide. We propose to look for inspiration in the charismatic fungal-growing insects to understand multipartite degradation of plant polymers. Independently evolved in diverse insect lineages, fungiculture embraces passive or active fungal cultivation for food, protection, and structural purposes. We consider there is much to learn from these symbioses, in special from the community-level degradation of recalcitrant biomass and defensive metabolites. Microbial plant-degrading systems at the core of insect fungicultures could be promising candidates for degrading synthetic plastics. Here, we first compare the degradation of lignocellulose and plastic polymers, with emphasis in the overlapping microbial players and enzymatic activities between these processes. Second, we review the literature on diverse insect fungiculture systems, focusing on features that, while supporting insects' ecology and evolution, could also be applied in biotechnological processes. Third, taking lessons from these microbial communities, we suggest multidisciplinary strategies to identify microbial degraders, degrading enzymes and pathways, as well as microbial interactions and interdependencies. Spanning from multiomics to spectroscopy, microscopy, stable isotopes probing, enrichment microcosmos, and synthetic communities, these strategies would allow for a systemic understanding of the fungiculture ecology, driving to application possibilities. Detailing how the metabolic landscape is entangled to achieve ecological success could inspire sustainable efforts for mitigating the current environmental crisis.
Collapse
Affiliation(s)
- Mariana O. Barcoto
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
17
|
Liu W, Yu SH, Zhang HP, Fu ZY, An JQ, Zhang JY, Yang P. Two Cladosporium Fungi with Opposite Functions to the Chinese White Wax Scale Insect Have Different Genome Characters. J Fungi (Basel) 2022; 8:jof8030286. [PMID: 35330288 PMCID: PMC8949958 DOI: 10.3390/jof8030286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Insects encounter infection of microorganisms, and they also harbor endosymbiosis to participate in nutrition providing and act as a defender against pathogens. We previously found the Chinese white wax scale insect, Ericerus pela, was infected and killed by Cladosporium sp. (pathogen). We also found it harbored Cladosporium sp. (endogensis). In this study, we cultured these two Cladosporium fungi and sequenced their genome. The results showed Cladosporium sp. (endogensis) has a larger genome size and more genes than Cladosporium sp. (pathogen). Pan-genome analysis showed Cladosporium sp. (endogensis)-specific genes enriched in pathways related to nutrition production, such as amino acid metabolism, carbohydrate metabolism, and energy metabolism. These pathways were absent in that of Cladosporium sp. (pathogen). Gene Ontology analysis showed Cladosporium sp. (pathogen)-specific genes enriched in the biosynthesis of asperfuranone, emericellamide, and fumagillin. These terms were not found in that of Cladosporium sp. (endogensis). Pathogen Host Interactions analysis found Cladosporium sp. (endogensis) had more genes related to loss of pathogenicity and reduced virulence than Cladosporium sp. (pathogen). Cytotoxicity assay indicated Cladosporium sp. (pathogen) had cytotoxicity, while Cladosporium sp. (endogensis) had no cytotoxicity. These characters reflect the adaptation of endosymbiosis to host-restricted lifestyle and the invader of the entomopathogen to the host.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Shu-Hui Yu
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (S.-H.Y.); (H.-P.Z.)
| | - Hong-Ping Zhang
- College of Agriculture and Life Sciences, Kunming University, Kunming 650214, China; (S.-H.Y.); (H.-P.Z.)
| | - Zuo-Yi Fu
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Jia-Qi An
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
| | - Jin-Yang Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Pu Yang
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China; (W.L.); (Z.-Y.F.); (J.-Q.A.)
- Key Laboratory of Breeding and Utilization of Resource Insects of National Forestry and Grassland Administration, Kunming 650224, China
- Correspondence:
| |
Collapse
|
18
|
Stability of Nuclear and Mitochondrial Reference Genes in Selected Tissues of the Ambrosia Beetle Xylosandrus germanus. INSECTS 2021; 12:insects12121125. [PMID: 34940213 PMCID: PMC8706855 DOI: 10.3390/insects12121125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022]
Abstract
The fungus-farming ambrosia beetle Xylosandrus germanus (Blandford) uses a pouch-like structure (i.e., mycangium) to transport spores of its nutritional fungal mutualist. Our current study sought to identify reference genes necessary for future transcriptome analyses aimed at characterizing gene expression within the mycangium. Complementary DNA was synthesized using selected tissue types from laboratory-reared and field-collected X. germanus consisting of the whole body, head + thorax, deflated or inflated mycangium + scutellum, inflated mycangium, and thorax + abdomen. Quantitative reverse-transcription PCR reactions were performed using primers for 28S ribosomal RNA (28S rRNA), arginine kinase (AK), carbamoyl-phosphate synthetase 2-aspartate transcarbamylase-dihydroorotase (CAD), mitochondrial cytochrome oxidase 1 (CO1), and elongation factor-1α (EF1α). Reference gene stability was analyzed using GeNorm, NormFinder, BestKeeper, ΔCt, and a comprehensive final ranking by RefFinder. The gene CO1 was identified as the primary reference gene since it was generally ranked in first or second position among the tissue types containing the mycangium. Reference gene AK was identified as a secondary reference gene. In contrast, EF1α was generally ranked in the last or penultimate place. Identification of two stable reference genes will aid in normalizing the expression of target genes for subsequent gene expression studies of X. germanus' mycangium.
Collapse
|
19
|
Jiang ZR, Masuya H, Kajimura H. Novel Symbiotic Association Between Euwallacea Ambrosia Beetle and Fusarium Fungus on Fig Trees in Japan. Front Microbiol 2021; 12:725210. [PMID: 34650529 PMCID: PMC8506114 DOI: 10.3389/fmicb.2021.725210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/17/2021] [Indexed: 11/15/2022] Open
Abstract
Ficus carica plantations in Japan were first reported to be infested by an ambrosia beetle species, identified as Euwallacea interjectus, in 1996. The purpose of this study was to determine the symbiotic fungi of female adults of E. interjectus emerging from F. carica trees infected with fig wilt disease (FWD). Dispersal adults (51 females) of E. interjectus, which were collected from logs of an infested fig tree in Hiroshima Prefecture, Western Japan, were separated into three respective body parts (head, thorax, and abdomen) and used for fungal isolation. Isolated fungi were identified based on the morphological characteristics and DNA sequence data. Over 13 species of associated fungi were detected, of which a specific fungus, Fusarium kuroshium, was dominant in female head (including oral mycangia). The plant-pathogenic fungus of FWD, Ceratocystis ficicola, was not observed within any body parts of E. interjectus. We further discussed the relationship among E. interjectus and its associated fungi in fig tree.
Collapse
Affiliation(s)
- Zi-Ru Jiang
- Laboratory of Forest Protection, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hayato Masuya
- Department of Forest Microbiology, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Japan
| | - Hisashi Kajimura
- Laboratory of Forest Protection, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
20
|
Unique Attributes of the Laurel Wilt Fungal Pathogen, Raffaelea lauricola, as Revealed by Metabolic Profiling. Pathogens 2021; 10:pathogens10050528. [PMID: 33925553 PMCID: PMC8146198 DOI: 10.3390/pathogens10050528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 11/18/2022] Open
Abstract
Raffaelea lauricola is the causative agent of laurel wilt, a devastating disease of lauraceous trees. R. lauricola is also an obligate nutritional symbiont of several ambrosia beetle species who act as vectors for the pathogen. Here, we sought to establish the baseline “phenome” of R. lauricola with knowledge concerning its metabolic capability, expanding our understanding of how these processes are impacted by environmental and host nutrients. Phenotypic screening using a microarray of over one thousand compounds was used to generate a detailed profile of R. lauricola substrate utilization and chemical sensitivity. These data revealed (i) relatively restricted carbon utilization, (ii) broad sulfur and phosphate utilization, and (iii) pH and osmotic sensitivities that could be rescued by specific compounds. Additional growth profiling on fatty acids revealed toxicity on C10 substrates and lower, with robust growth on C12–C18 fatty acids. Conditions for lipid droplet (LD) visualization and LD dynamics were examined using a series of lipid dyes. These data provide unique insights regarding R. lauricola metabolism and physiology, and identify distinct patterns of substrate usage and sensitivity which likely reflect important aspects of the host-microbe interface and can be exploited for the development of strategies for mitigating the spread of laurel wilt.
Collapse
|