1
|
Oiffer T, Leipold F, Süss P, Breite D, Griebel J, Khurram M, Branson Y, de Vries E, Schulze A, Helm CA, Wei R, Bornscheuer UT. Chemo-Enzymatic Depolymerization of Functionalized Low-Molecular-Weight Polyethylene. Angew Chem Int Ed Engl 2024:e202415012. [PMID: 39317657 DOI: 10.1002/anie.202415012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Polyethylene (PE) is the most commonly used plastic type in the world, contributing significantly to the plastic waste crisis. Microbial degradation of PE in natural environments is unlikely due to its inert saturated carbon-carbon backbones, which are difficult to break down by enzymes, challenging the development of a biocatalytic recycling method for PE waste. Here, we demonstrated the depolymerization of low-molecular-weight (LMW) PE using an enzyme cascade that included a catalase-peroxidase, an alcohol dehydrogenase, a Baeyer Villiger monooxygenase, and a lipase after the polymer was chemically pretreated with m-chloroperoxybenzoic acid (mCPBA) and ultrasonication. In a preparative experiment with gram-scale pretreated polymers, GC-MS and weight loss determinations confirmed ~27 % polymer conversion including the formation of medium-size functionalized molecules such as ω-hydroxycarboxylic acids and α,ω-carboxylic acids. Additional analyses of LMWPE-nanoparticles using AFM showed that enzymatic depolymerization reduced the sizes of these mCPBA- and enzyme-treated LMWPE-nanoparticles. This multi-enzyme catalytic concept with distinct chemical steps represents a unique starting point for future development of bio-based recycling methods for polyolefin waste.
Collapse
Affiliation(s)
- Thomas Oiffer
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff Str. 4, 17487, Greifswald, Germany
| | | | - Philipp Süss
- Enzymicals AG, Walther-Rathenau-Straße 49b, 17489, Greifswald, Germany
| | - Daniel Breite
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Jan Griebel
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Muhammad Khurram
- Institute of Physics, Dept. of Soft Matter and Biophysics, University of Greifswald, Felix-Hausdorff Str. 6, 17487, Greifswald, Germany
| | - Yannick Branson
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff Str. 4, 17487, Greifswald, Germany
| | - Erik de Vries
- Enzymicals AG, Walther-Rathenau-Straße 49b, 17489, Greifswald, Germany
| | - Agnes Schulze
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Christiane A Helm
- Institute of Physics, Dept. of Soft Matter and Biophysics, University of Greifswald, Felix-Hausdorff Str. 6, 17487, Greifswald, Germany
| | - Ren Wei
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff Str. 4, 17487, Greifswald, Germany
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology and Enzyme Catalysis, University of Greifswald, Felix-Hausdorff Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
2
|
Dickey RM, Gopal MR, Nain P, Kunjapur AM. Recent developments in enzymatic and microbial biosynthesis of flavor and fragrance molecules. J Biotechnol 2024; 389:43-60. [PMID: 38616038 DOI: 10.1016/j.jbiotec.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Flavors and fragrances are an important class of specialty chemicals for which interest in biomanufacturing has risen during recent years. These naturally occurring compounds are often amenable to biosynthesis using purified enzyme catalysts or metabolically engineered microbial cells in fermentation processes. In this review, we provide a brief overview of the categories of molecules that have received the greatest interest, both academically and industrially, by examining scholarly publications as well as patent literature. Overall, we seek to highlight innovations in the key reaction steps and microbial hosts used in flavor and fragrance manufacturing.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Priyanka Nain
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
3
|
von Haugwitz G, Donnelly K, Di Filippo M, Breite D, Phippard M, Schulze A, Wei R, Baumann M, Bornscheuer UT. Synthesis of Modified Poly(vinyl Alcohol)s and Their Degradation Using an Enzymatic Cascade. Angew Chem Int Ed Engl 2023; 62:e202216962. [PMID: 36637456 DOI: 10.1002/anie.202216962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Poly(vinyl alcohol) (PVA) is a water-soluble synthetic vinyl polymer with remarkable physical properties including thermostability and viscosity. Its biodegradability, however, is low even though a large amount of PVA is released into the environment. Established physical-chemical degradation methods for PVA have several disadvantages such as high price, low efficiency, and secondary pollution. Biodegradation of PVA by microorganisms is slow and frequently involves pyrroloquinoline quinone (PQQ)-dependent enzymes, making it expensive due to the costly cofactor and hence unattractive for industrial applications. In this study, we present a modified PVA film with improved properties as well as a PQQ-independent novel enzymatic cascade for the degradation of modified and unmodified PVA. The cascade consists of four steps catalyzed by three enzymes with in situ cofactor recycling technology making this cascade suitable for industrial applications.
Collapse
Affiliation(s)
- Gerlis von Haugwitz
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Kian Donnelly
- School of Chemistry, Science Centre South, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mara Di Filippo
- School of Chemistry, Science Centre South, University College Dublin, Belfield, Dublin 4, Ireland
| | - Daniel Breite
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Max Phippard
- Aquapak Polymers Ltd, Hollymoor Point, Hollymoor Way, Rubery, B31 5HE, Birmingham, UK
| | - Agnes Schulze
- Surfaces of Porous Membrane Filters, Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318, Leipzig, Germany
| | - Ren Wei
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Marcus Baumann
- School of Chemistry, Science Centre South, University College Dublin, Belfield, Dublin 4, Ireland
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| |
Collapse
|
4
|
Le Viet LH, Nemoto H, Tamura M, Matsuda T. Asymmetric synthesis of sulfoxides by novel baeyer-Villiger monooxygenase from Fusarium. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Ramos De Dios SM, Tiwari VK, McCune CD, Dhokale RA, Berkowitz DB. Biomacromolecule-Assisted Screening for Reaction Discovery and Catalyst Optimization. Chem Rev 2022; 122:13800-13880. [PMID: 35904776 DOI: 10.1021/acs.chemrev.2c00213] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reaction discovery and catalyst screening lie at the heart of synthetic organic chemistry. While there are efforts at de novo catalyst design using computation/artificial intelligence, at its core, synthetic chemistry is an experimental science. This review overviews biomacromolecule-assisted screening methods and the follow-on elaboration of chemistry so discovered. All three types of biomacromolecules discussed─enzymes, antibodies, and nucleic acids─have been used as "sensors" to provide a readout on product chirality exploiting their native chirality. Enzymatic sensing methods yield both UV-spectrophotometric and visible, colorimetric readouts. Antibody sensors provide direct fluorescent readout upon analyte binding in some cases or provide for cat-ELISA (Enzyme-Linked ImmunoSorbent Assay)-type readouts. DNA biomacromolecule-assisted screening allows for templation to facilitate reaction discovery, driving bimolecular reactions into a pseudo-unimolecular format. In addition, the ability to use DNA-encoded libraries permits the barcoding of reactants. All three types of biomacromolecule-based screens afford high sensitivity and selectivity. Among the chemical transformations discovered by enzymatic screening methods are the first Ni(0)-mediated asymmetric allylic amination and a new thiocyanopalladation/carbocyclization transformation in which both C-SCN and C-C bonds are fashioned sequentially. Cat-ELISA screening has identified new classes of sydnone-alkyne cycloadditions, and DNA-encoded screening has been exploited to uncover interesting oxidative Pd-mediated amido-alkyne/alkene coupling reactions.
Collapse
Affiliation(s)
| | - Virendra K Tiwari
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Christopher D McCune
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Ranjeet A Dhokale
- Higuchi Biosciences Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
6
|
Staudt A, Brack Y, Jr II, Leal ICR. Biocatalytic synthesis of monoterpene esters – A review study on the phylogenetic evolution of biocatalysts. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Detection of Raspberry Ketone after Percutaneous Absorption of Rhododendrol-Containing Cosmetics and Its Mechanism of Formation. COSMETICS 2021. [DOI: 10.3390/cosmetics8040097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Here, we aimed to elucidate the mechanism of rhododendrol (RD)-induced leukoderma. We investigated the skin permeability of RD in an aqueous solution and in different cosmetic formulations (lotion and emulsion) in an in vitro skin permeation study. The samples were analyzed using high-performance liquid chromatography (HPLC), and an unknown substance appeared on the spectrum. For identification, we analyzed various possible substances, such as raspberry ketone (RK) and rhododendrol quinone, using HPLC and then compared the detected absorption spectra and further verified the matched components using liquid chromatography–mass spectrometry. The unknown substance was found to be RK. To clarify the mechanism of formation of RK, we conducted a 24-h skin permeation test on heat-treated skin. By quantifying the RK in the samples using HPLC, we observed that an enzyme in the skin seemed to be the cause of RK generation and that the components of the emulsion formulation could also be a cause. To investigate the enzyme, we reacted alcohol dehydrogenase with RD and observed that it was one of the converting enzymes. As RK has been reported to be a substance that causes leukoderma, the intraepidermal metabolism of RD to RK may be one of the mechanisms of susceptibility to leukoderma.
Collapse
|