1
|
Gong G, Wu B, Liu L, Li J, He M. Engineering oleaginous red yeasts as versatile chassis for the production of oleochemicals and valuable compounds: Current advances and perspectives. Biotechnol Adv 2024; 76:108432. [PMID: 39163921 DOI: 10.1016/j.biotechadv.2024.108432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/04/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Enabling the transition towards a future circular bioeconomy based on industrial biomanufacturing necessitates the development of efficient and versatile microbial platforms for sustainable chemical and fuel production. Recently, there has been growing interest in engineering non-model microbes as superior biomanufacturing platforms due to their broad substrate range and high resistance to stress conditions. Among these non-conventional microbes, red yeasts belonging to the genus Rhodotorula have emerged as promising industrial chassis for the production of specialty chemicals such as oleochemicals, organic acids, fatty acid derivatives, terpenoids, and other valuable compounds. Advancements in genetic and metabolic engineering techniques, coupled with systems biology analysis, have significantly enhanced the production capacity of red yeasts. These developments have also expanded the range of substrates and products that can be utilized or synthesized by these yeast species. This review comprehensively examines the current efforts and recent progress made in red yeast research. It encompasses the exploration of available substrates, systems analysis using multi-omics data, establishment of genome-scale models, development of efficient molecular tools, identification of genetic elements, and engineering approaches for the production of various industrially relevant bioproducts. Furthermore, strategies to improve substrate conversion and product formation both with systematic and synthetic biology approaches are discussed, along with future directions and perspectives in improving red yeasts as more versatile biotechnological chassis in contributing to a circular bioeconomy. The review aims to provide insights and directions for further research in this rapidly evolving field. Ultimately, harnessing the capabilities of red yeasts will play a crucial role in paving the way towards next-generation sustainable bioeconomy.
Collapse
Affiliation(s)
- Guiping Gong
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China.
| | - Bo Wu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Linpei Liu
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Jianting Li
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| | - Mingxiong He
- Biomass Energy Technology Research Centre, Rural Energy and Ecology Research Center of CAAS, Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture and Rural Affairs), Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China
| |
Collapse
|
2
|
Mishra S, Deewan A, Zhao H, Rao CV. Nitrogen starvation causes lipid remodeling in Rhodotorula toruloides. Microb Cell Fact 2024; 23:141. [PMID: 38760782 PMCID: PMC11102182 DOI: 10.1186/s12934-024-02414-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 04/30/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND The oleaginous yeast Rhodotorula toruloides is a promising chassis organism for the biomanufacturing of value-added bioproducts. It can accumulate lipids at a high fraction of biomass. However, metabolic engineering efforts in this organism have progressed at a slower pace than those in more extensively studied yeasts. Few studies have investigated the lipid accumulation phenotype exhibited by R. toruloides under nitrogen limitation conditions. Consequently, there have been only a few studies exploiting the lipid metabolism for higher product titers. RESULTS We performed a multi-omic investigation of the lipid accumulation phenotype under nitrogen limitation. Specifically, we performed comparative transcriptomic and lipidomic analysis of the oleaginous yeast under nitrogen-sufficient and nitrogen deficient conditions. Clustering analysis of transcriptomic data was used to identify the growth phase where nitrogen-deficient cultures diverged from the baseline conditions. Independently, lipidomic data was used to identify that lipid fractions shifted from mostly phospholipids to mostly storage lipids under the nitrogen-deficient phenotype. Through an integrative lens of transcriptomic and lipidomic analysis, we discovered that R. toruloides undergoes lipid remodeling during nitrogen limitation, wherein the pool of phospholipids gets remodeled to mostly storage lipids. We identify specific mRNAs and pathways that are strongly correlated with an increase in lipid levels, thus identifying putative targets for engineering greater lipid accumulation in R. toruloides. One surprising pathway identified was related to inositol phosphate metabolism, suggesting further inquiry into its role in lipid accumulation. CONCLUSIONS Integrative analysis identified the specific biosynthetic pathways that are differentially regulated during lipid remodeling. This insight into the mechanisms of lipid accumulation can lead to the success of future metabolic engineering strategies for overproduction of oleochemicals.
Collapse
Affiliation(s)
- Shekhar Mishra
- Department of Chemical and Biomolecular Engineering, DOE Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Anshu Deewan
- Department of Chemical and Biomolecular Engineering, DOE Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, DOE Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, DOE Center for Advanced Bioenergy and Bioproducts Innovation, Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
3
|
Deshavath NN, Woodruff W, Eller F, Susanto V, Yang C, Rao CV, Singh V. Scale-up of microbial lipid and bioethanol production from oilcane. BIORESOURCE TECHNOLOGY 2024; 399:130594. [PMID: 38493941 DOI: 10.1016/j.biortech.2024.130594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Microbial oils are a sustainable biomass-derived substitute for liquid fuels and vegetable oils. Oilcane, an engineered sugarcane with superior feedstock characteristics for biodiesel production, is a promising candidate for bioconversion. This study describes the processing of oilcane stems into juice and hydrothermally pretreated lignocellulosic hydrolysate and their valorization to ethanol and microbial oil using Saccharomyces cerevisiae and engineered Rhodosporidium toruloides strains, respectively. A bioethanol titer of 106 g/L was obtained from S. cerevisiae grown on oilcane juice in a 3 L fermenter, and a lipid titer of 8.8 g/L was obtained from R. toruloides grown on oilcane hydrolysate in a 75 L fermenter. Oil was extracted from the R. toruloides cells using supercritical CO2, and the observed fatty acid profile was consistent with previous studies on this strain. These results demonstrate the feasibility of pilot-scale lipid production from oilcane hydrolysate as part of an integrated bioconversion strategy.
Collapse
Affiliation(s)
- Narendra Naik Deshavath
- Department of Agricultural and Biological Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Department of Energy (DOE), USA.
| | - William Woodruff
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Department of Energy (DOE), USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Fred Eller
- United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Functional Foods Research Unit, 1815 N University, Peoria, IL 61604, USA.
| | - Vionna Susanto
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Department of Energy (DOE), USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Cindy Yang
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Department of Energy (DOE), USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Christopher V Rao
- Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Department of Energy (DOE), USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois Urbana Champaign, Urbana, IL 61801, USA; Center for Advanced Bioenergy and Bioproducts Innovation (CABBI), Department of Energy (DOE), USA.
| |
Collapse
|
4
|
Koh HG, Yook S, Oh H, Rao CV, Jin YS. Toward rapid and efficient utilization of nonconventional substrates by nonconventional yeast strains. Curr Opin Biotechnol 2024; 85:103059. [PMID: 38171048 DOI: 10.1016/j.copbio.2023.103059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
Economic and sustainable production of biofuels and chemicals necessitates utilizing abundant and inexpensive lignocellulosic biomass. Yet, Saccharomyces cerevisiae, a workhorse strain for industrial biotechnology based on starch and sugarcane-derived sugars, is not suitable for lignocellulosic bioconversion due to a lack of pentose metabolic pathways and severe inhibition by toxic inhibitors in cellulosic hydrolysates. This review underscores the potential of nonconventional yeast strains, specifically Yarrowia lipolytica and Rhodotorula toruloides, for converting underutilized carbon sources, such as xylose and acetate, into high-value products. Multi-omics studies with nonconventional yeast have elucidated the structure and regulation of metabolic pathways for efficient and rapid utilization of xylose and acetate. The review delves into the advantages of using xylose and acetate for producing biofuels and chemicals. Collectively, value-added biotransformation of nonconventional substrates by nonconventional yeast strains is a promising strategy to improve both economics and sustainability of bioproduction.
Collapse
Affiliation(s)
- Hyun Gi Koh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Sangdo Yook
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hyunjoon Oh
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christopher V Rao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
5
|
Wei S, Wang H, Fan M, Cai X, Hu J, Zhang R, Song B, Li J. Application of adaptive laboratory evolution to improve the tolerance of Rhodotorula strain to methanol in crude glycerol and development of an effective method for cell lysis. Biotechnol J 2024; 19:e2300483. [PMID: 38041508 DOI: 10.1002/biot.202300483] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Rhodotorula toruloides can utilize crude glycerol as the low-cost carbon source for lipid production, but its growth is subjected to inhibition by methanol in crude glycerol. Here, transcriptome profiling demonstrated that 1004 genes were significantly regulated in the strain R. toruloides TO2 under methanol stress. Methanol impaired the function of membrane transport and subsequently weakened the utilization of glycerol, activities of the primary metabolism and functions of nucleus and ribosome. Afterwards the tolerance of TO2 to methanol was improved by using two-round adaptive laboratory evolution (ALE). The final strain M2-ale had tolerance up to 3.5% of methanol. 1 H NMR-based metabolome analysis indicated that ALE not only improved the tolerance of M2-ale to methanol but also tuned the carbon flux towards the biosynthesis of glycerolipid-related metabolites. The biomass and lipid titer of M2-ale reached 14.63 ± 0.45 g L-1 and 7.06 ± 0.44 g L-1 at 96 h in the crude glycerol medium, which increased up to 17.69% and 31.39%, respectively, comparing with TO2. Afterwards, an effective method for cell lysis was developed by combining sonication and enzymatic hydrolysis (So-EnH). The lytic effect of So-EnH was validated by using confocal imaging and flow cytometry. At last, lipid recovery rate reached 95.4 ± 2.7% at the optimized condition.
Collapse
Affiliation(s)
- Shiyu Wei
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Hongyang Wang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Meixi Fan
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Xinrui Cai
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Junpeng Hu
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Ruixin Zhang
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Baocai Song
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
| | - Jing Li
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing University of Science and Technology, Nanjing, China
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, China
| |
Collapse
|
6
|
Woodruff W, Deshavath NN, Susanto V, Rao CV, Singh V. Tolerance of engineered Rhodosporidium toruloides to sorghum hydrolysates during batch and fed-batch lipid production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:187. [PMID: 38031119 PMCID: PMC10688463 DOI: 10.1186/s13068-023-02429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Oleaginous yeasts are a promising candidate for the sustainable conversion of lignocellulosic feedstocks into fuels and chemicals, but their growth on these substrates can be inhibited as a result of upstream pretreatment and enzymatic hydrolysis conditions. Previous studies indicate a high citrate buffer concentration during hydrolysis inhibits downstream cell growth and ethanol fermentation in Saccharomyces cerevisiae. In this study, an engineered Rhodosporidium toruloides strain with enhanced lipid accumulation was grown on sorghum hydrolysate with high and low citrate buffer concentrations. RESULTS Both hydrolysis conditions resulted in similar sugar recovery rates and concentrations. No significant differences in cell growth, sugar utilization rates, or lipid production rates were observed between the two citrate buffer conditions during batch fermentation of R. toruloides. Under fed-batch growth on low-citrate hydrolysate a lipid titer of 16.7 g/L was obtained. CONCLUSIONS Citrate buffer was not found to inhibit growth or lipid production in this engineered R. toruloides strain, nor did reducing the citrate buffer concentration negatively affect sugar yields in the hydrolysate. As this process is scaled-up, $131 per ton of hydrothermally pretreated biomass can be saved by use of the lower citrate buffer concentration during enzymatic hydrolysis.
Collapse
Affiliation(s)
- William Woodruff
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Narendra Naik Deshavath
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Vionna Susanto
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, USA.
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA.
| | - Vijay Singh
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
7
|
Jagtap SS, Liu JJ, Walukiewicz HE, Pangilinan J, Lipzen A, Ahrendt S, Koriabine M, Cobaugh K, Salamov A, Yoshinaga Y, Ng V, Daum C, Grigoriev IV, Slininger PJ, Dien BS, Jin YS, Rao CV. Near-complete genome sequence of Lipomyces tetrasporous NRRL Y-64009, an oleaginous yeast capable of growing on lignocellulosic hydrolysates. Microbiol Resour Announc 2023; 12:e0042623. [PMID: 37906027 PMCID: PMC10652991 DOI: 10.1128/mra.00426-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/11/2023] [Indexed: 11/02/2023] Open
Abstract
Lipomyces tetrasporous is an oleaginous yeast that can utilize a variety of plant-based sugars. It accumulates lipids during growth on lignocellulosic biomass hydrolysates. We present the annotated genome sequence of L. tetrasporous NRRL Y-64009 to aid in its development as a platform organism for producing lipids and lipid-based bioproducts.
Collapse
Affiliation(s)
- Sujit Sadashiv Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jing-Jing Liu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hanna E. Walukiewicz
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Maxim Koriabine
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Kelly Cobaugh
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Yuko Yoshinaga
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Chris Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, USA
| | - Patricia J. Slininger
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Bruce S. Dien
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois, USA
| | - Yong-Su Jin
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Food Science and Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher V. Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
8
|
He Q, Gong G, Wan T, Hu H, Yu P. An integrated transcriptomic and metabolic phenotype analysis to uncover the metabolic characteristics of a genetically engineered Candida utilis strain expressing δ-zein gene. Front Microbiol 2023; 14:1241462. [PMID: 37744922 PMCID: PMC10513430 DOI: 10.3389/fmicb.2023.1241462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Candida utilis (C. utilis) has been extensively utilized as human food or animal feed additives. With its ability to support heterologous gene expression, C. utilis proves to be a valuable platform for the synthesis of proteins and metabolites that possess both high nutritional and economic value. However, there remains a dearth of research focused on the characteristics of C. utilis through genomic, transcriptomic and metabolic approaches. Methods With the aim of unraveling the molecular mechanism and genetic basis governing the biological process of C. utilis, we embarked on a de novo sequencing endeavor to acquire comprehensive sequence data. In addition, an integrated transcriptomic and metabolic phenotype analysis was performed to compare the wild-type C. utilis (WT) with a genetically engineered strain of C. utilis that harbors the heterologous δ-zein gene (RCT). Results δ-zein is a protein rich in methionine found in the endosperm of maize. The integrated analysis of transcriptomic and metabolic phenotypes uncovered significant metabolic diversity between the WT and RCT C. utilis. A total of 252 differentially expressed genes were identified, primarily associated with ribosome function, peroxisome activity, arginine and proline metabolism, carbon metabolism, and fatty acid degradation. In the experimental setup using PM1, PM2, and PM4 plates, a total of 284 growth conditions were tested. A comparison between the WT and RCT C. utilis demonstrated significant increases in the utilization of certain carbon source substrates by RCT. Gelatin and glycogen were found to be significantly utilized to a greater extent by RCT compared to WT. Additionally, in terms of sulfur source substrates, RCT exhibited significantly increased utilization of O-Phospho-L-Tyrosine and L-Methionine Sulfone when compared to WT. Discussion The introduction of δ-zein gene into C. utilis may lead to significant changes in the metabolic substrates and metabolic pathways, but does not weaken the activity of the strain. Our study provides new insights into the transcriptomic and metabolic characteristics of the genetically engineered C. utilis strain harboring δ-zein gene, which has the potential to advance the utilization of C. utilis as an efficient protein feed in agricultural applications.
Collapse
Affiliation(s)
- Qiburi He
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Inner Mongolia Academy of Agricultural and Animal Husbandry Science, Hohhot, China
| | - Gaowa Gong
- Inner Mongolia Academy of Agricultural and Animal Husbandry Science, Hohhot, China
| | - Tingting Wan
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - He Hu
- Inner Mongolia Academy of Agricultural and Animal Husbandry Science, Hohhot, China
| | - Peng Yu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
9
|
Brink DP, Mierke F, Norbeck J, Siewers V, Andlid T. Expanding the genetic toolbox of Rhodotorula toruloides by identification and validation of six novel promoters induced or repressed under nitrogen starvation. Microb Cell Fact 2023; 22:160. [PMID: 37598166 PMCID: PMC10440040 DOI: 10.1186/s12934-023-02175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND The non-conventional yeast Rhodotorula toruloides is an emerging host organism in biotechnology by merit of its natural capacity to accumulate high levels of carotenoids and intracellular storage lipids from a variety of carbon sources. While the number of genetic engineering strategies that employ R. toruloides is increasing, the lack of genetic tools available for modification of this yeast is still limiting strain development. For instance, several strong, constitutive R. toruloides promoters have been characterized, but to date, only five inducible promoters have been identified. Although nitrogen-limited cultivation conditions are commonly used to induce lipid accumulation in this yeast, no promoters regulated by nitrogen starvation have been described for R. toruloides. RESULTS In this study, we used a combination of genomics and transcriptomics methods to identify novel R. toruloides promoter sequences that are either inducible or repressible by nitrogen starvation. RNA sequencing was used to assess gene expression in the recently isolated strain R. toruloides BOT-A2 during exponential growth and during nitrogen starvation, when cultivated with either glucose or xylose as the carbon source. The genome of BOT-A2 was sequenced using a combination of long- and short-read sequencing and annotated with support of the RNAseq data. Differential expression analysis was used to identify genes with a |log2 fold change|≥ 2 when comparing their expression during nitrogen depletion to that during exponential growth. The promoter regions from 16 of these genes were evaluated for their ability to drive the expression of a fluorescent reporter gene. Three promoters that were clearly upregulated under nitrogen starvation and three that were downregulated were selected and further characterized. One promoter, derived from gene RTBOTA2_003877, was found to function like an on-off switch, as it was only upregulated under full nitrogen depletion and downregulated in the presence of the nitrogen source. CONCLUSIONS Six new R. toruloides promoters that were either upregulated or downregulated under nitrogen-starvation were identified. These substantially contribute to the available promoters when engineering this organism and are foreseen to be particularly useful for future engineering strategies requiring specific regulation of target genes in accordance with nitrogen availability.
Collapse
Affiliation(s)
- Daniel P Brink
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Friederike Mierke
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Joakim Norbeck
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| | - Thomas Andlid
- Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
10
|
Adamczyk PA, Coradetti ST, Gladden JM. Non-canonical D-xylose and L-arabinose metabolism via D-arabitol in the oleaginous yeast Rhodosporidium toruloides. Microb Cell Fact 2023; 22:145. [PMID: 37537595 PMCID: PMC10398940 DOI: 10.1186/s12934-023-02126-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/17/2023] [Indexed: 08/05/2023] Open
Abstract
R. toruloides is an oleaginous yeast, with diverse metabolic capacities and high tolerance for inhibitory compounds abundant in plant biomass hydrolysates. While R. toruloides grows on several pentose sugars and alcohols, further engineering of the native pathway is required for efficient conversion of biomass-derived sugars to higher value bioproducts. A previous high-throughput study inferred that R. toruloides possesses a non-canonical L-arabinose and D-xylose metabolism proceeding through D-arabitol and D-ribulose. In this study, we present a combination of genetic and metabolite data that refine and extend that model. Chiral separations definitively illustrate that D-arabitol is the enantiomer that accumulates under pentose metabolism. Deletion of putative D-arabitol-2-dehydrogenase (RTO4_9990) results in > 75% conversion of D-xylose to D-arabitol, and is growth-complemented on pentoses by heterologous xylulose kinase expression. Deletion of putative D-ribulose kinase (RTO4_14368) arrests all growth on any pentose tested. Analysis of several pentose dehydrogenase mutants elucidates a complex pathway with multiple enzymes mediating multiple different reactions in differing combinations, from which we also inferred a putative L-ribulose utilization pathway. Our results suggest that we have identified enzymes responsible for the majority of pathway flux, with additional unknown enzymes providing accessory activity at multiple steps. Further biochemical characterization of the enzymes described here will enable a more complete and quantitative understanding of R. toruloides pentose metabolism. These findings add to a growing understanding of the diversity and complexity of microbial pentose metabolism.
Collapse
Affiliation(s)
- Paul A Adamczyk
- Agile Biofoundry, Emeryville, CA, USA
- Sandia National Laboratories, Livermore, CA, USA
| | - Samuel T Coradetti
- Agile Biofoundry, Emeryville, CA, USA
- Sandia National Laboratories, Livermore, CA, USA
- United States Department of Agriculture, Agricultural Research Service, Ithaca, NY, USA
| | - John M Gladden
- Agile Biofoundry, Emeryville, CA, USA.
- Sandia National Laboratories, Livermore, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Sandia National Laboratories, DOE Agile Biofoundry, 5885 Hollis Street, Fourth Floor, Emeryville, CA, 94608, USA.
| |
Collapse
|
11
|
Passoth V, Brandenburg J, Chmielarz M, Martín-Hernández GC, Nagaraj Y, Müller B, Blomqvist J. Oleaginous yeasts for biochemicals, biofuels and food from lignocellulose-hydrolysate and crude glycerol. Yeast 2023; 40:290-302. [PMID: 36597618 DOI: 10.1002/yea.3838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
Microbial lipids produced from lignocellulose and crude glycerol (CG) can serve as sustainable alternatives to vegetable oils, whose production is, in many cases, accompanied by monocultures, land use changes or rain forest clearings. Our projects aim to understand the physiology of microbial lipid production by oleaginous yeasts, optimise the production and establish novel applications of microbial lipid compounds. We have established methods for fermentation and intracellular lipid quantification. Following the kinetics of lipid accumulation in different strains, we found high variability in lipid formation even between very closely related oleaginous yeast strains on both, wheat straw hydrolysate and CG. For example, on complete wheat straw hydrolysate, we saw that one Rhodotorula glutinis strain, when starting assimilating D-xylosealso assimilated the accumulated lipids, while a Rhodotorula babjevae strain could accumulate lipids on D-xylose. Two strains (Rhodotorula toruloides CBS 14 and R. glutinis CBS 3044) were found to be the best out of 27 tested to accumulate lipids on CG. Interestingly, the presence of hemicellulose hydrolysate stimulated glycerol assimilation in both strains. Apart from microbial oil, R. toruloides also produces carotenoids. The first attempts of extraction using the classical acetone-based method showed that β-carotene is the major carotenoid. However, there are indications that there are also substantial amounts of torulene and torularhodin, which have a very high potential as antioxidants.
Collapse
Affiliation(s)
- Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jule Brandenburg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Klinisk Mikrobiologi Falun, Falun Lasarett, Falun, Sweden
| | - Mikołaj Chmielarz
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Yashaswini Nagaraj
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johanna Blomqvist
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
12
|
Wu CC, Honda K, Kazuhito F. Current advances in alteration of fatty acid profile in Rhodotorula toruloides: a mini-review. World J Microbiol Biotechnol 2023; 39:234. [PMID: 37358633 PMCID: PMC10293357 DOI: 10.1007/s11274-023-03595-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/27/2023] [Indexed: 06/27/2023]
Abstract
Microbial lipids are considered promising and environmentally friendly substitutes for fossil fuels and plant-derived oils. They alleviate the depletion of limited petroleum storage and the decrement of arable lands resulting from the greenhouse effect. Microbial lipids derived from oleaginous yeasts provide fatty acid profiles similar to plant-derived oils, which are considered as sustainable and alternative feedstocks for use in the biofuel, cosmetics, and food industries. Rhodotorula toruloides is an intriguing oleaginous yeast strain that can accumulate more than 70% of its dry biomass as lipid content. It can utilize a wide range of substrates, including low-cost sugars and industrial waste. It is also robust against various industrial inhibitors. However, precise control of the fatty acid profile of the lipids produced by R. toruloides is essential for broadening its biotechnological applications. This mini-review describes recent progress in identifying fatty synthesis pathways and consolidated strategies used for specific fatty acid-rich lipid production via metabolic engineering, strain domestication. In addition, this mini-review summarized the effects of culture conditions on fatty acid profiles in R. toruloides. The perspectives and constraints of harnessing R. toruloides for tailored lipid production are also discussed in this mini-review.
Collapse
Affiliation(s)
- Chih-Chan Wu
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| | - Kohsuke Honda
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fujiyama Kazuhito
- International Center for Biotechnology, Osaka University, 2-1 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
13
|
Martín-Hernández GC, Chmielarz M, Müller B, Brandt C, Viehweger A, Hölzer M, Passoth V. Enhanced glycerol assimilation and lipid production in Rhodotorula toruloides CBS14 upon addition of hemicellulose primarily correlates with early transcription of energy-metabolism-related genes. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:42. [PMID: 36899390 PMCID: PMC9999650 DOI: 10.1186/s13068-023-02294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Lipid formation from glycerol was previously found to be activated in Rhodotorula toruloides when the yeast was cultivated in a mixture of crude glycerol (CG) and hemicellulose hydrolysate (CGHH) compared to CG as the only carbon source. RNA samples from R. toruloides CBS14 cell cultures grown on either CG or CGHH were collected at different timepoints of cultivation, and a differential gene expression analysis was performed between cells grown at a similar physiological situation. RESULTS We observed enhanced transcription of genes involved in oxidative phosphorylation and enzymes localized in mitochondria in CGHH compared to CG. Genes involved in protein turnover, including those encoding ribosomal proteins, translation elongation factors, and genes involved in building the proteasome also showed an enhanced transcription in CGHH compared to CG. At 10 h cultivation, another group of activated genes in CGHH was involved in β-oxidation, handling oxidative stress and degradation of xylose and aromatic compounds. Potential bypasses of the standard GUT1 and GUT2-glycerol assimilation pathway were also expressed and upregulated in CGHH 10 h. When the additional carbon sources from HH were completely consumed, at CGHH 36 h, their transcription decreased and NAD+-dependent glycerol-3-phosphate dehydrogenase was upregulated compared to CG 60 h, generating NADH instead of NADPH with glycerol catabolism. TPI1 was upregulated in CGHH compared to cells grown on CG in all physiological situations, potentially channeling the DHAP formed through glycerol catabolism into glycolysis. The highest number of upregulated genes encoding glycolytic enzymes was found after 36 h in CGHH, when all additional carbon sources were already consumed. CONCLUSIONS We suspect that the physiological reason for the accelerated glycerol assimilation and faster lipid production, was primarily the activation of enzymes that provide energy.
Collapse
Affiliation(s)
- Giselle C Martín-Hernández
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Box 7015, 75007, Uppsala, Sweden
| | - Mikołaj Chmielarz
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Box 7015, 75007, Uppsala, Sweden
| | - Bettina Müller
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Box 7015, 75007, Uppsala, Sweden
| | - Christian Brandt
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Adrian Viehweger
- Institute of Medical Microbiology and Virology, University Hospital Leipzig, 04103, Leipzig, Germany
| | - Martin Hölzer
- Method Development and Research Infrastructure, Bioinformatics and Systems Biology, Robert Koch Institute, 13353, Berlin, Germany
| | - Volkmar Passoth
- Department of Molecular Sciences, BioCenter, Swedish University of Agricultural Sciences, Box 7015, 75007, Uppsala, Sweden.
| |
Collapse
|
14
|
Adaptation of Proteome and Metabolism in Different Haplotypes of Rhodosporidium toruloides during Cu(I) and Cu(II) Stress. Microorganisms 2023; 11:microorganisms11030553. [PMID: 36985127 PMCID: PMC10056549 DOI: 10.3390/microorganisms11030553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Rhodosporidium toruloides is a carotenogenic, oleogenic yeast that is able to grow in diverse environments. In this study, the proteomic and metabolic responses to copper stress in the two haplotypes IFO0559 and IFO0880 were assessed. 0.5 mM Cu(I) extended the lag phase of both strains significantly, while only a small effect was observed for Cu(II) treatment. Other carotenogenic yeasts such as Rhodotorula mucilaginosa are known to accumulate high amounts of carotenoids as a response to oxidative stress, posed by excess copper ion activity. However, no significant increase in carotenoid accumulation for both haplotypes of R. toruloides after 144 h of 0.5 mM Cu(I) or Cu(II) stress was observed. Yet, an increase in lipid production was detected, when exposed to Cu(II), additionally, proteins related to fatty acid biosynthesis were detected in increased amounts under stress conditions. Proteomic analysis revealed that besides the activation of the enzymatic oxidative stress response, excess copper affected iron–sulfur and zinc-containing proteins and caused proteomic adaptation indicative of copper ion accumulation in the vacuole, mitochondria, and Golgi apparatus.
Collapse
|
15
|
Attenuating the triacylglycerol catabolism enhanced lipid production of Rhodotorula strain U13N3. Appl Microbiol Biotechnol 2023; 107:1491-1501. [PMID: 36633623 DOI: 10.1007/s00253-023-12368-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Enhancing the lipid production of oleaginous yeasts is conducive to cutting the cost of feedstock for biodiesel. To increase the lipid productivity of Rhodotorula sp. U13N3, genes involving lipid degradation were knocked out and fermentation conditions were investigated. Results of transcription analysis demonstrated that genes encoding the ATG15-like lipase (ATG15) and peroxisomal acyl-CoA oxidase (ACOX2) were upregulated significantly at the lipogenesis stage. When ATG15 and ACOX2 were knocked out separately from the genome by the CRISPR/Cas9 method, both ΔATG15 and ΔACOX2 mutants showed better lipid production ability than the parent strain. Flow cytometry and confocal microscopic analyses indicated that simultaneous the knockout of ATG15 and ACOX2 did not impact the cell viability, whereas the lipid production was enhanced markedly as the lipid yield increased by 67.03% in shake flasks. Afterward, the ΔATG15ΔACOX2 transformant (TO2) was cultivated in shake flasks in the fed-batch mode; the highest biomass and lipid yield reached 45.76 g/L and 27.14 g/L at 216 h, respectively. Better performance was achieved when TO2 was cultivated in the 1-L bioreactor. At the end of fermentation (180 h), lipid content, yield, yield coefficient, and productivity reached 65.53%, 27.35 g/L, 0.277 g/g glycerol, and 0.152 g/L/h, respectively. These values were at the high level in comparison with Rhodotorula strains cultivated in glycerol media. Besides, fermentation modes did not affect the fatty acid composition of TO2 significantly. In conclusion, blocking the lipid degradation was an applicable strategy to increase the lipid production of Rhodotorula strains without compromising their cell viability. KEY POINTS: • ATG15-like lipase and acyl-CoA oxidase (ACOX2) participated in lipid degradation. • Knockout of ATG15 and ACOX2 increased lipid productivity, and lipid yield coefficient. • Cell viability maintained at high level in the knockout mutants during fermentation.
Collapse
|
16
|
System analysis of Lipomyces starkeyi during growth on various plant-based sugars. Appl Microbiol Biotechnol 2022; 106:5629-5642. [PMID: 35906440 DOI: 10.1007/s00253-022-12084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/14/2022] [Accepted: 07/16/2022] [Indexed: 11/02/2022]
Abstract
Oleaginous yeasts have received significant attention due to their substantial lipid storage capability. The accumulated lipids can be utilized directly or processed into various bioproducts and biofuels. Lipomyces starkeyi is an oleaginous yeast capable of using multiple plant-based sugars, such as glucose, xylose, and cellobiose. It is, however, a relatively unexplored yeast due to limited knowledge about its physiology. In this study, we have evaluated the growth of L. starkeyi on different sugars and performed transcriptomic and metabolomic analyses to understand the underlying mechanisms of sugar metabolism. Principal component analysis showed clear differences resulting from growth on different sugars. We have further reported various metabolic pathways activated during growth on these sugars. We also observed non-specific regulation in L. starkeyi and have updated the gene annotations for the NRRL Y-11557 strain. This analysis provides a foundation for understanding the metabolism of these plant-based sugars and potentially valuable information to guide the metabolic engineering of L. starkeyi to produce bioproducts and biofuels. KEY POINTS: • L. starkeyi metabolism reprograms for consumption of different plant-based sugars. • Non-specific regulation was observed during growth on cellobiose. • L. starkeyi secretes β-glucosidases for extracellular hydrolysis of cellobiose.
Collapse
|
17
|
Near-Complete Genome Sequence of Zygosaccharomyces rouxii NRRL Y-64007, a Yeast Capable of Growing on Lignocellulosic Hydrolysates. Microbiol Resour Announc 2022; 11:e0005022. [PMID: 35442079 PMCID: PMC9119105 DOI: 10.1128/mra.00050-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The halotolerant and osmotolerant yeast Zygosaccharomyces rouxii can produce multiple volatile compounds and has the ability to grow on lignocellulosic hydrolysates. We report the annotated genome sequence of Z. rouxii NRRL Y-64007 to support its development as a platform organism for biofuel and bioproduct production.
Collapse
|
18
|
Deeba F, Kumar KK, Rajacharya GH, Gaur NA. Metabolomic Profiling Revealed Diversion of Cytidinediphosphate-Diacylglycerol and Glycerol Pathway towards Denovo Triacylglycerol Synthesis in Rhodosporidium toruloides. J Fungi (Basel) 2021; 7:jof7110967. [PMID: 34829254 PMCID: PMC8625802 DOI: 10.3390/jof7110967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
Oleaginous yeast Rhodosporidium toruloides has great biotechnological potential and scientific interest, yet the molecular rationale of its cellular behavior to carbon and nitrogen ratios with concurrent lipid agglomeration remains elusive. Here, metabolomics adaptations of the R. toruloides in response to varying glucose and nitrogen concentrations have been investigated. In preliminary screening we found that 5% glucose (w/v) was optimal for further analysis in Rhodosporidium toruloides 3641. Hereafter, the effect of complementation to increase lipid agglomeration was evaluated with different nitrogen sources and their concentration. The results obtained illustrated that the biomass (13 g/L) and lipid (9.1 g/L) production were maximum on 5% (w/v) glucose and 0.12% (NH4)2SO4. Furthermore, to shed lights on lipid accumulation induced by nitrogen-limitation, we performed metabolomic analysis of the oleaginous yeast R. toruloides 3641. Significant changes were observed in metabolite concentrations by qualitative metabolomics through gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), which were mapped onto the governing metabolic pathways. Notable finding in this strain concerns glycerol and CDP-DAG metabolism wherein reduced production of glycerol and phospholipids induced a bypass leading to enhanced de-novo triacylglyceride synthesis. Collectively, our findings help in understanding the central carbon metabolism of R. toruloides which may assist in developing rationale metabolic models and engineering efforts in this organism.
Collapse
Affiliation(s)
- Farha Deeba
- Correspondence: (F.D.); (N.A.G.); Tel.: +91-112-674-1358 (ext. 452) (N.A.G.)
| | | | | | - Naseem A. Gaur
- Correspondence: (F.D.); (N.A.G.); Tel.: +91-112-674-1358 (ext. 452) (N.A.G.)
| |
Collapse
|