1
|
Han Q, Wang S, Han B, Su W, Yang J, Yu Q, Li H. Temporal dynamics of the diazotrophic community during corpse decomposition. Appl Microbiol Biotechnol 2024; 108:506. [PMID: 39520567 PMCID: PMC11550258 DOI: 10.1007/s00253-024-13329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Corpse decomposition affects soil organisms through the formation of "cadaver decomposition islands." Soil diazotrophic microbes possess essential ecological functions on nitrogen input and nutrient cycling in the terrestrial ecosystem. However, our knowledge about how soil diazotrophic communities respond to corpse decomposition is lacking. In this study, we focused on the succession patterns and biological interaction of nitrogen-fixing microorganisms during animal (Ochotona curzoniae) corpse decomposition in terrestrial ecosystems by targeting nifH gene with high-throughput sequencing. Our results revealed that corpse decomposition of pikas reduced the α diversity and significantly impacted the β diversity of diazotrophic community across different decomposition stages. The divergent succession of diazotrophic community occurred under corpse pressure. Furthermore, the relative importance of stochasticity to the community assembly was improved by corpse decomposition, while the importance decreased over decomposition time. Cadaver decay also simplified the diazotrophic networks and weakened the biological interactions among diazotrophic populations. Notably, NH4-N was the most important factor affecting diazotrophic community, followed by time and total carbon. This work emphasized that corpse decomposition perhaps influences the process of biological nitrogen fixation by altering soil diazotrophic communities, which is of great significance for understanding the terrestrial ecosystems' nitrogen cycle functions. KEY POINTS: • Corpse decomposition reduced the α diversity of diazotrophic community. • Corpse decomposition improved the stochasticity of diazotrophic community assembly. • Corpse decomposition weakened the interactions among diazotrophic populations.
Collapse
Affiliation(s)
- Qian Han
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Binghua Han
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
2
|
Yu Q, Han Q, Li T, Kou Y, Zhang X, Wang Y, Li G, Zhou H, Qu J, Li H. Metagenomics reveals the self-recovery and risk of antibiotic resistomes during carcass decomposition of wild mammals. ENVIRONMENTAL RESEARCH 2023; 238:117222. [PMID: 37778601 DOI: 10.1016/j.envres.2023.117222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Animal carcass decomposition may bring serious harm to the environment, including pathogenic viruses, toxic gases and metabolites, and antibiotic resistance genes (ARGs). However, how wild mammal corpses decomposition influence and change ARGs in the environment has less explored. Through metagenomics, 16S rRNA gene sequencing, and physicochemical analysis, this study explored the succession patterns, influencing factors, and assembly process of ARGs and mobile genetic elements (MGEs) in gravesoil during long-term corpse decomposition of wild mammals. Our results indicate that the ARG and MGE communities related to wildlife corpses exhibited a pattern of differentiation first and then convergence. Different from the farmed animals, the decomposition of wild animals first reduced the diversity of ARGs and MGEs, and then recovered to a level similar to that of the control group (untreated soil). ARGs and MGEs of the gravesoil are mainly affected by deterministic processes in different stages. MGEs and bacterial community are the two most important factors affecting ARGs in gravesoil. It is worth noting that the decomposition of wild animal carcasses enriched different high-risk ARGs at different stages (bacA, mecA and floR), which have co-occurrence patterns with opportunistic pathogens (Comamonas and Acinetobacter), thereby posing a great threat to public health. These results are of great significance for wildlife corpse management and environmental and ecological safety.
Collapse
Affiliation(s)
- Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu, 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Tongtong Li
- Department of Applied Biology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yongping Kou
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xiao Zhang
- Key Laboratory of National Forestry and Grassland Administration on Silviculture in Loess Plateau, College of Forestry, Northwest A&F University, Yangling, 712100, China
| | - Yansu Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huakun Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Jiapeng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
| | - Huan Li
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Gansu, 730000, China; Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Restoration Ecology for Cold Region, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
3
|
Wang X, Han Q, Yu Q, Wang S, Yang J, Su W, Wan-Yan R, Sun X, Li H. Mammalian carcass decay increases carbon storage and temporal turnover of carbon-fixing microbes in alpine meadow soil. ENVIRONMENTAL RESEARCH 2023; 225:115653. [PMID: 36898422 DOI: 10.1016/j.envres.2023.115653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/20/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Corpse decomposition is of great significance to the carbon cycle of natural ecosystem. Carbon fixation is a carbon conversion process that converts carbon dioxide into organic carbon, which greatly contributes to carbon emission reduction. However, the effects of wild animal carcass decay on carbon-fixing microbes in grassland soil environment are still unknown. In this research, thirty wild mammal (Ochotona curzoniae) corpses were placed on alpine meadow soil to study the carbon storage and carbon-fixing microbiota succession for a 94-day decomposition using next-generation sequencing. Our results revealed that 1) the concentration of total carbon increased approximately 2.24-11.22% in the corpse group. 2) Several carbon-fixing bacterial species (Calothrix parietina, Ancylobacter rudongensis, Rhodopseudomonas palustris) may predict the concentration of total carbon. 3) Animal cadaver degradation caused the differentiation of carbon-fixing microbiota structures during succession and made the medium-stage networks of carbon-fixing microbes more complicated. 4) The temporal turnover rate in the experimental groups was higher than that in the control groups, indicating a quick change of gravesoil carbon-fixing microbiota. 5) The deterministic process dominates the assembly mechanism of experimental groups (ranging from 53.42% to 94.94%), which reflects that the carbon-fixing microbial community in gravesoil can be regulated. Under global climate change, this study provides a new perspective for understanding the effects of wild animal carcass decay on soil carbon storage and carbon-fixing microbes.
Collapse
Affiliation(s)
- Xiaochen Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qian Han
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Qiaoling Yu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Sijie Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Jiawei Yang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Wanghong Su
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Ruijun Wan-Yan
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaofang Sun
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Huan Li
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Yang J, Yu Q, Su W, Wang S, Wang X, Han Q, Qu J, Li H. Metagenomics reveals elevated temperature causes nitrogen accumulation mainly by inhibiting nitrate reduction process in polluted water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163631. [PMID: 37086993 DOI: 10.1016/j.scitotenv.2023.163631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Determining the response of functional genes and microbiota involved in the nitrogen (N) cycle to warming in the face of global climate change is a hotpot topic. However, whether and how elevated temperature affects the N-cycle genes in polluted water remains unclear. Based on metagenomics, we investigated the responses of the whole N-cycling genes and their microbial communities to the temperature gradients (23, 26, 29, 32, and 35 °C) using animal cadavers as an N-pollution model. We found that the abundance of gene families involved in glutamate metabolism, assimilatory nitrate reduction to nitrite (ANRN), and denitrification pathways decreased with temperature. Moreover, warming reduced the diversity of N-cycling microbial communities. Ecological network analysis indicated that elevated temperature intensified the mutual competition of N-cycle genes. The partial least squares path model (PLS-PM) showed that warming directly suppressed most N-cycle pathways, especially glutamate metabolism, denitrification, and ANRN pathways. Corpse decay also indirectly inhibited N-cycling via regulating N content and microbial communities. Our results highlight warming leads to N accumulation by inhibiting the ANRN and denitrification pathways, which may jeopardize ecological environment security. Our study is expected to provide valuable insights into the complex N-cycle process and N-pollution in warmer aquatic ecosystems.
Collapse
Affiliation(s)
- Jiawei Yang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaoling Yu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of pastoral agriculture science and technology, Lanzhou University, Lanzhou 730000, China
| | - Wanghong Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sijie Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaochen Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qian Han
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jiapeng Qu
- Key laboratory of adaptation and evolution of plateau biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai 810008, China
| | - Huan Li
- School of Public Health, Lanzhou University, Lanzhou 730000, China; State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, College of pastoral agriculture science and technology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|