1
|
Zhang S, Gao Z, Dong K, Wang Y, Lv W, Wang R, Guo F, Liu J, Yang X. Functional analysis of novel cystatins from Haemaphysalis doenitzi and evaluation of their roles in cypermethrin and λ-cyhalothrin resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106075. [PMID: 39277388 DOI: 10.1016/j.pestbp.2024.106075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 09/17/2024]
Abstract
Currently, the primary strategy for tick control relies on chemical agents. Pyrethrins, which are botanically derived compounds, have demonstrated efficacy in controlling ticks without posing a risk to human or animal health. However, research into pyrethrins' metabolic mechanisms remains sparse. Cystatin, as a reversible binding inhibitor of cysteine protease, may be involved in the initiation of pyrethrin detoxification of Haemaphysalis doenitzi. In this study, two novel cystatins were cloned, HDcyst-3 and HDcyst-4, the relative expression of which was highest in the Malpighian tubules compared with the tick midguts, salivary glands, and ovaries. Prokaryotic expression and in vitro studies revealed that cystatins effectively inhibit the enzymatic activities of cathepsins B and S. RNAi results showed that the reduction of cystatins significantly decreased the engorgement weight, egg mass weight, and egg hatching rate of adult female ticks, and prolonged feeding time by two days. The control rate of rHDcyst-3 and rHDcyst-4 protein vaccination against female adults were 55.9% and 63.2%, respectively. In addition, the tick immersion test showed that cypermethrin and λ-cyhalothrin had significant acaricidal effects against adult unfed H. doenitzi. The qPCR result indicated that compared with the control group, the expression of HDcyst-3 and HDcyst-4 was markedly decreased in the sublethal cypermethrin and λ-cyhalothrin group at LC50. Enzyme activity showed that cypermethrin and λ-cyhalothrin could significantly induce the activities of glutathione S-transferase (GST), carboxylesterase (CarE), and acetylcholinesterase (AchE). The aforementioned results provided indirect evidence that cystatin plays an important role in pyrethrin detoxification and provides a theoretical basis for future acaricide experiments and pest management.
Collapse
Affiliation(s)
- Songbo Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zhihua Gao
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Kexin Dong
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yikui Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Wenxia Lv
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Runying Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Feidi Guo
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jianing Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaolong Yang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China..
| |
Collapse
|
2
|
Yu L, Xia A, Hao Y, Li W, He X, Xing C, Shang Z, Zhang Y. COF-SiO 2@Fe 3O 4 Composite for Magnetic Solid-Phase Extraction of Pyrethroid Pesticides in Vegetables. Molecules 2024; 29:2311. [PMID: 38792172 PMCID: PMC11123868 DOI: 10.3390/molecules29102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Pyrethroid pesticides (PYRs) have found widespread application in agriculture for the protection of fruit and vegetable crops. Nonetheless, excessive usage or improper application may allow the residues to exceed the safe limits and pose a threat to consumer safety. Thus, there is an urgent need to develop efficient technologies for the elimination or trace detection of PYRs from vegetables. Here, a simple and efficient magnetic solid-phase extraction (MSPE) strategy was developed for the simultaneous purification and enrichment of five PYRs in vegetables, employing the magnetic covalent organic framework nanomaterial COF-SiO2@Fe3O4 as an adsorbent. COF-SiO2@Fe3O4 was prepared by a straightforward solvothermal method, using Fe3O4 as a magnetic core and benzidine and 3,3,5,5-tetraaldehyde biphenyl as the two building units. COF-SiO2@Fe3O4 could effectively capture the targeted PYRs by virtue of its abundant π-electron system and hydroxyl groups. The impact of various experimental parameters on the extraction efficiency was investigated to optimize the MSPE conditions, including the adsorbent amount, extraction time, elution solvent type and elution time. Subsequently, method validation was conducted under the optimal conditions in conjunction with gas chromatography-mass spectrometry (GC-MS). Within the range of 5.00-100 μg·kg-1 (1.00-100 μg·kg-1 for bifenthrin and 2.5-100 μg·kg-1 for fenpropathrin), the five PYRs exhibited a strong linear relationship, with determination coefficients ranging from 0.9990 to 0.9997. The limits of detection (LODs) were 0.3-1.5 μg·kg-1, and the limits of quantification (LOQs) were 0.9-4.5 μg·kg-1. The recoveries were 80.2-116.7% with relative standard deviations (RSDs) below 7.0%. Finally, COF-SiO2@Fe3O4, NH2-SiO2@Fe3O4 and Fe3O4 were compared as MSPE adsorbents for PYRs. The results indicated that COF-SiO2@Fe3O4 was an efficient and rapid selective adsorbent for PYRs. This method holds promise for the determination of PYRs in real samples.
Collapse
Affiliation(s)
- Ling Yu
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
- Functional Polymer Materials R&D and Engineering Application Technology Innovation Center of Hebei, Xingtai 054001, China
| | - Aiqing Xia
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
| | - Yongchao Hao
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
| | - Weitao Li
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
| | - Xu He
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
| | - Cuijuan Xing
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
| | - Zan Shang
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
| | - Yiwei Zhang
- College of Chemistry and Chemical Engineering, Xingtai University, Xingtai 054001, China; (A.X.); (Y.H.); (W.L.); (X.H.); (Z.S.); (Y.Z.)
| |
Collapse
|
3
|
Daunoras J, Kačergius A, Gudiukaitė R. Role of Soil Microbiota Enzymes in Soil Health and Activity Changes Depending on Climate Change and the Type of Soil Ecosystem. BIOLOGY 2024; 13:85. [PMID: 38392304 PMCID: PMC10886310 DOI: 10.3390/biology13020085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
The extracellular enzymes secreted by soil microorganisms play a pivotal role in the decomposition of organic matter and the global cycles of carbon (C), phosphorus (P), and nitrogen (N), also serving as indicators of soil health and fertility. Current research is extensively analyzing these microbial populations and enzyme activities in diverse soil ecosystems and climatic regions, such as forests, grasslands, tropics, arctic regions and deserts. Climate change, global warming, and intensive agriculture are altering soil enzyme activities. Yet, few reviews have thoroughly explored the key enzymes required for soil fertility and the effects of abiotic factors on their functionality. A comprehensive review is thus essential to better understand the role of soil microbial enzymes in C, P, and N cycles, and their response to climate changes, soil ecosystems, organic farming, and fertilization. Studies indicate that the soil temperature, moisture, water content, pH, substrate availability, and average annual temperature and precipitation significantly impact enzyme activities. Additionally, climate change has shown ambiguous effects on these activities, causing both reductions and enhancements in enzyme catalytic functions.
Collapse
Affiliation(s)
- Jokūbas Daunoras
- Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257 Vilnius, Lithuania
| | - Audrius Kačergius
- Lithuanian Research Centre for Agriculture and Forestry, Kedainiai Distr., LT-58344 Akademija, Lithuania
| | - Renata Gudiukaitė
- Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Zhang G, Dilday S, Kuesel RW, Hopkins B. Phytochemicals, Probiotics, Recombinant Proteins: Enzymatic Remedies to Pesticide Poisonings in Bees. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:54-62. [PMID: 38127782 PMCID: PMC10785755 DOI: 10.1021/acs.est.3c07581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The ongoing global decline of bees threatens biodiversity and food safety as both wild plants and crops rely on bee pollination to produce viable progeny or high-quality products in high yields. Pesticide exposure is a major driving force for the decline, yet pesticide use remains unreconciled with bee conservation since studies demonstrate that bees continue to be heavily exposed to and threatened by pesticides in crops and natural habitats. Pharmaceutical methods, including the administration of phytochemicals, probiotics (beneficial bacteria), and recombinant proteins (enzymes) with detoxification functions, show promise as potential solutions to mitigate pesticide poisonings. We discuss how these new methods can be appropriately developed and applied in agriculture from bee biology and ecotoxicology perspectives. As countless phytochemicals, probiotics, and recombinant proteins exist, this Perspective will provide suggestive guidance to accelerate the development of new techniques by directing research and resources toward promising candidates. Furthermore, we discuss practical limitations of the new methods mentioned above in realistic field applications and propose recommendations to overcome these limitations. This Perspective builds a framework to allow researchers to use new detoxification techniques more efficiently in order to mitigate the harmful impacts of pesticides on bees.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Sam Dilday
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Ryan William Kuesel
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Brandon Hopkins
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
5
|
Huang Y, Yang L, Pan K, Yang Z, Yang H, Liu J, Zhong G, Lu Q. Heavy metal-tolerant bacteria Bacillus cereus BCS1 degrades pyrethroid in a soil-plant system. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132594. [PMID: 37748314 DOI: 10.1016/j.jhazmat.2023.132594] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
The heightened concern about the environmental impacts of pollutants drives interest in reducing their threats to humans and the environment. Bioremediating polluted sites under environmental stresses like biotic and abiotic poses significant challenges. This study aimed to isolate a bacterium that effectively degrades pyrethroids even under abiotic stresses involving heavy metals and biotic stresses with autochthonous factors. Here, a bacterial strain, Bacillus cereus BCS1 was isolated. The response surface methodology was established to quantify the environmental impacts on pyrethroid degradation. BCS1 effectively degraded pyrethroids across conditions at 21-36 °C, pH 6.5-8.0 and inoculum sizes 1.9-4.1 mg·L-1, exceeding 90% degradation. Notably, over 84% of β-cypermethrin (β-CP) was degraded even when exposed to various concentrations of lead (10-1000 mg·L-1), chromium (10-1000 mg·L-1), or cadmium (0.5-50 mg·L-1). Moreover, BCS1 significantly accelerated β-CP degradation in soil-plant systems, displaying biotic stress tolerance, with lower half-life values (10.1 and 9.5 d) in soil and higher removal (92.1% and 60.9%) in plants compared to controls (27.7 and 25.7 d), and (18.2% and 24.3%). This study presents a novel strain capable of efficiently degrading pyrethroids and displaying remarkable environmental stress resistance. Findings shed light on bioremediating organic pollutants in complex soil ecosystems.
Collapse
Affiliation(s)
- Yanfeng Huang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Liying Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Keqing Pan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zhengyi Yang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hongxia Yang
- Huangpu Customs Technology Center, China; Guangdong Provincial Key Laboratory for Port Security Intelligent Testing, Guangzhou, China
| | - Jie Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.
| | - Qiqi Lu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, China; Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China; Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
6
|
Borowik A, Wyszkowska J, Zaborowska M, Kucharski J. Microbial Diversity and Enzyme Activity as Indicators of Permethrin-Exposed Soil Health. Molecules 2023; 28:4756. [PMID: 37375310 DOI: 10.3390/molecules28124756] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Owing to their wide range of applications in the control of ticks and insects in horticulture, forestry, agriculture and food production, pyrethroids pose a significant threat to the environment, including a risk to human health. Hence, it is extremely important to gain a sound understanding of the response of plants and changes in the soil microbiome induced by permethrin. The purpose of this study has been to show the diversity of microorganisms, activity of soil enzymes and growth of Zea mays following the application of permethrin. This article presents the results of the identification of microorganisms with the NGS sequencing method, and of isolated colonies of microorganisms on selective microbiological substrates. Furthermore, the activity of several soil enzymes, such as dehydrogenases (Deh), urease (Ure), catalase (Cat), acid phosphatase (Pac), alkaline phosphatase (Pal), β-glucosidase (Glu) and arylsulfatase (Aryl), as well as the growth of Zea mays and its greenness indicators (SPAD), after 60 days of growth following the application of permethrin, were presented. The research results indicate that permethrin does not have a negative effect on the growth of plants. The metagenomic studies showed that the application of permethrin increases the abundance of Proteobacteria, but decreases the counts of Actinobacteria and Ascomycota. The application of permethrin raised to the highest degree the abundance of bacteria of the genera Cellulomonas, Kaistobacter, Pseudomonas, Rhodanobacter and fungi of the genera Penicillium, Humicola, Iodophanus, Meyerozyma. It has been determined that permethrin stimulates the multiplication of organotrophic bacteria and actinomycetes, decreases the counts of fungi and depresses the activity of all soil enzymes in unseeded soil. Zea mays is able to mitigate the effect of permethrin and can therefore be used as an effective phytoremediation plant.
Collapse
Affiliation(s)
- Agata Borowik
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Magdalena Zaborowska
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| | - Jan Kucharski
- Department of Soil Science and Microbiology, Faculty of Agriculture and Forestry, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
7
|
Borowik A, Wyszkowska J, Zaborowska M, Kucharski J. The Impact of Permethrin and Cypermethrin on Plants, Soil Enzyme Activity, and Microbial Communities. Int J Mol Sci 2023; 24:ijms24032892. [PMID: 36769219 PMCID: PMC9917378 DOI: 10.3390/ijms24032892] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Pyrethroids are insecticides most commonly used for insect control to boost agricultural production. The aim of the present research was to determine the effect of permethrin and cypermethrin on cultured and non-cultivated bacteria and fungi and on the activity of soil enzymes, as well as to determine the usefulness of Zea mays in mitigating the adverse effects of the tested pyrethroids on the soil microbiome. The analyses were carried out in the samples of both soil not sown with any plant and soil sown with Zea mays. Permethrin and cypermethrin were found to stimulate the multiplication of cultured organotrophic bacteria (on average by 38.3%) and actinomycetes (on average by 80.2%), and to inhibit fungi growth (on average by 31.7%) and the enzymatic activity of the soil, reducing the soil biochemical fertility index (BA) by 27.7%. They also modified the number of operational taxonomic units (OTUs) of the Actinobacteria and Proteobacteria phyla and the Ascomycota and Basidiomycota phyla. The pressure of permethrin and cypermethrin was tolerated well by the bacteria Sphingomonas (clone 3214512, 1052559, 237613, 1048605) and Bacillus (clone New.ReferenceOTU111, 593219, 578257), and by the fungi Penicillium (SH1533734.08FU, SH1692798.08FU) and Trichocladium (SH1615601.08FU). Both insecticides disturbed the growth and yielding of Zea mays, as a result of which its yield and leaf greenness index decreased. The cultivation of Zea mays had a positive effect on both soil enzymes and soil microorganisms and mitigated the anomalies caused by the tested insecticides in the microbiome and activity of soil enzymes. Permethrin decreased the yield of its aerial parts by 37.9% and its roots by 33.9%, whereas respective decreases caused by cypermethrin reached 16.8% and 4.3%.
Collapse
|