1
|
Gao Y, Wu J, Xia Q, Liu J, Zhu JJ, Zhang JR, Chen X, Zhu W, Chen Z. Operando Spectroscopic Elucidation of the Bubble Sunshade Effect in Inorganic-Biological Hybrids for Photosynthetic Hydrogen Production. ACS NANO 2024; 18:14546-14557. [PMID: 38776420 DOI: 10.1021/acsnano.4c02264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Hydrogen production by photosynthetic hybrid systems (PBSs) offers a promising avenue for renewable energy. However, the light-harvesting efficiency of PBSs remains constrained due to unclear intracellular kinetic factors. Here, we present an operando elucidation of the sluggish light-harvesting behavior for existing PBSs and strategies to circumvent them. By quantifying the spectral shift in the structural color scattering of individual PBSs during the photosynthetic process, we observe the accumulation of product hydrogen bubbles on their outer membrane. These bubbles act as a sunshade and inhibit light absorption. This phenomenon elucidates the intrinsic constraints on the light-harvesting efficiency of PBSs. The introduction of a tension eliminator into the PBSs effectively improves the bubble sunshade effect and results in a 4.5-fold increase in the light-harvesting efficiency. This work provides valuable insights into the dynamics of transmembrane transport gas products and holds the potential to inspire innovative designs for improving the light-harvesting efficiency of PBSs.
Collapse
Affiliation(s)
- Yan Gao
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jingyu Wu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Qing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Juan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jun-Jie Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Jian-Rong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Xueqin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| | - Zixuan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, People's Republic of China
| |
Collapse
|
2
|
Yu X, Li H, Xu C, Xu Z, Chen S, Liu W, Zhang T, Sun H, Ge Y, Qi Z, Liu J. Liquid-Liquid Phase Separation-Mediated Photocatalytic Subcellular Hybrid System for Highly Efficient Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400097. [PMID: 38572522 PMCID: PMC11165473 DOI: 10.1002/advs.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Indexed: 04/05/2024]
Abstract
Plant chloroplasts have a highly compartmentalized interior, essential for executing photocatalytic functions. However, the construction of a photocatalytic reaction compartment similar to chloroplasts in inorganic-biological hybrid systems (IBS) has not been reported. Drawing inspiration from the compartmentalized chloroplast and the phenomenon of liquid-liquid phase separation, herein, a new strategy is first developed for constructing a photocatalytic subcellular hybrid system through liquid-liquid phase separation technology in living cells. Photosensitizers and in vivo expressed hydrogenases are designed to coassemble within the cell to create subcellular compartments for synergetic photocatalysis. This compartmentalization facilitates efficient electron transfer and light energy utilization, resulting in highly effective H2 production. The subcellular compartments hybrid system (HM/IBSCS) exhibits a nearly 87-fold increase in H2 production compared to the bare bacteria/hybrid system. Furthermore, the intracellular compartments of the photocatalytic reactor enhance the system's stability obviously, with the bacteria maintaining approximately 81% of their H2 production activity even after undergoing five cycles of photocatalytic hydrogen production. The research brings forward visionary prospects for the field of semi-artificial photosynthesis, offering new possibilities for advancements in areas such as renewable energy, biomanufacturing, and genetic engineering.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Hui Li
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Chengchen Xu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Zhengwei Xu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Shuheng Chen
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Wang Liu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Tianlong Zhang
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Hongcheng Sun
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| | - Yan Ge
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Zhenhui Qi
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
- Sino‐German Joint Research Lab for Space Biomaterials and Translational TechnologySchool of Life SciencesNorthwestern Polytechnical UniversityXi'an710072China
| | - Junqiu Liu
- Key Laboratory of Organosilicon Chemistry and Material TechnologyMinistry of EducationCollege of MaterialChemistry and Chemical EngineeringHangzhou Normal UniversityHangzhou311121China
| |
Collapse
|
3
|
Wang Y, Liu Y, Zhao N, Wang J, Yang Y, Cui D, Zhao M. Fe 3 O 4 nanozyme coating enhances light-driven biohydrogen production in self-photosensitized Shewanella oneidensis-CdS hybrid systems. Biotechnol J 2023; 18:e2300084. [PMID: 37651217 DOI: 10.1002/biot.202300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Solar-driven biohybrid systems that produce chemical energy are a valuable objective in ongoing research. However, reactive oxygen species (ROS) that accompany nanoparticle production under light radiation severely affect the efficiency of biohybrid systems. In this study, we successfully constructed a two-hybrid system, Shewanella oneidensis-CdS and S. oneidensis-CdS@Fe3 O4 , in a simple, economical, and gentle manner. With the Fe3 O4 coating, ROS were considerably eliminated; the hydroxyl radical, superoxide radical, and hydrogen peroxide contents were reduced by 66.7%, 65.4%, and 72%, respectively, during light-driven S. oneidensis-CdS hydrogen production. S. oneidensis-CdS@Fe3 O4 showed a 2.6-fold higher hydrogen production (70 h) than S. oneidensis-CdS. Moreover, the S. oneidensis-CdS system produced an additional 367.8 μmol g-dcw-1 (70 h) of hydrogen compared with S. oneidensis during irradiation. The apparent quantum efficiencies of S. oneidensis-CdS and S. oneidensis-CdS@Fe3 O4 were 6.2% and 11.5%, respectively, exceeding values previously reported. In conclusion, a stable nanozyme coating effectively inhibited the cytotoxicity of CdS nanoparticles, providing an excellent production environment for bacteria. This study provides a rational strategy for protecting biohybrid systems from ROS toxicity and contributes to more efficient solar energy conversion in the future.
Collapse
Affiliation(s)
- Yuelei Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuqi Liu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Na Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jueyu Wang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yue Yang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Daizong Cui
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Min Zhao
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
4
|
Yang Y, Liu LN, Tian H, Cooper AI, Sprick RS. Making the connections: physical and electric interactions in biohybrid photosynthetic systems. ENERGY & ENVIRONMENTAL SCIENCE 2023; 16:4305-4319. [PMID: 38013927 PMCID: PMC10566253 DOI: 10.1039/d3ee01265d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/14/2023] [Indexed: 11/29/2023]
Abstract
Biohybrid photosynthesis systems, which combine biological and non-biological materials, have attracted recent interest in solar-to-chemical energy conversion. However, the solar efficiencies of such systems remain low, despite advances in both artificial photosynthesis and synthetic biology. Here we discuss the potential of conjugated organic materials as photosensitisers for biological hybrid systems compared to traditional inorganic semiconductors. Organic materials offer the ability to tune both photophysical properties and the specific physicochemical interactions between the photosensitiser and biological cells, thus improving stability and charge transfer. We highlight the state-of-the-art and opportunities for new approaches in designing new biohybrid systems. This perspective also summarises the current understanding of the underlying electron transport process and highlights the research areas that need to be pursued to underpin the development of hybrid photosynthesis systems.
Collapse
Affiliation(s)
- Ying Yang
- Materials Innovation Factory and Department of Chemistry, University of Liverpool Liverpool L7 3NY UK
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool L69 7ZB UK
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool Liverpool L69 7ZB UK
- College of Marine Life Sciences, and Frontiers Science Centre for Deep Ocean Multispheres and Earth System, Ocean University of China 266003 Qingdao P. R. China
| | - Haining Tian
- Department of Chemistry-Ångström Laboratories, Uppsala University Box 523 751 20 Uppsala Sweden
| | - Andrew I Cooper
- Materials Innovation Factory and Department of Chemistry, University of Liverpool Liverpool L7 3NY UK
| | - Reiner Sebastian Sprick
- Department of Pure and Applied Chemistry, University of Strathclyde Thomas Graham Building, 295 Cathedral Street Glasgow G1 1XL UK
| |
Collapse
|
5
|
Zhu X, Xu Z, Tang H, Nie L, Nie R, Wang R, Liu X, Huang X. Photosynthesis-Mediated Intracellular Biomineralization of Gold Nanoparticles inside Chlorella Cells towards Hydrogen Boosting under Green Light. Angew Chem Int Ed Engl 2023; 62:e202308437. [PMID: 37357971 DOI: 10.1002/anie.202308437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
Engineering living microorganisms to enhance green biomanufacturing for the development of sustainable and carbon-neutral energy strategies has attracted the interest of researchers from a wide range of scientific communities. In this study, we develop a method to achieve photosynthesis-mediated biomineralization of gold nanoparticles (AuNPs) inside Chlorella cells, where the photosynthesis-dominated reduction of Au3+ to Au0 allows the formed AuNPs to locate preferentially around the thylakoid membrane domain. In particular, we reveal that the electrons generated by the localized surface plasmon resonance of AuNPs could greatly augment hypoxic photosynthesis, which then promotes the generation and transferring of photoelectrons throughout the photosynthetic chain for augmented hydrogen production under sunlight. We demonstrate that the electrons from AuNPs could be directly transferred to hydrogenase, giving rise to an 8.3-fold enhancement of Chlorella cells hydrogen production independent of the cellular photosynthetic process under monochromatic 560 nm light irradiation. Overall, the photosynthesis-mediated intracellular biomineralization of AuNPs could contribute to a novel paradigm for functionalizing Chlorella cells to augment biomanufacturing.
Collapse
Affiliation(s)
- Xueying Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Haitao Tang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Lanheng Nie
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Rui Nie
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Ruifang Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Xiaoman Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Shen J, Liu Y, Qiao L. Photodriven Chemical Synthesis by Whole-Cell-Based Biohybrid Systems: From System Construction to Mechanism Study. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6235-6259. [PMID: 36702806 DOI: 10.1021/acsami.2c19528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By simulating natural photosynthesis, the desirable high-value chemical products and clean fuels can be sustainably generated with solar energy. Whole-cell-based photosensitized biohybrid system, which innovatively couples the excellent light-harvesting capacity of semiconductor materials with the efficient catalytic ability of intracellular biocatalysts, is an appealing interdisciplinary creature to realize photodriven chemical synthesis. In this review, we summarize the constructed whole-cell-based biohybrid systems in different application fields, including carbon dioxide fixation, nitrogen fixation, hydrogen production, and other chemical synthesis. Moreover, we elaborate the charge transfer mechanism studies of representative biohybrids, which can help to deepen the current understanding of the synergistic process between photosensitizers and microorganisms, and provide schemes for building novel biohybrids with less electron transfer resistance, advanced productive efficiency, and functional diversity. Further exploration in this field has the prospect of making a breakthrough on the biotic-abiotic interface that will provide opportunities for multidisciplinary research.
Collapse
Affiliation(s)
- Jiayuan Shen
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Yun Liu
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| | - Liang Qiao
- Department of Chemistry, and Shanghai Stomatological Hospital, Fudan University, Shanghai 200000, China
| |
Collapse
|
7
|
Barnes RJ, Voegtlin SP, Hubert CRJ, Larter SR, Bryant SL. The Critical Role of Environmental Synergies in the Creation of Bionanohybrid Microbes. Appl Environ Microbiol 2022; 88:e0232121. [PMID: 35254099 PMCID: PMC9004394 DOI: 10.1128/aem.02321-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/05/2022] [Indexed: 11/20/2022] Open
Abstract
A wide range of bacteria can synthesize surface-associated nanoparticles (SANs) through exogenous metal ions reacting with sulfide produced via cysteine metabolism, resulting in the emergence of a biological-nanoparticle hybrid (bionanohybrid). The attached nanoparticles may couple to extracellular electron transfer, facilitating de novo photoelectrochemical processes. While SAN-cell coupling in hybrid organisms is opening a range of biotechnological possibilities, observation of bionanohybrids in nature is not commonly reported and their lab-based behavior remains difficult to control. We describe the critical role environmental synergy (microbial growth stage, cell densities, cysteine, and exogenous metal concentrations) plays in controlling the form and occurrence of Escherichia coli and Moorella thermoacetica bionanohybrids. SAN development depends on an appropriate cell density to metal ratio, with too few cells resulting in nanoparticle suppression through cytotoxicity or inhibition of cysteine conversion, and with too many cells diluting the number and size of particles produced. This cell number is governed by the concentration of cysteine present, which acts to protect the cells from metal ion toxicity. Exposing cells to metal and cysteine during the lag phase leads to SAN development, whereas cells in the exponential growth phase predominantly produce dispersed nanoparticles. Applying these principles more broadly, E. coli is shown to biosynthesize composite Bi/Cu sulfide SANs, and Clostridioides difficile can be coaxed into a bionanohybrid lifestyle by fine-tuning the cysteine dosage. Bionanohybrids maintain a remarkable ability for binary fission and sustained growth, opening doors to the production of SANs tailored to specific technological functions. IMPORTANCE Some bacteria can produce nanoscale-sized particles, which remain attached to the surface of the organism. The surface association of these nanoparticles creates a new mode of interaction between the microbe's environment and its internal cellular function, giving rise to a new hybrid lifeform, a biological nanoparticle hybrid (bionanohybrid). These hybrid organisms gain new or enhanced biological functions, and thus their creation opens a wide range of biotechnological possibilities. Despite this potential, the fundamental controls on bionanohybrid formation and occurrence remain poorly constrained. In this study, Escherichia coli K-12, Moorella thermoacetica, and Clostridioides difficile were used to test the combined influences of the growth phase, cell density, cysteine dose, and metal concentration in determining single and composite metal sulfide surface-associated nanoparticle production. The significance of this study is that it defined the critical synergies controlling nanoparticle formation on bacterial cell surfaces, unlocking the potential for bionanohybrid applications in a range of organisms.
Collapse
Affiliation(s)
- Robert J. Barnes
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Stephen P. Voegtlin
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Stephen R. Larter
- Department of Geoscience, Petroleum Reservoir Group, University of Calgary, Canada
| | - Steven L. Bryant
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Canada
| |
Collapse
|
8
|
Ma N, Cai R, Sun C. Threonine dehydratase enhances bacterial cadmium resistance via driving cysteine desulfuration and biomineralization of cadmium sulfide nanocrystals. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126102. [PMID: 34015711 DOI: 10.1016/j.jhazmat.2021.126102] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Biomineralization is often used by microorganisms to sequester heavy metal ions and provides a potential means for remediating increasing levels of heavy metal pollution. Bacteria have been shown to utilize cysteine for the biomineralization of metal sulfide. Indeed, in the present study, the supplement of L-cysteine was found to significantly improve both cadmium resistance and removal abilities of a deep-sea bacterium Pseudomonas stutzeri 273 through cadmium sulfide (CdS) nanoparticle biomineralization. With a proteomic approach, threonine dehydratase of P. stutzeri 273 (psTD) was proposed to be a key factor enhancing bacterial cadmium resistance through catalyzing L-cysteine desulfuration, H2S generation and CdS nanoparticle biomineralization. Consistently, deletion of the gene encoding psTD in P. stutzeri 273 resulted in the decline of H2S generation, decrease of cadmium resistance, and reduction of cadmium removal ability, confirming the unique function of psTD directing the formation of CdS nanoparticles. Correspondingly, the single-enzyme biomineralization of CdS nanoparticle driven by psTD was further developed, and psTD was shown to act as a capping reagent for the mineralization reaction, which controlling the size and structure of nanocrystals. Our results provide important clues for the construction of engineered bacteria for cadmium bioremediation and widen the synthesis methods of nanomaterials.
Collapse
Affiliation(s)
- Ning Ma
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ruining Cai
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
9
|
Li L, Xu Z, Huang X. Whole-Cell-Based Photosynthetic Biohybrid Systems for Energy and Environmental Applications. Chempluschem 2021; 86:1021-1036. [PMID: 34286914 DOI: 10.1002/cplu.202100171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/07/2021] [Indexed: 12/17/2022]
Abstract
With the increasing awareness of sustainable development, energy and environment are becoming two of the most important issues of concern to the world today. Whole-cell-based photosynthetic biohybrid systems (PBSs), an emerging interdisciplinary field, are considered as attractive biosynthetic platforms with great prospects in energy and environment, combining the superiorities of semiconductor materials with high energy conversion efficiency and living cells with distinguished biosynthetic capacity. This review presents a systematic discussion on the synthesis strategies of whole-cell-based PBSs that demonstrate a promising potential for applications in sustainable solar-to-chemical conversion, including light-facilitated carbon dioxide reduction and biohydrogen production. In the end, the explicit perspectives on the challenges and future directions in this burgeoning field are discussed.
Collapse
Affiliation(s)
- Luxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Zhijun Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| |
Collapse
|
10
|
Xu S, Luo X, Huang Q, Chen W. Calcium-crosslinked alginate-encapsulated bacteria for remediating of cadmium-polluted water and production of CdS nanoparticles. Appl Microbiol Biotechnol 2021; 105:2171-2179. [PMID: 33559717 DOI: 10.1007/s00253-021-11155-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 01/21/2023]
Abstract
Pollution with the heavy metal cadmium (Cd2+) is a global problem. Cadmium adversely affects living organisms, highlighting the need to develop new methods for removal of this pollutant from the environment. In this study, we used a novel biomaterial based on calcium-crosslinked alginate-encapsulated bacteria to precipitate Cd2+ in polluted water. Our results show that calcium-crosslinked alginate-encapsulated bacteria effectively removed Cd2+ ions from cadmium-polluted water. Approximately 100% of Cd2+ ions were removed by 10 g (wet weight) of this biomaterial when the loading concentration of Cd2+ reached 1 mM in a volume of 50 ml water. During this process, a CdS nanoparticle, showing good crystallinity in the quantum range, was simultaneously produced. To validate the activity and stability of this biomaterial, we measured cysteine desulfhydrase activity in the stored biomaterial and whether this biomaterial could be recycled. The encapsulated bacteria maintained catalytic activity for at least 2 weeks. The capsules were easily regenerated and possessed good recyclability. Our results indicated that calcium-crosslinked alginate-encapsulated bacteria are suitable for depletion of Cd2+ in polluted water and for production of CdS nanoparticles. These calcium-crosslinked alginate-encapsulated bacteria are safe for biological manipulation and can be widely used to produce CdS nanoparticles during bioremediation of Cd2+-polluted water. KEY POINTS: • Calcium-crosslinked alginate-encapsulated bacteria can effectively precipitate Cd2+ in water coupled with production of CdS quantum dots. • The encapsulated bacteria maintained catalytic activity for at least 2 weeks. • The capsules were easily regenerated and possessed good recyclability.
Collapse
Affiliation(s)
- Shaozu Xu
- College of Resources and Environment, Shanxi Agricultural University, Taigu, 030801, Shanxi, People's Republic of China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuesong Luo
- Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaoyun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Subtropical Agricultural Resources and Environment, Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
11
|
Honda Y, Shinohara Y, Watanabe M, Ishihara T, Fujii H. Photo-biohydrogen Production by Photosensitization with Biologically Precipitated Cadmium Sulfide in Hydrogen-Forming Recombinant Escherichia coli. Chembiochem 2020; 21:3389-3397. [PMID: 32697401 DOI: 10.1002/cbic.202000383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Indexed: 11/10/2022]
Abstract
An inorganic-biological hybrid system that integrates features of both stable and efficient semiconductors and selective and efficient enzymes is attractive for facilitating the conversion of solar energy to hydrogen. In this study, we aimed to develop a new photocatalytic hydrogen-production system based on Escherichia coli whole-cell genetically engineered as a biocatalysis for highly active hydrogen formation. The photocatalysis part was obtained by bacterial precipitation of cadmium sulfide (CdS), which is a visible-light-responsive semiconductor. The recombinant E. coli cells were sequentially subjected to CdS precipitation and heterologous [FeFe]-hydrogenase synthesis to yield a CdS@E. coli hybrid capable of light energy conversion and hydrogen formation in a single cell. The CdS@E. coli hybrid achieved photocatalytic hydrogen production with a sacrificial electron donor, thus demonstrating the feasibility of our system and expanding the current knowledge of photosensitization using a whole-cell biocatalyst with a bacterially precipitated semiconductor.
Collapse
Affiliation(s)
- Yuki Honda
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Yuka Shinohara
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Motonori Watanabe
- International Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tatsumi Ishihara
- International Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| |
Collapse
|
12
|
Tomaszewski EJ, Olson L, Obst M, Byrne JM, Kappler A, Muehe EM. Complexation by cysteine and iron mineral adsorption limit cadmium mobility during metabolic activity of Geobacter sulfurreducens. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:1877-1887. [PMID: 32803208 DOI: 10.1039/d0em00244e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) adversely affects human health by entering the food chain via anthropogenic activity. In order to mitigate risk, a better understanding of the biogeochemical mechanisms limiting Cd mobility in the environment is needed. While Cd is not redox-active, Cd speciation varies (i.e., aqueous, complexed, adsorbed), and influences mobility. Here, the cycling of Cd in relation to initial speciation during the growth of Geobacter sulfurreducens was studied. Either fumarate or ferrihydrite (Fh) was provided as an electron acceptor and Cd was present as: (1) an aqueous cation, (2) an aqueous complex with cysteine, which is often present in metal stressed soil environments, or (3) adsorbed to Fh. During microbial Fe(iii) reduction, the removal of Cd was substantial (∼80% removal), despite extensive Fe(ii) production (ratio Fe(ii)total : Fetotal = 0.8). When fumarate was the electron acceptor, there was higher removal from solution when Cd was complexed with cysteine (97-100% removal) compared to aqueous Cd (34-50%) removal. Confocal laser scanning microscopy (CLSM) demonstrated the formation of exopolymeric substances (EPS) in all conditions and that Cd was correlated with EPS in the absence of Fe minerals (r = 0.51-0.56). Most notable is that aqueous Cd was more strongly correlated with Geobacter cells (r = 0.72) compared to Cd-cysteine complexes (r = 0.51). This work demonstrates that Cd interactions with cell surfaces and EPS, and Cd solubility during metabolic activity are dependent upon initial speciation. These processes may be especially important in soil environments where sulfur is limited and Fe and organic carbon are abundant.
Collapse
Affiliation(s)
- E J Tomaszewski
- Geomicrobiology Group, Center for Applied Geoscience (ZAG), University of Tübingen, Schnarrenbergstrasse 94-96, Tübingen, D-72076, Germany. and University of Delaware, 221 Academy St, Newark, DE 19716, USA
| | - L Olson
- Geomicrobiology Group, Center for Applied Geoscience (ZAG), University of Tübingen, Schnarrenbergstrasse 94-96, Tübingen, D-72076, Germany.
| | - M Obst
- Experimental Biogeochemistry, BayCEER, University Bayreuth, Dr.-Hans-Frisch-Str. 1-3, Bayreuth, 95448, Germany
| | - J M Byrne
- Geomicrobiology Group, Center for Applied Geoscience (ZAG), University of Tübingen, Schnarrenbergstrasse 94-96, Tübingen, D-72076, Germany. and School of Earth Sciences, University of Bristol, Queens Road, Bristol, BS8 1QU, UK
| | - A Kappler
- Geomicrobiology Group, Center for Applied Geoscience (ZAG), University of Tübingen, Schnarrenbergstrasse 94-96, Tübingen, D-72076, Germany.
| | - E M Muehe
- Geomicrobiology Group, Center for Applied Geoscience (ZAG), University of Tübingen, Schnarrenbergstrasse 94-96, Tübingen, D-72076, Germany. and Plant Biogeochemistry Group, Department Environmental Microbiology, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
13
|
Abstract
Metal nanoparticles (NPs), with sizes ranging from 1–100 nm, are of great scientific interest because their functions and features differ greatly from those of bulk metal. Chemical or physical methods are used to synthesize commercial quantities of NPs, and green, energy-efficient approaches generating byproducts of low toxicity are desirable to minimize the environmental impact of the industrial methods. Some microorganisms synthesize metal NPs for detoxification and metabolic reasons at room temperature and pressure in aqueous solution. Metal NPs have been prepared via green methods by incubating microorganisms or cell-free extracts of microorganisms with dissolved metal ions for hours or days. Metal NPs are analyzed using various techniques, such as ultraviolet-visible spectroscopy, electron microscopy, X-ray diffraction, electron diffraction, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Numerous publications have focused on microorganisms that synthesize various metal NPs. For example, Ag, Au, CdS, CdSe, Cu, CuO, Gd2O3, Fe3O4, PbS, Pd, Sb2O3, TiO2, and ZrO2 NPs have been reported. Herein, we review the synthesis of metal NPs by microorganisms. Although the molecular mechanisms of their synthesis have been investigated to some extent, experimental evidence for the mechanisms is limited. Understanding the mechanisms is crucial for industrial-scale development of microorganism-synthesized metal NPs.
Collapse
|
14
|
Su YQ, Zhao YJ, Zhang WJ, Chen GC, Qin H, Qiao DR, Chen YE, Cao Y. Removal of mercury(II), lead(II) and cadmium(II) from aqueous solutions using Rhodobacter sphaeroides SC01. CHEMOSPHERE 2020; 243:125166. [PMID: 31756653 DOI: 10.1016/j.chemosphere.2019.125166] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Microorganisms and microbial products can be highly efficient in uptaking soluble and particulate forms of heavy metals, particularly from solutions. In this study, the removal efficiency, oxidative damage, antioxidant system, and the possible removal mechanisms were investigated in Rhodobacter (R.) sphaeroides SC01 under mercury (Hg), lead (Pb) and cadmium (Cd) stress. The results showed that SC01 had the highest removal rates (98%) of Pb among three heavy metals. Compared with Hg and Cd stress, Pb stress resulted in a lower levels of reactive oxygen species (ROS) and cell death. In contrast, the activities of four antioxidant enzymes in SC01 under Pb stress was higher than that of Hg and Cd stress. Furthermore, the analysis from fourier transform infrared spectroscopy indicated that complexation of Pb with hydroxyl, amid and phosphate groups was found in SC01 under Pb stress. In addition, X-ray diffraction analysis showed that precipitate of lead phosphate hydroxide was produced on the cell surface in SC01 exposed to Pb stress. Therefore, these results suggested that SC01 had good Pb removal ability by biosorption and precipitation and will be potentially useful for removal of Pb in industrial effluents.
Collapse
Affiliation(s)
- Yan-Qiu Su
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yang-Juan Zhao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wei-Jia Zhang
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Guo-Cheng Chen
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Han Qin
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Dai-Rong Qiao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Yi Cao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
15
|
Enhanced biosynthesis of CdS nanoparticles through Arabidopsis thaliana phytochelatin synthase-modified Escherichia coli with fluorescence effect in detection of pyrogallol and gallic acid. Talanta 2019; 195:447-455. [DOI: 10.1016/j.talanta.2018.11.092] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/23/2018] [Accepted: 11/24/2018] [Indexed: 12/13/2022]
|
16
|
Xu S, Luo X, Xing Y, Liu S, Huang Q, Chen W. Complete genome sequence of Raoultella sp. strain X13, a promising cell factory for the synthesis of CdS quantum dots. 3 Biotech 2019; 9:120. [PMID: 30854280 DOI: 10.1007/s13205-019-1649-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022] Open
Abstract
A novel cadmium-resistant bacterium, Raoultella sp. strain X13, recently isolated from heavy metal-contaminated soil, and this strain can synthesize CdS quantum dots using cadmium nitrate [Cd(NO4)2] and l-cysteine. Biomineralization of CdS by strain X13 can efficiently remove cadmium from aqueous solution. To illuminate the molecular mechanisms for the biosynthesis of CdS nanoparticle, the complete genome of Raoultella sp. strain X13 was sequenced. The whole genome sequence comprises a circular chromosome and a circular plasmid. Cysteine desulfhydrase smCSE has been previously found to be associated with the synthesis of CdS quantum dots. Bioinformatics analysis indicated that the genome of Raoultella sp. strain X13 encodes five putative cysteine desulfhydrases and all of them are located in the chromosome. The genome information may help us to determine the molecular mechanisms of the synthesis of CdS quantum dots and potentially enable us to engineer this microorganism for applications in biotechnology.
Collapse
|
17
|
Biosynthetic transition metal chalcogenide semiconductor nanoparticles: Progress in synthesis, property control and applications. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Marusak KE, Krug JR, Feng Y, Cao Y, You L, Zauscher S. Bacterially driven cadmium sulfide precipitation on porous membranes: Toward platforms for photocatalytic applications. Biointerphases 2018; 13:011006. [PMID: 29426227 PMCID: PMC5807096 DOI: 10.1116/1.5008393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/11/2018] [Accepted: 01/19/2018] [Indexed: 11/17/2022] Open
Abstract
The emerging field of biofabrication capitalizes on nature's ability to create materials with a wide range of well-defined physical and electronic properties. Particularly, there is a current push to utilize programmed, self-organization of living cells for material fabrication. However, much research is still necessary at the interface of synthetic biology and materials engineering to make biofabrication a viable technique to develop functional devices. Here, the authors exploit the ability of Escherichia coli to contribute to material fabrication by designing and optimizing growth platforms to direct inorganic nanoparticle (NP) synthesis, specifically cadmium sulfide (CdS) NPs, onto porous polycarbonate membranes. Additionally, current, nonbiological, chemical synthesis methods for CdS NPs are typically energy intensive and use high concentrations of hazardous cadmium precursors. Using biosynthesis methods through microorganisms could potentially alleviate these issues by precipitating NPs with less energy and lower concentrations of toxic precursors. The authors adopted extracellular precipitation strategies to form CdS NPs on the membranes as bacterial/membrane composites and characterized them by spectroscopic and imaging methods, including energy dispersive spectroscopy, and scanning and transmission electron microscopy. This method allowed us to control the localization of NP precipitation throughout the layered bacterial/membrane composite, by varying the timing of the cadmium precursor addition. Additionally, the authors demonstrated the photodegradation of methyl orange using the CdS functionalized porous membranes, thus confirming the photocatalytic properties of these composites for eventual translation to device development. If combined with the genetically programmed self-organization of cells, this approach promises to directly pattern CdS nanostructures on solid supports.
Collapse
Affiliation(s)
- Katherine E Marusak
- Department of Mechanical Engineering and Materials Science, Duke University, 144 Hudson Hall Box 90300, Durham, North Carolina 27708
| | - Julia R Krug
- Department of Mechanical Engineering and Materials Science, Duke University, 144 Hudson Hall Box 90300, Durham, North Carolina 27708
| | - Yaying Feng
- Department of Mechanical Engineering and Materials Science, Duke University, 144 Hudson Hall Box 90300, Durham, North Carolina 27708
| | - Yangxiaolu Cao
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708; Center for Genomic and Computational Biology, Duke University, 101 Science Drive, Durham, North Carolina 27708; and Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3710, Durham, North Carolina 27710
| | - Stefan Zauscher
- Department of Mechanical Engineering and Materials Science, Duke University, 144 Hudson Hall Box 90300, Durham, North Carolina 27708 and Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham, North Carolina 27708
| |
Collapse
|
19
|
Quatrini R, Escudero LV, Moya-Beltrán A, Galleguillos PA, Issotta F, Acosta M, Cárdenas JP, Nuñez H, Salinas K, Holmes DS, Demergasso C. Draft genome sequence of Acidithiobacillus thiooxidans CLST isolated from the acidic hypersaline Gorbea salt flat in northern Chile. Stand Genomic Sci 2017; 12:84. [PMID: 29270251 PMCID: PMC5735861 DOI: 10.1186/s40793-017-0305-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 12/06/2017] [Indexed: 01/16/2023] Open
Abstract
10.1601/nm.2199 CLST is an extremely acidophilic gamma-proteobacteria that was isolated from the Gorbea salt flat, an acidic hypersaline environment in northern Chile. This kind of environment is considered a terrestrial analog of ancient Martian terrains and a source of new material for biotechnological applications. 10.1601/nm.2199 plays a key role in industrial bioleaching; it has the capacity of generating and maintaining acidic conditions by producing sulfuric acid and it can also remove sulfur layers from the surface of minerals, which are detrimental for their dissolution. CLST is a strain of 10.1601/nm.2199 able to tolerate moderate chloride concentrations (up to 15 g L-1 Cl-), a feature that is quite unusual in extreme acidophilic microorganisms. Basic microbiological features and genomic properties of this biotechnologically relevant strain are described in this work. The 3,974,949 bp draft genome is arranged into 40 scaffolds of 389 contigs containing 3866 protein-coding genes and 75 RNAs encoding genes. This is the first draft genome of a halotolerant 10.1601/nm.2199 strain. The release of the genome sequence of this strain improves representation of these extreme acidophilic Gram negative bacteria in public databases and strengthens the framework for further investigation of the physiological diversity and ecological function of 10.1601/nm.2199 populations.
Collapse
Affiliation(s)
- Raquel Quatrini
- Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Santiago, Chile
| | - Lorena V. Escudero
- Centro de Biotecnología “Profesor Alberto Ruiz”, Universidad Católica del Norte, 1270709 Antofagasta, Chile
- Centro de Investigación Científica y Tecnológica para la Minería, Antofagasta, Chile
| | - Ana Moya-Beltrán
- Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Santiago, Chile
| | - Pedro A. Galleguillos
- Centro de Biotecnología “Profesor Alberto Ruiz”, Universidad Católica del Norte, 1270709 Antofagasta, Chile
- Centro de Investigación Científica y Tecnológica para la Minería, Antofagasta, Chile
| | | | - Mauricio Acosta
- Centro de Biotecnología “Profesor Alberto Ruiz”, Universidad Católica del Norte, 1270709 Antofagasta, Chile
| | | | - Harold Nuñez
- Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Santiago, Chile
| | | | - David S. Holmes
- Fundación Ciencia & Vida, Av. Zañartu 1482, 7780272 Santiago, Chile
- Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Cecilia Demergasso
- Centro de Biotecnología “Profesor Alberto Ruiz”, Universidad Católica del Norte, 1270709 Antofagasta, Chile
- Centro de Investigación Científica y Tecnológica para la Minería, Antofagasta, Chile
| |
Collapse
|
20
|
Yang Z, Lu L, Kiely CJ, Berger BW, McIntosh S. Biomineralized CdS Quantum Dot Nanocrystals: Optimizing Synthesis Conditions and Improving Functional Properties by Surface Modification. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b03487] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhou Yang
- Department of Chemical and Biomolecular Engineering, ‡Department of Materials Science and
Engineering, and §Program in Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Li Lu
- Department of Chemical and Biomolecular Engineering, ‡Department of Materials Science and
Engineering, and §Program in Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Christopher J. Kiely
- Department of Chemical and Biomolecular Engineering, ‡Department of Materials Science and
Engineering, and §Program in Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Bryan W. Berger
- Department of Chemical and Biomolecular Engineering, ‡Department of Materials Science and
Engineering, and §Program in Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Steven McIntosh
- Department of Chemical and Biomolecular Engineering, ‡Department of Materials Science and
Engineering, and §Program in Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
21
|
Marusak KE, Feng Y, Eben CF, Payne ST, Cao Y, You L, Zauscher S. Cadmium sulphide quantum dots with tunable electronic properties by bacterial precipitation. RSC Adv 2016; 6:76158-76166. [PMID: 28435671 DOI: 10.1039/c6ra13835g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present a new method to fabricate semiconducting, transition metal nanoparticles (NPs) with tunable bandgap energies using engineered Escherichia coli. These bacteria overexpress the Treponema denticola cysteine desulfhydrase gene to facilitate precipitation of cadmium sulphide (CdS) NPs. Analysis with transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy reveal that the bacterially precipitated NPs are agglomerates of mostly quantum dots, with diameters that can range from 3 to 15 nm, embedded in a carbon-rich matrix. Additionally, conditions for bacterial CdS precipitation can be tuned to produce NPs with bandgap energies that range from quantum-confined to bulk CdS. Furthermore, inducing precipitation at different stages of bacterial growth allows for control over whether the precipitation occurs intra- or extracellularly. This control can be critically important in utilizing bacterial precipitation for the environmentally-friendly fabrication of functional, electronic and catalytic materials. Notably, the measured photoelectrochemical current generated by these NPs is comparable to values reported in the literature and higher than that of synthesized chemical bath deposited CdS NPs. This suggests that bacterially precipitated CdS NPs have potential for applications ranging from photovoltaics to photocatalysis in hydrogen evolution.
Collapse
Affiliation(s)
- K E Marusak
- Department of Mechanical Engineering & Materials Science, 144 Hudson Hall, Box 90300 Durham, NC 27708, United States
| | - Y Feng
- Department of Mechanical Engineering & Materials Science, 144 Hudson Hall, Box 90300 Durham, NC 27708, United States
| | - C F Eben
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham NC 27708, United States
| | - S T Payne
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham NC 27708, United States
| | - Y Cao
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham NC 27708, United States
| | - L You
- Department of Biomedical Engineering, Duke University, 101 Science Drive, Durham NC 27708, United States
| | - S Zauscher
- Department of Mechanical Engineering & Materials Science, 144 Hudson Hall, Box 90300 Durham, NC 27708, United States
| |
Collapse
|
22
|
Single-enzyme biomineralization of cadmium sulfide nanocrystals with controlled optical properties. Proc Natl Acad Sci U S A 2016; 113:5275-80. [PMID: 27118834 DOI: 10.1073/pnas.1523633113] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nature has evolved several unique biomineralization strategies to direct the synthesis and growth of inorganic materials. These natural systems are complex, involving the interaction of multiple biomolecules to catalyze biomineralization and template growth. Herein we describe the first report to our knowledge of a single enzyme capable of both catalyzing mineralization in otherwise unreactive solution and of templating nanocrystal growth. A recombinant putative cystathionine γ-lyase (smCSE) mineralizes CdS from an aqueous cadmium acetate solution via reactive H2S generation from l-cysteine and controls nanocrystal growth within the quantum confined size range. The role of enzymatic nanocrystal templating is demonstrated by substituting reactive Na2S as the sulfur source. Whereas bulk CdS is formed in the absence of the enzyme or other capping agents, nanocrystal formation is observed when smCSE is present to control the growth. This dual-function, single-enzyme, aerobic, and aqueous route to functional material synthesis demonstrates the powerful potential of engineered functional material biomineralization.
Collapse
|
23
|
Sakimoto KK, Wong AB, Yang P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016; 351:74-7. [PMID: 26721997 DOI: 10.1126/science.aad3317] [Citation(s) in RCA: 518] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Improving natural photosynthesis can enable the sustainable production of chemicals. However, neither purely artificial nor purely biological approaches seem poised to realize the potential of solar-to-chemical synthesis. We developed a hybrid approach, whereby we combined the highly efficient light harvesting of inorganic semiconductors with the high specificity, low cost, and self-replication and -repair of biocatalysts. We induced the self-photosensitization of a nonphotosynthetic bacterium, Moorella thermoacetica, with cadmium sulfide nanoparticles, enabling the photosynthesis of acetic acid from carbon dioxide. Biologically precipitated cadmium sulfide nanoparticles served as the light harvester to sustain cellular metabolism. This self-augmented biological system selectively produced acetic acid continuously over several days of light-dark cycles at relatively high quantum yields, demonstrating a self-replicating route toward solar-to-chemical carbon dioxide reduction.
Collapse
Affiliation(s)
- Kelsey K Sakimoto
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Andrew Barnabas Wong
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Peidong Yang
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Department of Materials Science and Engineering, University of California-Berkeley, Berkeley, CA 94720, USA. Kavli Energy NanoSciences Institute, Berkeley, CA 94720, USA
| |
Collapse
|
24
|
Roy M, Giri AK, Dutta S, Mukherjee P. Integrated phytobial remediation for sustainable management of arsenic in soil and water. ENVIRONMENT INTERNATIONAL 2015; 75:180-98. [PMID: 25481297 DOI: 10.1016/j.envint.2014.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 11/10/2014] [Accepted: 11/15/2014] [Indexed: 05/08/2023]
Abstract
Arsenic (As), cited as the most hazardous substance by the U.S. Agency for Toxic Substance and Disease Registry (ATSDR, 2005), is an ubiquitous metalloid which when ingested for prolonged periods cause extensive health effects leading to ultimate untimely death. Plants and microbes can help mitigate soil and groundwater As problem since they have evolved elaborate detoxification machineries against this toxic metalloid as a result of their coexistence with this since the origin of life on earth. Utilization of the phytoremediation and bioremediation potential of the plants and microbes, respectively, is now regarded as two innovative tools that encompass biology, geology, biotechnology and allied sciences with cutting edge applications for sustainable mitigation of As epidemic. Discovery of As hyperaccumulating plants that uptake and concentrate large amounts of this toxic metalloid in their shoots or roots offered new hope to As phytoremediation, solar power based nature's own green remediation. This review focuses on how phytoremediation and bioremediation can be merged together to form an integrated phytobial remediation which could synergistically achieve the goal of large scale removal of As from soil, sediment and groundwater and overcome the drawbacks of the either processes alone. The review also points to the feasibility of the introduction of transgenic plants and microbes that bring new hope for more efficient treatment of As. The review identifies one critical research gap on the importance of remediation of As contaminated groundwater not only for drinking purpose but also for irrigation purpose and stresses that more research should be conducted on the use of constructed wetland, one of the most suitable areas of application of phytobial remediation. Finally the review has narrowed down on different phytoinvestigation and phytodisposal methods, which constitute the most essential and the most difficult part of pilot scale and field scale applications of phytoremediation programs.
Collapse
Affiliation(s)
- Madhumita Roy
- Techno India University, Salt Lake, Kolkata 700091, India
| | - Ashok K Giri
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, 4Raja S.C. Mallick Road, Kolkata 700032, West Bengal, India
| | - Sourav Dutta
- Techno India University, Salt Lake, Kolkata 700091, India
| | | |
Collapse
|
25
|
Edwards CD, Beatty JC, Loiselle JBR, Vlassov KA, Lefebvre DD. Aerobic transformation of cadmium through metal sulfide biosynthesis in photosynthetic microorganisms. BMC Microbiol 2013; 13:161. [PMID: 23855952 PMCID: PMC3750252 DOI: 10.1186/1471-2180-13-161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 07/05/2013] [Indexed: 11/22/2022] Open
Abstract
Background Cadmium is a non-essential metal that is toxic because of its interference with essential metals such as iron, calcium and zinc causing numerous detrimental metabolic and cellular effects. The amount of this metal in the environment has increased dramatically since the advent of the industrial age as a result of mining activities, the use of fertilizers and sewage sludge in farming, and discharges from manufacturing activities. The metal bioremediation utility of phototrophic microbes has been demonstrated through their ability to detoxify Hg(II) into HgS under aerobic conditions. Metal sulfides are generally very insoluble and therefore, biologically unavailable. Results When Cd(II) was exposed to cells it was bioconverted into CdS by the green alga Chlamydomonas reinhardtii, the red alga Cyanidioschyzon merolae, and the cyanobacterium, Synechoccocus leopoliensis. Supplementation of the two eukaryotic algae with extra sulfate, but not sulfite or cysteine, increased their cadmium tolerances as well as their abilities to produce CdS, indicating an involvement of sulfate assimilation in the detoxification process. However, the combined activities of extracted serine acetyl-transferase (SAT) and O-acetylserine(thiol)lyase (OASTL) used to monitor sulfate assimilation, was not significantly elevated during cell treatments that favored sulfide biosynthesis. It is possible that the prolonged incubation of the experiments occurring over two days could have compensated for the low rates of sulfate assimilation. This was also the case for S. leopoliensis where sulfite and cysteine as well as sulfate supplementation enhanced CdS synthesis. In general, conditions that increased cadmium sulfide production also resulted in elevated cysteine desulfhydrase activities, strongly suggesting that cysteine is the direct source of sulfur for CdS synthesis. Conclusions Cadmium(II) tolerance and CdS formation were significantly enhanced by sulfate supplementation, thus indicating that algae and cyanobacteria can produce CdS in a manner similar to that of HgS. Significant increases in sulfate assimilation as measured by SAT-OASTL activity were not detected. However, the enhanced activity of cysteine desulfhydrase indicates that it is instrumental in the provision of H2S for aerobic CdS biosynthesis.
Collapse
Affiliation(s)
- Chad D Edwards
- Department of Biology, Queen's University, Kingston, ON, Canada
| | | | | | | | | |
Collapse
|
26
|
Aerobic transformation of zinc into metal sulfide by photosynthetic microorganisms. Appl Microbiol Biotechnol 2013; 97:3613-23. [DOI: 10.1007/s00253-012-4636-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/02/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022]
|
27
|
Guo J, Zheng XD, Chen QB, Zhang L, Xu XP. Biosorption of Cd(II) from aqueous solution by Pseudomonas plecoglossicida: kinetics and mechanism. Curr Microbiol 2012; 65:350-5. [PMID: 22706778 DOI: 10.1007/s00284-012-0164-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 05/27/2012] [Indexed: 11/28/2022]
Abstract
In our present study, we investigated the mechanism of Cd(II) biosorption from aqueous solution by Pseudomonas plecoglossicida using different instrumental techniques. The adsorption kinetics fitted well with the pseudo second-order model, suggesting that the Cd(II) adsorption by P. plecoglossicida consisted of a chemisorption and a physisorption process. Compared with the dead P. plecoglossicida cells, the live cells demonstrated the same adsorption capacity of Cd(II). Scanning electron microscope with energy dispersive X-ray spectroscopy analysis revealed that the main mechanism of adsorption was the combination of Cd(II) with the organic functional groups in the cell wall of P. plecoglossicida. Furthermore, Fourier transform infrared spectroscopic analysis of the metal-loaded biosorbent confirmed the participation of -NH, -OH, -CH, and -CONH groups in the uptake of Cd(II). Moreover, cation transport test revealed that ionic exchange interactions were involved in the Cd(II) adsorption. However, it only played a minor role in the Cd(II) biosorption process.
Collapse
Affiliation(s)
- Jun Guo
- College of Life Sciences, Fujian Normal University, Fujian 350108, China
| | | | | | | | | |
Collapse
|
28
|
Tsai SL, Singh S, DaSilva NA, Chen W. Co-expression of Arabidopsis thaliana phytochelatin synthase and Treponema denticola cysteine desulfhydrase for enhanced arsenic accumulation. Biotechnol Bioeng 2011; 109:605-8. [DOI: 10.1002/bit.23325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 08/29/2011] [Accepted: 08/31/2011] [Indexed: 11/11/2022]
|
29
|
Gadd GM. Metals, minerals and microbes: geomicrobiology and bioremediation. MICROBIOLOGY-SGM 2009; 156:609-643. [PMID: 20019082 DOI: 10.1099/mic.0.037143-0] [Citation(s) in RCA: 791] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Microbes play key geoactive roles in the biosphere, particularly in the areas of element biotransformations and biogeochemical cycling, metal and mineral transformations, decomposition, bioweathering, and soil and sediment formation. All kinds of microbes, including prokaryotes and eukaryotes and their symbiotic associations with each other and 'higher organisms', can contribute actively to geological phenomena, and central to many such geomicrobial processes are transformations of metals and minerals. Microbes have a variety of properties that can effect changes in metal speciation, toxicity and mobility, as well as mineral formation or mineral dissolution or deterioration. Such mechanisms are important components of natural biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks and minerals, e.g. sulfur and phosphorus, and metalloids, actinides and metal radionuclides. Apart from being important in natural biosphere processes, metal and mineral transformations can have beneficial or detrimental consequences in a human context. Bioremediation is the application of biological systems to the clean-up of organic and inorganic pollution, with bacteria and fungi being the most important organisms for reclamation, immobilization or detoxification of metallic and radionuclide pollutants. Some biominerals or metallic elements deposited by microbes have catalytic and other properties in nanoparticle, crystalline or colloidal forms, and these are relevant to the development of novel biomaterials for technological and antimicrobial purposes. On the negative side, metal and mineral transformations by microbes may result in spoilage and destruction of natural and synthetic materials, rock and mineral-based building materials (e.g. concrete), acid mine drainage and associated metal pollution, biocorrosion of metals, alloys and related substances, and adverse effects on radionuclide speciation, mobility and containment, all with immense social and economic consequences. The ubiquity and importance of microbes in biosphere processes make geomicrobiology one of the most important concepts within microbiology, and one requiring an interdisciplinary approach to define environmental and applied significance and underpin exploitation in biotechnology.
Collapse
Affiliation(s)
- Geoffrey Michael Gadd
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
30
|
Bai HJ, Zhang ZM, Yang GE, Li BZ. Bioremediation of cadmium by growing Rhodobacter sphaeroides: kinetic characteristic and mechanism studies. BIORESOURCE TECHNOLOGY 2008; 99:7716-7722. [PMID: 18358716 DOI: 10.1016/j.biortech.2008.01.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 01/27/2008] [Accepted: 01/30/2008] [Indexed: 05/26/2023]
Abstract
The removal kinetic characteristic and mechanism of cadmium by growing Rhodobacter sphaeroides were investigated. The removal data were fitted to the second-order equation, with a correlation coefficient, R2=0.9790-0.9916. Furthermore, it was found that the removal mechanism of cadmium was predominantly governed by bioprecipitation as cadmium sulfide with biosorption contributing to a minor extent. Also, the results revealed that the activities of cysteine desulfhydrase in strains grown in the presence of 10 and 20 mg/l of cadmium were higher than in the control, while the activities in the presence of 30 and 40 mg/l of cadmium were lower than in the control. Content analysis of subcellular fractionation showed that cadmium was mostly removed and transformed by precipitation on the cell wall.
Collapse
Affiliation(s)
- Hong-Juan Bai
- School of Chemical Engineering and Environment, North University of China, Taiyuan 030051, PR China.
| | | | | | | |
Collapse
|
31
|
Abstract
The higher affinity of Cd(2+) for sulfur compounds than for nitrogen and oxygen led to the theoretical consideration that cadmium toxicity should result mainly from the binding of Cd(2+) to sulfide, thiol groups, and sulfur-rich complex compounds rather than from Cd(2+) replacement of transition-metal cations from nitrogen- or oxygen-rich biological compounds. This hypothesis was tested by using Escherichia coli for a global transcriptome analysis of cells synthesizing glutathione (GSH; wild type), gamma-glutamylcysteine (DeltagshB mutant), or neither of the two cellular thiols (DeltagshA mutant). The resulting data, some of which were validated by quantitative reverse transcription-PCR, were sorted using the KEGG (Kyoto Encyclopedia of Genes and Genomes) orthology system, which groups genes hierarchically with respect to the cellular functions of their respective products. The main difference among the three strains concerned tryptophan biosynthesis, which was up-regulated in wild-type cells upon cadmium shock and strongly up-regulated in DeltagshA cells but repressed in DeltagshB cells containing gamma-glutamylcysteine instead of GSH. Overall, however, all three E. coli strains responded to cadmium shock similarly, with the up-regulation of genes involved in protein, disulfide bond, and oxidative damage repair; cysteine and iron-sulfur cluster biosynthesis; the production of proteins containing sensitive iron-sulfur clusters; the storage of iron; and the detoxification of Cd(2+) by efflux. General energy conservation pathways and iron uptake were down-regulated. These findings indicated that the toxic action of Cd(2+) indeed results from the binding of the metal cation to sulfur, lending support to the hypothesis tested.
Collapse
|
32
|
Abstract
Stenotrophomonas maltophilia is an aerobic, non-fermentative Gram-negative bacterium widespread in the environment. S. maltophilia Sm777 exhibits innate resistance to multiple antimicrobial agents. Furthermore, this bacterium tolerates high levels (0.1 to 50 mM) of various toxic metals, such as Cd, Pb, Co, Zn, Hg, Ag, selenite, tellurite and uranyl. S. maltophilia Sm777 was able to grow in the presence of 50 mM selenite and 25 mM tellurite and to reduce them to elemental selenium (Se0) and tellurium (Te0) respectively. Transmission electron microscopy and energy dispersive X-ray analysis showed cytoplasmic nanometer-sized electron-dense Se0 granules and Te0 crystals. Moreover, this bacterium can withstand up to 2 mM CdCl2 and accumulate this metal up to 4% of its biomass. The analysis of soluble thiols in response to ten different metals showed eightfold increase of the intracellular pool of cysteine only in response to cadmium. Measurements by Cd K-edge EXAFS spectroscopy indicated the formation of Cd-S clusters in strain Sm777. Cysteine is likely to be involved in Cd tolerance and in CdS-clusters formation. Our data suggest that besides high tolerance to antibiotics by efflux mechanisms, S. maltophilia Sm777 has developed at least two different mechanisms to overcome metal toxicity, reduction of oxyanions to non-toxic elemental ions and detoxification of Cd into CdS.
Collapse
|
33
|
Lai Y, Chu L. Novel mechanism for conditional aerobic growth of the anaerobic bacterium Treponema denticola. Appl Environ Microbiol 2008; 74:73-9. [PMID: 17981934 PMCID: PMC2223203 DOI: 10.1128/aem.01972-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 10/25/2007] [Indexed: 01/08/2023] Open
Abstract
Treponema denticola, a periodontal pathogen, has recently been shown to exhibit properties of a facultative anaerobic spirochete, in contrast to its previous recognition as an obligate anaerobic bacterium. In this study, the capacity and possible mechanism of T. denticola survival and growth under aerobic conditions were investigated. Factors detrimental to the growth of T. denticola ATCC 33405, such as oxygen concentration and hydrogen sulfide (H(2)S) levels as well as the enzyme activities of gamma-glutamyltransferase, cysteinylglycinase, and cystalysin associated with the cells were monitored. The results demonstrated that T. denticola grew only at deeper levels of broth (>or=3 ml in a 10-ml tube), high inoculation ratios (>or=20% of culture in medium), and short cultivation times (
Collapse
Affiliation(s)
- Yanlai Lai
- Department of Orthodontics, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | | |
Collapse
|
34
|
Iyer G, Pinaud F, Tsay J, Weiss S. Solubilization of quantum dots with a recombinant peptide from Escherichia coli. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2007; 3:793-8. [PMID: 17393550 PMCID: PMC3081612 DOI: 10.1002/smll.200600516] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Gopal Iyer
- Department of Chemistry & Biochemistry, University of California at Los Angeles, 607 Charles E. Young Drive E., Los Angeles, CA 90095 (USA)
| | - Fabien Pinaud
- Department of Chemistry & Biochemistry, University of California at Los Angeles, 607 Charles E. Young Drive E., Los Angeles, CA 90095 (USA)
| | - James Tsay
- Department of Chemistry & Biochemistry, University of California at Los Angeles, 607 Charles E. Young Drive E., Los Angeles, CA 90095 (USA)
| | - Shimon Weiss
- Department of Chemistry & Biochemistry, University of California at Los Angeles, 607 Charles E. Young Drive E., Los Angeles, CA 90095 (USA)
- California NanoSystems Institute, University of California at Los Angeles, 607 Charles E. Young Drive E., Los Angeles, CA 90095 (USA)
- Department of Physiology, University of California at Los Angeles, 607 Charles E. Young Drive E., Los Angeles, CA 90095 (USA)
| |
Collapse
|
35
|
Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL. Bacterial Biosynthesis of Cadmium Sulfide Nanocrystals. ACTA ACUST UNITED AC 2004; 11:1553-9. [PMID: 15556006 DOI: 10.1016/j.chembiol.2004.08.022] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Revised: 08/26/2004] [Accepted: 08/31/2004] [Indexed: 11/16/2022]
Abstract
Semiconductor nanocrystals, which have unique optical and electronic properties, have potential for applications in the emerging field of nanoelectronics. To produce nanocrystals cheaply and efficiently, biological methods of synthesis are being explored. We found that E. coli, when incubated with cadmium chloride and sodium sulfide, have the capacity to synthesize intracellular cadmium sulfide (CdS) nanocrystals. The nanocrystals are composed of a wurtzite crystal phase with a size distribution of 2-5 nm. Nanocrystal biosynthesis increased about 20-fold in E. coli cells grown to stationary phase compared to late logarithmic phase. Our results highlight how different genetic and physiological parameters can enhance the formation of nanocrystals within bacterial cells.
Collapse
Affiliation(s)
- Rozamond Y Sweeney
- Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Inverse metabolic engineering (IME) is a powerful framework for engineering cellular phenotypes. Progress in this field has been limited by a lack of comprehensive methods for efficiently identifying the genetic basis of relevant phenotypes. Advances in genomics technologies, including DNA microarrays and gene sequencing, have dramatically improved our ability to relate changes in phenotype with associated changes in genotype. When applied in the context of IME, these tools should enable the integration of "evolutionary" and "direct" approaches to engineering cell physiology, which should improve our understanding of the complex interactions affecting the expression, evolution and engineering of traits in natural and industrial hosts.
Collapse
Affiliation(s)
- Ryan T Gill
- Department of Chemical and Biological Engineering, UCB 424/ECCH120, University of Colorado, Boulder, CO 80304, USA.
| |
Collapse
|
37
|
Lewen N, Mathew S, Schenkenberger M, Raglione T. A rapid ICP-MS screen for heavy metals in pharmaceutical compounds. J Pharm Biomed Anal 2004; 35:739-52. [PMID: 15193718 DOI: 10.1016/j.jpba.2004.02.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2003] [Revised: 12/01/2003] [Accepted: 02/13/2004] [Indexed: 11/23/2022]
Abstract
A robust general inductively coupled plasma-mass spectrometry (ICP-MS) based method was developed as an alternative to the wet chemical heavy metals test prescribed in the United States Pharmacopoeia (USP), British Pharmacopoeia (BP), Japanese Pharmacopoeia (JP) and European Pharmacopoeia (EP). The described method provides specific detection and quantitation for each of the elements expected to give rise to a positive response in the compendial methods: arsenic (As), selenium (Se), cadmium (Cd), indium (In), tin (Sn), antimony (Sb), lead (Pb), bismuth (Bi), silver (Ag), palladium (Pd), platinum (Pt), mercury (Hg), molybdenum (Mo) and ruthenium (Ru). The subjectiveness of the visual based semi-quantitative comparison that is performed in the compendial methods is eliminated through the utilization of the ICP-MS. The described method has been in use for several years and its versatility has been demonstrated by successfully applying it to a wide variety of sample matrices. Analysis of the specific elemental data from the numerous sample matrices investigated indicates that there is no dependence of the various chemical functionalities contained in the sample matrices on the individual element recoveries. The average recovery for each element from the various sample matrices investigated ranged from 89 to 102%.
Collapse
Affiliation(s)
- Nancy Lewen
- Bristol-Myers Squibb Pharmaceutical Research Institute, One Squibb Drive, New Brunswick, NJ 08903-0191, USA.
| | | | | | | |
Collapse
|
38
|
Karthikeyan S, Beveridge TJ. Pseudomonas aeruginosa biofilms react with and precipitate toxic soluble gold. Environ Microbiol 2002; 4:667-75. [PMID: 12460274 DOI: 10.1046/j.1462-2920.2002.00353.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interaction between biofilms of Pseudomonas aeruginosa PAO1 and 0.01-5 mM gold chloride was investigated using flow-cells. Scanning confocal laser microscopy (SCLM) of these biofilms revealed the formation of two distinct structural features: (i) confluent areas of uniform thickness and (ii) cell clusters which often emerged as 30-40 micro m, tall narrow pillars (or pedestals) of cells and exopolymeric substance (EPS). When 5-day-old, quasi-steady state biofilms (as indicated by the stability of film thickness and overall structure) were exposed to relatively high AuCl3 (i.e. 0.5-5 mM) for 30 min at 20 degrees C, reduction of the auric ion resulted in the formation of both extracellular and intracellular metallic gold colloids, as revealed by transmission electron microscopy (TEM). Most mineralization occurred on cell surfaces with lesser amounts within cells and little throughout the EPS. Little to no mineralization of gold was seen at 0.01-0.1 mM concentrations. As initial AuCl3 concentrations approached 0.5 mM or greater, more gold particles were seen and cell viability, as determined by a BacLight live/dead viability probe, approached zero. At an intermediate concentration of 0.1 mM, the live:dead ratio increased to 4:1. However, when planktonic cells were exposed to this same 0.1 mM concentration, it resulted in a 4-log reduction in viable counts as determined by plating. The higher resistance of biofilm cells to 0.1 mM gold can be attributed to its binding to the EPS and cell surfaces of the biofilm which ensured a (presumably) low effective cytoplasmic concentration of gold (i.e. no gold crystals were seen in cells by TEM). In addition, SCLM revealed the formation of larger extracellular gold crystals at the substratum (coverslip) level of the biofilms, with a higher proportion of crystals detected beneath pillars (cell cluster structures), suggesting the possibility of unique cell types, more reduced microenvironments at the base of each cluster, or a combination of both. These results suggest that the biomineralization of gold is impacted by biofilm structure.
Collapse
Affiliation(s)
- S Karthikeyan
- Department of Microbiology, College of Biological Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | |
Collapse
|
39
|
Wang CL, Clark DS, Keasling JD. Analysis of an engineered sulfate reduction pathway and cadmium precipitation on the cell surface. Biotechnol Bioeng 2001; 75:285-91. [PMID: 11590601 DOI: 10.1002/bit.10030] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We previously have genetically engineered an aerobic sulfate reduction pathway in Escherichia coli for the generation of hydrogen sulfide and demonstrated the pathway's utility in the precipitation of cadmium. To engineer the pathway, the assimilatory sulfate reduction pathway was modified so that cysteine was overproduced. Excess cysteine was then converted by cysteine desulfhydrase to an abundance of hydrogen sulfide, which then reacted with aqueous cadmium to form cadmium sulfide. In this study, observations of various E. coli clones were combined with an analysis of kinetic and transport phenomena. This analysis revealed that cysteine production is the rate-limiting step in the engineered pathway and provided an explanation for the phenomenon of cell surface precipitation. An analytical model showed that cadmium sulfide must form at the cell surface because the rate of cadmium sulfide formation is extremely fast and the rate of sulfide transport is relatively slow.
Collapse
Affiliation(s)
- C L Wang
- Department of Chemical Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|