1
|
Starczak Y, Reinke DC, Barratt KR, Russell PK, Clarke MV, Davey RA, Atkins GJ, Anderson PH. Vitamin D receptor expression in mature osteoclasts reduces bone loss due to low dietary calcium intake in male mice. J Steroid Biochem Mol Biol 2021; 210:105857. [PMID: 33647520 DOI: 10.1016/j.jsbmb.2021.105857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/23/2021] [Indexed: 11/24/2022]
Abstract
Mature osteoclasts express the vitamin D receptor (VDR) and are able to respond to active vitamin D (1α, 25-dihydroxyvitamin D3; 1,25(OH)2D3) by regulating cell maturation and activity. However, the in vivo consequences of vitamin D signalling directly within functionally mature osteoclasts is only partially understood. To investigate the in vivo role of VDR in mature osteoclasts, conditional deletion of the VDR under control of the cathepsin K promoter (CtskCre/Vdr-/-), was assessed in 6 and 12-week-old mice, either under normal dietary conditions (NormCaP) or when fed a low calcium (0.03 %), low phosphorous (0.08 %) diet (LowCaP). Splenocytes from CtskCre/Vdr-/- mice were co-cultured with MLO-Y4 osteocyte-like cells to assess the effect on osteoclastogenesis. Six-week-old CtskCre/Vdr-/- mice demonstrated a 10 % decrease in vertebral bone volume (p < 0.05), which was associated with increased osteoclast size (p < 0.05) when compared to Vdrfl/fl control mice. Control mice fed a LowCaP diet exhibited extensive trabecular bone loss associated with increased osteoclast surface, number and size (p < 0.0001). Interestingly, CtskCre/Vdr-/- mice fed a LowCaP diet showed exacerbated loss of bone volume fraction (BV/TV%) and trabecular number (Tb.N), by a further 22 % and 21 %, respectively (p < 0.05), suggesting increased osteoclastic bone resorption activity with the loss of VDR in mature osteoclasts under these conditions. Co-culture of CtskCre/Vdr-/- splenocytes with MLO-Y4 cells increased resulting osteoclast numbers 2.5-fold, which were greater in nuclei density and exhibited increased resorption of dentine compared to osteoclasts derived from Vdrfl/fl splenocyte cultures. These data suggest that in addition to RANKL-mediated osteoclastogenesis, intact VDR signalling is required for the direct regulation of the differentiation and activity of osteoclasts in both in vivo and ex vivo settings.
Collapse
Affiliation(s)
- Yolandi Starczak
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, SA, Australia; Centre for Orthopaedic and Trauma Research, Faculty of Health Sciences, The University of Adelaide, SA, Australia
| | - Daniel C Reinke
- Centre for Orthopaedic and Trauma Research, Faculty of Health Sciences, The University of Adelaide, SA, Australia
| | - Kate R Barratt
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, SA, Australia
| | - Patricia K Russell
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Michelle V Clarke
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, VIC, Australia
| | - Gerald J Atkins
- Centre for Orthopaedic and Trauma Research, Faculty of Health Sciences, The University of Adelaide, SA, Australia
| | - Paul H Anderson
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, SA, Australia.
| |
Collapse
|
2
|
Kim SI, Kim YH, Kang BG, Kang MK, Lee EJ, Kim DY, Oh H, Oh SY, Na W, Lim SS, Kang YH. Linarin and its aglycone acacetin abrogate actin ring formation and focal contact to bone matrix of bone-resorbing osteoclasts through inhibition of αvβ3 integrin and core-linked CD44. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 79:153351. [PMID: 32987362 DOI: 10.1016/j.phymed.2020.153351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 09/04/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Since enhanced bone resorption due to osteoclast differentiation and activation cause skeletal diseases, there is a growing need in therapeutics for combating bone-resorbing osteoclasts. Botanical antioxidants are being increasingly investigated for their health-promoting effects on bone. Edible Cirsium setidens contains various polyphenols of linarin, pectolinarin, and apigenin with antioxidant and hepatoprotective effects. PURPOSE This study aimed to determine whether linarin present in Cirsium setidens water extracts (CSE) and its aglycone acacetin inhibited osteoclastogenesis of RANKL-exposed RAW 264.7 murine macrophages for 5 days. METHODS This study assessed the osteoprotective effects of CSE, linarin and acacetin on RANKL-induced differentiation and activation of osteoclasts by using MTT assay, TRAP staining, Western blot analysis, bone resorption assay actin ring staining, adhesion assay and immunocytochemical assay. This study explored the underlying mechanisms of their osteoprotection, and identified major components present in CSE by HPLC analysis. RESULTS Linarin and pectolinarin were identified as major components of CSE. Nontoxic linarin and acacetin as well as CSE, but not pectolinarin attenuated the RANKL-induced macrophage differentiation into multinucleated osteoclasts, and curtailed osteoclastic bone resorption through reducing lacunar acidification and bone matrix degradation in the osteoclast-bone interface. Linarin and acacetin in CSE reduced the transmigration and focal contact of osteoclasts to bone matrix-mimicking RGD peptide. Such reduction was accomplished by inhibiting the induction of integrins, integrin-associated proteins of paxillin and gelsolin, cdc42 and CD44 involved in the formation of actin rings. The inhibition of integrin-mediated actin ring formation by linarin and acacetin entailed the disruption of TRAF6-c-Src-PI3K signaling of bone-resorbing osteoclasts. The functional inhibition of c-Src was involved in the loss of F-actin-enriched podosome core protein cortactin-mediated actin assembly due to linarin and acacetin. CONCLUSION These observations demonstrate that CSE, linarin and acacetin were effective in retarding osteoclast function of focal adhesion to bone matrix and active bone resorption via inhibition of diffuse cloud-associated αvβ3 integrin and core-linked CD44.
Collapse
Affiliation(s)
- Soo-Il Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Yun-Ho Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Beom Goo Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Eun-Jung Lee
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Dong Yeon Kim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Hyeongjoo Oh
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Su Yeon Oh
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Woojin Na
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Soon Sung Lim
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea
| | - Young-Hee Kang
- Department of Food Science and Nutrition and Korean Institute of Nutrition, Hallym University, Chuncheon, Korea.
| |
Collapse
|
3
|
Starczak Y, Reinke DC, Barratt KR, Ryan JW, Russell PK, Clarke MV, St-Arnaud R, Morris HA, Davey RA, Atkins GJ, Anderson PH. Absence of vitamin D receptor in mature osteoclasts results in altered osteoclastic activity and bone loss. J Steroid Biochem Mol Biol 2018; 177:77-82. [PMID: 29107736 DOI: 10.1016/j.jsbmb.2017.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 11/29/2022]
Abstract
Mature osteoclasts express the vitamin D receptor (VDR) and are able to synthesise and respond to 1,25(OH)2D3 via CYP27B1 enzyme activity. Whether vitamin D signalling within osteoclasts is necessary for the regulation of osteoclastic bone resorption in an in vivo setting is unclear. To determine the requirement for the VDR- and CYP27B1-mediated activity in mature osteoclasts, conditional deletion mouse models were created whereby either Vdr or Cyp27b1 gene was inactivated by breeding either Vdrfl/fl or Cyp27b1fl/fl mice with Cathepsin K-Cre transgenic mice (CstkCre) to generate CtskCre/Vdr-/- and CtskCre/Cyp27b1-/- mice respectively. To account for potential CtskCre-meaited off-target deletion of Vdr, Dmp1Cre were also used determine the effect of Vdr deletion in osteocytes. Furthermore, CtskCre/Vdr-/- mice were ovariectomised (OVX) to assess the role of VDR in osteoclasts under bone-loss conditions and bone marrow precursor cells were cultured under osteoclastogenic conditions to assess osteoclast formation. Six-week-old CtskCre/Vdr-/- female mice demonstrated a 15% decrease in femoral BV/TV (p<0.05). In contrast, BV/TV remained unchanged in CtskCre/Cyp27b1-/- mice as well as in Dmp1Cre/VDR-/- mice. When CtskCre/Vdr-/- mice were subjected to OVX, the bone loss that occurred in CtskCre/Vdr-/- was predominantly due to a diminished volume of thinner trabeculae when compared to control levels. These changes in bone volume in CtskCre/Vdr-/- mice occurred without an observable histological change in osteoclast numbers or size. However, while cultured bone marrow-derived osteoclasts from CtskCre/Vdr-/- mice were marginally increased when compared to VDRfl/fl mice, elevated expression of genes such as Cathepsin K, Nfatc1 and VATPase was observed. Collectively, these data indicate that the absence of VDR in mature osteoclasts causes exacerbated bone loss in young mice and during OVX which is associated with enhanced osteoclastic activity and without increased osteoclastogenesis.
Collapse
Affiliation(s)
- Yolandi Starczak
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Daniel C Reinke
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Australia
| | - Kate R Barratt
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Jackson W Ryan
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Patricia K Russell
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Michele V Clarke
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - René St-Arnaud
- Department of Surgery and Human Genetics, McGill University, Montreal, Quebec, Canada; Research Centre, Shriners Hospitals for Children, Montreal, Quebec, Canada
| | - Howard A Morris
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia
| | - Rachel A Davey
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Gerald J Atkins
- Biomedical Orthopaedic Research Group, Centre for Orthopaedic & Trauma Research, University of Adelaide, Australia
| | - Paul H Anderson
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5005, Australia.
| |
Collapse
|
4
|
Abstract
Giant cell-containing tumors of bone are characterized morphologically by the presence of numerous osteoclastic giant cells. Correlation of clinical, radiologic, and laboratory findings is required for accurate histopathologic diagnosis and treatment of a giant cell-containing tumor of bone. In differential diagnosis, it is particularly important to note the age of the patient and the skeletal location of the lesion. This article considers the range of neoplastic and nonneoplastic lesions, which histologically contain numerous osteoclastic giant cells, and focuses on several lesions that frequently enter into the differential diagnosis.
Collapse
Affiliation(s)
- Zsolt Orosz
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, Nuffield Orthopaedic Centre, Windmill Road, University of Oxford, Oxford OX3 7HE, UK
| | - Nicholas A Athanasou
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Sciences, Nuffield Orthopaedic Centre, Windmill Road, University of Oxford, Oxford OX3 7HE, UK.
| |
Collapse
|
5
|
Sabokbar A, Mahoney DJ, Hemingway F, Athanasou NA. Non-Canonical (RANKL-Independent) Pathways of Osteoclast Differentiation and Their Role in Musculoskeletal Diseases. Clin Rev Allergy Immunol 2017; 51:16-26. [PMID: 26578261 DOI: 10.1007/s12016-015-8523-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Osteoclasts are multinucleated cells derived from mononuclear phagocyte precursors (monocytes, macrophages); in the canonical pathway of osteoclastogenesis, these cells fuse and differentiate to form specialised bone-resorbing osteoclasts in the presence of receptor activator for nuclear factor kappa B ligand (RANKL). Non-canonical pathways of osteoclastogenesis have been described in which several cytokines and growth factors are able to substitute for RANKL. These humoral factors can generally be divided into those which, like RANKL, are tumour necrosis family (TNF) superfamily members and those which are not; the former include TNFα lymphotoxin exhibiting inducible expression and competing with herpes simplex virus glycoprotein D for herpesvirus entry mediator, a receptor expressed by T lymphocytes (LIGHT), a proliferation inducing ligand (APRIL) and B cell activating factor (BAFF); the latter include transforming growth factor beta (TGF-β), interleukin-6 (IL-6), IL-8, IL-11, nerve growth factor (NGF), insulin-like growth factor-I (IGF-I) and IGF-II. This review summarises the evidence for these RANKL substitutes in inducing osteoclast differentiation from tissue-derived and circulating mononuclear phagocytes. It also assesses the role these factors are likely to play in promoting the pathological bone resorption seen in many inflammatory and neoplastic lesions of bone and joint including rheumatoid arthritis, aseptic implant loosening and primary and secondary tumours of bone.
Collapse
Affiliation(s)
- A Sabokbar
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - D J Mahoney
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - F Hemingway
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK
| | - N A Athanasou
- The Botnar Research Centre, Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal and Clinical Laboratory Services, Nuffield Orthopaedic Centre, University of Oxford, Oxford, OX3 7LD, UK.
| |
Collapse
|
6
|
Dwi Antika L, Kim YH, Kang MK, Park SH, Lee EJ, Choi YJ, Kang YH. Dietary compound gossypetin inhibits bone resorption through down-regulating lysosomal cathepsin K activity and autophagy-related protein induction in actin ring-bearing osteoclasts. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
7
|
Abstract
Pathological assessment of periprosthetic tissues is important, not only for diagnosis, but also for understanding the pathobiology of implant failure. The host response to wear particle deposition in periprosthetic tissues is characterised by cell and tissue injury, and a reparative and inflammatory response in which there is an innate and adaptive immune response to the material components of implant wear. Physical and chemical characteristics of implant wear influence the nature of the response in periprosthetic tissues and account for the development of particular complications that lead to implant failure, such as osteolysis which leads to aseptic loosening, and soft-tissue necrosis/inflammation, which can result in pseudotumour formation. The innate response involves phagocytosis of implant-derived wear particles by macrophages; this is determined by pattern recognition receptors and results in expression of cytokines, chemokines and growth factors promoting inflammation and osteoclastogenesis; phagocytosed particles can also be cytotoxic and cause cell and tissue necrosis. The adaptive immune response to wear debris is characterised by the presence of lymphoid cells and most likely occurs as a result of a cell-mediated hypersensitivity reaction to cell and tissue components altered by interaction with the material components of particulate wear, particularly metal ions released from cobalt-chrome wear particles.Cite this article: Professor N. A. Athanasou. The pathobiology and pathology of aseptic implant failure. Bone Joint Res 2016;5:162-168. DOI: 10.1302/2046-3758.55.BJR-2016-0086.
Collapse
Affiliation(s)
- N A Athanasou
- NDORMs, University of Oxford, Nuffield Orthopaedic Centre, Oxford, OX3 7HE, UK
| |
Collapse
|
8
|
|
9
|
Liu Z, Xu J, Li H, Zheng Y, He J, Liu H, Zhong Y, Lu Y, Hong B, Zhang M, Lin P, Du J, Hou J, Qian J, Kwak LW, Yi Q, Yang J. Bone marrow stromal cells derived MCP-1 reverses the inhibitory effects of multiple myeloma cells on osteoclastogenesis by upregulating the RANK expression. PLoS One 2013; 8:e82453. [PMID: 24340030 PMCID: PMC3858321 DOI: 10.1371/journal.pone.0082453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 11/01/2013] [Indexed: 02/03/2023] Open
Abstract
Multiple myeloma (MM) cells are responsible for aberrant osteoclast (OC) activation. However, when cocultured monocytes, but not OC precursors, with MM cells, we made a novel observation that MM cells inhibited receptor activator of nuclear factor κB ligand (RANKL)-induced increase of OC differentiation, OC gene expression, signaling pathways and bone resorption activity. Our results showed that MM cells produced multiple inhibitory cytokines of osteoclastogenesis, such as IL-10, which activated STAT3 signaling and induce OC inhibition. However, cocultures of bone marrow stromal cells (BMSCs) reversed MM-induced OC inhibition. We found that MM cells increased production of MCP-1 from BMSCs and BMSC-derived MCP-1 enhanced OC formation. Mechanistic studies showed that IL-10 downregulated RANK expression in monocytes and thus, inhibited RANKL-induced OC formation. In contrast, MCP-1 upregulated RANK expression and thus, enhanced OC formation. Overall, our studies for the first time demonstrated that MM cell have inhibitory effects on osteoclastogenesis by producing inhibitory cytokines. Our results further indicate that activation of osteoclastogenesis in bone marrow requests the crosstalk of MM cells, BMSCs and their produced cytokines. Thus, our studies provide evidences that targeting bone marrow microenvironmental cells and/or cytokines may be a new approach to treating MM bone destruction.
Collapse
Affiliation(s)
- Zhiqiang Liu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Jingda Xu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Haiyan Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yuhuan Zheng
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jin He
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Huan Liu
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Yuping Zhong
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Yong Lu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Bangxing Hong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Mingjun Zhang
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Pei Lin
- Department of Hematopathology, The University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Juan Du
- Department of Hematology, The Myeloma & Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jian Hou
- Department of Hematology, The Myeloma & Lymphoma Center, Changzheng Hospital, The Second Military Medical University, Shanghai, China
| | - Jianfei Qian
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Larry W. Kwak
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
| | - Qing Yi
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Jing Yang
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, Center for Cancer Immunology Research, The University of Texas M D Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Hemingway F, Kashima TG, Knowles HJ, Athanasou NA. Investigation of osteoclastogenic signalling of the RANKL substitute LIGHT. Exp Mol Pathol 2013; 94:380-5. [PMID: 23391709 DOI: 10.1016/j.yexmp.2013.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 01/07/2023]
Abstract
LIGHT (TNFSF14) is a member of the TNF superfamily and is known to substitute for RANKL to induce osteoclast differentiation. LIGHT binds HVEM and LTβR, but it is not known whether these receptors play a role in osteoclast formation or whether LIGHT acts via RANKL signalling pathways. We found that both RANKL and LIGHT strongly induced phosphorylation of Akt and NFκB but not JNK in mouse osteoclast precursor cells. The addition of an Akt inhibitor showed decreased osteoclast differentiation and resorption mediated by both RANKL and LIGHT. RT-PCR and FACS analysis showed that CD14(+) human osteoclast precursors expressed HVEM and LTβR; expression levels of HVEM increased in the course of osteoclastogenesis and a decrease in LIGHT expression was associated with an increase in HVEM suggesting that there is a feedback loop related to this receptor. Our findings show that LIGHT is not inhibited by the soluble RANKL receptor OPG and that LIGHT is a potent osteoclastogenesis factor that activates the Akt, NFκB and JNK pathways.
Collapse
Affiliation(s)
- F Hemingway
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Nuffield Orthopaedic Centre, Oxford OX3 7HE, United Kingdom
| | | | | | | |
Collapse
|
11
|
Wepener I, Richter W, van Papendorp D, Joubert AM. In vitro osteoclast-like and osteoblast cells' response to electrospun calcium phosphate biphasic candidate scaffolds for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:3029-40. [PMID: 22965382 DOI: 10.1007/s10856-012-4751-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/20/2012] [Indexed: 05/23/2023]
Abstract
Successful long term bone replacement and repair remain a challenge today. Nanotechnology has made it possible to alter materials' characteristics and therefore possibly improve on the material itself. In this study, biphasic hydroxyapatite/β-tricalcium phosphate nanobioceramic scaffolds were prepared by the electrospinning technique in order to mimic the extracellular matrix. Scaffolds were characterised by scanning electron microscopy (SEM) and attenuated total reflectance-fourier transform infrared. Osteoblasts as well as monocytes that were differentiated into osteoclast-like cells, were cultured separately on the biphasic bioceramic scaffolds for up to 6 days and the proliferation, adhesion and cellular response were determined using lactate dehydrogenase cytotoxicity assay, nucleus and cytoskeleton dynamics, analysis of the cell cycle progression, measurement of the mitochondrial membrane potential and the detection of phosphatidylserine expression. SEM analysis of the biphasic bioceramic scaffolds revealed nanofibers spun in a mesh-like scaffold. Results indicate that the biphasic bioceramic electrospun scaffolds are biocompatible and have no significant negative effects on either osteoblasts or osteoclast-like cells in vitro.
Collapse
Affiliation(s)
- I Wepener
- Council for Scientific and Industrial Research, Polymers and Composites, P.O. Box 395, Pretoria, 0001, South Africa.
| | | | | | | |
Collapse
|
12
|
Goldberg SR, Georgiou J, Glogauer M, Grynpas MD. A 3D scanning confocal imaging method measures pit volume and captures the role of Rac in osteoclast function. Bone 2012; 51:145-52. [PMID: 22561898 DOI: 10.1016/j.bone.2012.04.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/05/2012] [Accepted: 04/19/2012] [Indexed: 01/09/2023]
Abstract
Modulation of Rho GTPases Rac1 and Rac2 impacts bone development, remodeling, and disease. In addition, GTPases are considered treatment targets for dysplastic and erosive bone diseases including Neurofibromatosis type 1. While it is important to understand the effects of Rac modulation on osteoclast function, two-dimensional resorption pit area measurements fall short in elucidating the volume aspect of bone resorption activity. Bone marrow from wild-type, Rac1 and Rac2 null mice was isolated from femora. Osteoclastogenesis was induced by adding M-CSF and RANKL in culture plates containing dentin slices and later stained with Picro Sirius Red to image resorption lacunae. Osteoclasts were also plated on glass cover slips and stained with phalloidin and DAPI to measure their surface area and the number of nuclei. Volumetric images were collected on a laser-scanning confocal system. Sirius Red confocal imaging provided an unambiguous, continuous definition of the pit boundary compared to reflected and transmitted light imaging. Rac1- and Rac2-deficient osteoclasts had fewer nuclei in comparison to wild-type counterparts. Rac1-deficient osteoclasts showed reduced resorption pit volume and surface area. Lacunae made by single Rac2 null osteoclasts had reduced volume but surprisingly surface area was unaffected. Surface area measures are deceiving since volume changed independently in resorption pits made by individual Rac2 null osteoclasts. Our innovative confocal imaging technique allows us to derive novel conclusions about Rac1 and Rac2 in osteoclast function. The data and method can be applied to study effects of genes and drugs including Rho GTPase modulators on osteoclast function and to develop pharmacotherapeutics to treat bone lytic disorders.
Collapse
Affiliation(s)
- Stephanie R Goldberg
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|