1
|
Al Ward R, Waguespack SG, Varghese J, Lu Y, Jimenez C. Reply to the Letter to the Editor Concerning Metabolic and Pharma-cological Interactions of 131I-MIBG. Clin Nucl Med 2024:00003072-990000000-01338. [PMID: 39388315 DOI: 10.1097/rlu.0000000000005532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
|
2
|
Roopal A, Gaurav M. Unusual Renal Uptake of 131 I-MIBG in a Young Hypertensive With Renal Artery Stenosis. Clin Nucl Med 2024; 49:e370-e372. [PMID: 38537216 DOI: 10.1097/rlu.0000000000005188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
ABSTRACT A 10-year-old hypertensive girl underwent 131 I-MIBG scan to rule out neural crest derived tumor. The whole-body images revealed diffuse intense tracer uptake in the right kidney, which persisted in 96-hour images as well. CT renal angiography revealed 90% to 95% right renal artery stenosis. Thereafter, she underwent baseline and angiotensin receptor blockade renal dynamic imaging, which revealed hemodynamically significant renal artery stenosis. Pattern of diffuse and intense 131 I-MIBG uptake, albeit rare, still warrants further evaluation to rule out renal artery stenosis and investigate its hemodynamic significance for appropriate management.
Collapse
Affiliation(s)
- Agrawal Roopal
- From the Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | | |
Collapse
|
3
|
Morphis M, van Staden JA, du Raan H, Ljungberg M, Sjögreen Gleisner K. Accuracy of patient-specific I-131 dosimetry using hybrid whole-body planar-SPECT/CT I-123 and I-131 imaging. EJNMMI Phys 2024; 11:50. [PMID: 38898326 PMCID: PMC11187057 DOI: 10.1186/s40658-024-00657-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
PURPOSE This study aimed to assess the accuracy of patient-specific absorbed dose calculations for tumours and organs at risk in radiopharmaceutical therapy planning, utilizing hybrid planar-SPECT/CT imaging. METHODS Three Monte Carlo (MC) simulated digital patient phantoms were created, with time-activity data for mIBG labelled to I-123 (LEHR and ME collimators) and I-131 (HE collimator). The study assessed the accuracy of the mean absorbed doses for I-131-mIBG therapy treatment planning. Multiple planar whole-body (WB) images were simulated (between 1 to 72 h post-injection (p.i)). The geometric-mean image of the anterior and posterior WB images was calculated, with scatter and attenuation corrections applied. Time-activity curves were created for regions of interest over the liver and two tumours (diameters: 3.0 cm and 5.0 cm) in the WB images. A corresponding SPECT study was simulated at 24 h p.i and reconstructed using the OS-EM algorithm, incorporating scatter, attenuation, collimator-detector response, septal scatter and penetration corrections. MC voxel-based absorbed dose rate calculations used two image sets, (i) the activity distribution represented by the SPECT images and (ii) the activity distribution from the SPECT images distributed uniformly within the volume of interest. Mean absorbed doses were calculated considering photon and charged particle emissions, and beta emissions only. True absorbed doses were calculated by MC voxel-based dosimetry of the known activity distributions for reference. RESULTS Considering photon and charged particle emissions, mean absorbed dose accuracies across all three radionuclide-collimator combinations of 3.8 ± 5.5% and 0.1 ± 0.9% (liver), 5.2 ± 10.0% and 4.3 ± 1.7% (3.0 cm tumour) and 15.0 ± 5.8% and 2.6 ± 0.6% (5.0 cm tumour) were obtained for image set (i) and (ii) respectively. Considering charged particle emissions, accuracies of 2.7 ± 4.1% and 5.7 ± 0.7% (liver), 3.2 ± 10.2% and 9.1 ± 1.7% (3.0 cm tumour) and 13.6 ± 5.7% and 7.0 ± 0.6% (5.0 cm tumour) were obtained for image set (i) and (ii) respectively. CONCLUSION The hybrid WB planar-SPECT/CT method proved accurate for I-131-mIBG dosimetry, suggesting its potential for personalized treatment planning.
Collapse
Affiliation(s)
- Michaella Morphis
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Johan A van Staden
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Hanlie du Raan
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | | | | |
Collapse
|
4
|
Timmers HJLM, Taïeb D, Pacak K, Lenders JWM. Imaging of Pheochromocytomas and Paragangliomas. Endocr Rev 2024; 45:414-434. [PMID: 38206185 PMCID: PMC11074798 DOI: 10.1210/endrev/bnae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 12/11/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Pheochromocytomas/paragangliomas are unique in their highly variable molecular landscape driven by genetic alterations, either germline or somatic. These mutations translate into different clusters with distinct tumor locations, biochemical/metabolomic features, tumor cell characteristics (eg, receptors, transporters), and disease course. Such tumor heterogeneity calls for different imaging strategies in order to provide proper diagnosis and follow-up. This also warrants selection of the most appropriate and locally available imaging modalities tailored to an individual patient based on consideration of many relevant factors including age, (anticipated) tumor location(s), size, and multifocality, underlying genotype, biochemical phenotype, chance of metastases, as well as the patient's personal preference and treatment goals. Anatomical imaging using computed tomography and magnetic resonance imaging and functional imaging using positron emission tomography and single photon emission computed tomography are currently a cornerstone in the evaluation of patients with pheochromocytomas/paragangliomas. In modern nuclear medicine practice, a multitude of radionuclides with relevance to diagnostic work-up and treatment planning (theranostics) is available, including radiolabeled metaiodobenzylguanidine, fluorodeoxyglucose, fluorodihydroxyphenylalanine, and somatostatin analogues. This review amalgamates up-to-date imaging guidelines, expert opinions, and recent discoveries. Based on the rich toolbox for anatomical and functional imaging that is currently available, we aim to define a customized approach in patients with (suspected) pheochromocytomas/paragangliomas from a practical clinical perspective. We provide imaging algorithms for different starting points for initial diagnostic work-up and course of the disease, including adrenal incidentaloma, established biochemical diagnosis, postsurgical follow-up, tumor screening in pathogenic variant carriers, staging and restaging of metastatic disease, theranostics, and response monitoring.
Collapse
Affiliation(s)
- Henri J L M Timmers
- Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France and European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1583, USA
| | - Jacques W M Lenders
- Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
5
|
Mallak N, O'Brien SR, Pryma DA, Mittra E. Theranostics in Neuroendocrine Tumors. Cancer J 2024; 30:185-193. [PMID: 38753753 DOI: 10.1097/ppo.0000000000000723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Neuroendocrine tumors (NETs) are rare tumors that develop from cells of the neuroendocrine system and can originate in multiple organs and tissues such as the bowels, pancreas, adrenal glands, ganglia, thyroid, and lungs. This review will focus on gastroenteropancreatic NETs (more commonly called NETs) characterized by frequent somatostatin receptor (SSTR) overexpression and pheochromocytomas/paragangliomas (PPGLs), which typically overexpress norepinephrine transporter. Advancements in SSTR-targeted imaging and treatment have revolutionized the management of patients with NETs. This comprehensive review delves into the current practice, discussing the use of the various Food and Drug Administration-approved SSTR-agonist positron emission tomography tracers and the predictive imaging biomarkers, and elaborating on 177Lu-DOTATATE peptide receptor radionuclide therapy including the evolving areas of posttherapy imaging practices and peptide receptor radionuclide therapy retreatment. SSTR-targeted imaging and therapy can also be used in patients with PPGL; however, this patient population has demonstrated the best outcomes from norepinephrine transporter-targeted therapy with 131I-metaiodobenzylguanidine. Metaiodobenzylguanidine theranostics for PPGL will be discussed, noting that in 2024 it became commercially unavailable in the United States. Therefore, the use and reported success of SSTR theranostics for PPGL will also be explored.
Collapse
Affiliation(s)
- Nadine Mallak
- From the Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR
| | - Sophia R O'Brien
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Daniel A Pryma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA
| | - Erik Mittra
- From the Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, OR
| |
Collapse
|
6
|
Else T, Wong KK, Frey KA, Brooks AF, Viglianti BL, Raffel DM. 3-[ 18F]Fluoro- para-hydroxyphenethylguanidine (3-[ 18F]pHPG) PET-A Novel Imaging Modality for Paraganglioma. J Endocr Soc 2024; 8:bvae049. [PMID: 38617812 PMCID: PMC11010306 DOI: 10.1210/jendso/bvae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 04/16/2024] Open
Abstract
Context Functional positron emission tomography (PET) imaging for the characterization of pheochromocytoma and paraganglioma (PCC/PGL) and for detection of metastases in malignant disease, offers valuable clinical insights that can significantly guide patient treatment. Objective This work aimed to evaluate a novel PET radiotracer, 3-[18F]fluoro-para-hydroxyphenethylguanidine (3-[18F]pHPG), a norepinephrine analogue, for its ability to localize PCC/PGL. Methods 3-[18F]pHPG PET/CT whole-body scans were performed on 16 patients (8 male:8 female; mean age 47.6 ± 17.6 years; range, 19-74 years) with pathologically confirmed or clinically diagnosed PCC/PGL. After intravenous administration of 304 to 475 MBq (8.2-12.8 mCi) of 3-[18F]pHPG, whole-body PET scans were performed at 90 minutes in all patients. 3-[18F]pHPG PET was interpreted for abnormal findings consistent with primary tumor or metastasis, and biodistribution in normal organs recorded. Standardized uptake value (SUV) measurements were obtained for target lesions and physiological organ distributions. Results 3-[18F]pHPG PET showed high radiotracer uptake and trapping in primary tumors, and metastatic tumor lesions that included bone, lymph nodes, and other solid organ sites. Physiological biodistribution was universally present in salivary glands (parotid, submandibular, sublingual), thyroid, heart, liver, adrenals, kidneys, and bladder. Comparison [68Ga]DOTATATE PET/CT was available in 10 patients and in all cases showed concordant distribution. Comparison [123I]meta-iodobenzylguanidine [123I]mIBG planar scintigraphy and SPECT/CT scans were available for 4 patients, with 3-[18F]pHPG showing a greater number of metastatic lesions. Conclusion We found the kinetic profile of 3-[18F]pHPG PET affords high activity retention within benign and metastatic PCC/PGL. Therefore, 3-[18F]pHPG PET imaging provides a novel modality for functional imaging and staging of malignant paraganglioma with advantages of high lesion affinity, whole-body coregistered computed tomography, and rapid same-day imaging.
Collapse
Affiliation(s)
- Tobias Else
- Endocrinology, Metabolism, and Diabetes, University of Michigan, Ann Arbor, MI 48109-5674, USA
| | - Ka Kit Wong
- Nuclear Medicine/Radiology, University of Michigan, Ann Arbor, MI 48109-0028, USA
| | - Kirk A Frey
- Nuclear Medicine/Radiology, University of Michigan, Ann Arbor, MI 48109-0028, USA
| | - Allen F Brooks
- Nuclear Medicine/Radiology, University of Michigan, Ann Arbor, MI 48109-0028, USA
| | - Benjamin L Viglianti
- Nuclear Medicine/Radiology, University of Michigan, Ann Arbor, MI 48109-0028, USA
| | - David M Raffel
- Nuclear Medicine/Radiology, University of Michigan, Ann Arbor, MI 48109-0028, USA
| |
Collapse
|
7
|
Sung C, Lee HS, Lee DY, Kim YI, Kim JE, Lee SJ, Oh SJ, Sung TY, Lee YM, Kim YH, Kim BJ, Koh JM, Lee SH, Ryu JS. A Prospective Comparative Study of 18 F-FDOPA PET/CT Versus 123 I-MIBG Scintigraphy With SPECT/CT for the Diagnosis of Pheochromocytoma and Paraganglioma. Clin Nucl Med 2024; 49:27-36. [PMID: 38054497 DOI: 10.1097/rlu.0000000000004963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE This study aimed to compare the diagnostic performances of 18 F-FDOPA PET/CT and 123 I-MIBG scintigraphy with SPECT/CT for detection of pheochromocytoma and paraganglioma (PPGL). PATIENTS AND METHODS We conducted a prospective, single-institution comparative study. Patients suspected of having PPGL or those showing recurrence and/or distant metastasis of PPGL were enrolled. The primary objective was to affirm the noninferiority of 18 F-FDOPA PET/CT for diagnostic sensitivity. Both 123 I-MIBG scintigraphy with SPECT/CT (at 4 and 24 hours) and 18 F-FDOPA PET/CT (at 5 and 60 minutes after radiotracer administration) were performed. The final diagnosis was established either pathologically or via clinical follow-up. Nuclear physicians, unaware of the clinical data, undertook image analysis. RESULTS Thirty-two patients were evaluated: 14 of 21 with an initial diagnosis and 9 of 11 with recurrence/metastasis had PPGLs in their final diagnoses. In patient-based analyses, 18 F-FDOPA PET/CT (95.7%) exhibited noninferior sensitivity compared with 123 I-MIBG SPECT/CT (91.3%), within the predetermined noninferiority margin of -12% by a 95% confidence interval lower limit of -10%. Both modalities showed no significant difference in specificity (88.9% vs 88.9%). In the region-based analysis for the recurrence/metastasis group, 18 F-FDOPA PET/CT demonstrated significantly higher sensitivity compared with 123 I-MIBG SPECT/CT (86.2% vs 65.5%, P = 0.031) and superior interobserver agreement (κ = 0.94 vs 0.85). The inclusion of an early phase in dual-phase 18 F-FDOPA PET/CT slightly improved diagnostic performance, albeit not to a statistically significant degree. CONCLUSIONS 18 F-FDOPA PET/CT demonstrated noninferior sensitivity and comparable specificity to 123 I-MIBG SPECT/CT in the diagnosing PPGL. Notably, in the assessment of PPGL recurrence and metastasis, 18 F-FDOPA PET/CT outperformed 123 I-MIBG SPECT/CT in terms of both sensitivity and interobserver agreement.
Collapse
Affiliation(s)
- Changhwan Sung
- From the Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Hyo Sang Lee
- Department of Nuclear Medicine, GangNeung Asan Hospital, University of Ulsan College of Medicine, Gangneung
| | - Dong Yun Lee
- From the Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Yong-Il Kim
- From the Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Jae Eun Kim
- From the Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Sang Ju Lee
- From the Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | - Seung Jun Oh
- From the Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| | | | | | - Young Hoon Kim
- Kidney and Pancreas Transplantation, Department of Surgery
| | - Beom-Jun Kim
- Division of Endocrinology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung-Min Koh
- Division of Endocrinology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seung Hun Lee
- Division of Endocrinology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jin-Sook Ryu
- From the Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul
| |
Collapse
|
8
|
Theis H, Pavese N, Rektorová I, van Eimeren T. Imaging Biomarkers in Prodromal and Earliest Phases of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S353-S365. [PMID: 38339941 PMCID: PMC11492013 DOI: 10.3233/jpd-230385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
Assessing imaging biomarker in the prodromal and early phases of Parkinson's disease (PD) is of great importance to ensure an early and safe diagnosis. In the last decades, imaging modalities advanced and are now able to assess many different aspects of neurodegeneration in PD. MRI sequences can measure iron content or neuromelanin. Apart from SPECT imaging with Ioflupane, more specific PET tracers to assess degeneration of the dopaminergic system are available. Furthermore, metabolic PET patterns can be used to anticipate a phenoconversion from prodromal PD to manifest PD. In this regard, it is worth mentioning that PET imaging of inflammation will gain significance. Molecular imaging of neurotransmitters like serotonin, noradrenaline and acetylcholine shed more light on non-motor symptoms. Outside of the brain, molecular imaging of the heart and gut is used to measure PD-related degeneration of the autonomous nervous system. Moreover, optical coherence tomography can noninvasively detect degeneration of retinal fibers as a potential biomarker in PD. In this review, we describe these state-of-the-art imaging modalities in early and prodromal PD and point out in how far these techniques can and will be used in the future to pave the way towards a biomarker-based staging of PD.
Collapse
Affiliation(s)
- Hendrik Theis
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Nicola Pavese
- Aarhus University, Institute of Clinical Medicine, Department of Nuclear Medicine & PET, Aarhus N, Denmark
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Irena Rektorová
- Masaryk University, Faculty of Medicine and St. Anne’s University Hospital, International Clinical Research Center, ICRC, Brno, Czech Republic
- Masaryk University, Faculty of Medicine and St. Anne’s University Hospital, First Department of Neurology, Brno, Czech Republic
- Masaryk University, Applied Neuroscience Research Group, Central European Institute of Technology – CEITEC, Brno, Czech Republic
| | - Thilo van Eimeren
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| |
Collapse
|
9
|
Wang P, Li T, Liu Z, Jin M, Su Y, Zhang J, Jing H, Zhuang H, Li F. [ 18F]MFBG PET/CT outperforming [ 123I]MIBG SPECT/CT in the evaluation of neuroblastoma. Eur J Nucl Med Mol Imaging 2023; 50:3097-3106. [PMID: 37160439 DOI: 10.1007/s00259-023-06221-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/02/2023] [Indexed: 05/11/2023]
Abstract
PURPOSE Iodine 123 labeled meta-iodobenzylguanidine ([123I]MIBG) scan with SPECT/CT imaging is one of the most commonly used imaging modalities in the evaluation of neuroblastoma. [18F]-meta-fluorobenzylguanidine ([18F]MFBG) is a novel positron emission tomography (PET) tracer which was reported to have a similar biodistribution to [123I]MIBG. However, the experience of using [18F]MFBG PET/CT in the evaluation of patients with neuroblastoma is limited. This preliminary investigation aims to assess the efficacy of [18F]MFBG PET/CT in the evaluation of neuroblastomas in comparison to [123I]MIBG scans with SPECT/CT. MATERIALS AND METHODS In this prospective, single-center study, 40 participants (mean age 6.0 ± 3.7 years) with history of neuroblastoma were enrolled. All children underwent both [123I]MIBG SPECT/CT and [18F]MFBG PET/CT studies. The number of lesions and the Curie scores revealed by each imaging method were recorded. RESULTS Six patients had negative findings on both [123I]MIBG and [18F]MFBG studies. Four of the 34 patients (11.8%) were negative on [123I]MIBG but positive on [18F]MFBG, while 30 patients were positive on both [123I]MIBG and [18F]MFBG studies. In these 34 patients, [18F]MFBG PET/CT identified 784 lesions while [123I]MIBG SPECT/CT detected 532 lesions (p < 0.001). The Curie scores obtained from [18F]MFBG PET/CT (11.32 ± 8.18, range 1-27) were statistically higher (p < 0.001) than those from [123I]MIBG SPECT/CT (7.74 ± 7.52, range 0-26). 30 of 34 patients (88.2%) with active disease on imaging had higher Curie scores based on the [18F]MFBG study than on the [123I]MIBG imaging. CONCLUSION [18F]MFBG PET/CT shows higher lesion detection rate than [123I]MIBG SPECT/CT in the evaluation of pediatric patients with neuroblastoma. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov : NCT05069220 (Registered: 25 September 2021, retrospectively registered); Institute Review Board of Peking Union Medical College Hospital: ZS-2514.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China
| | - Tuo Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China
| | - Zhikai Liu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, People's Republic of China
| | - Mei Jin
- Department of Medical Oncology, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Yan Su
- Department of Medical Oncology, Pediatric Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China.
| | - Jingjing Zhang
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hongli Jing
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China.
| | - Hongming Zhuang
- Department of Radiology, Children's Hospital of Philadelphia University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Fang Li
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, People's Republic of China.
| |
Collapse
|
10
|
Chaib S, Flaus A, Meguennani M, Levigoureux E, Bolot C, Breant V. Mise en place d’entretiens pharmaceutiques avant les scintigraphies à l’[123I]-métaiodobenzylguanidine (mIBG). MÉDECINE NUCLÉAIRE 2023. [DOI: 10.1016/j.mednuc.2023.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
[ 18F] MFBG PET imaging: biodistribution, pharmacokinetics, and comparison with [ 123I] MIBG in neural crest tumour patients. Eur J Nucl Med Mol Imaging 2023; 50:1134-1145. [PMID: 36435928 DOI: 10.1007/s00259-022-06046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/13/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Despite its limitations, [123I]MIBG scintigraphy has been the standard for human norepinephrine transporter (hNET) imaging for several decades. Recently, [18F]MFBG has emerged as a promising PET alternative. This prospective trial aimed to evaluate safety, biodistribution, tumour lesion pharmacokinetics, and lesion targeting of [18F]MFBG and perform a head-to-head comparison with [123I]MIBG in neural crest tumour patients. METHODS Six neural crest tumour patients (4 phaeochromocytoma, 1 paraganglioma, 1 neuroblastoma) with a recent routine clinical [123I]MIBG scintigraphy (interval: - 37-75 days) were included. Adult patients (n = 5) underwent a 30-min dynamic PET, followed by 3 whole-body PET/CT scans at 60, 120, and 180 min after injection of 4 MBq/kg [18F]MFBG. One minor participant underwent a single whole-body PET/CT at 60 min after administration of 2 MBq/kg [18F]MFBG. Normal organ uptake (SUVmean) and lesion uptake (SUVmax; tumour-to-background ratio (TBR)) were measured. Regional distribution volumes (VT) were estimated using a Logan graphical analysis in up to 6 lesions per patient. A lesion-by-lesion analysis was performed to compare detection ratios (DR), i.e. fraction of detected lesions, between [18F]MFBG and [123I]MIBG. RESULTS [18F]MFBG was safe and well tolerated. Its biodistribution was overall similar to that of [123I]MIBG, with prominent uptake in the salivary glands, liver, left ventricle wall and adrenals, and mainly urinary excretion. In the phaeochromocytoma subgroup, the median VT was 37.4 mL/cm3 (range: 18.0-144.8) with an excellent correlation between VT and SUVmean at all 3 time points (R2: 0.92-0.94). Mean lesion SUVmax and TBR at 1 h after injection were 19.3 ± 10.7 and 23.6 ± 8.4, respectively. All lesions detected with [123I]MIBG were also observed with [18F]MFBG. The mean DR with [123I]MIBG was significantly lower than with [18F]MFBG (61.0% ± 26.7% vs. 99.8% ± 0.5% at 1 h; p = 0.043). CONCLUSION [18F]MFBG is a promising hNET imaging agent with favourable imaging characteristics and improved lesion targeting compared with [123I]MIBG scintigraphy. TRIAL REGISTRATION Clinicaltrials.gov : NCT04258592 (Registered: 06 February 2020), EudraCT: 2019-003872-37A.
Collapse
|
12
|
Amoako YA, van Eyssen A, Brink A. [123I]-metaiodobenzylguanidine imaging findings and outcome in patients with metastatic neuroblastoma. SOUTH AFRICAN JOURNAL OF ONCOLOGY 2023. [DOI: 10.4102/sajo.v7i0.250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
13
|
Brink A, Hlongwa KN, More S. The Impact of PET/CT on Paediatric Oncology. Diagnostics (Basel) 2023; 13:192. [PMID: 36673002 PMCID: PMC9857884 DOI: 10.3390/diagnostics13020192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/01/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023] Open
Abstract
This review paper will discuss the use of positron emission tomography/computed tomography (PET/CT) in paediatric oncology. Functional imaging with PET/CT has proven useful to guide treatment by accurately staging disease and limiting unnecessary treatments by determining the metabolic response to treatment. 18F-Fluorodeoxyglucose (2-[18F]FDG) PET/CT is routinely used in patients with lymphoma. We highlight specific considerations in the paediatric population with lymphoma. The strengths and weaknesses for PET/CT tracers that compliment Meta-[123I]iodobenzylguanidine ([123I]mIBG) for the imaging of neuroblastoma are summarized. 2-[18F]FDG PET/CT has increasingly been used in the staging and evaluation of disease response in sarcomas. The current recommendations for the use of PET/CT in sarcomas are given and potential future developments and highlighted. 2-[18F]FDG PET/CT in combination with conventional imaging is currently the standard for disease evaluation in children with Langerhans-cell Histiocytosis (LCH) and the non-LCH disease spectrum. The common pitfalls of 2-[18F]FDG PET/CT in this setting are discussed.
Collapse
Affiliation(s)
- Anita Brink
- Division of Nuclear Medicine, Department of Radiation Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | | | | |
Collapse
|
14
|
Wang P, Li T, Cui Y, Zhuang H, Li F, Tong A, Jing H. 18 F-MFBG PET/CT Is an Effective Alternative of 68 Ga-DOTATATE PET/CT in the Evaluation of Metastatic Pheochromocytoma and Paraganglioma. Clin Nucl Med 2023; 48:43-48. [PMID: 36252940 DOI: 10.1097/rlu.0000000000004447] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE The current guidelines state that the functional imaging choice in the evaluation of metastatic pheochromocytoma and paraganglioma (PPGL) is 68 Ga-DOTATATE PET/CT. 18 F-meta-fluorobenzylguanidine ( 18 F-MFBG) is a new PET tracer and an analog of meta-iodobenzylguanidine (MIBG). This study aimed to compare 18 F-MFBG and 68 Ga-DOTATATE PET/CT in patients with metastatic PPGL. PATIENTS AND METHODS Twenty-eight patients with known metastatic PPGL were prospectively recruited for this study. All patients underwent both 18 F-MFBG and 68 Ga-DOTATATE PET/CT studies within 1 week. Lesion numbers detected were compared between these 2 studies. RESULTS 18 F-MFBG PET/CT was positive for detecting metastases in all patients, whereas positive results of 68 Ga-DOTATATE PET/CT were in 27 (96.4%) patients. A total of 686 foci of metastatic lesions were detected by both 18 F-MFBG and 68 Ga-DOTATATE imaging. In addition, 33 foci of abnormal activity were only detected by 18 F-MFBG, whereas 16 foci were only shown on 68 Ga-DOTATATE PET/CT. CONCLUSIONS Our data suggest that 18 F-MFBG PET/CT is an effective imaging method in the evaluation of metastatic PPGL and could be alternative of 68 Ga-DOTATATE PET/CT in this clinical setting.
Collapse
Affiliation(s)
- Peipei Wang
- From the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine
| | - Tuo Li
- From the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine
| | - Yuying Cui
- Department of Endocrinology and Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongming Zhuang
- Department of Radiology, Children's Hospital of Philadelphia University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Fang Li
- From the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine
| | - Anli Tong
- Department of Endocrinology and Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongli Jing
- From the Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine
| |
Collapse
|
15
|
[ 18F]mFBG PET-CT for detection and localisation of neuroblastoma: a prospective pilot study. Eur J Nucl Med Mol Imaging 2023; 50:1146-1157. [PMID: 36504277 PMCID: PMC9931849 DOI: 10.1007/s00259-022-06063-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Meta-[18F]fluorobenzylguanidine ([18F]mFBG) is a positron emission tomography (PET) radiotracer that allows for fast and high-resolution imaging of tumours expressing the norepinephrine transporter. This pilot study investigates the feasibility of [18F]mFBG PET-CT for imaging in neuroblastoma. METHODS In a prospective, single-centre study, we recruited children with neuroblastoma, referred for meta-[123I]iodobenzylguanidine ([123I]mIBG) scanning, consisting of total body planar scintigraphy in combination with single-photon emission computed tomography-CT (SPECT-CT). Within two weeks of [123I]mIBG scanning, total body PET-CTs were performed at 1 h and 2 h after injection of [18F]mFBG (2 MBq/kg). Detected tumour localisations on scan pairs were compared. Soft tissue disease was quantified by number of lesions and skeletal disease by SIOPEN score. RESULTS Twenty paired [123I]mIBG and [18F]mFBG scans were performed in 14 patients (median age 4.9 years, n = 13 stage 4 disease and n = 1 stage 4S). [18F]mFBG injection was well tolerated and no related adverse events occurred in any of the patients. Mean scan time for [18F]mFBG PET-CT (9.0 min, SD 1.9) was significantly shorter than for [123I]mIBG scanning (84.5 min, SD 10.5), p < 0.01. Most tumour localisations were detected on the 1 h versus 2 h post-injection [18F]mFBG PET-CT. Compared to [123I]mIBG scanning, [18F]mFBG PET-CT detected a higher, equal, and lower number of soft tissue lesions in 40%, 55%, and 5% of scan pairs, respectively, and a higher, equal, and lower SIOPEN score in 55%, 30%, and 15% of scan pairs, respectively. On average, two more soft tissue lesions and a 6-point higher SIOPEN score were detected per patient on [18F]mFBG PET-CT compared to [123I]mIBG scanning. CONCLUSION Results of this study demonstrate feasibility of [18F]mFBG PET-CT for neuroblastoma imaging. More neuroblastoma localisations were detected on [18F]mFBG PET-CT compared to [123I]mIBG scanning. [18F]mFBG PET-CT shows promise for future staging and response assessment in neuroblastoma. TRIAL REGISTRATION Dutch Trial Register NL8152.
Collapse
|
16
|
Araujo-Castro M, Pascual-Corrales E, Alonso-Gordoa T, Molina-Cerrillo J, Martínez Lorca A. Papel de las pruebas de imagen con radionúclidos en el diagnóstico y tratamiento de los feocromocitomas y paragangliomas. ENDOCRINOL DIAB NUTR 2022. [DOI: 10.1016/j.endinu.2021.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Araujo-Castro M, Pascual-Corrales E, Alonso-Gordoa T, Molina-Cerrillo J, Martínez Lorca A. Role of imaging test with radionuclides in the diagnosis and treatment of pheochromocytomas and paragangliomas. ENDOCRINOL DIAB NUTR 2022; 69:614-628. [PMID: 36402734 DOI: 10.1016/j.endien.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/29/2021] [Indexed: 06/16/2023]
Abstract
Radionuclide imaging tests with [123I] Metaiodobenzylguanidine (MIBG), [18F] -fluorodeoxyglucose, [18F]-fluorodopa, or 68Ga-DOTA(0)-Tyr(3)-octreotate are useful for the diagnosis, staging and follow-up of pheochromocytomas (PHEOs) and paragangliomas (PGLs) (PPGLs). In addition to their ability to detect and localize the disease, they allow a better molecular characterization of the tumours, which is useful for planning targeted therapy with iodine-131 (131I) -labelled MIBG or with peptide receptor radionuclide therapy (PRRT) with [177Lu]-labelled DOTATATE or other related agents in patients with metastatic disease. In this review we detail the main characteristics of the radiopharmaceuticals used in the functional study of PPGLs and the role of nuclear medicine tests for initial evaluation, staging, selection of patients for targeted molecular therapy, and radiation therapy planning. It also offers a series of practical recommendations regarding the functional imaging according to the different clinical and genetic scenarios in which PPGLs occur, and on the indications and efficacy of therapy with [131I]-MIBG and 177Lu-DOTATATE.
Collapse
Affiliation(s)
- Marta Araujo-Castro
- Unidad de Neuroendocrinología, Servicio de Endocrinología y Nutrición, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain; Universidad de Alcalá, Departamento de Ciencias de la Salud, Madrid, Spain.
| | - Eider Pascual-Corrales
- Unidad de Neuroendocrinología, Servicio de Endocrinología y Nutrición, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Teresa Alonso-Gordoa
- Servicio de Oncología Médica, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Javier Molina-Cerrillo
- Servicio de Oncología Médica, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Alberto Martínez Lorca
- Servicio de Medicina Nuclear, IRYCIS, Hospital Universitario Ramón y Cajal, Madrid, Spain.
| |
Collapse
|
18
|
Bracci B, De Santis D, Del Gaudio A, Faugno MC, Romano A, Tarallo M, Zerunian M, Guido G, Polici M, Polidori T, Pucciarelli F, Matarazzo I, Laghi A, Caruso D. Adrenal Lesions: A Review of Imaging. Diagnostics (Basel) 2022; 12:diagnostics12092171. [PMID: 36140572 PMCID: PMC9498052 DOI: 10.3390/diagnostics12092171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Adrenal lesions are frequently incidentally diagnosed during investigations for other clinical conditions. Despite being usually benign, nonfunctioning, and silent, they can occasionally cause discomfort or be responsible for various clinical conditions due to hormonal dysregulation; therefore, their characterization is of paramount importance for establishing the best therapeutic strategy. Imaging techniques such as ultrasound, computed tomography, magnetic resonance, and PET-TC, providing anatomical and functional information, play a central role in the diagnostic workup, allowing clinicians and surgeons to choose the optimal lesion management. This review aims at providing an overview of the most encountered adrenal lesions, both benign and malignant, including describing their imaging characteristics.
Collapse
Affiliation(s)
- Benedetta Bracci
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza—University of Rome, Radiology Unit—Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Domenico De Santis
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza—University of Rome, Radiology Unit—Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Antonella Del Gaudio
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza—University of Rome, Radiology Unit—Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Maria Carla Faugno
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza—University of Rome, Radiology Unit—Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Allegra Romano
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza—University of Rome, Radiology Unit—Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Mariarita Tarallo
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00185 Rome, Italy
| | - Marta Zerunian
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza—University of Rome, Radiology Unit—Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Gisella Guido
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza—University of Rome, Radiology Unit—Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Michela Polici
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza—University of Rome, Radiology Unit—Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Tiziano Polidori
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza—University of Rome, Radiology Unit—Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Francesco Pucciarelli
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza—University of Rome, Radiology Unit—Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Iolanda Matarazzo
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza—University of Rome, Radiology Unit—Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Andrea Laghi
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza—University of Rome, Radiology Unit—Sant’Andrea University Hospital, 00189 Rome, Italy
| | - Damiano Caruso
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza—University of Rome, Radiology Unit—Sant’Andrea University Hospital, 00189 Rome, Italy
- Correspondence:
| |
Collapse
|
19
|
Iravani A, Parihar AS, Akhurst T, Hicks RJ. Molecular imaging phenotyping for selecting and monitoring radioligand therapy of neuroendocrine neoplasms. Cancer Imaging 2022; 22:25. [PMID: 35659779 PMCID: PMC9164531 DOI: 10.1186/s40644-022-00465-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neuroendocrine neoplasia (NEN) is an umbrella term that includes a widely heterogeneous disease group including well-differentiated neuroendocrine tumours (NETs), and aggressive neuroendocrine carcinomas (NECs). The site of origin of the NENs is linked to the intrinsic tumour biology and is predictive of the disease course. It is understood that NENs demonstrate significant biologic heterogeneity which ultimately translates to widely varying clinical presentations, disease course and prognosis. Thus, significant emphasis is laid on the pre-therapy evaluation of markers that can help predict tumour behavior and dynamically monitors the response during and after treatment. Most well-differentiated NENs express somatostatin receptors (SSTRs) which make them appropriate for peptide receptor radionuclide therapy (PRRT). However, the treatment outcomes of PRRT depend heavily on the adequacy of patient selection by molecular imaging phenotyping not only utilizing pre-treatment SSTR PET but 18F-Fluorodeoxyglucose (18F-FDG) PET to provide insights into the intra- or inter-tumoural heterogeneity of the metastatic disease. Molecular imaging phenotyping may go beyond patient selection and provide useful information during and post-treatment for monitoring of temporal heterogeneity of the disease and dynamically risk-stratify patients. In addition, advances in the understanding of genomic-phenotypic classifications of pheochromocytomas and paragangliomas led to an archetypical example in precision medicine by utilizing molecular imaging phenotyping to guide radioligand therapy. Novel non-SSTR based peptide receptors have also been explored diagnostically and therapeutically to overcome the tumour heterogeneity. In this paper, we review the current molecular imaging modalities that are being utilized for the characterization of the NENs with special emphasis on their role in patient selection for radioligand therapy.
Collapse
|
20
|
Lorusso M, Rufini V, DE Crea C, Pennestrì F, Bellantone R, Raffaelli M. Integration of molecular imaging in the personalized approach of patients with adrenal masses. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:104-115. [PMID: 35343669 DOI: 10.23736/s1824-4785.22.03449-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Adrenal masses are a frequent finding in clinical practice. Many of them are incidentally discovered with a prevalence of 4% in patients undergoing abdominal anatomic imaging and require a differential diagnosis. Biochemical tests, evaluating hormonal production of both adrenal cortex and medulla (in particular, mineralocorticoids, glucocorticoids and catecholamines), have a primary importance in distinguishing functional or non-functional lesions. Conventional imaging techniques, in particular computerized tomography (CT) and magnetic resonance imaging (MRI), are required to differentiate between benign and malignant lesions according to their appearance (size stability, contrast enhanced CT and/or chemical shift on MRI). In selected patients, functional imaging is a non-invasive tool able to explore the metabolic pathways involved thus providing additional diagnostic information. Several single photon emission tomography (SPET) and positron emission tomography (PET) radiopharmaceuticals have been developed and are available, each of them suitable for studying specific pathological conditions. In functional masses causing hypersecreting diseases (mainly adrenal hypercortisolism, primary hyperaldosteronism and pheochromocytoma), functional imaging can lateralize the involvement and guide the therapeutic strategy in both unilateral and bilateral lesions. In non-functioning adrenal masses with inconclusive imaging findings at CT/MR, [18F]-FDG evaluation of tumor metabolism can be helpful to characterize them by distinguishing between benign nodules and primary malignant adrenal disease (mainly adrenocortical carcinoma), thus modulating the surgical approach. In oncologic patients, [18F]-FDG uptake can differentiate between benign nodule and adrenal metastasis from extra-adrenal primary malignancies.
Collapse
Affiliation(s)
- Margherita Lorusso
- PET/CT Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Vittoria Rufini
- Section of Nuclear Medicine, University Department of Radiological Sciences and Hematology, Università Cattolica del Sacro Cuore, Rome, Italy.,Division of Endocrine and Metabolic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Carmela DE Crea
- Division of Endocrine and Metabolic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy - .,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesco Pennestrì
- Division of Endocrine and Metabolic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Rocco Bellantone
- Division of Endocrine and Metabolic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Raffaelli
- Division of Endocrine and Metabolic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
21
|
Clement SC, Tytgat GAM, van Trotsenburg ASP, Kremer LCM, van Santen HM. Thyroid function after diagnostic 123I-metaiodobenzylguanidine in children with neuroblastic tumors. Ann Nucl Med 2022; 36:579-585. [PMID: 35499668 PMCID: PMC9132835 DOI: 10.1007/s12149-022-01743-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/10/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Metaiodobenzylguanidine (MIBG) labeled with radioisotopes can be used for diagnostics 123I-) and treatment (131I-) in patients with neuroblastic tumors. Thyroid dysfunction has been reported in 52% of neuroblastoma (NBL) survivors after 131I-MIBG, despite thyroid protection. Diagnostic 123I-MIBG is not considered to be hazardous for thyroid function; however, this has never been investigated. Therefore, the aim of this study was to evaluate the prevalence of thyroid dysfunction in survivors of a neuroblastic tumor who received diagnostic 123I-MIBG only. METHODS Thyroid function and uptake of 123I- in the thyroid gland after 123I-MIBG administrations were evaluated in 48 neuroblastic tumor survivors who had not been treated with 131I-MIBG. All patients had received thyroid prophylaxis consisting of potassium iodide or a combination of potassium iodide, thiamazole and thyroxine during exposure to 123I-MIBG. RESULTS After a median follow-up of 6.6 years, thyroid function was normal in 46 of 48 survivors (95.8%). Two survivors [prevalence 4.2% (95% CI 1.2-14.0)] had mild thyroid dysfunction. In 29.2% of the patients and 11.1% of images 123I- uptake was visible in the thyroid. In 1 patient with thyroid dysfunction, weak uptake of 123I- was seen on 1 of 10 images. CONCLUSIONS The prevalence of thyroid dysfunction does not seem to be increased in patients with neuroblastic tumors who received 123I-MIBG combined with thyroid protection. Randomized controlled trials are required to investigate whether administration of 123I-MIBG without thyroid protection is harmful to the thyroid gland.
Collapse
Affiliation(s)
- Sarah C Clement
- Department of Pediatrics, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, PO Box 85090, 3508 AB, Utrecht, The Netherlands
| | | | - A S Paul van Trotsenburg
- Department of Pediatric Endocrinology, Emma Children's Hospital, Amsterdam UMC, Amsterdam, The Netherlands
| | | | - Hanneke M van Santen
- Department of Pediatric Endocrinology, Wilhelmina Children's Hospital, University Medical Center Utrecht, PO Box 85090, 3508 AB, Utrecht, The Netherlands. .,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| |
Collapse
|
22
|
Schmidt M, Decarolis B, Franzius C, Hero B, Pfluger T, Rogasch JMM, Simon T. Durchführung und Befundung der 123I-mIBG-Szintigraphie bei Kindern und Jugendlichen mit Neuroblastom (Version 3) – DGN-Handlungsempfehlung (S1-Leitlinie), Stand: 2/2020 – AWMF-Registernummer: 031-040. Nuklearmedizin 2022; 61:96-110. [PMID: 35421899 DOI: 10.1055/a-1778-3052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
ZusammenfasssungDie aktualisierte 3. Fassung der 123I-mIBG-Szintigrafie bei Kindern und Jugendlichen berücksichtigt folgende aktuelle Entwicklungen: Die Leitlinie fokussiert auf die diagnostische Anwendung von 123I-mIBG beim Neuroblastom. 131I-mIBG kommt bei der Radionuklidtherapie zum Einsatz. An wenigen Stellen wird auf Besonderheiten des 131I-mIBG bei der Befundung von Posttherapie-Szintigrammen eingegangen. Es werden aktuelle Entwicklungen in der Patientenvorbereitung bei den Medikamenteninterferenzen und Empfehlungen zur Schilddrüsenblockade berücksichtigt. Neue Empfehlungen der zu applizierenden Aktivität werden genannt und die damit assoziierten Probleme diskutiert. Die Bildakquisition unter Berücksichtigung von SPECT bzw. SPECT/CT des Körperstammes inkl. des Kopfes wird berücksichtigt. Die Befundung unter Verwendung des SIOPEN-Scores wird neu aufgenommen. Auf PET bzw. PET/CT mit 18F-DOPA bzw. 68Ga-DotaTATE wird verwiesen.
Collapse
Affiliation(s)
- Matthias Schmidt
- Klinik und Poliklinik für Nuklearmedizin, Universitätsklinikum Köln, Köln (Cologne), Germany
| | - Boris Decarolis
- Klinik und Poliklinik für Kinderheilkunde, Abteilung Kinderonkologie und -Hämatologie, Universitätsklinikum Köln, Köln (Cologne), Germany
| | - Christiane Franzius
- Zentrum für moderne Diagnostik (ZeMoDi), MR- und MR/PET, Schwachhauser Heerstraße 63 A, 28211 Bremen, ZeMoDi, Bremen, Germany
| | - Barbara Hero
- Klinik und Poliklinik für Kinderheilkunde, Abteilung Kinderonkologie und -Hämatologie, Universitätsklinikum Köln, Köln (Cologne), Germany
| | - Thomas Pfluger
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | - Thorsten Simon
- Klinik und Poliklinik für Kinderheilkunde, Abteilung Kinderonkologie und -Hämatologie, Universitätsklinikum Köln, Köln (Cologne), Germany
| |
Collapse
|
23
|
Kersting D, Settelmeier S, Mavroeidi IA, Herrmann K, Seifert R, Rischpler C. Shining Damaged Hearts: Immunotherapy-Related Cardiotoxicity in the Spotlight of Nuclear Cardiology. Int J Mol Sci 2022; 23:3802. [PMID: 35409161 PMCID: PMC8998973 DOI: 10.3390/ijms23073802] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
The emerging use of immunotherapies in cancer treatment increases the risk of immunotherapy-related cardiotoxicity. In contrast to conventional chemotherapy, these novel therapies have expanded the forms and presentations of cardiovascular damage to a broad spectrum from asymptomatic changes to fulminant short- and long-term complications in terms of cardiomyopathy, arrythmia, and vascular disease. In cancer patients and, particularly, cancer patients undergoing (immune-)therapy, cardio-oncological monitoring is a complex interplay between pretherapeutic risk assessment, identification of impending cardiotoxicity, and post-therapeutic surveillance. For these purposes, the cardio-oncologist can revert to a broad spectrum of nuclear cardiological diagnostic workup. The most promising commonly used nuclear medicine imaging techniques in relation to immunotherapy will be discussed in this review article with a special focus on the continuous development of highly specific molecular markers and steadily improving methods of image generation. The review closes with an outlook on possible new developments of molecular imaging and advanced image evaluation techniques in this exciting and increasingly growing field of immunotherapy-related cardiotoxicity.
Collapse
Affiliation(s)
- David Kersting
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Stephan Settelmeier
- Department of Cardiology and Vascular Medicine, University Hospital Essen, West German Heart and Vascular Center, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Ilektra-Antonia Mavroeidi
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
- Clinic for Internal Medicine (Tumor Research), University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| |
Collapse
|
24
|
He H, Xu Q, Yu C. The efficacy and safety of Iodine-131-metaiodobenzylguanidine therapy in patients with neuroblastoma: a meta-analysis. BMC Cancer 2022; 22:216. [PMID: 35227236 PMCID: PMC8883646 DOI: 10.1186/s12885-022-09329-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/22/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Neuroblastoma is a common extracranial solid tumor of childhood. Recently, multiple treatments have been practiced including Iodine-131-metaiodobenzylguanidine radiation (131I-MIBG) therapy. However, the outcomes of efficacy and safety vary greatly among different studies. The aim of this meta-analysis is to evaluate the efficacy and safety of 131I-MIBG in the treatment of neuroblastoma and to provide evidence and hints for clinical decision-making. Methods Medline, EMBASE database and the Cochrane Library were searched for relevant studies. Eligible studies utilizing 131I-MIBG in the treatment of neuroblastoma were included. The pooled outcomes (response rates, adverse events rates, survival rates) were calculated using either a random-effects model or a fixed-effects model considering of the heterogeneity. Results A total of 26 clinical trials including 883 patients were analyzed. The pooled rates of objective response, stable disease, progressive disease, and minor response of 131I-MIBG monotherapy were 39%, 31%, 22% and 15%, respectively. The pooled objective response rate of 131I-MIBG in combination with other therapies was 28%. The pooled 1-year survival and 5-year survival rates were 64% and 32%. The pooled occurrence rates of thrombocytopenia and neutropenia in MIBG monotherapy studies were 53% and 58%. In the studies of 131I-MIBG combined with other therapies, the pooled occurrence rates of thrombocytopenia and neutropenia were 79% and 78%. Conclusion 131I-MIBG treatment alone or in combination of other therapies is effective on clinical outcomes in the treatment of neuroblastoma, individualized 131I-MIBG is recommended on a clinical basis.
Collapse
Affiliation(s)
- Huihui He
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qiaoling Xu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Chunjing Yu
- Department of Nuclear Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
25
|
Nyakale Elizabeth N, Kabunda J. Nuclear medicine therapy of malignant pheochromocytomas, neuroblastomas and ganglioneuromas. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00174-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
26
|
Buonomano P, Di Stasio GD, Sinisi AA, Rambaldi PF, Mansi L. Gamma emitters in the primary or secondary pathologies of the adrenal cortex. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
27
|
Khalatbari H, Shulkin BL, Aldape L, Parisi MT. Pediatric Nuclear Medicine: Technical Aspects. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00074-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Rufini V, Triumbari EKA, Garganese MC. Imaging adrenal medulla. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
29
|
Barca C, Griessinger CM, Faust A, Depke D, Essler M, Windhorst AD, Devoogdt N, Brindle KM, Schäfers M, Zinnhardt B, Jacobs AH. Expanding Theranostic Radiopharmaceuticals for Tumor Diagnosis and Therapy. Pharmaceuticals (Basel) 2021; 15:13. [PMID: 35056071 PMCID: PMC8780589 DOI: 10.3390/ph15010013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/16/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Radioligand theranostics (RT) in oncology use cancer-type specific biomarkers and molecular imaging (MI), including positron emission tomography (PET), single-photon emission computed tomography (SPECT) and planar scintigraphy, for patient diagnosis, therapy, and personalized management. While the definition of theranostics was initially restricted to a single compound allowing visualization and therapy simultaneously, the concept has been widened with the development of theranostic pairs and the combination of nuclear medicine with different types of cancer therapies. Here, we review the clinical applications of different theranostic radiopharmaceuticals in managing different tumor types (differentiated thyroid, neuroendocrine prostate, and breast cancer) that support the combination of innovative oncological therapies such as gene and cell-based therapies with RT.
Collapse
Affiliation(s)
- Cristina Barca
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
| | - Christoph M. Griessinger
- Roche Innovation Center, Early Clinical Development Oncology, Roche Pharmaceutical Research and Early Development, CH-4070 Basel, Switzerland;
| | - Andreas Faust
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Dominic Depke
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, D-53127 Bonn, Germany;
| | - Albert D. Windhorst
- Department Radiology & Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands;
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Vrije Universiteit Brussel, B-1090 Brussel, Belgium;
| | - Kevin M. Brindle
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 ORE, UK;
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Nuclear Medicine, University Hospital Münster, D-48149 Münster, Germany
- Biomarkers and Translational Technologies, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging, University of Münster, D-48149 Münster, Germany; (A.F.); (D.D.); (M.S.); (B.Z.)
- Department of Geriatrics and Neurology, Johanniter Hospital, D-53113 Bonn, Germany
- Centre of Integrated Oncology, University Hospital Bonn, D-53127 Bonn, Germany
| |
Collapse
|
30
|
Szychot E, Morgenstern D, Chopra M, Sorrentino S, Arthurs O, Sebire N, Arfeen F, Brodkiewicz A, Humphries P, Biassoni L. Clinical impact of primary tumour 123ImIBG response to induction chemotherapy in children with high-risk neuroblastoma. Int J Clin Oncol 2021; 27:253-261. [PMID: 34626287 DOI: 10.1007/s10147-021-02039-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND More than 50% children with high-risk neuroblastoma (HR-NBL) experience disease progression, which we hypothesise is due to non-response of primary tumour to treatment. Current imaging techniques are unable to characterise response in primary tumour (necrotic versus viable tissue) at diagnosis or follow-up. OBJECTIVES Compare clinico-histological characteristics between primary 123ImIBG-avid tumours that became entirely 123ImIBG-non-avid (responders) after induction chemotherapy (IC) versus primary 123ImIBG-avid tumour that remained 123ImIBG-avid (non-responders). METHODS Retrospective review of clinico-radiological data of children diagnosed with 123ImIBG-avid HR-NBL at our centre (2005-2016). Patients received Rapid COJEC IC and two additional courses of TVD if metastatic response was inadequate. Primary tumour 123ImIBG response was assessed qualitatively as positive, negative or intermediate at diagnosis and after IC. Post-surgical histopathology slices were marked considering percentage of viable tissue. RESULTS Sixteen of 61 patients showed complete primary tumour 123ImIBG response, 20 partial response, while 25 no response. There was no statistically significant difference between clinical demographics of complete responders and group of non- or partial responders. Mean percentage of viable tumour cells was higher in non-responders than in complete responders (44.6% vs 20.6%; p = 0.05). Five-year EFS was significantly higher in complete responders than non-responders (43 ± 15% vs 7 ± 6%; p < 0.005). CONCLUSIONS 123ImIBG response in primary HR-NBL correlates with amount of necrotic tissue, skeletal metastatic 123ImIBG response and outcome. An entirely 123ImIBG non-avid tumour can still harbour viable tumour cells. Therefore, our findings do not support utility of primary tumour 123ImIBG response in decision making regarding residual tumour surgery. Combining both, primary and metastatic 123ImIBG response will improve interpretability of clinical trial results.
Collapse
Affiliation(s)
- Elwira Szychot
- Clinical Studies, The Institute of Cancer Research, Sutton, UK. .,Oak Centre for Children and Young People, Royal Marsden Hospital, Sutton, SM2 5PT, UK. .,Department of Paediatrics, Paediatric Oncology and Immunology, Pomeranian Medical University, Szczecin, Poland.
| | - Daniel Morgenstern
- Departments of Haematology/Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Hospital for Sick Children, Toronto, Canada
| | - Mark Chopra
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Stefania Sorrentino
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Unit of Paediatric Oncology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Owen Arthurs
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Neil Sebire
- Department of Pathology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Farrukh Arfeen
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Andrzej Brodkiewicz
- Department of Paediatrics, Child's Nephrology, Dialysis Therapy and Acute Poisoning, Szczecin, Poland
| | - Paul Humphries
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Lorenzo Biassoni
- Department of Radiology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| |
Collapse
|
31
|
Romanov A, Minin S, Nikitin N, Ponomarev D, Shabanov V, Losik D, Steinberg JS. The relationship between global cardiac and regional left atrial sympathetic innervation and epicardial fat in patients with atrial fibrillation. Ann Nucl Med 2021; 35:1079-1088. [PMID: 34128159 DOI: 10.1007/s12149-021-01643-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
AIM To investigate the relationship between epicardial adipose tissue (EAT) volume and distribution and the parameters of global cardiac and regional left atrial (LA) sympathetic activity in patients with atrial fibrillation (AF). METHODS AND RESULTS The data of the 45 consecutive patients scheduled for an index catheter ablation (CA) for AF were analyzed. Total and peri-atrial EAT volumes were measured by cardiac CT. Parameters of global cardiac sympathetic activity and discrete sympathetic regions around LA were assessed by 123I-mIBG SPECT/CT. The patients were followed up for AF recurrences assessment during 12 months after CA. A total of 133 (mean per patient 2.96 ± 1.07) discrete 123I-mIBG uptake areas (DUAs), corresponding to typical anatomical locations of LA ganglionated plexi (GP), were identified. Peri-atrial EAT volume was associated with the number of DUAs (regression estimate, 5.1 [95% CI, 0.3-9.9], p = 0.03). There was no statistically significant association between either total or peri-atrial EAT volumes and risks of AF recurrence. The washout rate (WR) was associated with reduced risk of AF recurrence (HR = 0.95; 95% CI 0.92-0.99; p = 0.01), while left ventricular (LV) myocardium 123I-mIBG summed defect score (SDS) was linked to increased hazards of AF recurrence (HR = 1.04; 95% CI 1.01-1.08; p = 0.03). CONCLUSION Peri-atrial EAT volume is associated with regions of sympathetic activity corresponding to typical anatomical locations of LA GP. The WR was associated with reduced risk of AF recurrence while LV myocardial SDS was linked to increased hazards of AF recurrence.
Collapse
Affiliation(s)
- Alexander Romanov
- E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Rechkunovskaya str.15, 630055, Novosibirsk, Russian Federation
| | - Stanislav Minin
- E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Rechkunovskaya str.15, 630055, Novosibirsk, Russian Federation
| | - Nikita Nikitin
- E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Rechkunovskaya str.15, 630055, Novosibirsk, Russian Federation.
| | - Dmitry Ponomarev
- E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Rechkunovskaya str.15, 630055, Novosibirsk, Russian Federation
| | - Vitaly Shabanov
- E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Rechkunovskaya str.15, 630055, Novosibirsk, Russian Federation
| | - Denis Losik
- E. Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Rechkunovskaya str.15, 630055, Novosibirsk, Russian Federation
| | - Jonathan S Steinberg
- Clinical Cardiovascular Research Center, School of Medicine & Dentistry, University of Rochester, Rochester, NY, USA
| |
Collapse
|
32
|
Kiraga Ł, Kucharzewska P, Paisey S, Cheda Ł, Domańska A, Rogulski Z, Rygiel TP, Boffi A, Król M. Nuclear imaging for immune cell tracking in vivo – Comparison of various cell labeling methods and their application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Does the Incremental Value of 123I-Metaiodobenzylguanidine SPECT/CT over Planar Imaging Justify the Increase in Radiation Exposure? Nucl Med Mol Imaging 2021; 55:173-180. [PMID: 34422127 DOI: 10.1007/s13139-021-00707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 10/20/2022] Open
Abstract
Purpose Planar scintigraphy with 123I-radiolabeled metaiodobenzylguanidine (123I-mIBG) is an important imaging modality to evaluate neuroblastoma. In recent years, Single Photon Emission Computed Tomography combined with Computed Tomography (SPECT/CT) has revolutionized nuclear medicine. Nevertheless, the addition of the CT has increased the patients' irradiation. We aimed to evaluate the incremental benefits of 123I-mIBG SPECT/CT over conventional planar imaging and to estimate the relative increase of radiation dose. Methods We retrospectively evaluated the added value of 56 SPECT/CT performed in 40 children in terms of better characterization of the lesion and its locoregional extension, better lymph node staging, detection of new lesions, and elimination of false positives by a paired comparison between the planar images and the SPECT/CT ones. Then, we calculated the percentage contribution of the additional radiation of the CT in this hybrid imagery. Results In 88% (49 out of 56) of the examinations, SPECT/CT provided additional information, which was crucial in 20% of the cases. It allowed a better characterization of the lesion and its locoregional extension in 44 cases, a better lymph node staging in 28 cases, the detection of 33 new lesions, and the elimination of 9 false positives. The CT effective dose was significantly lower than the SPECT one. The average additional radiation exposure due to CT was 12% (4-23%). Conclusion 123I-mIBG SPECT/CT has an undeniable added value that improves planar imaging interpretation and impacts patient management. These potential benefits would justify the low additional radiation induced by the CT.
Collapse
|
34
|
Morphis M, van Staden JA, du Raan H, Ljungberg M. Evaluation of Iodine-123 and Iodine-131 SPECT activity quantification: a Monte Carlo study. EJNMMI Phys 2021; 8:61. [PMID: 34410539 PMCID: PMC8377107 DOI: 10.1186/s40658-021-00407-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/10/2021] [Indexed: 01/18/2023] Open
Abstract
Purpose The quantitative accuracy of Nuclear Medicine images, acquired for both planar and SPECT studies, is influenced by the isotope-collimator combination as well as image corrections incorporated in the iterative reconstruction process. These factors can be investigated and optimised using Monte Carlo simulations. This study aimed to evaluate SPECT quantification accuracy for 123I with both the low-energy high resolution (LEHR) and medium-energy (ME) collimators and 131I with the high-energy (HE) collimator. Methods Simulated SPECT projection images were reconstructed using the OS-EM iterative algorithm, which was optimised for the number of updates, with appropriate corrections for scatter, attenuation and collimator detector response (CDR), including septal scatter and penetration compensation. An appropriate calibration factor (CF) was determined from four different source geometries (activity-filled: water-filled cylindrical phantom, sphere in water-filled (cold) cylindrical phantom, sphere in air and point-like source), investigated with different volume of interest (VOI) diameters. Recovery curves were constructed from recovery coefficients to correct for partial volume effects (PVEs). The quantitative method was evaluated for spheres in voxel-based digital cylindrical and patient phantoms. Results The optimal number of OS-EM updates was 60 for all isotope-collimator combinations. The CFpoint with a VOI diameter equal to the physical size plus a 3.0-cm margin was selected, for all isotope-collimator geometries. The spheres’ quantification errors in the voxel-based digital cylindrical and patient phantoms were less than 3.2% and 5.4%, respectively, for all isotope-collimator combinations. Conclusion The study showed that quantification errors of less than 6.0% could be attained, for all isotope-collimator combinations, if corrections for; scatter, attenuation, CDR (including septal scatter and penetration) and PVEs are performed. 123I LEHR and 123I ME quantification accuracies compared well when appropriate corrections for septal scatter and penetration were applied. This can be useful in departments that perform 123I studies and may not have access to ME collimators.
Collapse
Affiliation(s)
- Michaella Morphis
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa.
| | - Johan A van Staden
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | - Hanlie du Raan
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, PO Box 339, Bloemfontein, 9300, South Africa
| | | |
Collapse
|
35
|
Carrasquillo JA, Chen CC, Jha A, Ling A, Lin FI, Pryma DA, Pacak K. Imaging of Pheochromocytoma and Paraganglioma. J Nucl Med 2021; 62:1033-1042. [PMID: 34330739 PMCID: PMC8833868 DOI: 10.2967/jnumed.120.259689] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/16/2021] [Indexed: 02/05/2023] Open
Abstract
Imaging plays a critical role in the management of pheochromocytomas and paragangliomas and often guides treatment. The discovery of susceptibility genes associated with these tumors has led to better understanding of clinical and imaging phenotypes. Functional imaging is of prime importance because of its sensitivity and specificity in subtypes of pheochromocytoma and paraganglioma. Several radiopharmaceuticals have been developed to target specific receptors and metabolic processes seen in pheochromocytomas and paragangliomas, including 131I/123I-metaiodobenzylguanidine, 6-18F-fluoro-l-3,4-dihydroxyphenylalanine, 18F-FDG, and 68Ga-DOTA-somatostatin analogs. Two of these have consequently been adapted for therapy. This educational review focuses on the current imaging approaches used in pheochromocytomas and paragangliomas, which vary among clinical and genotypic presentations.
Collapse
Affiliation(s)
- Jorge A Carrasquillo
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, New York;
| | - Clara C Chen
- Department of Radiology, Clinical Center, NIH, Bethesda, Maryland
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Alexander Ling
- Department of Radiology, Clinical Center, NIH, Bethesda, Maryland
| | - Frank I Lin
- Molecular Imaging Branch, National Cancer Institute, NIH, Bethesda, Maryland; and
| | - Daniel A Pryma
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Karel Pacak
- Section on Medical Neuroendocrinology, National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| |
Collapse
|
36
|
Morphis M, van Staden JA, du Raan H, Ljungberg M. Validation of a SIMIND Monte Carlo modelled gamma camera for Iodine-123 and Iodine-131 imaging. Heliyon 2021; 7:e07196. [PMID: 34141944 PMCID: PMC8187242 DOI: 10.1016/j.heliyon.2021.e07196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 01/16/2023] Open
Abstract
Purpose Monte Carlo (MC) modelling techniques can assess the quantitative accuracy of both planar and SPECT Nuclear Medicine images. It is essential to validate the MC code's capabilities in modelling a specific clinical gamma camera, for radionuclides of interest, before its use as a clinical image simulator. This study aimed to determine if the SIMIND MC code accurately simulates emission images measured with a Siemens Symbia™ T16 SPECT/CT system for I-123 with a LEHR and a ME collimator and for I-131 with a HE collimator. Methods The static and WB planar validation tests included extrinsic system energy pulse-height distributions (EPHDs), system sensitivity and system spatial resolution in air as well as a scatter medium. The SPECT validation test comprised the sensitivity from a simple geometry of a sphere in a cylindrical water-filled phantom. Results The system EPHDs compared well, with differences between measured and simulated primary photopeak FWHM values not exceeding 4.6 keV. Measured and simulated planar system sensitivity values displayed percentage differences less than 6.9% and 6.3% for static and WB planar images, respectively. Measured and simulated planar system spatial resolution values in air showed percentage differences not exceeding 6.4% (FWHM) and 10.0% (FWTM), and 5.1% (FWHM) and 5.4% (FWTM) for static and WB planar images, respectively. For static planar system spatial resolution measured and simulated in a scatter medium, percentage differences of FWHM and FWTM values were less than 5.8% and 12.6%, respectively. The maximum percentage difference between the measured and simulated SPECT validation results was 3.6%. Conclusion The measured and simulated validation results compared well for all isotope-collimator combinations and showed that the SIMIND MC code could be used to accurately simulate static and WB planar and SPECT projection images of the Siemens Symbia™ T16 SPECT/CT for both I-123 and I-131 with their respective collimators.
Collapse
Affiliation(s)
- Michaella Morphis
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Johan A van Staden
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Hanlie du Raan
- Department of Medical Physics, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
37
|
Maaz AUR, O'Doherty J, Djekidel M. 68Ga-DOTATATE PET/CT for Neuroblastoma Staging: Utility for Clinical Use. J Nucl Med Technol 2021; 49:265-268. [PMID: 33820858 DOI: 10.2967/jnmt.120.258939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/16/2021] [Indexed: 11/16/2022] Open
Abstract
Metaiodobenzylguanidine (MIBG) imaging has been the standard for neuroblastoma staging for many decades. Novel agents such as 18F-DOPA and 68Ga-DOTATATE are being used nowadays in academic centers. During the coronavirus disease 2019 (COVID-19) pandemic, procurement of 123I-MIBG has proved particularly challenging, necessitating the use of 68Ga-DOTATATE PET. 68Ga-DOTATATE is Food and Drug Administration-approved for imaging of somatostatin receptor-positive gastroenteropancreatic neuroendocrine tumors. Methods: 68Ga-DOTATATE PET/CT imaging was performed for staging of 3 pediatric patients with neuroblastoma at our institution. A review of the literature was also completed. Results: 68Ga-DOTATATE PET/CT scans were successfully performed on all patients. All patients showed 68Ga-DOTATATE-avid disease. PET scans showed an excellent spatial resolution and demonstrated high accuracy in concordance with current European Association of Nuclear Medicine guidelines. Conclusion: We have presented 68Ga-DOTATATE PET/CT imaging for staging of neuroblastoma and believe it can reliably be used as an alternative to 123I-MIBG. It has technical, clinical, and practical advantages making it an attractive option. Further multicenter studies are required before it can be recommended for standard clinical use.
Collapse
Affiliation(s)
- Ata Ur Rehman Maaz
- Division of Hematology Oncology, Department of Pediatrics, Sidra Medicine, Doha, Qatar
| | - Jim O'Doherty
- Siemens Healthineers, Charleston, South Carolina; and
| | - Mehdi Djekidel
- Division of Nuclear Medicine and Molecular Imaging, Department of Diagnostic Imaging, Sidra Medicine, Doha, Qatar
| |
Collapse
|
38
|
Samim A, Tytgat GA, Bleeker G, Wenker ST, Chatalic KL, Poot AJ, Tolboom N, van Noesel MM, Lam MG, de Keizer B. Nuclear Medicine Imaging in Neuroblastoma: Current Status and New Developments. J Pers Med 2021; 11:jpm11040270. [PMID: 33916640 PMCID: PMC8066332 DOI: 10.3390/jpm11040270] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is the most common extracranial solid malignancy in children. At diagnosis, approximately 50% of patients present with metastatic disease. These patients are at high risk for refractory or recurrent disease, which conveys a very poor prognosis. During the past decades, nuclear medicine has been essential for the staging and response assessment of neuroblastoma. Currently, the standard nuclear imaging technique is meta-[123I]iodobenzylguanidine ([123I]mIBG) whole-body scintigraphy, usually combined with single-photon emission computed tomography with computed tomography (SPECT-CT). Nevertheless, 10% of neuroblastomas are mIBG non-avid and [123I]mIBG imaging has relatively low spatial resolution, resulting in limited sensitivity for smaller lesions. More accurate methods to assess full disease extent are needed in order to optimize treatment strategies. Advances in nuclear medicine have led to the introduction of radiotracers compatible for positron emission tomography (PET) imaging in neuroblastoma, such as [124I]mIBG, [18F]mFBG, [18F]FDG, [68Ga]Ga-DOTA peptides, [18F]F-DOPA, and [11C]mHED. PET has multiple advantages over SPECT, including a superior resolution and whole-body tomographic range. This article reviews the use, characteristics, diagnostic accuracy, advantages, and limitations of current and new tracers for nuclear medicine imaging in neuroblastoma.
Collapse
Affiliation(s)
- Atia Samim
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Godelieve A.M. Tytgat
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
| | - Gitta Bleeker
- Department of Radiology and Nuclear Medicine, Northwest Clinics, Wilhelminalaan 12, 1815 JD Alkmaar, The Netherlands;
| | - Sylvia T.M. Wenker
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Kristell L.S. Chatalic
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Alex J. Poot
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Nelleke Tolboom
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Max M. van Noesel
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
| | - Marnix G.E.H. Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
| | - Bart de Keizer
- Princess Maxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands; (A.S.); (G.A.M.T.); (S.T.M.W.); (K.L.S.C.); (A.J.P.); (N.T.); (M.M.v.N.)
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht/Wilhelmina Children’s Hospital, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands;
- Correspondence: ; Tel.: +31-887-571-794
| |
Collapse
|
39
|
Meeser A, Beck BB, Dübbers M, Habbig S, Kobe C, Koerber F, Dötsch J, Nüsken KD, Weber LT, Landgraf P, DeCarolis B, Liebau MC. Arterial Hypertension in a 10-Year-Old Girl. Am J Kidney Dis 2021; 77:A11-A13. [PMID: 33618821 DOI: 10.1053/j.ajkd.2020.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/31/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Alina Meeser
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bodo B Beck
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Martin Dübbers
- Pediatric Surgery, Department of General, Visceral, Cancer and Transplantation Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sandra Habbig
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carsten Kobe
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Friederike Koerber
- Department of Pediatric Radiology, Institute of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kai-Dietrich Nüsken
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lutz T Weber
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Pablo Landgraf
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Boris DeCarolis
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Max C Liebau
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
40
|
Brumberg J, Kuzkina A, Lapa C, Mammadova S, Buck A, Volkmann J, Sommer C, Isaias IU, Doppler K. Dermal and cardiac autonomic fiber involvement in Parkinson's disease and multiple system atrophy. Neurobiol Dis 2021; 153:105332. [PMID: 33722614 DOI: 10.1016/j.nbd.2021.105332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 12/01/2022] Open
Abstract
Pathological aggregates of alpha-synuclein in peripheral dermal nerve fibers can be detected in patients with idiopathic Parkinson's disease and multiple system atrophy. This study combines skin biopsy staining for p-alpha-synuclein depositions and radionuclide imaging of the heart with [123I]-metaiodobenzylguanidine to explore peripheral denervation in both diseases. To this purpose, 42 patients with a clinical diagnosis of Parkinson's disease or multiple system atrophy were enrolled. All patients underwent a standardized clinical work-up including neurological evaluation, neurography, and blood samples. Skin biopsies were obtained from the distal and proximal leg, back, and neck for immunofluorescence double labeling with anti-p-alpha-synuclein and anti-PGP9.5. All patients underwent myocardial [123I]-metaiodobenzylguanidine scintigraphy. Dermal p-alpha-synuclein was observed in 47.6% of Parkinson's disease patients and was mainly found in autonomic structures. 81.0% of multiple system atrophy patients had deposits with most of cases in somatosensory fibers. The [123I]-metaiodobenzylguanidine heart-to-mediastinum ratio was lower in Parkinson's disease than in multiple system atrophy patients (1.94 ± 0.63 vs. 2.91 ± 0.96; p < 0.0001). Irrespective of the diagnosis, uptake was lower in patients with than without p-alpha-synuclein in autonomic structures (1.42 ± 0.51 vs. 2.74 ± 0.83; p < 0.0001). Rare cases of Parkinson's disease with p-alpha-synuclein in somatosensory fibers and multiple system atrophy patients with deposits in autonomic structures or both fiber types presented with clinically overlapping features. In conclusion, this study suggests that alpha-synuclein contributes to peripheral neurodegeneration and mediates the impairment of cardiac sympathetic neurons in patients with synucleinopathies. Furthermore, it indicates that Parkinson's disease and multiple system atrophy share pathophysiologic mechanisms of peripheral nervous system dysfunction with a clinical overlap.
Collapse
Affiliation(s)
- Joachim Brumberg
- Department of Nuclear Medicine, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Oberdϋrrbacher Straβe 6, 97080 Würzburg, Germany.
| | - Anastasia Kuzkina
- Department of Neurology, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Josef-Schneider-Straβe 11, 97080 Würzburg, Germany
| | - Constantin Lapa
- Department of Nuclear Medicine, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Oberdϋrrbacher Straβe 6, 97080 Würzburg, Germany; Nuclear Medicine, Medical Faculty, University of Augsburg, Stenglinstraβe 2, 86156 Augsburg, Germany
| | - Sona Mammadova
- Department of Neurology, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Josef-Schneider-Straβe 11, 97080 Würzburg, Germany
| | - Andreas Buck
- Department of Nuclear Medicine, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Oberdϋrrbacher Straβe 6, 97080 Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Josef-Schneider-Straβe 11, 97080 Würzburg, Germany
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Josef-Schneider-Straβe 11, 97080 Würzburg, Germany
| | - Ioannis U Isaias
- Department of Neurology, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Josef-Schneider-Straβe 11, 97080 Würzburg, Germany
| | - Kathrin Doppler
- Department of Neurology, University Hospital Würzburg and Julius-Maximilian-University Würzburg, Josef-Schneider-Straβe 11, 97080 Würzburg, Germany
| |
Collapse
|
41
|
From Diagnosis to Therapy-PET Imaging for Pheochromocytomas and Paragangliomas. Curr Urol Rep 2021; 22:2. [PMID: 33403502 DOI: 10.1007/s11934-020-01021-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Pheochromocytoma and paraganglioma (PPGLs) are neuroendocrine tumors with diverse clinical presentations. PPGLs can be sporadic but often are associated with various syndromes, which can have variable clinical presentations. A thorough workup is therefore critical for staging, treatment, and follow-up. Imaging is an essential part of the workup and diagnosis of PPGLs. RECENT FINDINGS Improvements in cross-sectional imaging with radionuclides have increased specificity and sensitivity for identifying and treating PPGLs. Furthermore, a variety of targets on PPGLs has allowed for optimal imaging with radionuclides that can be used for staging and treatment. Currently, radionuclides are being evaluated for staging and treatment of PPGLs. Developing novel radionuclides that can identify disease sites and target them simultaneously provides a potential for improving survival and outcomes in patients with PPGLs. Given the clinical diversity among PPGLs, expanding the therapeutic arsenal against locally advanced or metastatic PPGLs can allow clinicians to evaluate and treat PPGLs thoroughly.
Collapse
|
42
|
Könik A, O'Donoghue JA, Wahl RL, Graham MM, Van den Abbeele AD. Theranostics: The Role of Quantitative Nuclear Medicine Imaging. Semin Radiat Oncol 2021; 31:28-36. [PMID: 33246633 DOI: 10.1016/j.semradonc.2020.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Theranostics is a precision medicine discipline that integrates diagnostic nuclear medicine imaging with radionuclide therapy in a manner that provides both a tumor phenotype and personalized therapy to patients with cancer using radiopharmaceuticals aimed at the same target-specific biological pathway or receptor. The aim of quantitative nuclear medicine imaging is to plan the alpha or beta-emitting therapy based on an accurate 3-dimensional representation of the in-vivo distribution of radioactivity concentration within the tumor and normal organs/tissues in a noninvasive manner. In general, imaging may be either based on positron emission tomography (PET) or single photon emission computed tomography (SPECT) invariably in combination with X-ray CT (PET/CT; SPECT/CT) or, to a much lesser extent, MRI. PET and SPECT differ in terms of the radionuclides and physical processes that give rise to the emission of high energy photons, as well as the sets of technologies involved in their detection. Using a variety of standardized quantitative parameters, system calibration, patient preparation, imaging acquisition and reconstruction protocols, and image analysis protocols, an accurate quantification of the tracer distribution can be obtained, which helps prescribe the therapeutic dose for each patient.
Collapse
Affiliation(s)
- Arda Könik
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA.
| | - Joseph A O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Richard L Wahl
- Department of Radiology, Mallinckrodt Institute of Radiology, Washington University in St Louis School of Medicine, St. Louis, MO
| | - Michael M Graham
- Past Director of Nuclear Medicine, Roy J and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA
| | - Annick D Van den Abbeele
- Department of Imaging, Dana-Farber Cancer Institute, Boston, MA; Division of Cancer Imaging, Mass General Brigham, Boston, MA; Dana-Farber Cancer Institute and Mass General Brigham, Boston, MA; Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA; Tumor Imaging Metrics Core, Dana-Farber/Harvard Cancer Center, Boston, MA
| |
Collapse
|
43
|
Differential diagnosis of parkinsonism: a head-to-head comparison of FDG PET and MIBG scintigraphy. NPJ PARKINSONS DISEASE 2020; 6:39. [PMID: 33311476 PMCID: PMC7733458 DOI: 10.1038/s41531-020-00141-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
[18F]fluorodeoxyglucose (FDG) PET and [123I]metaiodobenzylguanidine (MIBG) scintigraphy may contribute to the differential diagnosis of neurodegenerative parkinsonism. To identify the superior method, we retrospectively evaluated 54 patients with suspected neurodegenerative parkinsonism, who were referred for FDG PET and MIBG scintigraphy. Two investigators visually assessed FDG PET scans using an ordinal 6-step score for disease-specific patterns of Lewy body diseases (LBD) or atypical parkinsonism (APS) and assigned the latter to the subgroups multiple system atrophy (MSA), progressive supranuclear palsy (PSP), or corticobasal syndrome. Regions-of-interest analysis on anterior planar MIBG images served to calculate the heart-to-mediastinum ratio. Movement disorder specialists blinded to imaging results established clinical follow-up diagnosis by means of guideline-derived case vignettes. Clinical follow-up (1.7 ± 2.3 years) revealed the following diagnoses: n = 19 LBD (n = 17 Parkinson’s disease [PD], n = 1 PD dementia, and n = 1 dementia with Lewy bodies), n = 31 APS (n = 28 MSA, n = 3 PSP), n = 3 non-neurodegenerative parkinsonism; n = 1 patient could not be diagnosed and was excluded. Receiver operating characteristic analyses for discriminating LBD vs. non-LBD revealed a larger area under the curve for FDG PET than for MIBG scintigraphy at statistical trend level for consensus rating (0.82 vs. 0.69, p = 0.06; significant for investigator #1: 0.83 vs. 0.69, p = 0.04). The analysis of PD vs. MSA showed a similar difference (0.82 vs. 0.69, p = 0.11; rater #1: 0.83 vs. 0.69, p = 0.07). Albeit the notable differences in diagnostic performance did not attain statistical significance, the authors consider this finding clinically relevant and suggest that FDG PET, which also allows for subgrouping of APS, should be preferred.
Collapse
|
44
|
Privitera L, Hales PW, Musleh L, Morris E, Sizer N, Barone G, Humphries P, Cross K, Biassoni L, Giuliani S. Comparison Between Diffusion-Weighted MRI and 123 I-mIBG Uptake in Primary High-Risk Neuroblastoma. J Magn Reson Imaging 2020; 53:1486-1497. [PMID: 33283381 PMCID: PMC8246892 DOI: 10.1002/jmri.27458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023] Open
Abstract
Background High‐risk neuroblastoma (HR‐NB) has a variable response to preoperative chemotherapy. It is not possible to differentiate viable vs. nonviable residual tumor before surgery. Purpose To explore the association between apparent diffusion coefficient (ADC) values from diffusion‐weighted magnetic resonance imaging (DW‐MRI), 123I‐meta‐iodobenzyl‐guanidine (123I‐mIBG) uptake, and histology before and after chemotherapy. Study Type Retrospective. Subjects Forty patients with HR‐NB. Field Strength/Sequence 1.5T axial DW‐MRI (b = 0,1000 s/mm2) and T2‐weighted sequences. 123I‐mIBG scintigraphy planar imaging (all patients), with additional 123I‐mIBG single‐photon emission computed tomography / computerized tomography (SPECT/CT) imaging (15 patients). Assessment ADC maps and 123I‐mIBG SPECT/CT images were coregistered to the T2‐weighted images. 123I‐mIBG uptake was normalized with a tumor‐to‐liver count ratio (TLCR). Regions of interest (ROIs) for primary tumor volume and different intratumor subregions were drawn. The lower quartile ADC value (ADC25prc) was used over the entire tumor volume and the overall level of 123I‐mIBG uptake was graded into avidity groups. Statistical Tests Analysis of variance (ANOVA) and linear regression were used to compare ADC and MIBG values before and after treatment. Threshold values to classify tumors as viable/necrotic were obtained using ROC analysis of ADC and TLCR values. Results No significant difference in whole‐tumor ADC25prc values were found between different 123I‐mIBG avidity groups pre‐ (P = 0.31) or postchemotherapy (P = 0.35). In the “intratumor” analysis, 5/15 patients (prechemotherapy) and 0/14 patients (postchemotherapy) showed a significant correlation between ADC and TLCR values (P < 0.05). Increased tumor shrinkage was associated with lower pretreatment tumor ADC25prc values (P < 0.001); no association was found with pretreatment 123I‐mIBG avidity (P = 0.17). Completely nonviable tumors had significantly lower postchemotherapy ADC25prc values than tumors with >10% viable tumor (P < 0.05). Both pre‐ and posttreatment TLCR values were significantly higher in patients with >50% viable tumor than those with 10–50% viable tumor (P < 0.05). Data Conclusion 123I‐mIBG avidity and ADC values are complementary noninvasive biomarkers of therapeutic response in HR‐NB. Level of Evidence 4. Technical Efficacy Stage 3.
Collapse
Affiliation(s)
- Laura Privitera
- Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children, London, UK
| | - Patrick W Hales
- Developmental Imaging and Biophysics Section, University College London Great Ormond Street Insitute of Child Health, London, UK
| | - Layla Musleh
- Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children, London, UK
| | - Elizabeth Morris
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK.,Nuclear Medicine Physics, Clinical Physics, Barts Health NHS Trust, London, UK
| | - Natalie Sizer
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK.,Nuclear Medicine Physics, Clinical Physics, Barts Health NHS Trust, London, UK
| | - Giuseppe Barone
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children, London, UK
| | - Paul Humphries
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Kate Cross
- Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children, London, UK
| | - Lorenzo Biassoni
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Stefano Giuliani
- Department of Specialist Neonatal and Paediatric Surgery, Great Ormond Street Hospital for Children, London, UK
| |
Collapse
|
45
|
Stirrup J, Gregg S, Baavour R, Roth N, Breault C, Agostini D, Ernst S, Underwood SR. Hybrid solid-state SPECT/CT left atrial innervation imaging for identification of left atrial ganglionated plexi: Technique and validation in patients with atrial fibrillation. J Nucl Cardiol 2020; 27:1939-1950. [PMID: 30694425 DOI: 10.1007/s12350-018-01535-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/19/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Ablating left atrial (LA) ganglionated plexi (GP), identified invasively by high-frequency stimulation (HFS) during pulmonary vein isolation (PVI), may reduce atrial fibrillation (AF) recurrence. 123I-metaiodobenzylguanidine (123I-mIBG) solid-state SPECT LA innervation imaging (LAII) has the spatial resolution to detect LAGP non-invasively but this has never been demonstrated in clinical practice. METHODS 20 prospective patients with paroxysmal AF scheduled for PVI underwent 123I-mIBG LAII. High-resolution tomograms, reconstructed where possible using cardiorespiratory gating, were co-registered with pre-PVI cardiac CT. Location and reader confidence (1 [low] to 3 [high]) in discrete 123I-mIBG LA uptake areas (DUAs) were recorded and correlated with HFS. RESULTS A total of 73 DUAs were identified, of which 59 (81%) were HFS positive (HFS +). HFS + likelihood increased with reader confidence (92% [score 3]). 64% of HFS-negative DUAs occurred over the lateral and inferior LA. Cardiorespiratory gating reduced the number of DUAs per patient (4 vs 7, P = .001) but improved: HFS + predictive value (76% vs 49%); reader confidence (2 vs 1, P = .02); and inter-observer, intra-observer, and inter-study agreement (κ = 0.84 vs 0.68; 0.82 vs 0.74; 0.64 vs 0.53 respectively). CONCLUSIONS 123I-mIBG SPECT/CT LAII accurately and reproducibly identifies GPs verified by HFS, particularly when reconstructed with cardiorespiratory gating.
Collapse
Affiliation(s)
- J Stirrup
- Department of Cardiology, Royal Berkshire Hospital NHS Foundation Trust, Craven Road, Reading, RG1 5AN, United Kingdom.
| | - S Gregg
- Department of Nuclear Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| | - R Baavour
- Spectrum Dynamics Medical, Caesarea, Israel
| | - N Roth
- Spectrum Dynamics Medical, Caesarea, Israel
| | - C Breault
- Spectrum Dynamics Medical, Caesarea, Israel
| | - D Agostini
- Department of Nuclear Medicine, CHU Caen and Normandy University EA 4650, Caen, France
| | - S Ernst
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
- Cardiovascular Research Center, Royal Brompton and National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - S R Underwood
- Department of Nuclear Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
46
|
[Use of radiopharmaceuticals in pediatrics: Specificities and recommandations of SoFRa (Société française de radiopharmacie)]. ANNALES PHARMACEUTIQUES FRANÇAISES 2020; 79:230-243. [PMID: 33159849 DOI: 10.1016/j.pharma.2020.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/22/2020] [Accepted: 10/13/2020] [Indexed: 11/20/2022]
Abstract
Radiopharmaceuticals are commonly used in children in nuclear medicine. Because of physiological differences in growing children and their radiosensitivity, precautions must be taken throughout the medication use process. The aim of this work is to propose recommendations, under the aegis of the Société française de radiopharmacie (SoFRa), for each subsystem of the process, in order to ensure the safety of pediatric patients. Furthermore, an analysis of two surveys on diagnostic radiopharmaceuticals dosage used in different nuclear medicine departments in France is detailed. Recommendations for therapeutic radiopharmaceuticals are also provided. Specificities of the preparation for pediatric patients are discussed through the example of the radiopharmaceuticals for lung perfusion scintigraphy. The preparation of individual dose and administration are also described. In nuclear medicine, radiopharmacist's expertise is essential for patient safety. A multidisciplinary approach is necessary to secure pediatric radiopharmaceutical use process.
Collapse
|
47
|
Pictorial review of the clinical applications of MIBG in neuroblastoma: current practices. Clin Transl Imaging 2020. [DOI: 10.1007/s40336-020-00392-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
48
|
Kobayashi M, Mizutani A, Nishi K, Muranaka Y, Nishii R, Shikano N, Nakanishi T, Tamai I, Kleinerman ES, Kawai K. [ 131I]MIBG exports via MRP transporters and inhibition of the MRP transporters improves accumulation of [ 131I]MIBG in neuroblastoma. Nucl Med Biol 2020; 90-91:49-54. [PMID: 33032192 DOI: 10.1016/j.nucmedbio.2020.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION 131I-labeled m-iodobenzylguanidine ([131I]MIBG) has been used to treat neuroblastoma patients, but [131I]MIBG may be immediately excreted from the cancer cells by the adenosine triphosphate binding cassette transporters, similar to anticancer drugs. The purpose of this study was to clarify the efflux mechanism of [131I]MIBG in neuroblastomas and improve accumulation by inhibition of the transporter in neuroblastomas. METHODS [131I]MIBG was incubated in human embryonic kidney (HEK)293 cells expressing human organic anion transporting polypeptide (OATP)1B1, OATP1B3, OATP2B1, organic anion transporter (OAT)1 and OAT2, organic cation transporter (OCT)1 and OCT2, and sodium taurocholate cotransporting polypeptide, and in vesicles expressing P-glycoprotein (MDR1), multidrug resistance associated protein (MRP)1-4, or breast cancer resistance protein with and without MK-571 and probenecid (MRP inhibitors). Time activity curves of [131I]MIBG with and without MK-571 and probenecid were established using an SK-N-SH neuroblastoma cell line, and transporter expression of multiple drug resistance was measured. Biodistribution and SPECT imaging examinations were conducted using [123I]MIBG with and without probenecid in SK-N-SH-bearing mice. RESULTS [131I]MIBG uptake was significantly higher in OAT1, OAT2, OCT1, and OCT2 than in mock cells. Uptake via OCT1 and OCT2 was little inhibited by MK-571 and probenecid. [131I]MIBG uptake into vesicles that highly expressed MRP1 or MRP4 was significantly higher in ATP than in AMP, and these inhibitors restored uptake to levels similar to that in AMP. Examining the time activity curves for [131I]MIBG in SK-N-SH cells, higher expressions of MDR1, MRP1, MRP4, and MK-571, or probenecid loading produced significantly higher uptake than in control at most incubation times. The ratios of tumors to blood or muscle in SK-N-SH-bearing mice were significantly increased by probenecid loading in comparison with normal mice. CONCLUSIONS [131I]MIBG exports via MRP1 and MRP4 in neuroblastoma. The accumulation and tumor-to-blood or muscle ratios of [131I]MIBG are improved by inhibition of MRPs with probenecid in neuroblastoma. ADVANCES IN KNOWLEDGE: [131I]MIBG, widely used for treatment of neuroendocrine tumors including neuroblastoma, is excreted via MRP1 and MRP4 in neuroblastoma. IMPLICATIONS FOR PATIENT CARE Loading with probenecid, OAT, and MRP inhibitors improves [131I]MIBG accumulation.
Collapse
Affiliation(s)
- Masato Kobayashi
- School of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| | - Asuka Mizutani
- School of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kodai Nishi
- Department of Radioisotope Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yuka Muranaka
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ryuichi Nishii
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Naoto Shikano
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Takeo Nakanishi
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Ikumi Tamai
- School of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Eugenie S Kleinerman
- Division of Pediatrics, University of Texas M.D. Anderson Cancer Center, Houston, USA
| | - Keiichi Kawai
- School of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Biomedical Imaging Research Center, University of Fukui, Fukui, Japan
| |
Collapse
|
49
|
Bhate M, Flaherty M, Rowe N, Howman-Giles R. Paediatric Horner Syndrome: How much further to investigate? Indian J Ophthalmol 2020; 68:2607-2610. [PMID: 33120710 PMCID: PMC7774181 DOI: 10.4103/ijo.ijo_1603_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We report an infant with an early-onset Horner syndrome and normal urinary catecholamine levels. Further investigations with Nuclear medicine imaging with 123I-MIBG (meta-iodo benzyl-guanidine) confirmed a right thoracic inlet mass consistent with a neuroblastoma, a tumor of neural crest origin. The authors emphasize the need for investigating idiopathic acquired pediatric Horner syndrome and the value of an MIBG scan as a diagnostic test for suspected neuroblastoma.
Collapse
Affiliation(s)
- Manjushree Bhate
- Jasti V Ramanamma Children's Eye Care Centre L.V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Maree Flaherty
- Department of Ophthalmology Children's Hospital, Westmead, Australia
| | - Neil Rowe
- Department of Ophthalmology Children's Hospital, Westmead, Australia
| | - Robert Howman-Giles
- Department of Nuclear Medicine Children's Hospital, Westmead; Division of Imaging Sydney Medical School, University of Sydney, Sydney, Australia
| |
Collapse
|
50
|
Yoshinaga K, Abe T, Okamoto S, Uchiyama Y, Manabe O, Ito YM, Tamura N, Ito N, Yoshioka N, Washino K, Shinohara N, Tamaki N, Shiga T. Effects of Repeated 131I- Meta-Iodobenzylguanidine Radiotherapy on Tumor Size and Tumor Metabolic Activity in Patients with Metastatic Neuroendocrine Tumors. J Nucl Med 2020; 62:685-694. [PMID: 33067337 DOI: 10.2967/jnumed.120.250803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
131I-meta-iodobenzylguanidine (131I-MIBG) radiotherapy has shown some survival benefits in metastatic neuroendocrine tumors (NETs). European Association of Nuclear Medicine clinical guidelines for 131I-MIBG radiotherapy suggest a repeated treatment protocol, although none currently exists. The existing single-high-dose 131I-MIBG radiotherapy (444 MBq/kg) has been shown to have some benefits for patients with metastatic NETs. However, this protocol increases adverse effects and requires alternative therapeutic approaches. Therefore, the aim of this study was to evaluate the effects of repeated 131I-MIBG therapy on tumor size and tumor metabolic response in patients with metastatic NETs. Methods: Eleven patients with metastatic NETs (aged 49.2 ± 16.3 y) prospectively received repeated 5,550-MBq doses of 131I-MIBG therapy at 6-mo intervals. In total, 31 treatments were performed. The mean number of treatments was 2.8 ± 0.4, and the cumulative 131I-MIBG dose was 15,640.9 ± 2,245.1 MBq (286.01 MBq/kg). Tumor response was observed by CT and 18F-FDG PET or by 18F-FDG PET/CT before and 3-6 mo after the final 131I-MIBG treatment. Results: On the basis of the CT findings with RECIST, 3 patients showed a partial response and 6 patients showed stable disease. The remaining 2 patients showed progressive disease. Although there were 2 progressive-disease patients, analysis of all patients showed no increase in summed length diameter (median, 228.7 mm [interquartile range (IQR), 37.0-336.0 mm] to 171.0 mm [IQR, 38.0-270.0 mm]; P = 0.563). In tumor region-based analysis with partial-response and stable-disease patients (n = 9), 131I-MIBG therapy significantly reduced tumor diameter (79 lesions; median, 16 mm [IQR, 12-22 mm] to 11 mm [IQR, 6-16 mm]; P < 0.001). Among 5 patients with hypertension, there was a strong trend toward systolic blood pressure reduction (P = 0.058), and diastolic blood pressure was significantly reduced (P = 0.006). Conclusion: Eighty-two percent of metastatic NET patients effectively achieved inhibition of disease progression, with reduced tumor size and reduced metabolic activity, through repeated 131I-MIBG therapy. Therefore, this relatively short-term repeated 131I-MIBG treatment may have potential as one option in the therapeutic protocol for metastatic NETs. Larger prospective studies with control groups are warranted.
Collapse
Affiliation(s)
- Keiichiro Yoshinaga
- Diagnostic and Therapeutic Nuclear Medicine, Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Takashige Abe
- Department of Urological Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Shozo Okamoto
- Department of Diagnostic Radiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan .,Department of Radiology, Obihiro Kosei Hospital, Obihiro, Japan
| | - Yuko Uchiyama
- Department of Diagnostic Radiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Osamu Manabe
- Department of Diagnostic Radiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoichi M Ito
- Research Center for Medical and Health Data Science, Institute of Statistical Mathematics, Tokyo, Japan; and
| | - Naomi Tamura
- Research Center for Medical and Health Data Science, Institute of Statistical Mathematics, Tokyo, Japan; and
| | - Natsue Ito
- Diagnostic and Therapeutic Nuclear Medicine, Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Naho Yoshioka
- Diagnostic and Therapeutic Nuclear Medicine, Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Komei Washino
- Diagnostic and Therapeutic Nuclear Medicine, Quantum and Radiological Science and Technology, National Institute of Radiological Sciences, Chiba, Japan
| | - Nobuo Shinohara
- Department of Urological Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Nagara Tamaki
- Department of Radiology, Kyoto Prefectural Medical University, Kyoto, Japan
| | - Tohru Shiga
- Department of Diagnostic Radiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|