1
|
Franchi F, Ramaswamy V, Olthoff M, Peterson KM, Paulmurugan R, Rodriguez-Porcel M. The Myocardial Microenvironment Modulates the Biology of Transplanted Mesenchymal Stem Cells. Mol Imaging Biol 2021; 22:948-957. [PMID: 31907845 DOI: 10.1007/s11307-019-01470-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE The maximal efficacy of cell therapy depends on the survival of stem cells, as well as on the phenotypic and biologic changes that may occur on these cells after transplantation. It has been hypothesized that the post-ischemic myocardial microenvironment can play a critical role in these changes, potentially affecting the survival and reparative potential of mesenchymal stem cells (MSCs). Here, we use a dual reporter gene sensor for the in vivo monitoring of the phenotype of MSCs and study their therapeutic effect on cardiac function. PROCEDURES The mitochondrial sensor was tested in cell culture in response to different mitochondrial stressors. For in vivo testing, MSCs (3 × 105) were delivered in a murine ischemia-reperfusion (IR) model. Bioluminescence imaging was used to assess the mitochondrial biology and the viability of transplanted MSCs, while high-resolution ultrasound provided a non-invasive analysis of cardiac contractility and dyssynchrony. RESULTS The mitochondrial sensor showed increased activity in response to mitochondrial stressors. Furthermore, when tested in the living subject, it showed a significant increase in mitochondrial dysfunction in MSCs delivered in IR, compared with those delivered under sham conditions. Importantly, MSCs delivered to ischemic hearts, despite their mitochondrial stress and poor survival, were able to induce a significant improvement in cardiac function, through decreased collagen deposition and resynchronization/contractility of left ventricular wall motion. CONCLUSIONS The ischemic myocardium induces changes in the phenotype of transplanted MSCs. Despite their limited survival, MSCs still elicit a certain therapeutic response, as evidenced by improvement in myocardial remodeling and cardiac function. Maximization of the survival and reparative efficacy of stem cells remains a key for the success of stem cell therapies.
Collapse
Affiliation(s)
- Federico Franchi
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA.
| | - Vidhya Ramaswamy
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Michaela Olthoff
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Karen M Peterson
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ramasamy Paulmurugan
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, USA
| | - Martin Rodriguez-Porcel
- Department of Cardiovascular Medicine, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| |
Collapse
|
2
|
Li X, Hacker M. Molecular imaging in stem cell-based therapies of cardiac diseases. Adv Drug Deliv Rev 2017; 120:71-88. [PMID: 28734900 DOI: 10.1016/j.addr.2017.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 12/26/2022]
Abstract
In the past 15years, despite that regenerative medicine has shown great potential for cardiovascular diseases, the outcome and safety of stem cell transplantation has shown controversial results in the published literature. Medical imaging might be useful for monitoring and quantifying transplanted cells within the heart and to serially characterize the effects of stem cell therapy of the myocardium. From the multiple available noninvasive imaging techniques, magnetic resonance imaging and nuclear imaging by positron (PET) or single photon emission computer tomography (SPECT) are the most used clinical approaches to follow the fate of transplanted stem cells in vivo. In this article, we provide a review on the role of different noninvasive imaging modalities and discuss their advantages and disadvantages. We focus on the different in-vivo labeling and reporter gene imaging strategies for stem cell tracking as well as the concept and reliability to use imaging parameters as noninvasive surrogate endpoints for the evaluation of the post-therapeutic outcome.
Collapse
Affiliation(s)
- Xiang Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
3
|
Franchi F, Rodriguez-Porcel M. Noninvasive Assessment of Cell Fate and Biology in Transplanted Mesenchymal Stem Cells. Methods Mol Biol 2017; 1553:227-239. [PMID: 28229420 PMCID: PMC5589130 DOI: 10.1007/978-1-4939-6756-8_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Recently, molecular imaging has become a conditio sine qua non for cell-based regenerative medicine. Developments in molecular imaging techniques, such as reporter gene technology, have increasingly enabled the noninvasive assessment of the fate and biology of cells after cardiovascular applications. In this context, bioluminescence imaging is the most commonly used imaging modality in small animal models of preclinical studies. Here, we present a detailed protocol of a reporter gene imaging approach for monitoring the viability and biology of Mesenchymal Stem Cells transplanted in a mouse model of myocardial ischemia reperfusion injury.
Collapse
Affiliation(s)
- Federico Franchi
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, 55905, MN, USA
| | - Martin Rodriguez-Porcel
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, 200 First St. SW, Rochester, 55905, MN, USA.
| |
Collapse
|
4
|
Psaltis PJ, Schwarz N, Toledo-Flores D, Nicholls SJ. Cellular Therapy for Heart Failure. Curr Cardiol Rev 2016; 12:195-215. [PMID: 27280304 PMCID: PMC5011188 DOI: 10.2174/1573403x12666160606121858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 12/31/1969] [Indexed: 12/12/2022] Open
Abstract
The pathogenesis of cardiomyopathy and heart failure (HF) is underpinned by complex changes at subcellular, cellular and extracellular levels in the ventricular myocardium. For all of the gains that conventional treatments for HF have brought to mortality and morbidity, they do not adequately address the loss of cardiomyocyte numbers in the remodeling ventricle. Originally conceived to address this problem, cellular transplantation for HF has already gone through several stages of evolution over the past two decades. Various cell types and delivery routes have been implemented to positive effect in preclinical models of ischemic and nonischemic cardiomyopathy, with pleiotropic benefits observed in terms of myocardial remodeling, systolic and diastolic performance, perfusion, fibrosis, inflammation, metabolism and electrophysiology. To a large extent, these salubrious effects are now attributed to the indirect, paracrine capacity of transplanted stem cells to facilitate endogenous cardiac repair processes. Promising results have also followed in early phase human studies, although these have been relatively modest and somewhat inconsistent. This review details the preclinical and clinical evidence currently available regarding the use of pluripotent stem cells and adult-derived progenitor cells for cardiomyopathy and HF. It outlines the important lessons that have been learned to this point in time, and balances the promise of this exciting field against the key challenges and questions that still need to be addressed at all levels of research, to ensure that cell therapy realizes its full potential by adding to the armamentarium of HF management.
Collapse
Affiliation(s)
- Peter J Psaltis
- Co-Director of Vascular Research Centre, Heart Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia 5000.
| | | | | | | |
Collapse
|
5
|
Abstract
Well into the second decade since its conception, cell transplantation continues to undergo intensive evaluation for the treatment of myocardial infarction. At a mechanistic level, its objectives remain to replace lost cardiac cell mass with new functioning cardiomyocytes and vascular cells, thereby minimizing infarct size and scar formation, and improving clinical outcomes by preventing adverse left ventricular remodeling and recurrent ischemic events. Many different cell types, including pluripotent stem cells and various adult-derived progenitor cells, have been shown to have therapeutic potential in preclinical studies, while early phase human trial experience has provided divergent outcomes and fundamental lessons, emphasizing that there remain key issues to address and challenges to overcome before cell therapy can be applied to wider clinical practice. The purpose of this review is to provide a balanced update on recent seminal developments in this exciting field and look to the next important steps to ensure its forward progression.
Collapse
|
6
|
Lezaic L, Haddad F, Vrtovec B, Wu JC. Imaging cardiac stem cell transplantation using radionuclide labeling techniques: clinical applications and future directions. Methodist Debakey Cardiovasc J 2014; 9:218-22. [PMID: 24298314 DOI: 10.14797/mdcj-9-4-218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Stem cell therapy is emerging as a potential new therapy for patients with advanced heart failure. In recent years, advances in molecular imaging have allowed monitoring of stem cell homing and survival. In this review article, we will discuss the clinical application and future directions of stem cell imaging in advanced heart failure.
Collapse
Affiliation(s)
- Luka Lezaic
- University Medical Centre Ljubljana, Slovenia
| | | | | | | |
Collapse
|
7
|
Forbes SJ, Rosenthal N. Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 2014; 20:857-69. [PMID: 25100531 DOI: 10.1038/nm.3653] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
Abstract
Chronic diseases confer tissue and organ damage that reduce quality of life and are largely refractory to therapy. Although stem cells hold promise for treating degenerative diseases by 'seeding' injured tissues, the regenerative capacity of stem cells is influenced by regulatory networks orchestrated by local immune responses to tissue damage, with macrophages being a central component of the injury response and coordinator of tissue repair. Recent research has turned to how cellular and signaling components of the local stromal microenvironment (the 'soil' to the stem cells' seed), such as local inflammatory reactions, contribute to successful tissue regeneration. This Review discusses the basic principles of tissue regeneration and the central role locally acting components may play in the process. Application of seed-and-soil concepts to regenerative medicine strengthens prospects for developing cell-based therapies or for promotion of endogenous repair.
Collapse
Affiliation(s)
- Stuart J Forbes
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Nadia Rosenthal
- 1] National Heart and Lung Institute, Imperial College London, London, UK. [2] Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
8
|
Renin inhibition improves the survival of mesenchymal stromal cells in a mouse model of myocardial infarction. J Cardiovasc Transl Res 2014; 7:560-9. [PMID: 25030734 DOI: 10.1007/s12265-014-9575-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/02/2014] [Indexed: 12/12/2022]
Abstract
The aim of this study was to determine if renin inhibition is able to improve the survival of transplanted stem cells in a mouse model of myocardial infarction. Myocardial infarction was induced in FVB/NJ inbred mice (n = 23). Bone marrow-derived mouse mesenchymal stromal cells (mMSCs, 3 × 10(5)) expressing the reporter gene firefly luciferase were delivered intramyocardially (n = 12) and monitored non-invasively by bioluminescence imaging. A group of these mice (n = 6) received aliskiren (15 mg/kg/day) via an osmotic pump implanted subcutaneously. The survival of mMSCs was significantly increased in those animals that received aliskiren leading to a significant improvement in systolic function after myocardial infarction. Histological analysis revealed a significant reduction in inflammation and collagen deposition in those mice that received aliskiren compared to controls. Renin inhibition of the ischemic myocardium is able to modulate the microenvironment improving the survival and efficacy of transplanted mMSCs in a mouse model of myocardial infarction.
Collapse
|
9
|
Richardson JD, Nelson AJ, Zannettino ACW, Gronthos S, Worthley SG, Psaltis PJ. Optimization of the cardiovascular therapeutic properties of mesenchymal stromal/stem cells-taking the next step. Stem Cell Rev Rep 2014; 9:281-302. [PMID: 22529015 DOI: 10.1007/s12015-012-9366-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite current treatment options, cardiac failure is associated with significant morbidity and mortality highlighting a compelling clinical need for novel therapeutic approaches. Based on promising pre-clinical data, stem cell therapy has been suggested as a possible therapeutic strategy. Of the candidate cell types evaluated, mesenchymal stromal/stem cells (MSCs) have been widely evaluated due to their ease of isolation and ex vivo expansion, potential allogeneic utility and capacity to promote neo-angiogenesis and endogenous cardiac repair. However, the clinical application of MSCs for mainstream cardiovascular use is currently hindered by several important limitations, including suboptimal retention and engraftment and restricted capacity for bona fide cardiomyocyte regeneration. Consequently, this has prompted intense efforts to advance the therapeutic properties of MSCs for cardiovascular disease. In this review, we consider the scope of benefit from traditional plastic adherence-isolated MSCs and the lessons learned from their conventional use in preclinical and clinical studies. Focus is then given to the evolving strategies aimed at optimizing MSC therapy, including discussion of cell-targeted techniques that encompass the preparation, pre-conditioning and manipulation of these cells ex vivo, methods to improve their delivery to the heart and innovative substrate-directed strategies to support their interaction with the host myocardium.
Collapse
Affiliation(s)
- James D Richardson
- Cardiovascular Research Centre, Royal Adelaide Hospital and Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
10
|
Richardson JD, Bertaso AG, Psaltis PJ, Frost L, Carbone A, Paton S, Nelson AJ, Wong DTL, Worthley MI, Gronthos S, Zannettino ACW, Worthley SG. Impact of timing and dose of mesenchymal stromal cell therapy in a preclinical model of acute myocardial infarction. J Card Fail 2013; 19:342-53. [PMID: 23663817 DOI: 10.1016/j.cardfail.2013.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/22/2013] [Accepted: 03/26/2013] [Indexed: 01/01/2023]
Abstract
BACKGROUND Although mesenchymal stem/stromal cells (MSC) have shown therapeutic promise after myocardial infarction (MI), the impact of cell dose and timing of intervention remains uncertain. We compared immediate and deferred administration of 2 doses of MSC in a rat model of MI. METHODS AND RESULTS Sprague-Dawley rats were used. Allogeneic prospectively isolated MSC ("low" dose 1 × 10(6) or "high" dose 2 × 10(6) cells) were delivered by transepicardial injection immediately after MI ("early-low," "early-high"), or 1 week later ("late-low," "late-high"). Control subjects received cryopreservant solution alone. Left ventricular dimensions and ejection fraction (EF) were assessed by cardiac magnetic resonance. All 4 MSC-treatment cohorts demonstrated higher EF than control animals 4 weeks after MI (P values <.01 to <.0001), with function most preserved in the early-high group (absolute reduction in EF from baseline: control 39.1 ± 1.7%, early-low 26.5 ± 3.2%, early-high 7.9 ± 2.6%, late-low 19.6 ± 3.5%, late-high 17.9 ± 4.0%). Cell treatment also attenuated left ventricular dilatation and fibrosis and augmented left ventricular mass, systolic wall thickening (SWT), and microvascular density. Although early intervention selectively increased SWT and vascular density in the infarct territory, delayed treatment caused greater benefit in remote (noninfarct) myocardium. All outcomes demonstrated dose dependence for early MSC treatment, but not for later cell administration. CONCLUSIONS The nature and magnitude of benefit from MSC after acute MI is strongly influenced by timing of cell delivery, with dose dependence most evident for early intervention. These novel insights have potential implications for cell therapy after MI in human patients.
Collapse
Affiliation(s)
- James D Richardson
- Cardiovascular Research Centre, Royal Adelaide Hospital and Department of Medicine, University of Adelaide, Adelaide, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Superparamagnetic iron oxide based nanoprobes for imaging and theranostics. Adv Colloid Interface Sci 2013; 199-200:95-113. [PMID: 23891347 DOI: 10.1016/j.cis.2013.06.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/21/2013] [Accepted: 06/27/2013] [Indexed: 12/11/2022]
Abstract
The need to target, deliver and subsequently evaluate the efficacy of therapeutics in the treatment of a disease has provided added impetus in developing novel and highly efficient contrast agents. Superparamagnetic iron oxide nanoparticles (SPIONs) have offered tremendous potential in designing advanced magnetic resonance imaging (MRI) diagnostic agents, due to their unique physicochemical properties. There has been tremendous effort devoted in the recent past in developing synthetic methodologies through which their size, hydrodynamic radii, chemical composition and morphologies could be tailored at the nanoscale. This enables one to fine tune their magnetic behavior, and thus their MRI response. While novel synthetic strategies are being assembled for directing SPIONs to the diseased site as well as imparting them stealth and biocompatibility, it is also essential to evaluate their biological toxicological profiles. This review highlights recent advances that have been made in the synthesis of SPIONs, subsequent functionalization with desired entities, and a discussion on their use as MRI contrast agents in cardiovascular research.
Collapse
|
12
|
Psaltis PJ, Peterson KM, Xu R, Franchi F, Witt T, Chen IY, Lerman A, Simari RD, Gambhir SS, Rodriguez-Porcel M. Noninvasive monitoring of oxidative stress in transplanted mesenchymal stromal cells. JACC Cardiovasc Imaging 2013; 6:795-802. [PMID: 23643284 PMCID: PMC3710523 DOI: 10.1016/j.jcmg.2012.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/01/2012] [Accepted: 11/09/2012] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The goal of this study was to validate a pathway-specific reporter gene that could be used to noninvasively image the oxidative status of progenitor cells. BACKGROUND In cell therapy studies, reporter gene imaging plays a valuable role in the assessment of cell fate in living subjects. After myocardial injury, noxious stimuli in the host tissue confer oxidative stress to transplanted cells that may influence their survival and reparative function. METHODS Rat mesenchymal stromal cells (MSCs) were studied for phenotypic evidence of increased oxidative stress under in vitro stress. On the basis of their up-regulation of the pro-oxidant enzyme p67(phox) subunit of nicotinamide adenine dinucleotide phosphate (NAD[P]H oxidase p67(phox)), an oxidative stress sensor was constructed, comprising the firefly luciferase (Fluc) reporter gene driven by the NAD(P)H p67(phox) promoter. MSCs cotransfected with NAD(P)H p67(phox)-Fluc and a cell viability reporter gene (cytomegalovirus-Renilla luciferase) were studied under in vitro and in vivo pro-oxidant conditions. RESULTS After in vitro validation of the sensor during low-serum culture, transfected MSCs were transplanted into a rat model of myocardial ischemia/reperfusion (IR) and monitored by using bioluminescence imaging. Compared with sham controls (no IR), cardiac Fluc intensity was significantly higher in IR rats (3.5-fold at 6 h, 2.6-fold at 24 h, 5.4-fold at 48 h; p < 0.01), indicating increased cellular oxidative stress. This finding was corroborated by ex vivo luminometry after correcting for Renilla luciferase activity as a measure of viable MSC number (Fluc:Renilla luciferase ratio 0.011 ± 0.003 for sham vs. 0.026 ± 0.004 for IR at 48 h; p < 0.05). Furthermore, in IR animals that received MSCs preconditioned with an antioxidant agent (tempol), Fluc signal was strongly attenuated, substantiating the specificity of the oxidative stress sensor. CONCLUSIONS Pathway-specific reporter gene imaging allows assessment of changes in the oxidative status of MSCs after delivery to ischemic myocardium, providing a template to monitor key biological interactions between transplanted cells and their host environment in living subjects.
Collapse
Affiliation(s)
- Peter J Psaltis
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Karen M Peterson
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Rende Xu
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Federico Franchi
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Tyra Witt
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Ian Y Chen
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Amir Lerman
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Robert D Simari
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| | - Sanjiv S Gambhir
- Department of Radiology and Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA
| | - Martin Rodriguez-Porcel
- Division of Cardiovascular Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|