1
|
Regional Characterization of the Gottingen Minipig Brain by [18 F]FDG Dynamic Pet Modeling. J Med Biol Eng 2022. [DOI: 10.1007/s40846-022-00739-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Abstract
Purpose
To determine the best kinetic model to be applied on dynamic brain [18 F]FDG PET images by characterizing the regional brain glucose metabolism of normal Göttingen minipigs.
Methods
Nine Göttingen minipigs were scanned with a clinical PET/CT tomograph, starting from the injection of an intravenous bolus of [18 F]FDG, for about 25 min. Dynamic images were reconstructed and nine brain regions of interest (ROI), plus a vascular region, were defined and time-activity curves (TAC) were determined.
Three kinetic models were considered for fitting with experimental TACs: one-tissue compartment model 1TC, two-tissue irreversible compartment model 2TCi and two-tissue reversible model 2TC. Akaike Information Criterion was considered to evaluate the goodness of each model fitting. Regional and global kinetic parameter values were evaluated, in addition to the partition coefficient, net influx rate and retention index (RI).
Results
Both 2TCi and 2TC models turned out to be good choices for the next analysis. Parameter values were very similar between the different brain regions, with similar values to when the brain as a whole is considered (kinetic parameters mean values, from 2TCi model: K1 = 1.0 ml/g/min, k2 = 0.49 min− 1, k3 = 0.034 min− 1, K1/k2 = 2.14ml/g, Ki =0.069 ml/g/min; from 2TC model: K1 = 1.10 ml/g/min, k2 = 0.54 min− 1, k3 = 0.058 min− 1, k4 = 0.039 min− 1, K1/k2 = 2.18 ml/g, Ki = 0.10 ml/g/min; RI mean ± sd: 0.147 ± 0.037 min− 1), with the exception of the cerebellum (mean values from the 2TCi model: K1 = 0.52 ml/g/min, k2 = 0.56 min− 1, k3 = 0.025 min− 1, K1/k2 = 0.98ml/g, Ki=0.022 ml/g/min; from 2TC model: K1 = 0.54 ml/g/min, k2 = 0.61 min− 1, k3 = 0.044 min− 1, k4 = 0.038 min− 1, K1/k2 = 0.95ml/g, Ki=0.032 ml/g/min; RI mean ± sd: 0.071 ± 0.018 min− 1).
Conclusion
The two-tissue model is able to describe the regional brain metabolism in Göttingen minipigs. Compared to the 2TCi model, in the 2TC model the k4 micro-parameter was also evaluated. This led to adjustments of the other microparameters, especially k3 and consequently the net influx rate Ki. For healthy minipigs, the glucose metabolism was similar in all of the brain regions analyzed, with the exception of the cerebellum, where the FDG uptake was lower.
Collapse
|
2
|
Kapoor S, Kala D, Svoboda J, Daněk J, Faridová A, Brnoliaková Z, Mikulecká A, Folbergrová J, Otáhal J. The effect of sulforaphane on perinatal hypoxic-ischemic brain injury in rats. Physiol Res 2022; 71:401-411. [PMID: 35616041 DOI: 10.33549/physiolres.934878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Perinatal hypoxic-ischemic insult (HII) is one of the main devastating causes of morbidity and mortality in newborns. HII induces brain injury which evolves to neurological sequelae later in life. Hypothermia is the only therapeutic approach available capable of diminishing brain impairment after HII. Finding a novel therapeutic method to reduce the severity of brain injury and its consequences is critical in neonatology. The present paper aimed to evaluate the effect of sulforaphane (SFN) pre-treatment on glucose metabolism, neurodegeneration, and functional outcome at the acute, sub-acute, and sub-chronic time intervals in the experimental model of perinatal hypoxic-ischemic insult in rats. To estimate the effect of SFN on brain glucose uptake we have performed 18F-deoxyglucose (FDG) microCT/PET. The activity of FDG was determined in the hippocampus and sensorimotor cortex. Neurodegeneration was assessed by histological analysis of Nissl-stained brain sections. To investigate functional outcomes a battery of behavioral tests was employed. We have shown that although SFN possesses a protective effect on glucose uptake in the ischemic hippocampus 24 h and 1 week after HII, no effect has been observed in the motor cortex. We have further shown that the ischemic hippocampal formation tends to be thinner in HIE and SFN treatment tends to reverse this pattern. We have observed subtle chronic movement deficit after HII detected by ladder rung walking test with no protective effect of SFN. SFN should be thus considered as a potent neuroprotective drug with the capability to interfere with pathophysiological processes triggered by perinatal hypoxic-ischemic insult.
Collapse
Affiliation(s)
- S Kapoor
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic; Laboratory of Developmental Epileptology, Institute of Physiology of the Czech Academy of Sciences, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Kim D, Lee WJ, Lee HW, Kim BS, Woo SH, Yoon HJ. Application of 18F-FDG brain PET for survival prediction in a rat model of hanging-induced hypoxic brain injury. Ann Nucl Med 2022; 36:570-578. [PMID: 35380351 DOI: 10.1007/s12149-022-01738-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/13/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Accurate prediction of survival outcomes after hanging is a crucial and challenging issue in comatose survivors. In this preclinical study, we evaluated the potential utility of using brain glucose metabolism as measured by fluorine-18-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) for survival prediction in a rat model of hanging-induced hypoxic brain injury (HBI). METHODS HBI was induced by mechanical hanging using Sprague Dawley rats. 18F-FDG brain PET images were acquired in 26 HBI rats three hours post-injury (3 h post-injury) and 4 controls. During the 1 month follow-up period, HBI rats were further classified as survivors (n = 15) and nonsurvivors (n = 11). Between-group regional (standardized uptake values normalized to the reference whole brain = SUVRWB, cerebellum = SUVRCB, and pons = SUVRpons) and voxel-based analyses were performed. The prognostic value of the SUVR was tested for overall survival (OS). In addition, diffusion-weighted imaging (DWI) was performed in 2 controls and 5 HBI rats (3 survivors, 2 nonsurvivors, 3 h post), and an apparent diffusion coefficient (ADC) map was generated. RESULTS The nonsurvivor group showed a significantly lower SUVRWB, SUVRCB, and SUVRpons of the cerebral cortices than the survivor group (all p < 0.001). Voxel-based comparison also demonstrated significant reduction in the nonsurvivor group compared with the survivor group (family-wise error-corrected p < 0.05). However, there was no significant difference between controls and survivors. Of 3 reference regions, the SUVRpons demonstrated the largest difference between the survivor and nonsurvivor groups. With an optimal cutoff value of 1.12 (AUC 0.952, p < 0.001), the SUVRpons predicted survival outcomes with a sensitivity of 81.8% and specificity of 100%. The OS of the low SUVRpons group was significantly shorter than that the high SUVRpons group (p < 0.001). The mean ADC values of each brain region showed no significant difference according to survival outcomes. CONCLUSIONS These results suggest the potential utility of 18F-FDG brain PET for predicting survival in hanging-induced HBI.
Collapse
Affiliation(s)
- Daehee Kim
- Department of Emergency Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, Incheon, Korea
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Woon Jeong Lee
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Won Lee
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Bom Sahn Kim
- Department of Nuclear Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Seon Hee Woo
- Department of Emergency Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, College of Medicine, Ewha Womans University, Seoul, Korea.
| |
Collapse
|
4
|
Henriksen AC, Lonsdale MN, Fuglø D, Kondziella D, Nersesjan V, Marner L. Non-invasive quantification of cerebral glucose metabolism using Gjedde-Patlak plot and image-derived input function from the aorta. Neuroimage 2022; 253:119079. [PMID: 35276368 DOI: 10.1016/j.neuroimage.2022.119079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION We aimed at evaluating a Gjedde-Patlak plot and non-invasive image-derived input functions (IDIF) from the aorta to quantify cerebral glucose metabolic rate (CMRglc) in comparison to the reference standard based on sampling the arterial input function (AIF). METHOD Six healthy subjects received 200 MBq [18F]FDG simultaneously with the initiation of a three-part dynamic PET recording consisting of a 15 min-recording of the aorta, a 40 min-recording of the brain and finally 2 min-recording of the aorta. Simultaneously, the arterial 18F concentration was measured via arterial cannulation. Regions of interest were drawn in the aorta and the brain and time-activity curves extracted. The IDIF was obtained by fitting a triple exponential function to the aorta time-activity curve after the initial peak including the late aorta frame, thereby interpolating the arterial blood activity concentration during the brain scan. CMRglc was calculated from Gjedde-Patlak plots using AIF and IDIF, respectively and the predictive value was examined. Results from frontal cortex, insula, hippocampus and cerebellum were compared by paired t-test and agreement between the methods was analyzed by Bland-Altman plot statistics. RESULTS There was a strong linear relationship and an excellent agreement between the methods (mean±SD of CMRglcIDIF (μmol 100 g-1 min-1), mean difference, mean relative difference, 95% limits of agreement): frontal cortex: 30.8 ± 3.3, 0.5, 2.2%, [-1,6:2.5], insula: 25.4 ± 2.2, 0.4, 2.4%, [-1.4:2.2], hippocampus: 16.9 ± 1.2, 0.4, 3.8%, [-1.1:2.0] and cerebellum: 23.4 ± 1.9, 0.5, 3.1%, [-1.4:2.5]). CONCLUSION We found excellent agreement between CMRglc obtained with an IDIF from the aorta and the reference standard with AIF. A non-invasive three-part dynamic [18F]FDG PET recording is feasible as a non-invasive alternative for reliable quantification of cerebral glucose metabolism in all scanner systems. This is useful in patients with presumed global cerebral changes owing to systemic disease or for the monitoring of treatment effects.
Collapse
Affiliation(s)
| | - Markus Nowak Lonsdale
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Bispebjerg, Denmark
| | - Dan Fuglø
- Department of Nuclear Medicine, Copenhagen University Hospital, Herlev, Copenhagen, Denmark
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vardan Nersesjan
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital, Bispebjerg, Denmark.
| |
Collapse
|
5
|
Early Post-ischemic Brain Glucose Metabolism Is Dependent on Function of TLR2: a Study Using [ 18F]F-FDG PET-CT in a Mouse Model of Cardiac Arrest and Cardiopulmonary Resuscitation. Mol Imaging Biol 2021; 24:466-478. [PMID: 34779968 PMCID: PMC8592082 DOI: 10.1007/s11307-021-01677-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022]
Abstract
Purpose The mammalian brain glucose metabolism is tightly and sensitively regulated. An ischemic brain injury caused by cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) affects cerebral function and presumably also glucose metabolism. The majority of patients who survive CA suffer from cognitive deficits and physical disabilities. Toll-like receptor 2 (TLR2) plays a crucial role in inflammatory response in ischemia and reperfusion (I/R). Since deficiency of TLR2 was associated with increased survival after CA-CPR, in this study, glucose metabolism was measured using non-invasive [18F]F-FDG PET-CT imaging before and early after CA-CPR in a mouse model comparing wild-type (WT) and TLR2-deficient (TLR2−/−) mice. The investigation will evaluate whether FDG-PET could be useful as an additional methodology in assessing prognosis. Procedures Two PET-CT scans using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]F-FDG) tracer were carried out to measure dynamic glucose metabolism before and early after CPR. To achieve this, anesthetized and ventilated adult female WT and TLR2−/− mice were scanned in PET-CT. After recovery from the baseline scan, the same animals underwent 10-min KCL-induced CA followed by CPR. Approximately 90 min after CA, measurements of [18F]F-FDG uptake for 60 min were started. The [18F]F-FDG standardized uptake values (SUVs) were calculated using PMOD-Software on fused FDG-PET-CT images with the included 3D Mirrione-Mouse-Brain-Atlas. Results The absolute SUVmean of glucose in the whole brain of WT mice was increased about 25.6% after CA-CPR. In contrast, the absolute glucose SUV in the whole brain of TLR2−/− mice was not significantly different between baseline and measurements post CA-CPR. In comparison, baseline measurements of both mouse strains show a highly significant difference with regard to the absolute glucose SUV in the whole brain. Values of TLR2−/− mice revealed a 34.6% higher glucose uptake. Conclusions The altered mouse strains presented a different pattern in glucose uptake under normal and ischemic conditions, whereby the post-ischemic differences in glucose metabolism were associated with the function of key immune factor TLR2. There is evidence for using early FDG-PET-CT as an additional diagnostic tool after resuscitation. Further studies are needed to use PET-CT in predicting neurological outcomes.
Collapse
|
6
|
Prognostic value of 18F-FDG brain PET as an early indicator of neurological outcomes in a rat model of post-cardiac arrest syndrome. Sci Rep 2019; 9:14798. [PMID: 31616019 PMCID: PMC6794298 DOI: 10.1038/s41598-019-51327-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/29/2019] [Indexed: 11/08/2022] Open
Abstract
Predicting neurological outcomes in patients with post-cardiac arrest syndrome (PCAS) is crucial for identifying those who will benefit from intensive care. We evaluated the predictive value of 18F-FDG PET. PCAS was induced in Sprague Dawley rats. Baseline and post-3-hour images were acquired. Standardized uptake value (SUV) changes before and after PCAS induction (SUVdelta) and SUV ratios (SUVR) of regional SUV normalized to the whole brain SUV were obtained. The Morris water maze (MWM) test was performed after 2 weeks to evaluate neurological outcomes and rats were classified into two groups based on the result. Of 18 PCAS rats, 8 were classified into the good outcome group. The SUVdelta of forebrain regions were significantly decreased in good outcome group (p < 0.05), while the SUVdelta of hindbrain regions were not significantly different according to outcomes. The SUVR of forebrain regions were significantly higher and the SUVR of hindbrain regions were significantly lower in good outcome group (p < 0.05). Forebrain-to-hindbrain ratio predicted a good neurological outcome with a sensitivity of 90% and specificity of 100% using an optimal cutoff value of 1.22 (AUC 0.969, p < 0.05). These results suggest the potential utility of 18F-FDG PET in the early prediction of neurological outcomes in PCAS.
Collapse
|
7
|
de Lange C, Solberg R, Holtedahl JE, Tulipan A, Barlinn J, Trigg W, Wickstrøm T, Saugstad OD, Malinen E, Revheim ME. Dynamic TSPO-PET for assessing early effects of cerebral hypoxia and resuscitation in new born pigs. Nucl Med Biol 2018; 66:49-57. [PMID: 30257223 DOI: 10.1016/j.nucmedbio.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 07/27/2018] [Accepted: 08/19/2018] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Inflammation associated with microglial activation may be an early prognostic indicator of perinatal hypoxic ischemic injury, where translocator protein (TSPO) is a known inflammatory biomarker. This piglet study used dynamic TSPO-PET with [18F]GE180 to evaluate if microglial activation after global perinatal hypoxic injury could be detected. METHODS New born anesthetized pigs (n = 14) underwent hypoxia with fraction of inspired oxygen (FiO2)0.08 until base excess -20 mmol/L and/or a mean arterial blood pressure decrease to 20 mm Hg, followed by resuscitation with FiO2 0.21 or 1.0. Three piglets served as controls and one had intracranial injection of lipopolysaccharide (LPS). Whole body [18F]GE180 Positron emission tomography-computed tomography (PET-CT) was performed repeatedly up to 32 h after hypoxia and resuscitation. Volumes of interest were traced in the basal ganglia, cerebellum and liver using MRI as anatomic correlation. Standardized uptake values (SUVs) were measured at baseline and four time-points, quantifying microglial activity over time. Statistical analysis used Mann Whitney- and Wilcoxon rank test with significance value set to p < 0.05. RESULTS At baseline (n = 5), mean SUVs ±1 standard deviation were 0.43 ± 0.10 and 1.71 ± 0.62 in brain and liver respectively without significant increase after hypoxia at the four time-points (n = 5-13/time point). Succeeding LPS injection, SUV increased 80% from baseline values. CONCLUSIONS Cerebral inflammatory response caused by severe asphyxia was not possible to detect with [18F]GE180 PET CT the first 32 h after hypoxia and only sparse hepatic uptake was revealed. ADVANCES IN KNOWLEDGE Early microglial activation as indicator of perinatal hypoxic ischemic injury was not detectable by TSPO-PET with [18F]GE180. IMPLICATIONS FOR PATIENT CARE TSPO-PET with [18F]GE180 might not be suitable for early detection of perinatal hypoxic ischemic brain injury.
Collapse
Affiliation(s)
- Charlotte de Lange
- Div. of Radiology and Nuclear Medicine, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway.
| | - Rønnaug Solberg
- Dept. of Paediatric Research, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway; Dept. of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jon Erik Holtedahl
- Dept. of Medical Physics, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway
| | - Andreas Tulipan
- Div. of Radiology and Nuclear Medicine, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway
| | - Jon Barlinn
- Dept. of Pediatrics, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway
| | | | | | - Ola Didrik Saugstad
- Dept. of Paediatric Research, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway; Faculty of Medicine, University of Oslo, PO Box1078, Blindern, N-0316 Oslo, Norway
| | - Eirik Malinen
- Dept. of Medical Physics, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway; Dept. of Physics, University of Oslo, P.O Box 1048, Blindern, N-0316 Oslo, Norway
| | - Mona Elisabeth Revheim
- Div. of Radiology and Nuclear Medicine, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway; Faculty of Medicine, University of Oslo, PO Box1078, Blindern, N-0316 Oslo, Norway
| |
Collapse
|
8
|
Regional Differences in Cerebral Glucose Metabolism After Cardiac Arrest and Resuscitation in Rats Using [18F]FDG Positron Emission Tomography and Autoradiography. Neurocrit Care 2017; 28:370-378. [DOI: 10.1007/s12028-017-0445-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Li YQ, Liao XX, Lu JH, Liu R, Hu CL, Dai G, Zhang XS, Shi XC, Li X. Assessing the early changes of cerebral glucose metabolism via dynamic (18)FDG-PET/CT during cardiac arrest. Metab Brain Dis 2015; 30:969-77. [PMID: 25703241 DOI: 10.1007/s11011-015-9658-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 02/10/2015] [Indexed: 12/31/2022]
Abstract
To study the changes of cerebral glucose metabolism (CGM) during the phase of return of spontaneous circulation (ROSC) after cardiac arrest (CA), we used 18-fluorodeoxyglucose-positron emission tomography/computed tomography ((18)FDG-PET/CT) to measure the CGM changes in six beagle canine models. After the baseline (18)FDG-PET/CT was recorded, ventricular fibrillation (VF) was induced for 6 min, followed by close-chest cardiopulmonary resuscitation (CPR) in conjunction with intravenous (IV) administration of epinephrine and external defibrillator shocks until ROSC was achieved, within 30 min. The (18)FDG was recorded prior to intravenous administration at 0 h (baseline), and at 4, 24, and 48 h after CA with ROSC. We evaluated the expression of two key control factors in canine CGM, hexokinase I (HXK I) and HXK II, by immunohistochemistry at the four above mentioned time points. Electrically induced VF of 6 min duration was successfully induced in the dogs. Resuscitation was then performed to maintain blood pressure stability. Serial (18)FDG-PET/CT scans found that the CGM decreased at 4 h after ROSC and remained lower than the baseline even at 48 h. The expression of HXK I and II levels were consistent with the changes in CGM. These data from our present work showed that (18)FDG-PET/CT imaging can be used to detect decreased CGM during CA and was consistent with the results of CMRgl. Furthermore, there were also concomitant changes in the expression of HXK I and HXK II. The decrease in CGM may be an early sign of hyperacute global cerebral ischemia.
Collapse
Affiliation(s)
- Ying-Qing Li
- Emergency Department of Guangzhou First People's Hospital, Guangzhou Medical University, Panfu Road 1, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|