1
|
Kong Y, Cao L, Xie F, Wang X, Zuo C, Shi K, Rominger A, Huang Q, Xiao J, Jiang D, Guan Y, Ni R. Reduced SV2A and GABA A receptor levels in the brains of type 2 diabetic rats revealed by [ 18F]SDM-8 and [ 18F]flumazenil PET. Biomed Pharmacother 2024; 172:116252. [PMID: 38325265 DOI: 10.1016/j.biopha.2024.116252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) is associated with a greater risk of Alzheimer's disease. Synaptic impairment and protein aggregates have been reported in the brains of T2DM models. Here, we assessed whether neurodegenerative changes in synaptic vesicle 2 A (SV2A), γ-aminobutyric acid type A (GABAA) receptor, amyloid-β, tau and receptor for advanced glycosylation end product (RAGE) can be detected in vivo in T2DM rats. METHODS Positron emission tomography (PET) using [18F]SDM-8 (SV2A), [18F]flumazenil (GABAA receptor), [18F]florbetapir (amyloid-β), [18F]PM-PBB3 (tau), and [18F]FPS-ZM1 (RAGE) was carried out in 12-month-old diabetic Zucker diabetic fatty (ZDF) and SpragueDawley (SD) rats. Immunofluorescence staining, Thioflavin S staining, proteomic profiling and pathway analysis were performed on the brain tissues of ZDF and SD rats. RESULTS Reduced cortical [18F]SDM-8 uptake and cortical and hippocampal [18F]flumazenil uptake were observed in 12-month-old ZDF rats compared to SD rats. The regional uptake of [18F]florbetapir and [18F]PM-PBB3 was comparable in the brains of 12-month-old ZDF and SD rats. Immunofluorescence staining revealed Thioflavin S-negative, phospho-tau-positive inclusions in the cortex and hypothalamus in the brains of ZDF rats and the absence of amyloid-beta deposits. The level of GABAA receptors was lower in the cortex of ZDF rats than SD rats. Proteomic analysis further demonstrated that, compared with SD rats, synaptic-related proteins and pathways were downregulated in the hippocampus of ZDF rats. CONCLUSION These findings provide in vivo evidence for regional reductions in SV2A and GABAA receptor levels in the brains of aged T2DM ZDF rats.
Collapse
Affiliation(s)
- Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lei Cao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China; Inst. Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Fang Xie
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiuzhe Wang
- Dept. Neurology, Shanghai Sixth People's Hospital affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuantao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Kuangyu Shi
- Dept. Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Axel Rominger
- Dept. Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Qi Huang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianfei Xiao
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Donglang Jiang
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ruiqing Ni
- Inst. Regenerative Medicine, University of Zurich, Zurich, Switzerland; Dept. Nuclear Medicine, Inselspital, Bern University Hospital, Bern, Switzerland; Inst. Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
3
|
Dhapola R, Kumari S, Sharma P, HariKrishnaReddy D. Insight into the emerging and common experimental in-vivo models of Alzheimer's disease. Lab Anim Res 2023; 39:33. [PMID: 38082453 PMCID: PMC10712122 DOI: 10.1186/s42826-023-00184-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 05/30/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, rapidly progressing neurodegenerative disorder. As the exact cause of the disease is still unclear, the drug development is very challenging. This review encompasses the commonly used AD models involving various chemicals, heavy metals and endogenous substances induced models and the transgenic models. It also provides insight into the reliable emerging models of AD that may overcome the shortcomings associated with available models. Chemicals like streptozotocin, scopolamine, colchicine and okadaic acid render the animal susceptible to neuroinflammation and oxidative stress induced neurodegeneration along with amyloid-β deposition and tau hyperphosphorylation. Similarly, endogenous substances like acrolein and amyloid-β 1-42 are efficient in inducing the major pathologies of AD. Heavy metals like aluminum and fluoride and mixture of these have been reported to induce neurotoxicity therefore are used as animal models for AD. Transgenic models developed as a result of knock-in or knock-out of certain genes associated with AD including PDAPP, APP23, Tg2576, APP/PS1, 3 × Tg and 5 × FAD have also been incorporated in this study. Further, emerging and advanced pathomimetic models of AD are provided particular interest here which will add on to the current knowledge of animal models and may aid in the drug development process and deepen our understanding related to AD pathogenesis. These newly discovered models include oAβ25-35 model, transgenic model expressing 82-kDa ChAT, oDGal mouse and APP knock-in rat. This study may aid in the selection of suitable model for development of novel potent therapeutics and for exploring detailed pathogenic mechanism of AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Prajjwal Sharma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Dibbanti HariKrishnaReddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
4
|
Finze A, Biechele G, Rauchmann BS, Franzmeier N, Palleis C, Katzdobler S, Weidinger E, Guersel S, Schuster S, Harris S, Schmitt J, Beyer L, Gnörich J, Lindner S, Albert NL, Wetzel CH, Rupprecht R, Rominger A, Danek A, Burow L, Kurz C, Tato M, Utecht J, Papazov B, Zaganjori M, Trappmann LK, Goldhardt O, Grimmer T, Haeckert J, Janowitz D, Buerger K, Keeser D, Stoecklein S, Dietrich O, Morenas-Rodriguez E, Barthel H, Sabri O, Bartenstein P, Simons M, Haass C, Höglinger GU, Levin J, Perneczky R, Brendel M. Individual regional associations between Aβ-, tau- and neurodegeneration (ATN) with microglial activation in patients with primary and secondary tauopathies. Mol Psychiatry 2023; 28:4438-4450. [PMID: 37495886 PMCID: PMC10827660 DOI: 10.1038/s41380-023-02188-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/28/2023]
Abstract
β-amyloid (Aβ) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, Aβ-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of Aβ (A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional Aβ (AD: βT = 0.412 ± 0.196 vs. βA = 0.142 ± 0.123, p < 0.001; AD-CBS: βT = 0.385 ± 0.176 vs. βA = 0.131 ± 0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (βT = 0.418 ± 0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and Aβ related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases.
Collapse
Grants
- EXC 2145 SyNergy - ID 390857198 Deutsche Forschungsgemeinschaft (German Research Foundation)
- EXC 2155 - project number 39087428 Deutsche Forschungsgemeinschaft (German Research Foundation)
- HO2402/18-1 Deutsche Forschungsgemeinschaft (German Research Foundation)
- FOR-2858 project numbers 403161218, 421887978 and 422188432 Deutsche Forschungsgemeinschaft (German Research Foundation)
- 19063p Alzheimer Forschung Initiative (Alzheimer Forschung Initiative e.V.)
- GUH was additionally funded by the German Federal Ministry of Education and Research (BMBF, 01KU1403A EpiPD; 01EK1605A HitTau; 01DH18025 TauTherapy); European Joint Programme on Rare Diseases (Improve-PSP); VolkswagenStiftung (Niedersächsisches Vorab); Petermax-Müller Foundation (Etiology and Therapy of Synucleinopathies and Tauopathies). The Lüneburg Heritage and Friedrich-Baur-Stiftung have supported the work of CP. The Hirnliga e.V. supported recruitment and imaging of the ActiGliA cohort (Manfred-Strohscheer-Stiftung) by a grant to BSR and MB.
- TG received consulting fees from AbbVie, Alector, Anavex, Biogen, Eli Lilly, Functional Neuromodulation, Grifols, Iqvia, Noselab, Novo Nordisk, NuiCare, Orphanzyme, Roche Diagnostics, Roche Pharma, UCB, and Vivoryon; lecture fees from Grifols, Medical Tribune, Novo Nordisk, Roche Pharma, and Schwabe; and has received grants to his institution from Roche Diagnostics.
- CH collaborates with Denali Therapeutics. CH is chief advisor of ISAR Bioscience and a member of the advisory board of AviadoBio.
- Günter Höglinger participated in industry-sponsored research projects from Abbvie, Biogen, Biohaven, Novartis, Roche, Sanofi, UCB; serves as a consultant for Abbvie, Alzprotect, Aprineua, Asceneuron, Bial, Biogen, Biohaven, Kyowa Kirin, Lundbeck, Novartis, Retrotope, Roche, Sanofi, UCB; received honoraria for scientific presentations from Abbvie, Bayer Vital, Bial, Biogen, Bristol Myers Squibb, Kyowa Kirin, Roche, Teva, UCB, Zambon; holds a patent on Treatment of Synucleinopathies. United States Patent No.: US 10,918,628 B2: EP 17 787 904.6-1109 / 3 525 788; received publication royalties from Academic Press, Kohlhammer, and Thieme.
Collapse
Affiliation(s)
- Anika Finze
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Gloria Biechele
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Carla Palleis
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sabrina Katzdobler
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Endy Weidinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Selim Guersel
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Schuster
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Harris
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julia Schmitt
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Johannes Gnörich
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University Regensburg, Regensburg, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, University Hospital, Inselspital Bern, Bern, Switzerland
| | - Adrian Danek
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lena Burow
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Carolin Kurz
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maia Tato
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julia Utecht
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Boris Papazov
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, Munich, Germany
| | - Mirlind Zaganjori
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lena-Katharina Trappmann
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Jan Haeckert
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, University of Augsburg, Augsburg, Germany
| | | | | | - Daniel Keeser
- NeuroImaging Core Unit Munich (NICUM), LMU University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sophia Stoecklein
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Olaf Dietrich
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | | | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Mikael Simons
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute of Neuronal Cell Biology, Technical University of Munich, Munich, Germany
| | - Christian Haass
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Günter U Höglinger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Johannes Levin
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
- Sheffield Institute for Translational Neurosciences (SITraN), University of Sheffield, Sheffield, UK
| | - Matthias Brendel
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
| |
Collapse
|
5
|
Wang R, Pang SC, Li JY, Li CL, Liu JM, Wang YM, Chen ML, Li YB. A review of the current research on in vivo and in vitro detection for alpha-synuclein: a biomarker of Parkinson's disease. Anal Bioanal Chem 2023; 415:1589-1605. [PMID: 36688984 DOI: 10.1007/s00216-023-04520-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/24/2023]
Abstract
Parkinson's disease is a health-threatening neurodegenerative disease of the elderly with clinical manifestations of motor and non-motor deficits such as tremor palsy and loss of smell. Alpha-synuclein (α-Syn) is the pathological basis of PD, it can abnormally aggregate into insoluble forms such as oligomers, fibrils, and plaques, causing degeneration of nigrostriatal dopaminergic neurons in the substantia nigra in the patient's brain and the formation of Lewy bodies (LBs) and Lewy neuritis (LN) inclusions. As a result, achieving α-Syn aggregate detection in the early stages of PD can effectively stop or delay the progression of the disease. In this paper, we provide a brief overview and analysis of the molecular structures and α-Syn in vivo and in vitro detection methods, such as mass spectrometry, antigen-antibody recognition, electrochemical sensors, and imaging techniques, intending to provide more technological support for detecting α-Syn early in the disease and intervening in the progression of Parkinson's disease.
Collapse
Affiliation(s)
- Rui Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.,College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shu-Chao Pang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Jing-Ya Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Chan-Lian Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jun-Miao Liu
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yu-Ming Wang
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mei-Ling Chen
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yu-Bo Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
6
|
Völter F, Beyer L, Eckenweber F, Scheifele M, Bui N, Patt M, Barthel H, Katzdobler S, Palleis C, Franzmeier N, Levin J, Perneczky R, Rauchmann BS, Sabri O, Hong J, Cumming P, Rominger A, Shi K, Bartenstein P, Brendel M. Assessment of perfusion deficit with early phases of [ 18F]PI-2620 tau-PET versus [ 18F]flutemetamol-amyloid-PET recordings. Eur J Nucl Med Mol Imaging 2023; 50:1384-1394. [PMID: 36572740 PMCID: PMC10027797 DOI: 10.1007/s00259-022-06087-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/11/2022] [Indexed: 12/28/2022]
Abstract
PURPOSE Characteristic features of amyloid-PET (A), tau-PET (T), and FDG-PET (N) can serve for the A/T/N classification of neurodegenerative diseases. Recent studies showed that the early, perfusion-weighted phases of amyloid- or tau-PET recordings serve to detect cerebrometabolic deficits equally to FDG-PET, therefore providing a surrogate of neuronal injury. As such, two channels of diagnostic information can be obtained in the setting of a single PET scan. However, there has hitherto been no comparison of early-phase amyloid- and tau-PET as surrogates for deficits in perfusion/metabolism. Therefore, we undertook to compare [18F]flutemetamol-amyloid-PET and [18F]PI-2620 tau-PET as "one-stop shop" dual purpose tracers for the detection of neurodegenerative disease. METHODS We obtained early-phase PET recordings with [18F]PI-2620 (0.5-2.5 min p.i.) and [18F]flutemetamol (0-10 min p.i.) in 64 patients with suspected neurodegenerative disease. We contrasted global mean normalized images (SUVr) in the patients with a normal cohort of 15 volunteers without evidence of increased pathology to β-amyloid- and tau-PET examinations. Regional group differences of tracer uptake (z-scores) of 246 Brainnetome volumes of interest were calculated for both tracers, and the correlations of the z-scores were evaluated using Pearson's correlation coefficient. Lobar compartments, regions with significant neuronal injury (z-scores < - 3), and patients with different neurodegenerative disease entities (e.g., Alzheimer's disease or 4R-tauopathies) served for subgroup analysis. Additionally, we used partial regression to correlate regional perfusion alterations with clinical scores in cognition tests. RESULTS The z-scores of perfusion-weighted images of both tracers showed high correlations across the brain, especially in the frontal and parietal lobes, which were the brain regions with pronounced perfusion deficit in the patient group (R = 0.83 ± 0.08; range, 0.61-0.95). Z-scores of individual patients correlated well by region (R = 0.57 ± 0.15; range, 0.16-0.90), notably when significant perfusion deficits were present (R = 0.66 ± 0.15; range, 0.28-0.90). CONCLUSION The early perfusion phases of [18F]PI-2620 tau- and [18F]flutemetamol-amyloid-PET are roughly equivalent indices of perfusion defect indicative of regional and lobar neuronal injury in patients with various neurodegenerative diseases. As such, either tracer may serve for two diagnostic channels by assessment of amyloid/tau status and neuronal activity.
Collapse
Affiliation(s)
- Friederike Völter
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Florian Eckenweber
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Maximilian Scheifele
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Ngoc Bui
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Carla Palleis
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | | | - Johannes Levin
- Department of Neurology, University Hospital of Munich, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | | | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Jimin Hong
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Axel Rominger
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
7
|
Siafaka PI, Okur ME, Erim PD, Çağlar EŞ, Özgenç E, Gündoğdu E, Köprülü REP, Karantas ID, Üstündağ Okur N. Protein and Gene Delivery Systems for Neurodegenerative Disorders: Where Do We Stand Today? Pharmaceutics 2022; 14:2425. [PMID: 36365243 PMCID: PMC9698227 DOI: 10.3390/pharmaceutics14112425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 12/24/2023] Open
Abstract
It has been estimated that every year, millions of people are affected by neurodegenerative disorders, which complicate their lives and their caregivers' lives. To date, there has not been an approved pharmacological approach to provide the complete treatment of neurodegenerative disorders. The only available drugs may only relieve the symptoms or slow down the progression of the disease. The absence of any treatment is quite rational given that neurodegeneration occurs by the progressive loss of the function or structure of the nerve cells of the brain or the peripheral nervous system, which eventually leads to their death either by apoptosis or necrotic cell death. According to a recent study, even though adult brain cells are injured, they can revert to an embryonic state, which may help to restore their function. These interesting findings might open a new path for the development of more efficient therapeutic strategies to combat devastating neurodegenerative disorders. Gene and protein therapies have emerged as a rapidly growing field for various disorders, especially neurodegenerative diseases. Despite these promising therapies, the complete treatment of neurodegenerative disorders has not yet been achieved. Therefore, the aim of this review is to address the most up-to-date data for neurodegenerative diseases, but most importantly, to summarize the available delivery systems incorporating proteins, peptides, and genes that can potentially target such diseases and pass into the blood-brain barrier. The authors highlight the advancements, at present, on delivery based on the carrier, i.e., lipid, polymeric, and inorganic, as well as the recent studies on radiopharmaceutical theranostics.
Collapse
Affiliation(s)
| | - Mehmet Evren Okur
- Department of Pharmacology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| | - Pelin Dilsiz Erim
- Department of Physiology, School of Medicine, Regenerative and Restorative Medical Research Center (REMER), Istanbul Medipol University, Istanbul 34810, Turkey
- Faculty of Pharmacy, Altınbaş University, Istanbul 34217, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| | - Emre Özgenç
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Evren Gündoğdu
- Department of Radiopharmacy, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Rabia Edibe Parlar Köprülü
- Department of Medical Pharmacology, Institute of Health Sciences, İstanbul Medipol University, Istanbul 34810, Turkey
| | | | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul 34668, Turkey
| |
Collapse
|
8
|
Nakagawa K, Watanabe H, Kaide S, Ono M. Structure-Activity Relationships of Styrylquinoline and Styrylquinoxaline Derivatives as α-Synuclein Imaging Probes. ACS Med Chem Lett 2022; 13:1598-1605. [PMID: 36262393 PMCID: PMC9575165 DOI: 10.1021/acsmedchemlett.2c00279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Synucleinopathies are characterized by the deposition of α-synuclein (α-syn) aggregates before the onset of clinical symptoms. Therefore, in vivo imaging of α-syn may contribute to early diagnosis of these diseases and has attracted much attention in recent years. However, no clinically useful probes have been reported. In the present study, 16 quinoline/quinoxaline derivatives with different styryl and fluorine groups were evaluated in order to develop α-syn imaging probes. Among them, SQ3, which is a quinoline analogue with a p-(dimethylamino)styryl group and fluoroethoxy group at the 2- and 7- positions of the skeleton, displayed moderate selectivity for α-syn aggregates over β-amyloid (Aβ) aggregates (K i = 230 nM), while maintaining high binding affinity for α-syn aggregates (K i = 39.3 nM). In a biodistribution study, [18F]SQ3 exhibited high uptake (2.08% ID/g at 2 min after intravenous injection) into a normal mouse brain. Taken together, we demonstrate that [18F]SQ3 has basic properties as a lead compound for the development of a useful α-syn imaging probe.
Collapse
Affiliation(s)
- Kohei Nakagawa
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Sho Kaide
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional
Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
9
|
Ni R, Nitsch RM. Recent Developments in Positron Emission Tomography Tracers for Proteinopathies Imaging in Dementia. Front Aging Neurosci 2022; 13:751897. [PMID: 35046791 PMCID: PMC8761855 DOI: 10.3389/fnagi.2021.751897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022] Open
Abstract
An early detection and intervention for dementia represent tremendous unmet clinical needs and priorities in society. A shared feature of neurodegenerative diseases causing dementia is the abnormal accumulation and spreading of pathological protein aggregates, which affect the selective vulnerable circuit in a disease-specific pattern. The advancement in positron emission tomography (PET) biomarkers has accelerated the understanding of the disease mechanism and development of therapeutics for Alzheimer's disease and Parkinson's disease. The clinical utility of amyloid-β PET and the clinical validity of tau PET as diagnostic biomarker for Alzheimer's disease continuum have been demonstrated. The inclusion of biomarkers in the diagnostic criteria has introduced a paradigm shift that facilitated the early and differential disease diagnosis and impacted on the clinical management. Application of disease-modifying therapy likely requires screening of patients with molecular evidence of pathological accumulation and monitoring of treatment effect assisted with biomarkers. There is currently still a gap in specific 4-repeat tau imaging probes for 4-repeat tauopathies and α-synuclein imaging probes for Parkinson's disease and dementia with Lewy body. In this review, we focused on recent development in molecular imaging biomarkers for assisting the early diagnosis of proteinopathies (i.e., amyloid-β, tau, and α-synuclein) in dementia and discussed future perspectives.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH & University of Zurich, Zurich, Switzerland
| | - Roger M. Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Ni R. Positron Emission Tomography in Animal Models of Alzheimer's Disease Amyloidosis: Translational Implications. Pharmaceuticals (Basel) 2021; 14:1179. [PMID: 34832961 PMCID: PMC8623863 DOI: 10.3390/ph14111179] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Animal models of Alzheimer's disease amyloidosis that recapitulate cerebral amyloid-beta pathology have been widely used in preclinical research and have greatly enabled the mechanistic understanding of Alzheimer's disease and the development of therapeutics. Comprehensive deep phenotyping of the pathophysiological and biochemical features in these animal models is essential. Recent advances in positron emission tomography have allowed the non-invasive visualization of the alterations in the brain of animal models and in patients with Alzheimer's disease. These tools have facilitated our understanding of disease mechanisms and provided longitudinal monitoring of treatment effects in animal models of Alzheimer's disease amyloidosis. In this review, we focus on recent positron emission tomography studies of cerebral amyloid-beta accumulation, hypoglucose metabolism, synaptic and neurotransmitter receptor deficits (cholinergic and glutamatergic system), blood-brain barrier impairment, and neuroinflammation (microgliosis and astrocytosis) in animal models of Alzheimer's disease amyloidosis. We further propose the emerging targets and tracers for reflecting the pathophysiological changes and discuss outstanding challenges in disease animal models and future outlook in the on-chip characterization of imaging biomarkers towards clinical translation.
Collapse
Affiliation(s)
- Ruiqing Ni
- Institute for Biomedical Engineering, ETH & University of Zurich, 8093 Zurich, Switzerland;
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| |
Collapse
|
11
|
Comprehensive review on design perspective of PET ligands based on β-amyloids, tau and neuroinflammation for diagnostic intervention of Alzheimer’s disease. Clin Transl Imaging 2021. [DOI: 10.1007/s40336-021-00410-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Abstract
Positron emission tomography (PET) is a non-invasive imaging technology employed to describe metabolic, physiological, and biochemical processes in vivo. These include receptor availability, metabolic changes, neurotransmitter release, and alterations of gene expression in the brain. Since the introduction of dedicated small-animal PET systems along with the development of many novel PET imaging probes, the number of PET studies using rats and mice in basic biomedical research tremendously increased over the last decade. This article reviews challenges and advances of quantitative rodent brain imaging to make the readers aware of its physical limitations, as well as to inspire them for its potential applications in preclinical research. In the first section, we briefly discuss the limitations of small-animal PET systems in terms of spatial resolution and sensitivity and point to possible improvements in detector development. In addition, different acquisition and post-processing methods used in rodent PET studies are summarized. We further discuss factors influencing the test-retest variability in small-animal PET studies, e.g., different receptor quantification methodologies which have been mainly translated from human to rodent receptor studies to determine the binding potential and changes of receptor availability and radioligand affinity. We further review different kinetic modeling approaches to obtain quantitative binding data in rodents and PET studies focusing on the quantification of endogenous neurotransmitter release using pharmacological interventions. While several studies have focused on the dopamine system due to the availability of several PET tracers which are sensitive to dopamine release, other neurotransmitter systems have become more and more into focus and are described in this review, as well. We further provide an overview of latest genome engineering technologies, including the CRISPR/Cas9 and DREADD systems that may advance our understanding of brain disorders and function and how imaging has been successfully applied to animal models of human brain disorders. Finally, we review the strengths and opportunities of simultaneous PET/magnetic resonance imaging systems to study drug-receptor interactions and challenges for the translation of PET results from bench to bedside.
Collapse
|
13
|
Uzuegbunam BC, Librizzi D, Hooshyar Yousefi B. PET Radiopharmaceuticals for Alzheimer's Disease and Parkinson's Disease Diagnosis, the Current and Future Landscape. Molecules 2020; 25:E977. [PMID: 32098280 PMCID: PMC7070523 DOI: 10.3390/molecules25040977] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023] Open
Abstract
Ironically, population aging which is considered a public health success has been accompanied by a myriad of new health challenges, which include neurodegenerative disorders (NDDs), the incidence of which increases proportionally to age. Among them, Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common, with the misfolding and the aggregation of proteins being common and causal in the pathogenesis of both diseases. AD is characterized by the presence of hyperphosphorylated τ protein (tau), which is the main component of neurofibrillary tangles (NFTs), and senile plaques the main component of which is β-amyloid peptide aggregates (Aβ). The neuropathological hallmark of PD is α-synuclein aggregates (α-syn), which are present as insoluble fibrils, the primary structural component of Lewy body (LB) and neurites (LN). An increasing number of non-invasive PET examinations have been used for AD, to monitor the pathological progress (hallmarks) of disease. Notwithstanding, still the need for the development of novel detection tools for other proteinopathies still remains. This review, although not exhaustively, looks at the timeline of the development of existing tracers used in the imaging of Aβ and important moments that led to the development of these tracers.
Collapse
Affiliation(s)
| | - Damiano Librizzi
- Department of Nuclear Medicine, Philipps-University of Marburg, 35043 Marburg, Germany;
| | - Behrooz Hooshyar Yousefi
- Nuclear Medicine Department, and Neuroimaging Center, Technical University of Munich, 81675 Munich, Germany;
- Department of Nuclear Medicine, Philipps-University of Marburg, 35043 Marburg, Germany;
| |
Collapse
|
14
|
Yun T, Lee W, Kang JH, Yang MP, Kang BT. Temporal and anatomical distribution of 18F-flutemetamol uptake in canine brain using positron emission tomography. BMC Vet Res 2020; 16:17. [PMID: 31952531 PMCID: PMC6969467 DOI: 10.1186/s12917-020-2240-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 01/10/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Positron emission tomography (PET) is increasingly being used as an imaging modality for clinical and research applications in veterinary medicine. Amyloid PET has become a useful tool for diagnosing Alzheimer's disease (AD) in humans, by accurately identifying amyloid-beta (Aβ) plaques. Cognitive dysfunction syndrome in dogs shows cognitive and pathophysiologic characteristics similar to AD. Therefore, we assessed the physiologic characteristics of uptake of 18F-flutemetamol, an Aβ protein-binding PET tracer in clinical development, in normal dog brains, for distinguishing an abnormal state. Static and dynamic PET images of six adult healthy dogs were acquired after 18F-flutemetamol was administered intravenously at approximately 3.083 MBq/kg. For static images, PET data were acquired at 30, 60, and 90 min after injection. One week later, dynamic images were acquired for 120 min, from the time of tracer injection. PET data were reconstructed using an iterative technique, and corrections for attenuation and scatter were applied. Regions of interest were manually drawn over the frontal, parietal, temporal, occipital, anterior cingulate, posterior cingulate, and cerebellar cortices, cerebral white matter, midbrain, pons, and medulla oblongata. After calculating standardized uptake values with an established formula, standardized uptake value ratios (SUVRs) were obtained, using the cerebellar cortex as a reference region. RESULTS Among the six cerebral cortical regions, the cingulate cortices and frontal lobe showed the highest SUVRs. The lowest SUVR was observed in the occipital lobe. The average values of the cortical SUVRs were 1.25, 1.26, and 1.27 at 30, 60, and 90 min post-injection, respectively. Tracer uptake on dynamic scans was rapid, peaking within 4 min post-injection. After reaching this early maximum, cerebral cortical regions showed a curve with a steep descent, whereas cerebral white matter demonstrated a curve with a slow decline, resulting in a large gap between cerebral cortical regions and white matter. CONCLUSION This study provides normal baseline data of 18F-flutemetamol PET that can facilitate an objective diagnosis of cognitive dysfunction syndrome in dogs in future.
Collapse
Affiliation(s)
- Taesik Yun
- Veterinary Teaching Hospital, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 South Korea
| | - Wonguk Lee
- Department of Nuclear Medicine, Chungbuk National University Hospital, Cheongju, Chungbuk 28644 South Korea
| | - Ji-Houn Kang
- Veterinary Teaching Hospital, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 South Korea
| | - Mhan-Pyo Yang
- Veterinary Teaching Hospital, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 South Korea
| | - Byeong-Teck Kang
- Veterinary Teaching Hospital, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644 South Korea
| |
Collapse
|
15
|
Auvity S, Tonietto M, Caillé F, Bodini B, Bottlaender M, Tournier N, Kuhnast B, Stankoff B. Repurposing radiotracers for myelin imaging: a study comparing 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol,11C-MeDAS, and 11C-PiB. Eur J Nucl Med Mol Imaging 2019; 47:490-501. [PMID: 31686177 DOI: 10.1007/s00259-019-04516-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/29/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE Drugs promoting myelin repair represent a promising therapeutic approach in multiple sclerosis and several candidate molecules are currently being evaluated, fostering the need of a quantitative method to specifically measure myelin content in vivo. PET using the benzothiazole derivative 11C-PiB has been successfully used to quantify myelin content changes in humans. Stilbene derivatives, such as 11C-MeDAS, have also been shown to bind to myelin in animals and are considered a promising radiopharmaceutical class for myelin imaging. Fluorinated compounds from both classes are now commercially available and thus should constitute clinically useful myelin radiotracers. The aim of this study is to provide a head-to-head comparison of 18F-florbetaben, 18F-florbetapir, 18F-flutemetamol, 11C-MeDAS, and 11C-PiB with regard to brain kinetics and binding in white matter (WM). METHODS Four baboons underwent a 90-min dynamic PET scan for each radioligand. Arterial blood samples were collected during the exam for each radiotracer, except for 18F-florbetapir, to obtain a radiometabolite-corrected input function. Standardized uptake value ratio between 75 at 90 min (SUVR75-90), binding potential (BP) estimated with Logan method with input function, and distribution volume ratio (DVR) estimated with Logan reference method (using cerebellar gray matter as reference region) were calculated in WM and compared between tracers using mixed effect models. RESULTS In WM, 18F-florbetapir had the highest SUVR75-90 (1.38 ± 0.03), followed by 18F-flutemetamol (1.34 ± 0.02), 18F-florbetaben (1.32 ± 0.07), 11C-MeDAS (1.27 ± 0.04), and 11C-PiB (1.25 ± 0.07). With regard to BP, 18F-florbetaben had the highest value (0.32 ± 0.06) compared with 18F-flutemetamol (0.20 ± 0.03), 11C-MeDAS (0.17 ± 0.03), and 11C-PiB (0.16 ± 0.03). No difference in DVR was detected between 18F-florbetaben (1.26 ± 0.06) and 18F-florbetapir (1.27 ± 0.03), but both were significantly higher in DVR than 18F-flutemetamol (1.17 ± 0.02), 11C-MeDAS (1.16 ± 0.03), and 11C-PiB (1.14 ± 0.02). CONCLUSIONS Given their higher binding and longer half-life, our study indicates that 18F-florbetapir and 18F-florbetaben are promising tracers for myelin imaging which are readily available for clinical application in demyelinating diseases.
Collapse
Affiliation(s)
- Sylvain Auvity
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm , Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Matteo Tonietto
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, Inserm UMR S 1127, CNRS UMR 7225, Paris, France
| | - Fabien Caillé
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm , Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Benedetta Bodini
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, Inserm UMR S 1127, CNRS UMR 7225, Paris, France
| | - Michel Bottlaender
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm , Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Nicolas Tournier
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm , Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Bertrand Kuhnast
- UMR 1023 IMIV, Service Hospitalier Frédéric Joliot, CEA, Inserm , Université Paris Sud, CNRS, Université Paris-Saclay, Orsay, France
| | - Bruno Stankoff
- Sorbonne Universités, Institut du Cerveau et de la Moelle épinière, ICM, Hôpital de la Pitié Salpêtrière, Inserm UMR S 1127, CNRS UMR 7225, Paris, France.
| |
Collapse
|
16
|
Kalheim LF, Fladby T, Coello C, Bjørnerud A, Selnes P. [18F]-Flutemetamol Uptake in Cortex and White Matter: Comparison with Cerebrospinal Fluid Biomarkers and [18F]-Fludeoxyglucose. J Alzheimers Dis 2019; 62:1595-1607. [PMID: 29504529 PMCID: PMC6218124 DOI: 10.3233/jad-170582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Flutemetamol (18F-Flut) is an [18F]-labelled amyloid PET tracer with increasing availability. The main objectives of this study were to investigate 1) cerebrospinal fluid (CSF) Aβ 1-42 (Aβ42) concentrations associated with regional 18F-Flut uptake, 2) associations between cortical 18F-Flut and [18F]-fludeoxyglucose (18F-FDG)-PET, and 3) the potential use of 18F-Flut in WM pathology. Cognitively impaired, nondemented subjects were recruited (n = 44). CSF was drawn, and 18F-Flut-PET, 18F-FDG-PET, and MRI performed. Our main findings were: 1) Different Alzheimer’s disease predilection areas showed increased 18F-Flut retention at different CSF Aβ42 concentrations (posterior regions were involved at higher concentrations). 2) There were strong negative correlations between regional cortical 18F-Flut and 18F-FDG uptake. 3) Increased 18F-Flut uptake were observed in multiple subcortical regions in amyloid positive subjects, including investigated reference regions. However, WM hyperintensity 18F-Flut standardized uptake value ratios (SUVr) were not significantly different, thus we cannot definitely conclude that the higher uptake in 18F-Flut(+) is due to amyloid deposition. In conclusion, our findings support clinical use of CSF Aβ42, putatively relate decreasing CSF Aβ42 concentrations to a sequence of regional amyloid deposition, and associate amyloid pathology to cortical hypometabolism. However, we cannot conclude that 18F-Flut-PET is a suitable marker for WM pathology due to high aberrant WM uptake.
Collapse
Affiliation(s)
- Lisa Flem Kalheim
- Department of Neurology, Akershus University Hospital, L-renskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Tormod Fladby
- Department of Neurology, Akershus University Hospital, L-renskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Christopher Coello
- Preclinical PET/CT, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Atle Bjørnerud
- The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Per Selnes
- Department of Neurology, Akershus University Hospital, L-renskog, Norway.,Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| |
Collapse
|
17
|
Hellberg S, Silvola JMU, Liljenbäck H, Kiugel M, Eskola O, Hakovirta H, Hörkkö S, Morisson-Iveson V, Hirani E, Saukko P, Ylä-Herttuala S, Knuuti J, Saraste A, Roivainen A. Amyloid-Targeting PET Tracer [ 18F]Flutemetamol Accumulates in Atherosclerotic Plaques. Molecules 2019; 24:molecules24061072. [PMID: 30893771 PMCID: PMC6471324 DOI: 10.3390/molecules24061072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis is characterized by the accumulation of oxidized lipids in the artery wall, which triggers an inflammatory response. Oxidized low-density lipoprotein (ox-LDL) presents amyloid-like structural properties, and different amyloid species have recently been recognized in atherosclerotic plaques. Therefore, we studied the uptake of the amyloid imaging agent [18F]Flutemetamol in atherosclerotic plaques. The binding of [18F]Flutemetamol to human carotid artery plaque was studied in vitro. In vivo uptake of the tracer was studied in hypercholesterolemic IGF-II/LDLR−/−ApoB100/100 mice and C57BL/6N controls. Tracer biodistribution was studied in vivo with PET/CT, and ex vivo by gamma counter and digital ex vivo autoradiography. The presence of amyloid, ox-LDL, and macrophages in the plaques was examined by immunohistochemistry. [18F]Flutemetamol showed specific accumulation in human carotid plaque, especially in areas positive for amyloid beta. The aortas of IGF-II/LDLR−/−ApoB100/100 mice showed large thioflavin-S-positive atherosclerotic plaques containing ox-LDL and macrophages. Autoradiography revealed 1.7-fold higher uptake in the plaques than in a lesion-free vessel wall, but no difference in aortic tissue uptake between mouse strains were observed in the in vivo PET/CT. In conclusion, [18F]Flutemetamol binds to amyloid-positive areas in human atherosclerotic plaques. Further studies are warranted to clarify the uptake mechanisms, and the potential of the tracer for in vivo imaging of atherosclerosis in patients.
Collapse
Affiliation(s)
- Sanna Hellberg
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | | | - Heidi Liljenbäck
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, FI-20520 Turku, Finland.
| | - Max Kiugel
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | - Olli Eskola
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | - Harri Hakovirta
- Department of Vascular Surgery, Turku University Hospital, FI-20520 Turku, Finland.
| | - Sohvi Hörkkö
- Medical Research Center and Nordlab Oulu, University Hospital and Research Unit of Biomedicine, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland.
| | | | - Ella Hirani
- GE Healthcare Ltd., Chalfont St Giles HP8 4SP, UK.
| | - Pekka Saukko
- Department of Pathology and Forensic Medicine, University of Turku, FI-20520 Turku, Finland.
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, FI-70210 Kuopio, Finland.
| | - Juhani Knuuti
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
| | - Antti Saraste
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
- Turku PET Centre, Turku University Hospital, FI-20520 Turku, Finland.
- Heart Center, Turku University Hospital, FI-20520 Turku, Finland.
- Department of Clinical Medicine, University of Turku, FI-20520 Turku, Finland.
| | - Anne Roivainen
- Turku PET Centre, University of Turku, FI-20520 Turku, Finland.
- Turku Center for Disease Modeling, University of Turku, FI-20520 Turku, Finland.
| |
Collapse
|
18
|
Son HJ, Jeong YJ, Yoon HJ, Lee SY, Choi GE, Park JA, Kim MH, Lee KC, Lee YJ, Kim MK, Cho K, Kang DY. Assessment of brain beta-amyloid deposition in transgenic mouse models of Alzheimer's disease with PET imaging agents 18F-flutemetamol and 18F-florbetaben. BMC Neurosci 2018; 19:45. [PMID: 30053803 PMCID: PMC6063010 DOI: 10.1186/s12868-018-0447-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/23/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although amyloid beta (Aβ) imaging is widely used for diagnosing and monitoring Alzheimer's disease in clinical fields, paralleling comparison between 18F-flutemetamol and 18F-florbetaben was rarely attempted in AD mouse model. We performed a comparison of Aβ PET images between 18F-flutemetamol and 18F-florbetaben in a recently developed APPswe mouse model, C57BL/6-Tg (NSE-hAPPsw) Korl. RESULTS After an injection (0.23 mCi) of 18F-flutemetamol and 18F-florbetaben at a time interval of 2-3 days, we compared group difference of SUVR and kinetic parameters between the AD (n = 7) and control (n = 7) mice, as well as between 18F-flutemetamol and 18F-florbetaben image. In addition, bio-distribution and histopathology were conducted. With visual image and VOI-based SUVR analysis, the AD group presented more prominent uptake than did the control group in both the 18F-florbetaben and 18F-flutemetamol images. With kinetic analysis, the 18F-florbetaben images showed differences in K1 and k4 between the AD and control groups, although 18F-flutemetamol images did not show significant difference. 18F-florbetaben images showed more prominent cortical uptake and matched well to the thioflavin S staining images than did the 18F-flutemetamol image. In contrast, 18F-flutemetamol images presented higher K1, k4, K1/k2 values than those of 18F-florbetaben images. Also, 18F-flutemetamol images presented prominent uptake in the bowel and bladder, consistent with higher bio-distribution in kidney, lung, blood and heart. CONCLUSIONS Compared with 18F-flutemetamol images, 18F-florbetaben images showed prominent visual uptake intensity, SUVR, and higher correlations with the pathology. In contrast, 18F-flutemetamol was more actively metabolized than was 18F-florbetaben (Son et al. in J Nucl Med 58(Suppl 1):S278, 2017].
Collapse
Affiliation(s)
- Hye Joo Son
- Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, 26 Daesingongwon-ro, Seo-gu, Busan, 602-812 Korea
| | - Young Jin Jeong
- Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, 26 Daesingongwon-ro, Seo-gu, Busan, 602-812 Korea
| | - Hyun Jin Yoon
- Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, 26 Daesingongwon-ro, Seo-gu, Busan, 602-812 Korea
| | - Sang Yoon Lee
- Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, 26 Daesingongwon-ro, Seo-gu, Busan, 602-812 Korea
| | - Go-Eun Choi
- Institute of Convergence Bio-Health, Dong-A University, Busan, Korea
| | - Ji-Ae Park
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Min Hwan Kim
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kyo Chul Lee
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Yong Jin Lee
- Division of RI-Convergence Research, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Mun Ki Kim
- Pohang Center of Evolution of Biomaterials, Pohang Technopark, Pohang, Korea
| | - Kook Cho
- Institute of Convergence Bio-Health, Dong-A University, Busan, Korea
| | - Do-Young Kang
- Department of Nuclear Medicine, Dong-A University Medical Center, Dong-A University College of Medicine, 26 Daesingongwon-ro, Seo-gu, Busan, 602-812 Korea
- Institute of Convergence Bio-Health, Dong-A University, Busan, Korea
| |
Collapse
|
19
|
Takkinen JS, López-Picón FR, Kirjavainen AK, Pihlaja R, Snellman A, Ishizu T, Löyttyniemi E, Solin O, Rinne JO, Haaparanta-Solin M. [ 18F]FMPEP-d 2 PET imaging shows age- and genotype-dependent impairments in the availability of cannabinoid receptor 1 in a mouse model of Alzheimer's disease. Neurobiol Aging 2018; 69:199-208. [PMID: 29909177 DOI: 10.1016/j.neurobiolaging.2018.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 05/09/2018] [Accepted: 05/11/2018] [Indexed: 11/16/2022]
Abstract
Contradictory findings on the role of the type 1 cannabinoid receptor (CB1R) during the pathogenesis of Alzheimer's disease (AD) have been reported. Here, we evaluated the CB1R brain profile in an AD mouse model using longitudinal positron emission tomography with an inverse agonist for CB1R, [18F]FMPEP-d2. APP/PS1-21 and wild-type (n = 8 in each group) mice were repeatedly imaged between 6 to 15 months of age, accompanied by brain autoradiography, western blot, and CB1R immunohistochemistry with additional mice. [18F]FMPEP-d2 positron emission tomography demonstrated lower (p < 0.05) binding ratios in the parietotemporal cortex and hippocampus of APP/PS1-21 mice compared with age-matched wild-type mice. Western blot demonstrated no differences between APP/PS1-21 and wild-type mice in the CB1R abundance, whereas significantly lower (p < 0.05) receptor expression was observed in male than female mice. The results provide the first demonstration that [18F]FMPEP-d2 is a promising imaging tool for AD research in terms of CB1R availability, but not expression. This finding may further facilitate the development of novel therapeutic approaches based on endocannabinoid regulation.
Collapse
Affiliation(s)
- Jatta S Takkinen
- MediCity Research Laboratory, University of Turku, Turku, Finland; PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland; Doctoral Programme in Clinical Research, University of Turku, Turku, Finland.
| | - Francisco R López-Picón
- MediCity Research Laboratory, University of Turku, Turku, Finland; PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Anna K Kirjavainen
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Rea Pihlaja
- MediCity Research Laboratory, University of Turku, Turku, Finland; PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Anniina Snellman
- MediCity Research Laboratory, University of Turku, Turku, Finland; PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Tamiko Ishizu
- MediCity Research Laboratory, University of Turku, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland
| | | | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland; Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland; Department of Chemistry, University of Turku, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, Turku University Hospital, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Merja Haaparanta-Solin
- MediCity Research Laboratory, University of Turku, Turku, Finland; PET Preclinical Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| |
Collapse
|
20
|
Cressier D, Dhilly M, Cao Pham TT, Fillesoye F, Gourand F, Maïza A, Martins AF, Morfin JF, Geraldes CFGC, Tóth É, Barré L. Gallium-68 Complexes Conjugated to Pittsburgh Compound B: Radiolabeling and Biological Evaluation. Mol Imaging Biol 2017; 18:334-43. [PMID: 26543029 DOI: 10.1007/s11307-015-0906-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
PURPOSE The aim of this work is to develop an efficient and fully automated radiosynthesis of three derivatives of the Pittsburgh compound B labeled with gallium-68 for the detection of amyloid plaques. PROCEDURES The radiolabeling of the precursors and purification of the radiolabeled agents by high pressure liquid chromatography has been studied prior to their in vitro and in vivo evaluations. RESULTS The complete process led, in 50 min, to pure Ga-68 products in a 12-38 % yield and with appreciable specific radioactivity (SRA, 85-168 GBq/μmol) which enabled us to demonstrate a considerable in vivo stability of the products. Unfortunately, this result was associated with a poor blood-brain barrier (BBB) permeability and a limited uptake of our compounds by amyloid deposits was observed by in vitro autoradiography. CONCLUSION Although we have not yet identified a compound able to significantly mark cerebral amyloidosis, this present investigation will likely contribute to the development of more successful Ga-68 radiotracers.
Collapse
Affiliation(s)
- Damien Cressier
- CEA, I2BM, LDM-TEP, UMR 6301 ISTCT, GIP Cyceron, 14074, Caen, France. .,CNRS, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France. .,Université de Caen Normandie, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France.
| | - Martine Dhilly
- CEA, I2BM, LDM-TEP, UMR 6301 ISTCT, GIP Cyceron, 14074, Caen, France.,CNRS, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France.,Université de Caen Normandie, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France
| | - Thang T Cao Pham
- CEA, I2BM, LDM-TEP, UMR 6301 ISTCT, GIP Cyceron, 14074, Caen, France.,CNRS, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France.,Université de Caen Normandie, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France
| | - Fabien Fillesoye
- CEA, I2BM, LDM-TEP, UMR 6301 ISTCT, GIP Cyceron, 14074, Caen, France.,CNRS, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France.,Université de Caen Normandie, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France
| | - Fabienne Gourand
- CEA, I2BM, LDM-TEP, UMR 6301 ISTCT, GIP Cyceron, 14074, Caen, France.,CNRS, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France.,Université de Caen Normandie, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France
| | - Auriane Maïza
- CEA, I2BM, LDM-TEP, UMR 6301 ISTCT, GIP Cyceron, 14074, Caen, France.,CNRS, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France.,Université de Caen Normandie, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France
| | - André F Martins
- Centre de Biophysique Moléculaire UPR 4301, CNRS, Université d'Orléans, 45071, Orléans, France.,Department of Life Sciences and Coimbra Chemistry Center, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Jean-François Morfin
- Centre de Biophysique Moléculaire UPR 4301, CNRS, Université d'Orléans, 45071, Orléans, France
| | - Carlos F G C Geraldes
- Department of Life Sciences and Coimbra Chemistry Center, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| | - Éva Tóth
- Centre de Biophysique Moléculaire UPR 4301, CNRS, Université d'Orléans, 45071, Orléans, France
| | - Louisa Barré
- CEA, I2BM, LDM-TEP, UMR 6301 ISTCT, GIP Cyceron, 14074, Caen, France.,CNRS, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France.,Université de Caen Normandie, UMR 6301 ISTCT, LDM-TEP, GIP Cyceron, 14074, Caen, France
| |
Collapse
|
21
|
Oh SJ, Kim MH, Han SJ, Kang KJ, Ko IO, Kim Y, Park JA, Choi JY, Lee KC, Chi DY, Lee YJ, Kim KM. Preliminary PET Study of 18F-FC119S in Normal and Alzheimer’s Disease Models. Mol Pharm 2017; 14:3114-3120. [DOI: 10.1021/acs.molpharmaceut.7b00351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Se Jong Oh
- Division
of RI-Convergence Research, Korea Institute Radiological and Medical Sciences, 01812 Seoul, Korea
- Radiological & Medico-Oncological Sciences, Korea University of Science and Technology, 34113 Daejeon, Korea
| | - Min Hwan Kim
- Division
of RI-Convergence Research, Korea Institute Radiological and Medical Sciences, 01812 Seoul, Korea
| | - Sang Jin Han
- Division
of RI-Convergence Research, Korea Institute Radiological and Medical Sciences, 01812 Seoul, Korea
| | - Kyung Jun Kang
- Division
of RI-Convergence Research, Korea Institute Radiological and Medical Sciences, 01812 Seoul, Korea
| | - In Ok Ko
- Division
of RI-Convergence Research, Korea Institute Radiological and Medical Sciences, 01812 Seoul, Korea
| | - YoungSoo Kim
- Department
of Pharmacy and Integrated Science and Engineering Division, Yonsei University, 03722 Incheon, Korea
| | - Ji-Ae Park
- Division
of RI-Convergence Research, Korea Institute Radiological and Medical Sciences, 01812 Seoul, Korea
| | - Jae Yong Choi
- Division
of RI-Convergence Research, Korea Institute Radiological and Medical Sciences, 01812 Seoul, Korea
| | - Kyo Chul Lee
- Division
of RI-Convergence Research, Korea Institute Radiological and Medical Sciences, 01812 Seoul, Korea
| | - Dae Yoon Chi
- Research Institute of Labeling, FutureChem Co., Ltd, Seoul 04782, Republic of Korea
| | - Yong Jin Lee
- Division
of RI-Convergence Research, Korea Institute Radiological and Medical Sciences, 01812 Seoul, Korea
| | - Kyeong Min Kim
- Radiological & Medico-Oncological Sciences, Korea University of Science and Technology, 34113 Daejeon, Korea
- Division
of Medical Radiation Equipment, Korea Institute Radiological and Medical Sciences, 01812 Seoul, Korea
| |
Collapse
|
22
|
Applicability of [ 11C]PIB micro-PET imaging for in vivo follow-up of anti-amyloid treatment effects in APP23 mouse model. Neurobiol Aging 2017; 57:84-94. [PMID: 28605642 DOI: 10.1016/j.neurobiolaging.2017.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/27/2017] [Accepted: 05/07/2017] [Indexed: 11/22/2022]
Abstract
In this study, we evaluated the anti-amyloid effect of functionalized nanoliposomes (mApoE-PA-LIP) in a mouse model of Alzheimer's disease with use of positron emission tomography and β-amyloid (Aβ)-targeted tracer [11C]Pittsburgh compound B ([11C]PIB). APP23 mice were injected with mApoE-PA-LIP or saline (3 times per week for 3 weeks) and [11C]PIB imaging was performed at baseline, after the treatment and after 3 months follow-up period, accompanied by Aβ immunohistochemistry and ELISA. After the treatment, [11C]PIB binding ratios between mApoE-PA-LIP and saline groups were equivalent in all analyzed brain regions; however, in the saline group, binding ratios increased from the baseline, whereas no increase was detected in the mApoE-PA-LIP group. During the additional follow-up, [11C]PIB binding increased significantly from baseline in both groups, and binding ratios correlated with the immunohistochemically defined Aβ load. This study further supports the use of [11C]PIB positron emission tomography imaging as a biomarker of Aβ deposition in APP23 mice and highlights the benefits of noninvasive follow-up, that is, using baseline data for animal stratification and normalization of treatment effects to baseline values, for future anti-amyloid treatment studies.
Collapse
|
23
|
Tiwari AD, Wu C, Zhu J, Zhang S, Zhu J, Wang WR, Zhang J, Tatsuoka C, Matthews PM, Miller RH, Wang Y. Design, Synthesis, and Evaluation of Fluorinated Radioligands for Myelin Imaging. J Med Chem 2016; 59:3705-18. [PMID: 27070324 DOI: 10.1021/acs.jmedchem.5b01858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Myelination is one of the fundamental processes in vertebrates. A major challenge is to quantitatively image myelin distribution in the central nervous system. For this reason, we designed and synthesized a series of fluorinated radioligands that can be radiolabeled as radiotracers for positron emission tomography (PET) imaging of myelin. These newly developed radioligands readily penetrate the blood-brain barrier and selectively bind to myelin membranes in the white matter region. Structure-activity relationship studies of such ligands suggested that optimal permeability could be achieved with calculated lipophilicty in the range of 3-4. After radiolabeling with fluorine-18, the brain uptake and retention of each radioligand were determined by microPET/CT imaging studies. These pharmacokinetic studies led us to identify a lead compound ([(18)F]FMeDAS, 32) with promising in vivo binding properties, which was subsequently validated by ex vivo autoradiography.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinming Zhang
- Department of Nuclear Medicine, People's Liberation Army (PLA) General Hospital , Beijing 100853, China
| | | | - Paul M Matthews
- Division of Brain Sciences, Department of Medicine, Imperial College London , London SW12 0NN, United Kingdom
| | - Robert H Miller
- Department of Anatomy and Regenerative Biology, George Washington University , Washington, DC 20037, United States
| | | |
Collapse
|
24
|
Rokka J, Snellman A, Kaasalainen M, Salonen J, Zona C, La Ferla B, Nicotra F, Re F, Masserini M, Forsback S, Lopez-Picon F, Rinne JO, Haaparanta-Solin M, Solin O. (18)F-labeling syntheses and preclinical evaluation of functionalized nanoliposomes for Alzheimer's disease. Eur J Pharm Sci 2016; 88:257-66. [PMID: 26993963 DOI: 10.1016/j.ejps.2016.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/17/2016] [Accepted: 03/14/2016] [Indexed: 01/06/2023]
Abstract
The aim of the present study was to synthesize functionalized (18)F-labeled NLs ((18)F-NLs) and evaluate their biological behavior in mouse models of Alzheimer's disease (AD) using positron emission tomography (PET) and ex vivo brain autoradiography. (18)F-fluorine was introduced to (18)F-NLs either by using a core forming (18)F-lipid or by encapsulating a (18)F-tracer, (18)F-treg-curcumin inside the NLs. Phosphatidic acid (PA) and curcumin derivative (Curc) functionalized (18)F-NLs with or without additional mApoE functionalization were produced using thin film hydration. The biodistribution and β-amyloid plaque-binding ability of (18)F-NLs were studied in wild type mice and AD mouse models using in vivo PET imaging and ex vivo brain autoradiography at 60min after (18)F-NL injection. Functionalized (18)F-NLs were successfully synthesized. The preclinical evaluation in mice showed that the functional group affected the biodistribution of (18)F-NLs. Further functionalization with mApoE increased the brain-to-blood ratio of (18)F-NLs but the overall brain uptake remained low with all functionalized (18)F-NLs. The liposomal encapsulation of (18)F-treg-curcumin was not successful and preclinical results of encapsulated (18)F-treg-curcumin and plain (18)F-treg-curcumin were identical. Although the studied functionalized (18)F-NLs were not suitable for PET imaging as such, the synthesis techniques introduced in this study can be utilized to modify the biological behavior of (18)F-labeled NLs.
Collapse
Affiliation(s)
- Johanna Rokka
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, University of Turku, Turku, Finland.
| | - Anniina Snellman
- Turku PET Centre, Preclinical Imaging, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | | | - Jarno Salonen
- Laboratory of Industrial Physics, University of Turku, Finland
| | - Cristiano Zona
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milano, Italy
| | - Francesco Nicotra
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milano, Italy
| | - Francesca Re
- Department of Health Science, University of Milano-Bicocca, Monza, Italy
| | - Massimo Masserini
- Department of Health Science, University of Milano-Bicocca, Monza, Italy
| | - Sarita Forsback
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, University of Turku, Turku, Finland
| | - Francisco Lopez-Picon
- Turku PET Centre, Preclinical Imaging, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku, Finland; Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Merja Haaparanta-Solin
- Turku PET Centre, Preclinical Imaging, University of Turku, Turku, Finland; MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Olof Solin
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, University of Turku, Turku, Finland; Turku PET Centre, Accelerator Laboratory, Åbo Akademi University, Turku, Finland; Department of Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
25
|
Heurling K, Leuzy A, Zimmer ER, Lubberink M, Nordberg A. Imaging β-amyloid using [18F]flutemetamol positron emission tomography: from dosimetry to clinical diagnosis. Eur J Nucl Med Mol Imaging 2015; 43:362-373. [DOI: 10.1007/s00259-015-3208-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
|
26
|
Matsumura K, Ono M, Kitada A, Watanabe H, Yoshimura M, Iikuni S, Kimura H, Okamoto Y, Ihara M, Saji H. Structure–Activity Relationship Study of Heterocyclic Phenylethenyl and Pyridinylethenyl Derivatives as Tau-Imaging Agents That Selectively Detect Neurofibrillary Tangles in Alzheimer’s Disease Brains. J Med Chem 2015; 58:7241-57. [DOI: 10.1021/acs.jmedchem.5b00440] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenji Matsumura
- Department
of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department
of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ayane Kitada
- Department
of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department
of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masashi Yoshimura
- Department
of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shimpei Iikuni
- Department
of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Kimura
- Department
of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoko Okamoto
- Department
of Pathology, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | - Masafumi Ihara
- Department
of Stroke and Cerebrovascular Diseases, National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | - Hideo Saji
- Department
of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
27
|
Trembath L, Newell M, Devous MD. Technical Considerations in Brain Amyloid PET Imaging with 18F-Florbetapir. J Nucl Med Technol 2015; 43:175-84. [PMID: 26271806 DOI: 10.2967/jnmt.115.156679] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022] Open
Abstract
Technical factors play a critical role in the production of best-quality amyloid PET images for interpretation. This article provides specific instructions and general technical information about PET brain scanning of β-amyloid neuritic plaques. The focus of tracer-specific information will be on (18)F-florbetapir (indications, contraindications, dosing, administration, uptake time, scanning time, acquisition, processing, biodistribution, radiation dose, adverse events, and display). General scanning information relevant to all amyloid-imaging agents will be also be presented (e.g., mechanism of uptake, safe handling, positioning, prevention of patient motion, processing, and artifacts).
Collapse
Affiliation(s)
| | - Maureen Newell
- Avid Radiopharmaceuticals, Inc., Philadelphia, Pennsyvania
| | | |
Collapse
|
28
|
Thal DR, Beach TG, Zanette M, Heurling K, Chakrabarty A, Ismail A, Smith APL, Buckley C. [(18)F]flutemetamol amyloid positron emission tomography in preclinical and symptomatic Alzheimer's disease: specific detection of advanced phases of amyloid-β pathology. Alzheimers Dement 2015; 11:975-85. [PMID: 26141264 DOI: 10.1016/j.jalz.2015.05.018] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/05/2015] [Accepted: 05/15/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Amyloid positron emission tomography (PET) has become an important tool to identify amyloid-β (Aβ) pathology in Alzheimer's disease (AD) patients. Here, we determined the diagnostic value of the amyloid PET tracer [(18)F]flutemetamol in relation to Aβ pathology at autopsy. METHODS [(18)F]flutemetamol PET was carried out in a cohort of 68 patients included in a [(18)F]flutemetamol amyloid PET imaging end-of-life study (GE067-007). At autopsy, AD pathology was determined and Aβ plaque pathology was classified into phases of its regional distribution (0-5). RESULTS [(18)F]flutemetamol PET was universally positive in cases with advanced stage postmortem Aβ pathology (Aβ phases 4 and 5). Negative amyloid PET was universally observed in nondemented or non-AD dementia cases with initial Aβ phases 1 and 2, whereas 33.3% of the phase 3 cases were positive. CONCLUSIONS [(18)F]flutemetamol amyloid PET detects primarily advanced stages of Aβ pathology in preclinical and symptomatic AD cases.
Collapse
Affiliation(s)
- Dietmar Rudolf Thal
- Institute of Pathology-Laboratory of Neuropathology, Center for biomedical Research, University of Ulm, Ulm, Germany.
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | - Kerstin Heurling
- Life Sciences R&D, GE Healthcare, Uppsala, Sweden; Department of Surgical Sciences: Radiology, Uppsala University, Uppsala, Sweden
| | - Aruna Chakrabarty
- Pathology and Tumour Biology, Leeds Institute of Molecular Medicine, St. James Hospital, Leeds, UK
| | - Azzam Ismail
- Pathology and Tumour Biology, Leeds Institute of Molecular Medicine, St. James Hospital, Leeds, UK
| | | | | |
Collapse
|
29
|
Okamura N, Harada R, Furumoto S, Arai H, Yanai K, Kudo Y. Tau PET imaging in Alzheimer's disease. Curr Neurol Neurosci Rep 2015; 14:500. [PMID: 25239654 DOI: 10.1007/s11910-014-0500-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In several neurodegenerative diseases that are collectively called tauopathies, progressive accumulation of tau in the brain is closely associated with neurodegeneration and cognitive impairment. Noninvasive detection of tau protein deposits in the brain would be useful to diagnose tauopathies as well as to track and predict disease progression. Recently, several tau PET tracers including T807, THK-5117, and PBB3 have been developed and succeeded in imaging neurofibrillary pathology in vivo. For use of tau PET as a biomarker of tau pathology in Alzheimer's disease, PET tracers should have high affinity to PHF-tau and high selectivity for tau over amyloid-β and other protein deposits. PET tau imaging enables the longitudinal assessment of the spatial pattern of tau deposition and its relation to amyloid-β pathology and neurodegeneration. This technology could also be applied to the pharmacological assessment of anti-tau therapy, thereby allowing preventive interventions.
Collapse
Affiliation(s)
- Nobuyuki Okamura
- Department of Pharmacology, Tohoku University School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, 9808575, Japan,
| | | | | | | | | | | |
Collapse
|
30
|
Yousefi BH, von Reutern B, Scherübl D, Manook A, Schwaiger M, Grimmer T, Henriksen G, Förster S, Drzezga A, Wester HJ. FIBT versus florbetaben and PiB: a preclinical comparison study with amyloid-PET in transgenic mice. EJNMMI Res 2015; 5:20. [PMID: 25918674 PMCID: PMC4402683 DOI: 10.1186/s13550-015-0090-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/22/2015] [Indexed: 12/19/2022] Open
Abstract
Background Over the last decade, an increasing number of studies have been published on the use of amyloid-β (Aβ) PET imaging with different 18F-radiopharmaceuticals for clinical characterization of Alzheimer’s disease (AD) in different stages. However, distinct study cohorts and different quantification techniques allow only for an indirect comparison between the different tracers. Thus, the aim of this study was the direct intra-individual in vivo comparison of different Aβ-targeted radiopharmaceuticals for PET imaging, including the newly developed agent [18F]FIBT. Methods A small group of four animals of a well-characterized APP/PS1 transgenic (tg) mouse model of AD and gender-matched control (ctl) animals underwent a sequential and standardized PET imaging regimen for direct comparison of [18F]FIBT, [18F]florbetaben, and [11C]PiB. The quantitative PET imaging data were cross-validated with the cerebral Aβ plaque load as quantified ex vivo on histological sections. Results We found that FIBT (2-(p-methylaminophenyl)-7-(2-[18F]fluoroethoxy)imidazo[2,1-b]benzothiazole) compares favorably to florbetaben as a high-contrasting PET radiopharmaceutical for imaging Aβ pathology. The excellent pharmacokinetics of FIBT in combination with its high-binding affinity towards Aβ resulted in feasible high-contrast imaging of Aβ with high global cortex to cerebellum standard uptake value ratio (SUVR) in 24-month-old tg mice (tg 1.68 ± 0.15 vs. ctl 0.95 ± 0.02). The SUVRs in transgenic versus control animals (SUVRtg/SUVRctl) for FIBT (1.78 ± 0.16) were similar to the ratios as observed in humans (SUVRAD/SUVRctl) for the established gold standard Pittsburgh compound B (PiB) (1.65 ± 0.41). Conclusions This head-to-head PET tracer comparison study in mice indicated the good imaging properties of [18F]FIBT, such as high initial brain uptake, fast clearance of the brain, and high binding affinity towards Aβ as directly compared to the established amyloid tracers. Moreover, the preclinical study design is recommendable for reliable assessment and comparison of novel radiopharmaceuticals. Electronic supplementary material The online version of this article (doi:10.1186/s13550-015-0090-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Behrooz H Yousefi
- Department of Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str. 3, 85748 Garching, Germany
| | - Boris von Reutern
- Department of Nuclear Medicine, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany ; Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| | - Daniela Scherübl
- Department of Nuclear Medicine, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - André Manook
- Department of Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str. 3, 85748 Garching, Germany ; Department of Nuclear Medicine, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - Gjermund Henriksen
- Department of Nuclear Medicine, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - Stefan Förster
- Department of Nuclear Medicine, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany
| | - Alexander Drzezga
- Department of Nuclear Medicine, Technische Universität München, Ismaninger Straße 22, 81675 Munich, Germany ; Department of Nuclear Medicine, University of Cologne, Kerpener Straße 62, 50937 Cologne, Germany
| | - Hans-Jürgen Wester
- Department of Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str. 3, 85748 Garching, Germany
| |
Collapse
|
31
|
Waldron AM, Verhaeghe J, wyffels L, Schmidt M, Langlois X, Van Der Linden A, Stroobants S, Staelens S. Preclinical Comparison of the Amyloid-β Radioligands [(11)C]Pittsburgh compound B and [(18)F]florbetaben in Aged APPPS1-21 and BRI1-42 Mouse Models of Cerebral Amyloidosis. Mol Imaging Biol 2015; 17:688-96. [PMID: 25701131 DOI: 10.1007/s11307-015-0833-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE The aim of this study was to compare [(11)C]Pittsburgh compound B ([(11)C]PiB) and [(18)F]florbetaben ([(18)F]FBB) for preclinical investigations of amyloid-β pathology. PROCEDURES We investigated two aged animal models of cerebral amyloidosis with contrasting levels of amyloid-β relating to "high" (APPPS1-21 n = 6, wild type (WT) n = 7) and "low" (BRI1-42 n = 6, WT n = 6) target states, respectively. RESULTS APPPS1-21 mice (high target state) demonstrated extensive fibrillar amyloid-β deposition that translated to significantly increased retention of [(11)C]PiB and [(18)F]FBB in comparison to their wild type. The retention pattern of [(11)C]PiB and [(18)F]FBB in this cohort displayed a significant correlation. However, the relative difference in tracer uptake between diseased and healthy mice was substantially higher for [(11)C]PiB than for [(18)F]FBB. Although immunohistochemistry confirmed the high plaque load in APPPS1-21 mice, correlation between tracer uptake and ex vivo quantification of amyloid-β was poor for both tracers. BRI1-42 mice (low target state) did not demonstrate increased tracer uptake. CONCLUSIONS In cases of high fibrillar amyloid-β burden, both tracers detected significant differences between diseased and healthy mice, with [(11)C]PiB showing a larger dynamic range.
Collapse
Affiliation(s)
- Ann-Marie Waldron
- Molecular Imaging Center Antwerp, University of Antwerp, Campus Drie Eiken - UC, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Jeroen Verhaeghe
- Molecular Imaging Center Antwerp, University of Antwerp, Campus Drie Eiken - UC, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Leonie wyffels
- Molecular Imaging Center Antwerp, University of Antwerp, Campus Drie Eiken - UC, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
- Nuclear Medicine, University Hospital Antwerp, Antwerp, Belgium
| | - Mark Schmidt
- Department of Neuroscience, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Xavier Langlois
- Department of Neuroscience, Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | - Steven Staelens
- Molecular Imaging Center Antwerp, University of Antwerp, Campus Drie Eiken - UC, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| |
Collapse
|
32
|
Sérrière S, Tauber C, Vercouillie J, Mothes C, Pruckner C, Guilloteau D, Kassiou M, Doméné A, Garreau L, Page G, Chalon S. Amyloid load and translocator protein 18 kDa in APPswePS1-dE9 mice: a longitudinal study. Neurobiol Aging 2015; 36:1639-1652. [PMID: 25680265 DOI: 10.1016/j.neurobiolaging.2014.11.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 11/03/2014] [Accepted: 11/25/2014] [Indexed: 12/16/2022]
Abstract
We studied concomitantly the level of neuroinflammation and β-amyloid (Aβ) load in the APPswePS1dE9 transgenic mouse model of Alzheimer's disease using positron emission tomography. The translocator protein 18 kDa (TSPO) tracer [(18)F]DPA-714 was used to measure neuroinflammation and [(18)F]AV-45 for Aβ load in mice at 6, 9, 12, 15, and 19 months of age. At 19 months, we also analyzed the neuroinflammatory and neuroanatomic status of mice brains. The main affected brain areas were the cortex and hippocampus, with a concomitant progression of neuroinflammation with increased amyloid burden. At 19 months, no increase in TSPO binding was observed in the cerebellum; immunostaining revealed W0-2-positive plaques, indicating that the amyloid deposits seemed not stimulate inflammation. This finding was in agreement with the observed level of microglia and astrocytes staining. Our findings provide a better understanding of the relationships between neuroinflammation and plaque accumulation in the course of the disease in this mouse model. The monitoring of both processes should be of value to validate potential therapeutic approaches.
Collapse
Affiliation(s)
- Sophie Sérrière
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Clovis Tauber
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | | | | | | | - Denis Guilloteau
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France; CHRU de Tours, Tours, France
| | - Michael Kassiou
- School of Chemistry and Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - Aurélie Doméné
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Lucette Garreau
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Guylène Page
- EA 3808 CiMoTheMA, Université de Poitiers, Poitiers, France
| | - Sylvie Chalon
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France.
| |
Collapse
|
33
|
Watanabe H, Ono M, Iikuni S, Kimura H, Okamoto Y, Ihara M, Saji H. Synthesis and biological evaluation of 123I-labeled pyridyl benzoxazole derivatives: novel β-amyloid imaging probes for single-photon emission computed tomography. RSC Adv 2015. [DOI: 10.1039/c4ra10742j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The result in the present study suggested that [123I]9 may be a potential SPECT probe for imaging β-amyloid plaques in the brains of patient with Alzheimer's disease.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Hiroyuki Kimura
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Yoko Okamoto
- Department of Pathology
- National Cerebral and Cardiovascular Center
- Suita
- Japan
| | - Masafumi Ihara
- Department of Stroke and Cerebrovascular Diseases
- National Cerebral and Cardiovascular Center
- Suita
- Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis
- Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| |
Collapse
|
34
|
Chen CJ, Bando K, Ashino H, Taguchi K, Shiraishi H, Shima K, Fujimoto O, Kitamura C, Matsushima S, Uchida K, Nakahara Y, Kasahara H, Minamizawa T, Jiang C, Zhang MR, Ono M, Tokunaga M, Suhara T, Higuchi M, Yamada K, Ji B. In vivo SPECT imaging of amyloid-β deposition with radioiodinated imidazo[1,2-a]pyridine derivative DRM106 in a mouse model of Alzheimer's disease. J Nucl Med 2014; 56:120-6. [PMID: 25476539 DOI: 10.2967/jnumed.114.146944] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Noninvasive determination of amyloid-β peptide (Aβ) deposition has important significance for early diagnosis and medical intervention for Alzheimer's disease (AD). In the present study, we investigated the availability of radiolabeled DRM106 ((123/125)I-DRM106 [6-iodo-2-[4-(1H-3-pyrazolyl)phenyl]imidazo[1,2-a]pyridine]), a compound with sufficient affinity for the synthesis of human Aβ fibrils and satisfactory metabolic stability, as a SPECT ligand in living brains. METHOD The sensitivity of (125)I-DRM106 for detecting Aβ deposition was compared with that of (125)I-IMPY (2-(4'-dimethylaminophenyl)-6-iodo-imidazo[1,2-a]pyridine), a well-known amyloid SPECT ligand, by ex vivo autoradiographic analyses in 18-mo-old amyloid precursor protein transgenic mice. To verify the sensitivity and quantitation of radiolabeled DRM106 for in vivo imaging, we compared the detectability of Aβ plaques with (123)I-DRM106 and a well-known amyloid PET agent, (11)C-labeled Pittsburgh compound B ((11)C-PiB), in 29-mo-old transgenic mice and age-matched nontransgenic littermates. Additionally, we compared the binding characteristics of (125)I-DRM106 with those of (11)C-PiB and (11)C-PBB3, which selectively bind to Aβ plaques and preferentially to tau aggregates, respectively, in postmortem AD brain sections. RESULTS Ex vivo autoradiographic analysis showed that measurement with (125)I-DRM106 has a higher sensitivity for detecting Aβ accumulation than with (125)I-IMPY in transgenic mice. SPECT imaging with (123)I-DRM106 also successfully detected Aβ deposition in living aged transgenic mice and showed strong correlation (R = 0.95, P < 0.01) in quantitative analysis for Aβ plaque detection by PET imaging with (11)C-PiB, implying that sensitivity and quantitation of SPECT imaging with (123)I-DRM106 are almost as good as (11)C-PiB PET for the detectability of Aβ deposition. Further, the addition of nonradiolabeled DRM106 fully blocked the binding of (125)I-DRM106 and (11)C-PiB, but not (11)C-PBB3, to AD brain sections, and (125)I-DRM106 showed a lower binding ratio of the diffuse plaque-rich lateral temporal cortex to the dense-cored/neuritic plaque-rich hippocampal CA1 area, compared with (11)C-PiB. CONCLUSION All of these data demonstrated the high potential of (123)I-DRM106 for amyloid imaging in preclinical and clinical application, and it might more preferentially detect dense-cored/neuritic amyloid deposition, which is expected to be closely associated with neuropathologic changes of AD.
Collapse
Affiliation(s)
- Chun-Jen Chen
- Research Department, Fujifilm RI Pharma Co. LTD, Chiba, Japan Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan Clinical Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, Gifu, Japan; and
| | - Kazunori Bando
- Research Department, Fujifilm RI Pharma Co. LTD, Chiba, Japan
| | - Hiroki Ashino
- Research Department, Fujifilm RI Pharma Co. LTD, Chiba, Japan
| | - Kazumi Taguchi
- Research Department, Fujifilm RI Pharma Co. LTD, Chiba, Japan
| | | | - Keiji Shima
- Research Department, Fujifilm RI Pharma Co. LTD, Chiba, Japan
| | - Osuke Fujimoto
- Research Department, Fujifilm RI Pharma Co. LTD, Chiba, Japan
| | - Chiemi Kitamura
- Research Department, Fujifilm RI Pharma Co. LTD, Chiba, Japan
| | | | - Keisuke Uchida
- Research Department, Fujifilm RI Pharma Co. LTD, Chiba, Japan
| | - Yuto Nakahara
- Research Department, Fujifilm RI Pharma Co. LTD, Chiba, Japan
| | | | | | - Cheng Jiang
- School of Pharmacy, Fudan University, Shanghai, China
| | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Maiko Ono
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Masaki Tokunaga
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Tetsuya Suhara
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Makoto Higuchi
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Kazutaka Yamada
- Clinical Veterinary Science, The United Graduate School of Veterinary Science, Gifu University, Gifu, Japan; and
| | - Bin Ji
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
35
|
Longitudinal PET-MRI reveals β-amyloid deposition and rCBF dynamics and connects vascular amyloidosis to quantitative loss of perfusion. Nat Med 2014; 20:1485-92. [PMID: 25384087 DOI: 10.1038/nm.3734] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/10/2014] [Indexed: 01/05/2023]
Abstract
The dynamics of β-amyloid deposition and related second-order physiological effects, such as regional cerebral blood flow (rCBF), are key factors for a deeper understanding of Alzheimer's disease (AD). We present longitudinal in vivo data on the dynamics of β-amyloid deposition and the decline of rCBF in two different amyloid precursor protein (APP) transgenic mouse models of AD. Using a multiparametric positron emission tomography and magnetic resonance imaging approach, we demonstrate that in the presence of cerebral β-amyloid angiopathy (CAA), β-amyloid deposition is accompanied by a decline of rCBF. Loss of perfusion correlates with the growth of β-amyloid plaque burden but is not related to the number of CAA-induced microhemorrhages. However, in a mouse model of parenchymal β-amyloidosis and negligible CAA, rCBF is unchanged. Because synaptically driven spontaneous network activity is similar in both transgenic mouse strains, we conclude that the disease-related decline of rCBF is caused by CAA.
Collapse
|
36
|
Yang Y, Cui M. Radiolabeled bioactive benzoheterocycles for imaging β-amyloid plaques in Alzheimer's disease. Eur J Med Chem 2014; 87:703-21. [DOI: 10.1016/j.ejmech.2014.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/29/2014] [Accepted: 10/04/2014] [Indexed: 01/30/2023]
|
37
|
Affiliation(s)
- Joseph Sherma
- a Department of Chemistry , Lafayette College , Easton , Pennsylvania , USA
| | | |
Collapse
|
38
|
Snellman A, Rokka J, López-Picón FR, Eskola O, Salmona M, Forloni G, Scheinin M, Solin O, Rinne JO, Haaparanta-Solin M. In vivo PET imaging of beta-amyloid deposition in mouse models of Alzheimer's disease with a high specific activity PET imaging agent [(18)F]flutemetamol. EJNMMI Res 2014; 4:37. [PMID: 25977876 PMCID: PMC4412375 DOI: 10.1186/s13550-014-0037-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/02/2014] [Indexed: 01/07/2023] Open
Abstract
Background The purpose of the study was to evaluate the applicability of 18F-labelled amyloid imaging positron emission tomography (PET) agent [18F]flutemetamol to detect changes in brain beta-amyloid (Aβ) deposition in vivo in APP23, Tg2576 and APPswe-PS1dE9 mouse models of Alzheimer's disease. We expected that the high specific activity of [18F]flutemetamol would make it an attractive small animal Aβ imaging agent. Methods [18F]flutemetamol uptake in the mouse brain was evaluated in vivo at 9 to 22 months of age with an Inveon Multimodality PET/CT camera (Siemens Medical Solutions USA, Knoxville, TN, USA). Retention in the frontal cortex (FC) was evaluated by Logan distribution volume ratios (DVR) and FC/cerebellum (CB) ratios during the late washout phase (50 to 60 min). [18F]flutemetamol binding to Aβ was also evaluated in brain slices by in vitro and ex vivo autoradiography. The amount of Aβ in the brain slices was determined with Thioflavin S and anti-Aβ1−40 immunohistochemistry. Results In APP23 mice, [18F]flutemetamol retention in the FC increased from 9 to 18 months. In younger mice, DVR and FC/CB50-60 were 0.88 (0.81) and 0.88 (0.89) at 9 months (N = 2), and 0.98 (0.93) at 12 months (N = 1), respectively. In older mice, DVR and FC/CB50-60 were 1.16 (1.15) at 15 months (N = 1), 1.13 (1.16) and 1.35 (1.35) at 18 months (N = 2), and 1.05 (1.31) at 21 months (N = 1). In Tg2576 mice, DVR and FC/CB50-60 showed modest increasing trends but also high variability. In APPswe-PS1dE9 mice, DVR and FC/CB50-60 did not increase with age. Thioflavin S and anti-Aβ1−40 positive Aβ deposits were present in all transgenic mice at 19 to 22 months, and they co-localized with [18F]flutemetamol binding in the brain slices examined with in vitro and ex vivo autoradiography. Conclusions Increased [18F]flutemetamol retention in the brain was detected in old APP23 mice in vivo. However, the high specific activity of [18F]flutemetamol did not provide a notable advantage in Tg2576 and APPswe-PS1dE9 mice compared to the previously evaluated structural analogue [11C]PIB. For its practical benefits, [18F]flutemetamol imaging with a suitable mouse model like APP23 is an attractive alternative.
Collapse
Affiliation(s)
- Anniina Snellman
- Medicity/PET Preclinical Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, Turku 20520, Finland
| | - Johanna Rokka
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Porthaninkatu 3, Turku 20500, Finland
| | - Francisco R López-Picón
- Medicity/PET Preclinical Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, Turku 20520, Finland
| | - Olli Eskola
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Porthaninkatu 3, Turku 20500, Finland
| | - Mario Salmona
- Mario Negri Institute for Pharmacological Research, Milan 20156, Italy
| | - Gianluigi Forloni
- Mario Negri Institute for Pharmacological Research, Milan 20156, Italy
| | - Mika Scheinin
- Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Kiinamyllynkatu 10, Turku 20520, Finland ; Unit of Clinical Pharmacology, TYKSLAB, Turku University Hospital, Kiinamyllynkatu 10, Turku 20520, Finland
| | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Porthaninkatu 3, Turku 20500, Finland
| | - Juha O Rinne
- Turku PET Centre, University of Turku, Turku 20521, Finland
| | - Merja Haaparanta-Solin
- Medicity/PET Preclinical Laboratory, Turku PET Centre, University of Turku, Tykistökatu 6 A, Turku 20520, Finland
| |
Collapse
|
39
|
Abstract
AbstractThe most important advances in planar chromatography published between November 1, 2011 and November 1, 2013 are reviewed in this paper. Included are an introduction to the current status of the field; student experiments, books, and reviews; theory and fundamental studies; apparatus and techniques for sample preparation and TLC separations (sample application and plate development with the mobile phase); detection and identification of separated zones (chemical and biological detection, TLC/mass spectrometry, and TLC coupled with other spectrometric methods); techniques and instruments for quantitative analysis; preparative layer chromatography; and thin layer radiochromatography. Numerous applications to a great number of compound types and sample matrices are presented in all sections of the review.
Collapse
|
40
|
Rokka J, Snellman A, Zona C, La Ferla B, Nicotra F, Salmona M, Forloni G, Haaparanta-Solin M, Rinne JO, Solin O. Synthesis and evaluation of a (18)F-curcumin derivate for β-amyloid plaque imaging. Bioorg Med Chem 2014; 22:2753-62. [PMID: 24702859 DOI: 10.1016/j.bmc.2014.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/04/2014] [Accepted: 03/10/2014] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Curcumin is a neuroprotective compound that inhibits the formation of amyloid oligomers and fibrils and binds to β-amyloid plaques in Alzheimer's disease (AD). We aimed to synthesize an (18)F-labeled curcumin derivate ([(18)F]4) and to characterize its positron emission tomography (PET) tracer-binding properties to β-amyloid plaques in a transgenic APP23 mouse model of AD. METHODS We utilized facile one-pot synthesis of [(18)F]4 using nucleophilic (18)F-fluorination and click chemistry. Binding of [(18)F]4 to β-amyloid plaques in the transgenic APP23 mouse brain cryosections was studied in vitro using heterologous competitive binding against PIB. [(18)F]4 uptake was studied ex vivo in rodents and in vivo using PET/computed tomography of transgenic APP23 and wild-type control mice. RESULTS The radiochemical yield of [(18)F]4 was 21 ± 11%, the specific activity exceeded 1TBq/μmol, and the radiochemical purity exceeded 99.3% at the end of synthesis. In vitro studies of [(18)F]4 with the transgenic APP23 mouse revealed high β-amyloid plaque binding. In vivo and ex vivo studies demonstrated that [(18)F]4 has fast clearance from the blood, moderate metabolism but low blood-brain barrier (BBB) penetration. CONCLUSIONS [(18)F]4 was synthesized in high yield and excellent quality. In vitro studies, metabolite profile, and fast clearance from the blood indicated a promising tracer for Aβ imaging. However, [(18)F]4 has low in vivo BBB penetration and thus further studies are needed to reveal the reason for this and to possibly overcome this issue.
Collapse
Affiliation(s)
- Johanna Rokka
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, University of Turku, Porthaninkatu 3, FI-20500 Turku, Finland
| | - Anniina Snellman
- Turku PET Centre, Preclinical Imaging, University of Turku, Tykistökatu 6, FI-20520 Turku, Finland
| | - Cristiano Zona
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, I-20126 Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, I-20126 Milano, Italy
| | - Francesco Nicotra
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, I-20126 Milano, Italy
| | - Mario Salmona
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche 'Mario Negri', I-20156 Milano, Italy
| | - Gianluigi Forloni
- Department of Biochemistry and Molecular Pharmacology, Istituto di Ricerche Farmacologiche 'Mario Negri', I-20156 Milano, Italy
| | - Merja Haaparanta-Solin
- Turku PET Centre, Preclinical Imaging, University of Turku, Tykistökatu 6, FI-20520 Turku, Finland
| | - Juha O Rinne
- Turku PET Centre c/o Turku University Hospital, University of Turku, PO Box 52, FI-20521 Turku, Finland
| | - Olof Solin
- Turku PET Centre, Radiopharmaceutical Chemistry Laboratory, University of Turku, Porthaninkatu 3, FI-20500 Turku, Finland; Turku PET Centre, Accelerator Laboratory, Åbo Akademi University, Porthansgatan 3, FI-20500 Turku, Finland.
| |
Collapse
|
41
|
Suzuki K, Igarashi H, Huber VJ, Kitaura H, Kwee IL, Nakada T. Ligand-based molecular MRI: O-17 JJVCPE amyloid imaging in transgenic mice. J Neuroimaging 2014; 24:595-598. [PMID: 25370340 PMCID: PMC4282752 DOI: 10.1111/jon.12091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 11/20/2013] [Accepted: 12/23/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Development of molecular MR imaging (MRI) similar to PET imaging using contrast agents such as gadolinium as probe have been inherently hampered by incompatibility between potential probe (charged molecules) and membrane permeability. Nevertheless, considering the inherent spatial resolution limit for PET of 700μ, the superior microscopic resolution of MRI of 4 μ presents a strong incentive for research into ligand-based molecular MRI. METHODS 17O exhibits JJ vicinal coupling with a covalently bound proton in a hydroxyl group. This 17O coupled proton can be ionized in water solution and interexchange with other water protons. This property can be utilized as “probe” in T2-weighted imaging and developed into ligand-based molecular MRI. We examined β-amyloid distribution in human APP overexpressed transgenic mice in vivo following injection of 17O labeled Pittsburg compound B (17O-PiB). RESULTS JJVCPE imaging successfully imaged 17O-PiB, unequivocally establishing that 17O JJVCPE imaging can be developed into PET-like molecular MRI in clinical medicine. CONCLUSIONS The study represents the first successful ligand-based molecular MRI in vivo. This is also the first in vivo amyloid imaging using MRI. High-resolution molecular MRI with high specificity under clinical settings, such as in vivo microscopic imaging of senile plaque, is a foreseeable aim.
Collapse
Affiliation(s)
- Kiyotaka Suzuki
- Center for Integrated Human Brain Science Brain Research Institute, University of Niigata
| | - Hironaka Igarashi
- Center for Integrated Human Brain Science Brain Research Institute, University of Niigata
| | - Vincent J Huber
- Center for Integrated Human Brain Science Brain Research Institute, University of Niigata
| | - Hiroki Kitaura
- Center for Integrated Human Brain Science Brain Research Institute, University of Niigata
| | - Ingrid L Kwee
- Department of Neurology, University of California, Davis
| | - Tsutomu Nakada
- Center for Integrated Human Brain Science Brain Research Institute, University of Niigata.,Department of Neurology, University of California, Davis
| |
Collapse
|
42
|
Brendel M, Delker A, Rötzer C, Böning G, Carlsen J, Cyran C, Mille E, Gildehaus FJ, Cumming P, Baumann K, Steiner H, Haass C, Herms J, Bartenstein P, Rominger A. Impact of partial volume effect correction on cerebral β-amyloid imaging in APP-Swe mice using [(18)F]-florbetaben PET. Neuroimage 2013; 84:843-53. [PMID: 24055703 DOI: 10.1016/j.neuroimage.2013.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 09/03/2013] [Accepted: 09/10/2013] [Indexed: 11/17/2022] Open
Abstract
We previously investigated the progression of β-amyloid deposition in brain of mice over-expressing amyloid-precursor protein (APP-Swe), a model of Alzheimer's disease (AD), in a longitudinal PET study with the novel β-amyloid tracer [(18)F]-florbetaben. There were certain discrepancies between PET and autoradiographic findings, which seemed to arise from partial volume effects (PVE). Since this phenomenon can lead to bias, most especially in the quantitation of brain microPET studies of mice, we aimed in the present study to investigate the magnitude of PVE on [(18)F]-florbetaben quantitation in murine brain, and to establish and validate a useful correction method (PVEC). Phantom studies with solutions of known radioactivity concentration were performed to measure the full-width-at-half-maximum (FWHM) resolution of the Siemens Inveon DPET and to validate a volume-of-interest (VOI)-based PVEC algorithm. Several VOI-brain-masks were applied to perform in vivo PVEC on [(18)F]-florbetaben data from C57BL/6(N=6) mice, while uncorrected and PVE-corrected data were cross-validated with gamma counting and autoradiography. Next, PVEC was performed on longitudinal PET data set consisting of 43 PET scans in APP-Swe (13-20months) and age-matched wild-type (WT) mice using the previously defined masks. VOI-based cortex-to-cerebellum ratios (SUVR) were compared for uncorrected and PVE-corrected results. Brains from a subset of transgenic mice were ultimately examined by autoradiography ex vivo and histochemistry in vitro as gold standard assessments, and compared to VOI-based PET results. The phantom study indicated a FWHM of 1.72mm. Applying a VOI-brain-mask including extracerebral regions gave robust PVEC, with increased precision of the SUVR results. Cortical SUVR increased with age in APP-Swe mice compared to baseline measurements (16months: +5.5%, p<0.005; 20months: +15.5%, p<0.05) with uncorrected data, and to a substantially greater extent with PVEC (16months: +12.2% p<0.005; 20months: +36.4% p<0.05). WT animals showed no binding changes, irrespective of PVEC. Relative to autoradiographic results, the error [%] for uncorrected cortical SUVR was 18.9% for native PET data, and declined to 4.8% upon PVEC, in high correlation with histochemistry results. We calculate that PVEC increases by 10% statistical power for detecting altered [(18)F]-florbetaben uptake in aging APP-Swe mice in planned studies of disease modifying treatments on amyloidogenesis.
Collapse
Affiliation(s)
- Matthias Brendel
- Department of Nuclear Medicine, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ono M, Cheng Y, Kimura H, Watanabe H, Matsumura K, Yoshimura M, Iikuni S, Okamoto Y, Ihara M, Takahashi R, Saji H. Development of novel 123I-labeled pyridyl benzofuran derivatives for SPECT imaging of β-amyloid plaques in Alzheimer's disease. PLoS One 2013; 8:e74104. [PMID: 24058519 PMCID: PMC3772825 DOI: 10.1371/journal.pone.0074104] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 07/29/2013] [Indexed: 11/18/2022] Open
Abstract
Imaging of β-amyloid (Aβ) plaques in the brain may facilitate the diagnosis of cerebral β-amyloidosis, risk prediction of Alzheimer’s disease (AD), and effectiveness of anti-amyloid therapies. The purpose of this study was to evaluate novel 123I-labeled pyridyl benzofuran derivatives as SPECT probes for Aβ imaging. The formation of a pyridyl benzofuran backbone was accomplished by Suzuki coupling. [123I/125I]-labeled pyridyl benzofuran derivatives were readily prepared by an iododestannylation reaction. In vitro Aβ binding assays were carried out using Aβ(1–42) aggregates and postmortem human brain sections. Biodistribution experiments were conducted in normal mice at 2, 10, 30, and 60 min postinjection. Aβ labeling in vivo was evaluated by small-animal SPECT/CT in Tg2576 transgenic mice injected with [123I]8. Ex vivo autoradiography of the brain sections was performed after SPECT/CT. Iodinated pyridyl benzofuran derivatives showed excellent affinity for Aβ(1–42) aggregates (2.4 to 10.3 nM) and intensely labeled Aβ plaques in autoradiographs of postmortem AD brain sections. In biodistribution experiments using normal mice, all these derivatives displayed high initial uptake (4.03–5.49% ID/g at 10 min). [125I]8 displayed the quickest clearance from the brain (1.30% ID/g at 60 min). SPECT/CT with [123I]8 revealed higher uptake of radioactivity in the Tg2576 mouse brain than the wild-type mouse brain. Ex vivo autoradiography showed in vivo binding of [123I]8 to Aβ plaques in the Tg2576 mouse brain. These combined results warrant further investigation of [123I]8 as a SPECT imaging agent for visualizing Aβ plaques in the AD brain.
Collapse
Affiliation(s)
- Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- * E-mail:
| | - Yan Cheng
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Kimura
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kenji Matsumura
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Masashi Yoshimura
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yoko Okamoto
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
44
|
Yoshimura M, Ono M, Matsumura K, Watanabe H, Kimura H, Cui M, Nakamoto Y, Togashi K, Okamoto Y, Ihara M, Takahashi R, Saji H. Structure-Activity Relationships and in Vivo Evaluation of Quinoxaline Derivatives for PET Imaging of β-Amyloid Plaques. ACS Med Chem Lett 2013; 4:596-600. [PMID: 24900717 DOI: 10.1021/ml4000707] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/08/2013] [Indexed: 12/11/2022] Open
Abstract
This letter describes the synthesis, structure-activity relationships, and in vivo evaluation of a new series of 2-phenylquinoxaline (PQ) derivatives for imaging β-amyloid (Aβ) plaques in Alzheimer's disease (AD). In experiments in vitro, the affinity of the derivatives for Aβ aggregates varied, with K i values of 0.895 to 1180 nM. In brain sections from AD patients, derivatives with a K i of less than 111 nM intensely labeled Aβ plaques, while those with values over 242 nM showed no marked labeling. In biodistribution experiments using normal mice, the derivatives showed good uptake into (4.69-7.59 %ID/g at 2 or 10 min postinjection) and subsequent washout from (1.48-3.08 %ID/g at 60 min postinjection) the brain. In addition, [(18)F]PQ-6 labeled Aβ plaques in vivo in APP transgenic mice, while it showed nonspecific binding in the white matter. Further structural optimization based on [(18)F]PQ-6 may lead to more useful PET probes for imaging Aβ plaques.
Collapse
Affiliation(s)
- Masashi Yoshimura
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida
Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida
Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kenji Matsumura
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida
Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida
Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Kimura
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida
Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mengchao Cui
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida
Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear
Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kaori Togashi
- Department of Diagnostic Imaging and Nuclear
Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yoko Okamoto
- Department of Neuroscience, Graduate
School of Medicine, Kyoto University, 54
Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masafumi Ihara
- Department of Neuroscience, Graduate
School of Medicine, Kyoto University, 54
Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neuroscience, Graduate
School of Medicine, Kyoto University, 54
Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical
Sciences, Kyoto University, 46-29 Yoshida
Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
45
|
Snellman A, López-Picón FR, Rokka J, Salmona M, Forloni G, Scheinin M, Solin O, Rinne JO, Haaparanta-Solin M. Longitudinal amyloid imaging in mouse brain with 11C-PIB: comparison of APP23, Tg2576, and APPswe-PS1dE9 mouse models of Alzheimer disease. J Nucl Med 2013; 54:1434-41. [PMID: 23833271 DOI: 10.2967/jnumed.112.110163] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Follow-up of β-amyloid (Aβ) deposition in transgenic mouse models of Alzheimer disease (AD) would be a valuable translational tool in the preclinical evaluation of potential antiamyloid therapies. This study aimed to evaluate the ability of the clinically used PET tracer (11)C-Pittsburgh compound B ((11)C-PIB) to detect changes over time in Aβ deposition in the brains of living mice representing the APP23, Tg2576, and APP(swe)-PS1(dE9) transgenic mouse models of AD. METHODS Mice from each transgenic strain were imaged with 60-min dynamic PET scans at 7-9, 12, 15, and 18-22 mo of age. Regional (11)C-PIB retention was quantitated as distribution volume ratios using Logan graphical analysis with cerebellar reference input, as radioactivity uptake ratios between the frontal cortex (FC) and the cerebellum (CB) during the 60-min scan, and as bound-to-free ratios in the late washout phase (40-60 min). Ex vivo autoradiography experiments were performed after the final imaging session to validate (11)C-PIB binding to Aβ deposits. Additionally, the presence of Aβ deposits was evaluated in vitro using staining with thioflavin-S and Aβ1-40, Aβ1-16, and AβN3(pE) immunohistochemistry. RESULTS Neocortical (11)C-PIB retention was markedly increased in old APP23 mice with large thioflavin-S-positive Aβ deposits. At 12 mo, the Logan distribution volume ratio for the FC was 1.03 and 0.93 (n = 2), increasing to 1.38 ± 0.03 (n = 3) and 1.34 (n = 1) at 18 and 21 mo of age, respectively. An increase was also observed in bound-to-free ratios for the FC between young (7- to 12-mo-old) and old (15- to 22-mo-old) APP23 mice. Binding of (11)C-PIB to Aβ-rich cortical regions was also evident in ex vivo autoradiograms of APP23 brain sections. In contrast, no increases in (11)C-PIB retention were observed in aging Tg2576 or APP(swe)-PS1(dE9) mice in vivo, although in the latter, extensive Aβ deposition was already observed at 9 mo of age with immunohistochemistry. CONCLUSION The results suggest that (11)C-PIB binding to Aβ deposits in transgenic mouse brain is highly dependent on the AD model and the structure of its Aβ plaques. Longitudinal in vivo (11)C-PIB uptake studies are possible in APP23 mice.
Collapse
Affiliation(s)
- Anniina Snellman
- MediCity/PET Preclinical Laboratory, University of Turku, Turku PET Centre, Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rominger A, Brendel M, Burgold S, Keppler K, Baumann K, Xiong G, Mille E, Gildehaus FJ, Carlsen J, Schlichtiger J, Niedermoser S, Wängler B, Cumming P, Steiner H, Herms J, Haass C, Bartenstein P. Longitudinal assessment of cerebral β-amyloid deposition in mice overexpressing Swedish mutant β-amyloid precursor protein using 18F-florbetaben PET. J Nucl Med 2013; 54:1127-34. [PMID: 23729696 DOI: 10.2967/jnumed.112.114660] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
UNLABELLED The progression of β-amyloid deposition in the brains of mice overexpressing Swedish mutant β-amyloid precursor protein (APP-Swe), a model of Alzheimer disease (AD), was investigated in a longitudinal PET study using the novel β-amyloid tracer (18)F-florbetaben. METHODS Groups of APP-Swe and age-matched wild-type (WT) mice (age range, 10-20 mo) were investigated. Dynamic emission recordings were acquired with a small-animal PET scanner during 90 min after the administration of (18)F-florbetaben (9 MBq, intravenously). After spatial normalization of individual PET recordings to common coordinates for mouse brain, binding potentials (BPND) and standardized uptake value ratios (SUVRs) were calculated relative to the cerebellum. Voxelwise analyses were performed using statistical parametric mapping (SPM). Histochemical analyses and ex vivo autoradiography were ultimately performed in a subset of animals as a gold standard assessment of β-amyloid plaque load. RESULTS SUVRs calculated from static recordings during the interval of 30-60 min after tracer injection correlated highly with estimates of BPND based on the entire dynamic emission recordings. (18)F-florbetaben binding did not significantly differ in APP-Swe mice and WT animals at 10 and 13 mo of age. At 16 mo of age, the APP-Swe mice had a significant 7.9% increase (P < 0.01) in cortical (18)F-florbetaben uptake above baseline and at 20 mo there was a 16.6% increase (P < 0.001), whereas WT mice did not show any temporal changes in tracer uptake during the interval of follow-up. Voxelwise SPM analyses revealed the first signs of increased cortical binding at 13 mo and confirmed progressive binding increases in both the frontal and the temporal cortices (P < 0.001 uncorrected) to 20 mo. The SUVR strongly correlated with percentage plaque load (R = 0.95, P < 0.001). CONCLUSION In the first longitudinal PET study in an AD mouse model using the novel β-amyloid tracer (18)F-florbetaben, the temporal and spatial progression of amyloidogenesis in the brain of APP-Swe mice were sensitively monitored. This method should afford the means for preclinical testing of novel therapeutic approaches to the treatment of AD.
Collapse
Affiliation(s)
- Axel Rominger
- Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|