1
|
Chauveau F, Winkeler A, Chalon S, Boutin H, Becker G. PET imaging of neuroinflammation: any credible alternatives to TSPO yet? Mol Psychiatry 2025; 30:213-228. [PMID: 38997465 DOI: 10.1038/s41380-024-02656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Over the last decades, the role of neuroinflammation in neuropsychiatric conditions has attracted an exponentially growing interest. A key driver for this trend was the ability to image brain inflammation in vivo using PET radioligands targeting the Translocator Protein 18 kDa (TSPO), which is known to be expressed in activated microglia and astrocytes upon inflammatory events as well as constitutively in endothelial cells. TSPO is a mitochondrial protein that is expressed mostly by microglial cells upon activation but is also expressed by astrocytes in some conditions and constitutively by endothelial cells. Therefore, our current understanding of neuroinflammation dynamics is hampered by the lack of alternative targets available for PET imaging. We performed a systematic search and review on radiotracers developed for neuroinflammation PET imaging apart from TSPO. The following targets of interest were identified through literature screening (including previous narrative reviews): P2Y12R, P2X7R, CSF1R, COX (microglial targets), MAO-B, I2BS (astrocytic targets), CB2R & S1PRs (not specific of a single cell type). We determined the level of development and provided a scoping review for each target. Strikingly, astrocytic biomarker MAO-B has progressed in clinical investigations the furthest, while few radiotracers (notably targeting S1P1Rs, CSF1R) are being implemented in clinical investigations. Other targets such as CB2R and P2X7R have proven disappointing in clinical studies (e.g. poor signal, lack of changes in disease conditions, etc.). While astrocytic targets are promising, development of new biomarkers and tracers specific for microglial activation has proven challenging.
Collapse
Affiliation(s)
- Fabien Chauveau
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
| | - Alexandra Winkeler
- Université Paris-Saclay, Inserm, CNRS, CEA, BioMaps, Service Hospitalier Frédéric Joliot, 4 place du général Leclerc, 91401, Orsay, France
| | - Sylvie Chalon
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France
| | - Hervé Boutin
- UMR 1253 iBrain, Université de Tours - INSERM, Bâtiment Planiol, UFR de Médecine, 10 Boulevard Tonnellé, 37032, Tours, Cedex 01, France.
| | - Guillaume Becker
- Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Inserm U1028, CNRS UMR5292, BIORAN, Groupement Hospitalier Est - CERMEP, 59 boulevard Pinel, 69677, Bron, Cedex, France
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, Cedex, France
| |
Collapse
|
2
|
Kim J, Kim YK. Molecular Imaging of Neuroinflammation in Alzheimer's Disease and Mild Cognitive Impairment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:301-326. [PMID: 36949316 DOI: 10.1007/978-981-19-7376-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent neurocognitive disorder. Due to the ineffectiveness of treatments targeting the amyloid cascade, molecular biomarkers for neuroinflammation are attracting attention with increasing knowledge about the role of neuroinflammation in the pathogenesis of AD. This chapter will explore the results of studies using molecular imaging for diagnosing AD and mild cognitive impairment (MCI). Because it is critical to interpreting the data to understand which substances are targeted in molecular imaging, this chapter will discuss the two most significant targets, microglia and astrocytes, as well as the best-known radioligands for each. Then, neuroimaging results with PET neuroinflammation imaging will be reviewed for AD and MCI. Although a growing body of evidence has suggested that these molecular imaging biomarkers for neuroinflammation may have a role in the diagnosis of AD and MCI, the findings are inconsistent or cross-sectional, which indicates that it is difficult to apply the contents in practice due to the need for additional study. In particular, because the results of multiple interventions targeting neuroinflammation were inconclusive, molecular imaging markers for neuroinflammation can be used in combination with conventional markers to select appropriate patients for early intervention for neuroinflammation rather than as a single marker.
Collapse
Affiliation(s)
- Junhyung Kim
- Department of Psychiatry, Korea University College of Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
- Department of Psychiatry, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
3
|
Meyer JH, Braga J. Development and Clinical Application of Positron Emission Tomography Imaging Agents for Monoamine Oxidase B. Front Neurosci 2022; 15:773404. [PMID: 35280341 PMCID: PMC8914088 DOI: 10.3389/fnins.2021.773404] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Monoamine oxidase B (MAO-B) is a high-density protein in the brain mainly found on outer mitochondrial membranes, primarily in astroglia, but additionally in serotonergic neurons and in the substantia nigra in the midbrain. It is an enzyme that participates in the oxidative metabolism of important monoamines including dopamine, norepinephrine, benzylamine, and phenylethylamine. Elevated MAO-B density may be associated with astrogliosis and inhibiting MAO-B may reduce astrogliosis. MAO-B density is elevated in postmortem sampling of pathology for many neuropsychiatric diseases including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and alcohol use disorder. Initial development of positron emission tomography (PET) imaging agents focused on analogs of [11C]L-deprenyl, with the most commonly applied being the deuterium substituted [11C]L-deprenyl-D2. This latter radiotracer was modeled with an irreversible trapping compartment reflecting its irreversible binding to MAO-B. Subsequently, [11C]SL25.1188, a reversible binding MAO-B radioligand with outstanding properties including high specific binding and excellent reversibility was developed. [11C]SL25.1188 PET was applied to discover a substantive elevation of MAO-B binding in the prefrontal cortex in major depressive disorder (MDD) with an effect size of more than 1.5. Longer duration of MDD was associated with greater MAO-B binding throughout most gray matter regions in the brain, suggesting progressive astrogliosis. Important applications of [11C]L-deprenyl-D2 PET are detecting a 40% loss in radiotracer accumulation in cigarette smokers, and substantial occupancy of novel therapeutics like EVT301 and sembragiline. Given the number of diseases with elevations of MAO-B density and astrogliosis, and the advance of [11C]SL25.1188, clinical applications of MAO-B imaging are still at an early stage.
Collapse
Affiliation(s)
- Jeffrey H. Meyer
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
- *Correspondence: Jeffrey H. Meyer,
| | - Joeffre Braga
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that currently has no cure. The aged population is growing globally, creating an urgent need for more promising therapies for this debilitating disease. Much effort has been made in recent decades, and the field is highly dynamic, with numerous trials. The main focus of these trials includes disease modification and symptomatic treatment. Some have shown beneficial outcomes, while others have shown no significant benefits. Here, we cover the outcome of recently published AD clinical trials, as well as the mechanism of action of these therapeutical agents, to re-think drug development strategies and directions for future studies.
Collapse
|
5
|
Besada P, Viña D, Costas T, Costas-Lago MC, Vila N, Torres-Terán I, Sturlese M, Moro S, Terán C. Pyridazinones containing dithiocarbamoyl moieties as a new class of selective MAO-B inhibitors. Bioorg Chem 2021; 115:105203. [PMID: 34371375 DOI: 10.1016/j.bioorg.2021.105203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022]
Abstract
A novel class of potential MAO-B inhibitors was designed and synthesized in good yield by combining the pyridazinone moiety with the dithiocarbamate framework, two relevant pharmacophores for drug discovery. The biological results obtained for the different pyridazinone/dithiocarbamate hybrids (compounds 8-14) indicated that most of them reversibly and selectively inhibit the hMAO-B in vitro with IC50 values in the µM range and exhibit not significant cellular toxicity. The analogues 9a1, 11a1, 12a2, 12b1 and 12b2, which present the dithiocarbamate fragment derivatized with a piperidin-1-yl or pyrrolidin-1-yl group and placed at C3 or C4 of the diazine ring, were the most attractive compounds of these series. Molecular modeling studies were performed to analyze the binding mode to the enzyme and the structure activity relationships of the titled compounds, as well as to predict their drug-like properties.
Collapse
Affiliation(s)
- Pedro Besada
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - Dolores Viña
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Tamara Costas
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - María Carmen Costas-Lago
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - Noemí Vila
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - Iria Torres-Terán
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, 35131 Padova, Italy
| | - Carmen Terán
- Universidade de Vigo, Departamento de Química Orgánica, 36310 Vigo, Spain; Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain.
| |
Collapse
|
6
|
Bellaver B, Ferrari-Souza JP, Uglione da Ros L, Carter SF, Rodriguez-Vieitez E, Nordberg A, Pellerin L, Rosa-Neto P, Leffa DT, Zimmer ER. Astrocyte Biomarkers in Alzheimer Disease: A Systematic Review and Meta-analysis. Neurology 2021; 96:e2944-e2955. [PMID: 33952650 DOI: 10.1212/wnl.0000000000012109] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/19/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To perform a systematic review and meta-analysis to determine whether fluid and imaging astrocyte biomarkers are altered in Alzheimer disease (AD). METHODS PubMed and Web of Science databases were searched for articles reporting fluid or imaging astrocyte biomarkers in AD. Pooled effect sizes were determined with standardized mean differences (SMDs) using the Hedge G method with random effects to determine biomarker performance. Adapted questions from the Quality Assessment of Diagnostic Accuracy Studies were applied for quality assessment. A protocol for this study has been previously registered in PROSPERO (registration number: CRD42020192304). RESULTS The initial search identified 1,425 articles. After exclusion criteria were applied, 33 articles (a total of 3,204 individuals) measuring levels of glial fibrillary acidic protein (GFAP), S100B, chitinase-3-like protein 1 (YKL-40), and aquaporin 4 in the blood and CSF, as well as monoamine oxidase-B indexed by PET 11C-deuterium-l-deprenyl, were included. GFAP (SMD 0.94, 95% confidence interval [CI] 0.71-1.18) and YKL-40 (SMD 0.76, 95% CI 0.63-0.89) levels in the CSF and S100B levels in the blood (SMD 2.91, 95% CI 1.01-4.8) were found to be significantly increased in patients with AD. CONCLUSIONS Despite significant progress, applications of astrocyte biomarkers in AD remain in their early days. This meta-analysis demonstrated that astrocyte biomarkers are consistently altered in AD and supports further investigation for their inclusion in the AD clinical research framework for observational and interventional studies.
Collapse
Affiliation(s)
- Bruna Bellaver
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - João Pedro Ferrari-Souza
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Lucas Uglione da Ros
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Stephen F Carter
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Elena Rodriguez-Vieitez
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Agneta Nordberg
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Luc Pellerin
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Pedro Rosa-Neto
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Douglas Teixeira Leffa
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil
| | - Eduardo R Zimmer
- From the Graduate Program in Biological Sciences: Biochemistry (B.B., J.P.F.-S., L.U.d.R., E.R.Z.), Department of Pharmacology (E.R.Z.), and Graduate Program in Biological Sciences: Pharmacology and Therapeutics (E.R.Z.), Universidade Federal do Rio Grande do Sul; Department of Psychiatry (S.F.C.), University of Cambridge; Wolfson Molecular Imaging Centre (S.F.C.), University of Manchester, UK; Department of Neurobiology (E.R.-V, A.N.), Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (E.R.-V, A.N.); Theme Aging (A.N.), Karolinska University Hospital Stockholm, Stockholm, Sweden; Inserm U1082 (L.P.), Université de Poitiers, France; Translational Neuroimaging Laboratory (P.R.-N.), McGill University Research Centre for Studies in Aging, Alzheimer's Disease Research Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l'Ouest-de-l'Île-de-Montréal; McGill University (P.R.-N.), Montreal, Quebec, Canada; and ADHD Outpatient Program & Development Psychiatry Program (D.T.L.), Hospital de Clínicas de Porto Alegre, Brazil.
| |
Collapse
|
7
|
Hansen AK, Parbo P, Ismail R, Østergaard K, Brooks DJ, Borghammer P. Tau Tangles in Parkinson's Disease: A 2-Year Follow-Up Flortaucipir PET Study. JOURNAL OF PARKINSONS DISEASE 2021; 10:161-171. [PMID: 31815700 DOI: 10.3233/jpd-191774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Flortaucipir PET, a marker of tau tangles, has shown lower than expected cortical uptake in Parkinson's disease (PD), than would be predicted from neuropathologic estimates of Alzheimer's disease co-pathology. Instead, the most characteristic finding of flortaucipir imaging in PD is decreased uptake in the substantia nigra, reflecting reduction in its "off-target" binding to neuromelanin. We have previously reported these observations in cross-sectional studies. OBJECTIVE Here, we present two-year follow-up data of cortical and nigral flortaucipir uptake in PD patients. METHODS Seventeen PD patients received repeat flortaucipir PET two years after baseline. We interrogated vertex-based group-wise cortical tracer binding (SUVRs) with a cerebellar reference using the general linear model while mean substantia nigra SUVRs were compared with volumes of interest group comparisons and voxel-wise group analyses using ANOVA. Finally, we performed linear regressions of tau load with changes in MoCA and UPDRS motor scores. RESULTS We found no significant changes in substantia nigra or cortex flortaucipir uptake in Parkinson's disease patients over two years and no association with changes in cognitive symptoms. Signal reduction in the medial substantia nigra trended towards an association with worsening of motor symptoms. CONCLUSION No significant increase in tau tangles occurred after a two-year follow-up of Parkinson's disease patients using flortaucipir PET.
Collapse
Affiliation(s)
- Allan K Hansen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Parbo
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Rola Ismail
- PET-Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - David J Brooks
- PET-Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Institute of Neuroscience, Newcastle University, Newcastle, UK.,Division of Brain Sciences, Imperial College London, London, UK
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.,PET-Centre, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Overview of the Neuroprotective Effects of the MAO-Inhibiting Antidepressant Phenelzine. Cell Mol Neurobiol 2021; 42:225-242. [PMID: 33839994 PMCID: PMC8732914 DOI: 10.1007/s10571-021-01078-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/10/2021] [Indexed: 12/18/2022]
Abstract
Phenelzine (PLZ) is a monoamine oxidase (MAO)-inhibiting antidepressant with anxiolytic properties. This multifaceted drug has a number of pharmacological and neurochemical effects in addition to inhibition of MAO, and findings on these effects have contributed to a body of evidence indicating that PLZ also has neuroprotective/neurorescue properties. These attributes are reviewed in this paper and include catabolism to the active metabolite β-phenylethylidenehydrazine (PEH) and effects of PLZ and PEH on the GABA-glutamate balance in brain, sequestration of reactive aldehydes, and inhibition of primary amine oxidase. Also discussed are the encouraging findings of the effects of PLZ in animal models of stroke, spinal cord injury, traumatic brain injury, and multiple sclerosis, as well other actions such as reduction of nitrative stress, reduction of the effects of a toxin on dopaminergic neurons, potential anticonvulsant actions, and effects on brain-derived neurotrophic factor, neural cell adhesion molecules, an anti-apoptotic factor, and brain levels of ornithine and N-acetylamino acids.
Collapse
|
9
|
Duarte P, Cuadrado A, León R. Monoamine Oxidase Inhibitors: From Classic to New Clinical Approaches. Handb Exp Pharmacol 2021; 264:229-259. [PMID: 32852645 DOI: 10.1007/164_2020_384] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Monoamine oxidases (MAOs) are involved in the oxidative deamination of different amines and neurotransmitters. This pointed them as potential targets for several disorders and along the last 70 years a wide variety of MAO inhibitors have been developed as successful drugs for the treatment of complex diseases, being the first drugs approved for depression in the late 1950s. The discovery of two MAO isozymes (MAO-A and B) with different substrate selectivity and tissue expression patterns led to novel therapeutic approaches and to the development of new classes of inhibitors, such as selective irreversible and reversible MAO-B inhibitors and reversible MAO-A inhibitors. Significantly, MAO-B inhibitors constitute a widely studied group of compounds, some of them approved for the treatment of Parkinson's disease. Further applications are under development for the treatment of Alzheimer's disease, amyotrophic lateral sclerosis, and cardiovascular diseases, among others. This review summarizes the most important aspects regarding the development and clinical use of MAO inhibitors, going through mechanistic and structural details, new indications, and future perspectives. Monoamine oxidases (MAOs) catalyze the oxidative deamination of different amines and neurotransmitters. The two different isozymes, MAO-A and MAO-B, are located at the outer mitochondrial membrane in different tissues. The enzymatic reaction involves formation of the corresponding aldehyde and releasing hydrogen peroxide (H2O2) and ammonia or a substituted amine depending on the substrate. MAO's role in neurotransmitter metabolism made them targets for major depression and Parkinson's disease, among other neurodegenerative diseases. Currently, these compounds are being studied for other diseases such as cardiovascular ones.
Collapse
Affiliation(s)
- Pablo Duarte
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain
| | - Antonio Cuadrado
- Departmento de Bioquímica, Facultad de Medicina, Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Investigación Sanitaria La Paz (IdiPaz), Instituto de Investigaciones Biomédicas 'Alberto Sols' UAM-CSIC, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rafael León
- Instituto Teófilo Hernando y Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria, Servicio de Farmacología Clínica, Hospital Universitario de la Princesa, Madrid, Spain.
- Instituto de Química Médica, Consejo Superior de Investigaciones CientÚficas (IQM-CSIC), Madrid, Spain.
| |
Collapse
|
10
|
Effects of Novel Tacrine Derivatives on Mitochondrial Energy Metabolism and Monoamine Oxidase Activity-In Vitro Study. Mol Neurobiol 2020; 58:1102-1113. [PMID: 33089424 DOI: 10.1007/s12035-020-02172-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/14/2020] [Indexed: 11/27/2022]
Abstract
The trends of novel AD therapeutics are focused on multitarget-directed ligands (MTDLs), which combine cholinesterase inhibition with additional biological properties such as antioxidant properties to positively affect neuronal energy metabolism as well as mitochondrial function. We examined the in vitro effects of 10 novel MTDLs on the activities of mitochondrial enzymes (electron transport chain complexes and citrate synthase), mitochondrial respiration, and monoamine oxidase isoform (MAO-A and MAO-B) activity. The drug-induced effects of 7-MEOTA-adamantylamine heterodimers (K1011, K1013, K1018, K1020, and K1022) and tacrine/7-MEOTA/6-chlorotacrine-trolox heterodimers (K1046, K1053, K1056, K1060, and K1065) were measured in pig brain mitochondria. Most of the substances inhibited complex I- and complex II-linked respiration at high concentrations; K1046, K1053, K1056, and K1060 resulted in the least inhibition of mitochondrial respiration. Citrate synthase activity was not significantly inhibited by the tested substances; the least inhibition of complex I was observed for compounds K1060 and K1053, while both complex II/III and complex IV activity were markedly inhibited by K1011 and K1018. MAO-A was fully inhibited by K1018 and K1065, and MAO-B was fully inhibited by K1053 and K1065; the other tested drugs were partial inhibitors of both MAO-A and MAO-B. The tacrine/7-MEOTA/6-chlorotacrine-trolox heterodimers K1046, K1053, and K1060 seem to be the most suitable molecules for subsequent in vivo studies. These compounds had balanced inhibitory effects on mitochondrial respiration, with low complex I and complex II/III inhibition and full or partial inhibition of MAO-B activity.
Collapse
|
11
|
Rodríguez-Enríquez F, Costas-Lago MC, Besada P, Alonso-Pena M, Torres-Terán I, Viña D, Fontenla JÁ, Sturlese M, Moro S, Quezada E, Terán C. Novel coumarin-pyridazine hybrids as selective MAO-B inhibitors for the Parkinson's disease therapy. Bioorg Chem 2020; 104:104203. [PMID: 32932120 DOI: 10.1016/j.bioorg.2020.104203] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
The 3-pyridazinylcoumarin scaffold was previously reported as an efficient core for the discovery of reversible and selective inhibitors of MAO-B, a validated drug target for PD therapy which also plays an important role in the AD progress. Looking for its structural optimization, novel compounds of hybrid structure coumarin-pyridazine, differing in polarizability and lipophilicity properties, were synthesized and tested against the two MAO isoforms, MAO-A and MAO-B (compounds 17a-f and 18a-f). All the designed compounds selectively inhibited the MAO-B isoenzyme, exhibiting many of them IC50 values ranging from sub-micromolar to nanomolar grade and lacking neuronal toxicity. The 7-bromo-3-(6-bromopyridazin-3-yl)coumarin (18c), the most potent compound of these series (IC50 = 60 nM), was subjected to further in vivo studies in a reserpine-induced mouse PD model. The obtained results suggest a promising potential for 18c as antiparkinsonian agent. Molecular modeling studies also provided valuable information about the enzyme-drug interactions and the potential pharmacokinetic profile of the novel compounds.
Collapse
Affiliation(s)
- Fernanda Rodríguez-Enríquez
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Carmen Costas-Lago
- Departamento de Química Orgánica e Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Pedro Besada
- Departamento de Química Orgánica e Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Miguel Alonso-Pena
- Departamento de Química Orgánica e Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Iria Torres-Terán
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Ángel Fontenla
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, 35131 Padova, Italy
| | - Elias Quezada
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Terán
- Departamento de Química Orgánica e Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
12
|
The pro-psychotic metabotropic glutamate receptor compounds fenobam and AZD9272 share binding sites with monoamine oxidase-B inhibitors in humans. Neuropharmacology 2019; 162:107809. [PMID: 31589885 DOI: 10.1016/j.neuropharm.2019.107809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 09/18/2019] [Accepted: 10/02/2019] [Indexed: 11/22/2022]
Abstract
The metabotropic glutamate receptor 5 (mGluR5) ligands fenobam and AZD9272 have been reported to induce psychosis-like adverse events and to bind at unknown, non-GluR5-related, sites. Based on similarities of the regional binding patterns for [11C]AZD9272 and the monoamine oxidase-B (MAO-B) radioligand [11C]L-deprenyl-D2 in PET studies of the human brain we tested the hypothesis that the unique binding of fenobam and AZD9272 may represent specific binding to the MAO-B. PET data previously acquired for subjects examined using [11C]AZD9272 or [11C]L-deprenyl-D2 were re-evaluated to assess the correlations between radioligand binding parameters in human brain. In addition, the pharmacology of AZD9272 binding sites was characterized using competition binding studies carried out in vivo in non-human primates (NHPs) and in vitro using autoradiography in selected human brain regions. The regional binding of [11C]AZD9272 in human brain was closely correlated with that of [11C]L-deprenyl-D2. In PET studies of NHP brain administration of the MAO-B ligand L-deprenyl inhibited binding of radiolabeled AZD9272 and administration of fenobam inhibited binding of [11C]L-deprenyl-D2. Binding of radiolabeled AZD9272 in vitro was potently inhibited by fenobam or MAO-B compounds, and [11C]L-deprenyl-D2 binding was inhibited by fenobam or AZD9272. The findings are consistent with the hypothesis that both fenobam and AZD9272 bind to the MAO-B, which may be of relevance for understanding the mechanism of the psychosis-like adverse events reported for these compounds. Such understanding may serve as a lead to generate new models for the pathophysiology of psychosis.
Collapse
|
13
|
Yoshimoto M, Hirata M, Kagawa S, Magata Y, Ohmomo Y, Temma T. Synthesis and characterization of novel radiofluorinated probes for positron emission tomography imaging of monoamine oxidase B. J Labelled Comp Radiopharm 2019; 62:580-587. [DOI: 10.1002/jlcr.3779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/18/2019] [Accepted: 06/11/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Mitsuyoshi Yoshimoto
- Department of Biofunctional Analysis; Osaka University of Pharmaceutical Sciences; Takatsuki Japan
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center; National Cancer Center; Kashiwa Japan
| | - Masahiko Hirata
- Department of Biofunctional Analysis; Osaka University of Pharmaceutical Sciences; Takatsuki Japan
| | - Shinya Kagawa
- Department of Biofunctional Analysis; Osaka University of Pharmaceutical Sciences; Takatsuki Japan
- Division of PET Imaging; Shiga Medical Center Research Institute; Moriyama Japan
| | - Yasuhiro Magata
- Department of Nuclear Medicine and Diagnostic Imaging, Graduate School of Medicine; Kyoto University; Kyoto Japan
- Department of Molecular Imaging, Institute for Medical Photonics Research, Preeminent Medial Photonics Education and Research Center; Hamamatsu University School of Medicine; Hamamatsu Japan
| | - Yoshiro Ohmomo
- Department of Biofunctional Analysis; Osaka University of Pharmaceutical Sciences; Takatsuki Japan
| | - Takashi Temma
- Department of Biofunctional Analysis; Osaka University of Pharmaceutical Sciences; Takatsuki Japan
| |
Collapse
|
14
|
Albrecht DS, Forsberg A, Sandstrom A, Bergan C, Kadetoff D, Protsenko E, Lampa J, Lee YC, Olgart Höglund C, Catana C, Cervenka S, Akeju O, Lekander M, Cohen G, Halldin C, Taylor N, Kim M, Hooker JM, Edwards RR, Napadow V, Kosek E, Loggia ML. Brain glial activation in fibromyalgia - A multi-site positron emission tomography investigation. Brain Behav Immun 2019; 75:72-83. [PMID: 30223011 PMCID: PMC6541932 DOI: 10.1016/j.bbi.2018.09.018] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/31/2018] [Accepted: 09/13/2018] [Indexed: 12/11/2022] Open
Abstract
Fibromyalgia (FM) is a poorly understood chronic condition characterized by widespread musculoskeletal pain, fatigue, and cognitive difficulties. While mounting evidence suggests a role for neuroinflammation, no study has directly provided evidence of brain glial activation in FM. In this study, we conducted a Positron Emission Tomography (PET) study using [11C]PBR28, which binds to the translocator protein (TSPO), a protein upregulated in activated microglia and astrocytes. To enhance statistical power and generalizability, we combined datasets collected independently at two separate institutions (Massachusetts General Hospital [MGH] and Karolinska Institutet [KI]). In an attempt to disentangle the contributions of different glial cell types to FM, a smaller sample was scanned at KI with [11C]-L-deprenyl-D2 PET, thought to primarily reflect astrocytic (but not microglial) signal. Thirty-one FM patients and 27 healthy controls (HC) were examined using [11C]PBR28 PET. 11 FM patients and 11 HC were scanned using [11C]-L-deprenyl-D2 PET. Standardized uptake values normalized by occipital cortex signal (SUVR) and distribution volume (VT) were computed from the [11C]PBR28 data. [11C]-L-deprenyl-D2 was quantified using λ k3. PET imaging metrics were compared across groups, and when differing across groups, against clinical variables. Compared to HC, FM patients demonstrated widespread cortical elevations, and no decreases, in [11C]PBR28 VT and SUVR, most pronounced in the medial and lateral walls of the frontal and parietal lobes. No regions showed significant group differences in [11C]-L-deprenyl-D2 signal, including those demonstrating elevated [11C]PBR28 signal in patients (p's ≥ 0.53, uncorrected). The elevations in [11C]PBR28 VT and SUVR were correlated both spatially (i.e., were observed in overlapping regions) and, in several areas, also in terms of magnitude. In exploratory, uncorrected analyses, higher subjective ratings of fatigue in FM patients were associated with higher [11C]PBR28 SUVR in the anterior and posterior middle cingulate cortices (p's < 0.03). SUVR was not significantly associated with any other clinical variable. Our work provides the first in vivo evidence supporting a role for glial activation in FM pathophysiology. Given that the elevations in [11C]PBR28 signal were not also accompanied by increased [11C]-L-deprenyl-D2 signal, our data suggests that microglia, but not astrocytes, may be driving the TSPO elevation in these regions. Although [11C]-L-deprenyl-D2 signal was not found to be increased in FM patients, larger studies are needed to further assess the role of possible astrocytic contributions in FM. Overall, our data support glial modulation as a potential therapeutic strategy for FM.
Collapse
Affiliation(s)
- Daniel S. Albrecht
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Anton Forsberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Angelica Sandstrom
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Courtney Bergan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Diana Kadetoff
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Center, Stockholm, Sweden.
| | - Ekaterina Protsenko
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Jon Lampa
- Rheumatology Unit, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| | - Yvonne C. Lee
- Division of Rheumatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States,Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | - Ciprian Catana
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Mats Lekander
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stress Research Institute, Stockholm University, Stockholm, Sweden.
| | - George Cohen
- Department of Rheumatology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet, and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Norman Taylor
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
| | | | | | | | - Vitaly Napadow
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Eva Kosek
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden; Stockholm Spine Center, Stockholm, Sweden.
| | - Marco L. Loggia
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Sharma P, Srivastava P, Seth A, Tripathi PN, Banerjee AG, Shrivastava SK. Comprehensive review of mechanisms of pathogenesis involved in Alzheimer's disease and potential therapeutic strategies. Prog Neurobiol 2018; 174:53-89. [PMID: 30599179 DOI: 10.1016/j.pneurobio.2018.12.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/04/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
AD is a progressive neurodegenerative disorder and a leading cause of dementia in an aging population worldwide. The enormous challenge which AD possesses to global healthcare makes it as urgent as ever for the researchers to develop innovative treatment strategies to fight this disease. An in-depth analysis of the extensive available data associated with the AD is needed for a more comprehensive understanding of underlying molecular mechanisms and pathophysiological pathways associated with the onset and progression of the AD. The currently understood pathological and biochemical manifestations include cholinergic, Aβ, tau, excitotoxicity, oxidative stress, ApoE, CREB signaling pathways, insulin resistance, etc. However, these hypotheses have been criticized with several conflicting reports for their involvement in the disease progression. Several issues need to be addressed such as benefits to cost ratio with cholinesterase therapy, the dilemma of AChE selectivity over BChE, BBB permeability of peptidic BACE-1 inhibitors, hurdles related to the implementation of vaccination and immunization therapy, and clinical failure of candidates related to newly available targets. The present review provides an insight to the different molecular mechanisms involved in the development and progression of the AD and potential therapeutic strategies, enlightening perceptions into structural information of conventional and novel targets along with the successful applications of computational approaches for the design of target-specific inhibitors.
Collapse
Affiliation(s)
- Piyoosh Sharma
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Pavan Srivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Ankit Seth
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Prabhash Nath Tripathi
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Anupam G Banerjee
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Sushant K Shrivastava
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, India.
| |
Collapse
|
16
|
Nave S, Doody RS, Boada M, Grimmer T, Savola JM, Delmar P, Pauly-Evers M, Nikolcheva T, Czech C, Borroni E, Ricci B, Dukart J, Mannino M, Carey T, Moran E, Gilaberte I, Muelhardt NM, Gerlach I, Santarelli L, Ostrowitzki S, Fontoura P. Sembragiline in Moderate Alzheimer's Disease: Results of a Randomized, Double-Blind, Placebo-Controlled Phase II Trial (MAyflOwer RoAD). J Alzheimers Dis 2018; 58:1217-1228. [PMID: 28550255 PMCID: PMC5523913 DOI: 10.3233/jad-161309] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background: Sembragiline is a potent, selective, long-acting, and reversible MAO-B inhibitor developed as a potential treatment for Alzheimer’s disease (AD). Objective: To evaluate the safety, tolerability, and efficacy of sembragiline in patients with moderate AD. Methods: In this Phase II study (NCT01677754), 542 patients with moderate dementia (MMSE 13–20) on background acetylcholinesterase inhibitors with/without memantine were randomized (1:1:1) to sembragiline 1 mg, 5 mg, or placebo once daily orally for 52 weeks. Results: No differences between treated groups and placebo in adverse events or in study completion. The primary endpoint, change from baseline in ADAS-Cog11, was not met. At Week 52, the difference between sembragiline and placebo in ADAS-Cog11 change from baseline was – 0.15 (p = 0.865) and 0.90 (p = 0.312) for 1 and 5 mg groups, respectively. Relative to placebo at Week 52 (but not at prior assessment times), the 1 mg and 5 mg sembragiline groups showed differences in ADCS-ADL of 2.64 (p = 0.051) and 1.89 (p = 0.160), respectively. A treatment effect in neuropsychiatric symptoms (as assessed by the difference between sembragiline and placebo on BEHAVE-AD-FW) was also seen at Week 52 only: – 2.80 (p = 0.014; 1 mg) and – 2.64 (p = 0.019; 5 mg), respectively. A post hoc subgroup analysis revealed greater treatment effects on behavior and functioning in patients with more severe baseline behavioral symptoms (above the median). Conclusions: This study showed that sembragiline was well-tolerated in patients with moderate AD. The study missed its primary and secondary endpoints. Post hoc analyses suggested potential effect on neuropsychiatric symptoms and functioning in more behaviorally impaired study population at baseline.
Collapse
Affiliation(s)
- Stephane Nave
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Rachelle S Doody
- Department of Neurology, Alzheimer's Disease and Memory Disorders Center, Baylor College of Medicine, Houston, TX, USA
| | - Mercè Boada
- Memory Clinic ofFundació ACE, Institut Catalá de Neurociències Aplicades, Barcelona, Spain
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technische Universitaet Muenchen, Munich, Germany
| | - Juha-Matti Savola
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Paul Delmar
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Meike Pauly-Evers
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Tania Nikolcheva
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Christian Czech
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Edilio Borroni
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Benedicte Ricci
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Juergen Dukart
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Marie Mannino
- RocheSafety Risk Management, Licensing & Early Development, RocheInnovation Center, NY, USA
| | - Tracie Carey
- Roche Product Development, Roche Innovation Center, NY, USA
| | - Emma Moran
- Roche Products Limited, Roche Innovation Center Welwyn, Welwyn Garden City, UK
| | - Inma Gilaberte
- Roche Products Limited, Roche Innovation Center Welwyn, Welwyn Garden City, UK
| | - Nicoletta Milani Muelhardt
- Roche Product Development Neuroscience, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Switzerland
| | - Irene Gerlach
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Luca Santarelli
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Switzerland
| | - Susanne Ostrowitzki
- Genentech Inc., Product Development Neuroscience, South San Francisco, CA, USA
| | - Paulo Fontoura
- Roche Product Development Neuroscience, Roche Innovation Center Basel, F.Hoffmann-La Roche Ltd, Switzerland
| |
Collapse
|
17
|
Dupont AC, Largeau B, Guilloteau D, Santiago Ribeiro MJ, Arlicot N. The Place of PET to Assess New Therapeutic Effectiveness in Neurodegenerative Diseases. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:7043578. [PMID: 29887768 PMCID: PMC5985069 DOI: 10.1155/2018/7043578] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/01/2018] [Indexed: 12/16/2022]
Abstract
In vivo exploration of neurodegenerative diseases by positron emission tomography (PET) imaging has matured over the last 20 years, using dedicated radiopharmaceuticals targeting cellular metabolism, neurotransmission, neuroinflammation, or abnormal protein aggregates (beta-amyloid and intracellular microtubule inclusions containing hyperphosphorylated tau). The ability of PET to characterize biological processes at the cellular and molecular levels enables early detection and identification of molecular mechanisms associated with disease progression, by providing accurate, reliable, and longitudinally reproducible quantitative biomarkers. Thus, PET imaging has become a relevant imaging method for monitoring response to therapy, approved as an outcome measure in bioclinical trials. The aim of this paper is to review and discuss the current inputs of PET in the assessment of therapeutic effectiveness in neurodegenerative diseases connected by common pathophysiological mechanisms, including Parkinson's disease, Huntington's disease, dementia, amyotrophic lateral sclerosis, multiple sclerosis, and also in psychiatric disorders. We also discuss opportunities for PET imaging to drive more personalized neuroprotective and therapeutic strategies, taking into account individual variability, within the growing framework of precision medicine.
Collapse
Affiliation(s)
- Anne-Claire Dupont
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Unité de Radiopharmacie, Tours, France
| | | | - Denis Guilloteau
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Service de Médecine Nucléaire in vitro, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
| | - Maria Joao Santiago Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
- CHRU de Tours, Service de Médecine Nucléaire in vivo, Tours, France
| | - Nicolas Arlicot
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- CHRU de Tours, Unité de Radiopharmacie, Tours, France
- INSERM CIC 1415, University Hospital, Tours, France
| |
Collapse
|
18
|
Borroni E, Bohrmann B, Grueninger F, Prinssen E, Nave S, Loetscher H, Chinta SJ, Rajagopalan S, Rane A, Siddiqui A, Ellenbroek B, Messer J, Pähler A, Andersen JK, Wyler R, Cesura AM. Sembragiline: A Novel, Selective Monoamine Oxidase Type B Inhibitor for the Treatment of Alzheimer's Disease. J Pharmacol Exp Ther 2017. [PMID: 28642233 DOI: 10.1124/jpet.117.241653] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Monoamine oxidase B (MAO-B) has been implicated in the pathogenesis of Alzheimer's disease (AD) and other neurodegenerative disorders. Increased MAO-B expression in astroglia has been observed adjacent to amyloid plaques in AD patient brains. This phenomenon is hypothesized to lead to increased production of hydrogen peroxide and reactive oxygen species (ROS), thereby contributing to AD pathology. Therefore, reduction of ROS-induced oxidative stress via inhibition of MAO-B activity may delay the progression of the disease. In the present study we report the pharmacological properties of sembragiline, a novel selective MAO-B inhibitor specifically developed for the treatment of AD, and on its effect on ROS-mediated neuronal injury and astrogliosis in MAO-B transgenic animals. Sembragiline showed potent and long-lasting MAO-B-selective inhibition and did not inhibit MAO-A at doses where full inhibition of MAO-B was observed. Such selectivity should translate into a favorable clinical safety profile. Indeed, sembragiline neither induced the serotonin syndrome when administered together with the serotonin precursor l-5-hydroxytryptophan in combination with antidepressants such as fluoxetine, nor potentiated the pressor effect of tyramine. Additionally, in experiments using a transgenic animal model conditionally overexpressing MAO-B in astroglia, sembragiline protected against neuronal loss and reduced both ROS formation and reactive astrogliosis. Taken together, these findings warrant further investigation of the potential therapeutic benefit of MAO-B inhibitors in patients with AD and other neurologic disorders.
Collapse
Affiliation(s)
- Edilio Borroni
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Bernd Bohrmann
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Fiona Grueninger
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Eric Prinssen
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Stephane Nave
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Hansruedi Loetscher
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Shankar J Chinta
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Subramanian Rajagopalan
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Anand Rane
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Almas Siddiqui
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Bart Ellenbroek
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Juerg Messer
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Axel Pähler
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Julie K Andersen
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Rene Wyler
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| | - Andrea M Cesura
- Roche Innovation Center Basel, Pharma Research and Early Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland (E.B., B.B., F.G., E.P., S.N., H.L., J.M., A.P., and R.W.); Buck Institute for Research on Aging, Novato, California (S.C., S.R., A.R., A.S., and J.A.); and Evotec International GmbH, Hamburg, Germany (A.M.C. and B.E.)
| |
Collapse
|
19
|
Arakawa R, Stenkrona P, Takano A, Nag S, Maior RS, Halldin C. Test-retest reproducibility of [ 11C]-L-deprenyl-D 2 binding to MAO-B in the human brain. EJNMMI Res 2017. [PMID: 28634836 PMCID: PMC5478550 DOI: 10.1186/s13550-017-0301-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background [11C]-l-deprenyl-D2 is a positron emission tomography (PET) radioligand for measurement of the monoamine oxidase B (MAO-B) activity in vivo brain. The estimation of the test-retest reproducibility is important for accurate interpretation of PET studies. Results We performed two [11C]-l-deprenyl-D2 scans for six healthy subjects and evaluated the test-retest variability of this radioligand. MAO-B binding was quantified by two tissue compartment model (2TCM) with three rate constants (K1, k2, k3) using metabolite-corrected plasma radioactivity. The λk3 defined as (K1/k2) × k3 was also calculated. The correlation between MAO-B binding and age, and the effect of partial volume effect correction (PVEc) for the reproducibility were also estimated. %difference of k3 was 2.6% (medial frontal cortex) to 10.3% (hippocampus), and that of λk3 was 5.0% (thalamus) to 9.2% (cerebellum). Mean %difference of all regions were 5.3 and 7.0% in k3 and λk3, respectively. All regions showed below 10% variabilities except the hippocampus in k3 (10.3%). Intraclass correlation coefficient (ICC) of k3 was 0.78 (hippocampus) to 0.98 (medial frontal cortex), and that of λk3 was 0.78 (hippocampus) to 0.95 (thalamus). Mean ICC were 0.94 and 0.89 in k3 and λk3, respectively. The highest positive correlation with age was observed in the hippocampus, as r = 0.75 in k3 and 0.76 in λk3. After PVEc, mean %difference were 5.6 and 7.2% in k3 and λk3, respectively. Mean ICC were 0.92 and 0.90 for k3 and λk3, respectively. These values were almost the same as those before PVEc. Conclusions The present results indicate that k3 and λk3 of [11C]-l-deprenyl-D2 are reliable parameters for test-retest reproducibility with healthy subjects both before and after PVEc. The studies with patients of larger sample size are required for further clinical applications.
Collapse
Affiliation(s)
- Ryosuke Arakawa
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.
| | - Per Stenkrona
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Sangram Nag
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Rafael S Maior
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Primate Center and Laboratory of Neurosciences and Behavior, Department of Physiological Sciences, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
20
|
Lagarde J, Sarazin M, Bottlaender M. In vivo PET imaging of neuroinflammation in Alzheimer's disease. J Neural Transm (Vienna) 2017; 125:847-867. [PMID: 28516240 DOI: 10.1007/s00702-017-1731-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/01/2017] [Indexed: 12/15/2022]
Abstract
Increasing evidence suggests that neuroinflammation contributes to the pathophysiology of many neurodegenerative diseases, especially Alzheimer's disease (AD). Molecular imaging by PET may be a useful tool to assess neuroinflammation in vivo, thus helping to decipher the complex role of inflammatory processes in the pathophysiology of neurodegenerative diseases and providing a potential means of monitoring the effect of new therapeutic approaches. For this objective, the main target of PET studies is the 18 kDa translocator protein (TSPO), as it is overexpressed by activated microglia. In the present review, we describe the most widely used PET tracers targeting the TSPO, the methodological issues in tracer quantification and summarize the results obtained by TSPO PET imaging in AD, as well as in neurodegenerative disorders associated with AD, in psychiatric disorders and ageing. We also briefly describe alternative PET targets and imaging modalities to study neuroinflammation. Lastly, we question the meaning of PET imaging data in the context of a highly complex and multifaceted role of neuroinflammation in neurodegenerative diseases. This overview leads to the conclusion that PET imaging of neuroinflammation is a promising way of deciphering the enigma of the pathophysiology of AD and of monitoring the effect of new therapies.
Collapse
Affiliation(s)
- Julien Lagarde
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte-Anne and Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Marie Sarazin
- Unit of Neurology of Memory and Language, Centre de Psychiatrie et Neurosciences, INSERM UMR S894, Centre Hospitalier Sainte-Anne and Université Paris Descartes, Sorbonne Paris Cité, 75014, Paris, France
| | - Michel Bottlaender
- UNIACT, NeuroSpin, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, 91191, Gif-sur-Yvette, France. .,Laboratoire Imagerie Moléculaire in Vivo, UMR 1023, Service Hospitalier Frédéric Joliot, Institut d'Imagerie Biomédicale, Direction de la Recherche Fondamentale, Commissariat à l'Energie Atomique, 91400, Orsay, France.
| |
Collapse
|
21
|
Schain M, Kreisl WC. Neuroinflammation in Neurodegenerative Disorders—a Review. Curr Neurol Neurosci Rep 2017; 17:25. [DOI: 10.1007/s11910-017-0733-2] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|