1
|
Oldan JD, Rowe SP, Schroeder JA. Evaluation of online teaching modules for PSMA PET interpretation. Prostate 2024; 84:1419-1426. [PMID: 39246039 DOI: 10.1002/pros.24780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
PURPOSE The proliferation of US FDA-approved prostate-specific membrane antigen (PSMA)-targeted positron emission tomography (PET) imaging agents as a means to evaluate prostate cancer patients, and the expanding knowledge of interpretive pitfalls, has led to the generation of multiple online training modules geared toward the reading of each individual agent, each taking different approaches to criteria for interpretation, which may contribute to the variability of reporting in clinical practice. MATERIALS AND METHODS The websites of the marketers of each FDA-approved agent [68Ga-PSMA-11 (Illuccix; Telix Pharmaceuticals), 68Ga-PSMA-11 (Locametz; Novartis Pharmaceuticals), 18F-rh-PSMA-7.3 (Posluma; Blue Earth Diagnostics)], and the website of the Society of Nuclear Medicine and Molecular Imaging [18F-DCFPyL (Pylarify)] were examined. All information pertaining to reader training, including videos, PDFs, and PowerPoint presentations, were reviewed. RESULTS Videos from each module covered interpretive approach and pitfalls and ranged in length from a total of 20 min up to 315 min. Each module provided a different approach to PSMA PET scan findings, and on a different number and breadth of interpretive tips and pitfalls (a total of approximately 12-30 in all). CONCLUSIONS Each of the four PSMA PET reader training modules covered important interpretive pitfalls. The lengths of the video portions of each module varied considerably, suggesting variable investments in time necessary to complete each module. The differences in the modules could contribute to inconsistency among readers depending on which module(s) they may have completed and which radiotracer(s) they are using.
Collapse
Affiliation(s)
- Jorge D Oldan
- Molecular Imaging and Therapeutics, Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Steven P Rowe
- Molecular Imaging and Therapeutics, Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jennifer A Schroeder
- Molecular Imaging and Therapeutics, Department of Radiology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Sun X, Zhang G, Zhang Q, Yuan H, Jiang L, Sun T. Comparison of early and standard 18F-PSMA-11 PET/CT imaging in treatment-naïve patients with prostate cancer. Ann Nucl Med 2024:10.1007/s12149-024-02000-9. [PMID: 39522079 DOI: 10.1007/s12149-024-02000-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To evaluate the diagnostic performance of dual-time-point 18F-PSMA-11 PET/CT imaging at 30 and 60 min post-injection (p.i.) in treatment-naïve patients with prostate cancer (PCa). METHODS Twenty treatment-naïve patients with histology-proven PCa who underwent 18F-PSMA-11 PET/CT scans at both 30 and 60-min p.i. were retrospectively analyzed. Lesion detection, semi-quantitative analysis of lesion and background, and unspecific bone uptake (UBU) between two time points were evaluated and compared. Besides, interrater reliability was also evaluated. RESULTS Lesion detection was consistent at both 30 and 60-min p.i. imaging of 20 patients (mean age 72 ± 9), identifying 27 primary prostate lesions, 84 lymph node metastases, bone metastases in 8 patients, and other metastases in 2 patients. Primary prostate lesions showed no significant difference in SUVmax and target-to-blood pool (T/B) ratios between the two imaging times, while these parameters significantly increased over time in bone metastases. Lymph node metastases showed no significant difference in SUVmax but higher T/B ratios at 60 min compared to 30 min. A higher frequency of UBU was observed at 60 min (37.3%) compared to 30 min (32.3%), with significantly higher SUVmax and T/B ratios at 60 min. 85.6% UBU was categorized as PSMA-RADS 2 at 60 min, and the others were PSMA-RADS 3 or 4. The most frequent localization was vertebrae, followed by ribs. Interrater reliability was almost perfect for lesion detection at both time points. CONCLUSION Early 30-min 18F-PSMA-11 PET/CT imaging provided comparable PCa lesion detection and semi-quantitative analysis with reduced UBU to the standard 60-min imaging.
Collapse
Affiliation(s)
- Xiaolin Sun
- Department of Nuclear Medicine, PET Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Guojin Zhang
- Department of Nuclear Medicine, PET Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Qing Zhang
- Department of Nuclear Medicine, PET Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Hui Yuan
- Department of Nuclear Medicine, PET Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China
| | - Lei Jiang
- Department of Nuclear Medicine, PET Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China.
| | - Taotao Sun
- Department of Nuclear Medicine, PET Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Stoffels M, Cousin F, Lamande M, Denis C, Waltregny D, Hustinx R, Sautois B, Withofs N. Characterization of exclusive rib lesions detected by [68Ga]Ga-PSMA-11 PET/CT. Nucl Med Commun 2024:00006231-990000000-00356. [PMID: 39423050 DOI: 10.1097/mnm.0000000000001919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
OBJECTIVE The objective of this study was to characterize exclusive costal lesions detected by 68Gallium-labelled prostate-specific membrane antigen ([68Ga]Ga-PSMA-11) PET/computed tomography (CT) at initial staging or biochemical recurrence (BCR) in prostate cancer (PCa) patients, and to identify clinical and/or PET/CT criteria associated with benign and malignant lesions. METHODS We retrospectively identified 54 patients with PCa who underwent [68Ga]Ga-PSMA-11 PET/CT for initial staging (N = 39) or BCR (N = 15) and whose reports described rib lesions, at the exclusion of any other lesions, whether doubtful, suspicious, or established. Posttherapy prostate-specific antigen (PSA) levels were used to determine whether those lesions were benign or malignant. Each patient's prostate-specific membrane antigen PET/CT report was classified as true positive, true negative, false positive, or false negative based on the posttherapy PSA level. We then assessed whether any clinical and/or PET/CT criteria could help differentiate benign from malignant lesions, and if any criteria were misleading. RESULTS Among the 54 patients, 46 (85.2%) had 64 benign costal lesions, and eight (14.8%) had 10 malignant lesions. PET/CT reports indicated rib lesions as benign/equivocal in 38/54 (55.6%) patients and malignant in 16/54 (29.6%). Benign features on CT were the only parameter significantly associated with the final diagnosis. Factors such as patient age, maximum standardized uptake value of lesions, lesion dispersion, and malignant features described on CT were found to be misleading when deciding the malignant or benign status. CONCLUSION Most exclusive costal lesions detected by [68Ga]Ga-PSMA-11 PET/CT are benign. Apart from specific benign CT features, no clinical or PET/CT criteria reliably differentiate benign from malignant costal lesions.
Collapse
Affiliation(s)
- Marine Stoffels
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liege
| | - François Cousin
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liege
| | | | | | - David Waltregny
- Department of Urology, University Hospital of Liège, CHU Sart Tilman
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liege
- GIGA-CRC in Vivo Imaging, University of Liege, Liege, Belgium
| | | | - Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liege
- GIGA-CRC in Vivo Imaging, University of Liege, Liege, Belgium
| |
Collapse
|
4
|
Rowe SP, Gorin MA. Rate of unspecific bone uptake on PSMA PET is determined by the Scaffold - not the Radionuclide. Letter regarding: "The homunculus of unspecific bone uptakes associated with PSMA- targeted tracers: a systematic review-based definition" and "Cutting back on overdiagnosis - Occam's razor and unspecific bone uptakes in PSMA PET". Eur J Nucl Med Mol Imaging 2024; 51:3767-3768. [PMID: 39225824 DOI: 10.1007/s00259-024-06897-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Steven P Rowe
- Molecular Imaging and Therapeutics, Department of Radiology, University of North Carolina, 101 Manning Dr, Chapel Hill, NC, 27514, USA.
| | - Michael A Gorin
- The Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
5
|
Mainta IC, Neroladaki A, Wolf NB, Benamran D, Boudabbous S, Zilli T, Garibotto V. [ 68Ga]Ga-PSMA-11 PET and Prostate Cancer Bone Metastases: Diagnostic Performance of Available Standardized Criteria. J Nucl Med 2024; 65:1376-1382. [PMID: 39117453 DOI: 10.2967/jnumed.124.267899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
In up to two thirds of prostate-specific membrane antigen (PSMA) PET scans, unspecific bone uptake has been described. The aim of this study was to estimate the diagnostic accuracy of [68Ga]Ga-PSMA-11 PET/CT for bone metastases and the occurrence of equivocal lesions. Methods: We analyzed retrospectively 118 patients who underwent a [68Ga]Ga-PSMA-11 PET/CT for initial staging or recurrence evaluation. Lesions were interpreted according to the PSMA reporting and data system (PSMA-RADS) and the prostate cancer molecular imaging standardized evaluation (PROMISE) criteria. The SUVmax and the localization of each lesion were recorded. A combination of prior or follow-up examinations was used as a reference standard to categorize benign and malignant lesions. Correlation between the final diagnosis and imaging or clinicobiochemical parameters was tested. The diagnostic accuracy was calculated for different cutoffs of PSMA-RADS criteria, for PROMISE criteria, and the sequential combination of both. Results: In total, 265 bone abnormalities were identified in 70 of 118 patients. Among these, 148 (55.8%) lesions in 50 (42.4%) patients were classified as PSMA-RADS-3B. There were no PSMA-RADS-3D lesions in our cohort. Equivocal lesions were more frequent on the ribs (30.6%) followed by the pelvis (26.5%), but in the ribs, such an uptake was malignant in 33.3% of cases versus 66.7% in the pelvis. A significant association was found between the final diagnosis and the SUVmax, prostate-specific antigen (PSA), PSA doubling time, International Society of Urological Pathology score, and the number of foci. The sensitivity and specificity were 100% and 63.6% for the PSMA-RADS-3B cutoff, respectively; 40.5% and 100% for the PSMA-RADS-4 cutoff, respectively; and 89.3% and 96.6% for both the PROMISE criteria and the sequential PSMA-RADS/PROMISE strategy, respectively. In the sequential method, the number of equivocal lesions was reduced from 147 to 2. We found that 53% of PSMA-RADS-3B lesions were malignant; 95.5% of lesions classified positive by the sequential method were true positives, whereas 32.6% were false negatives. Conclusion: [68Ga]Ga-PSMA-11 PET/CT has high accuracy for the diagnosis of bone metastases. Equivocal lesions constitute nearly half of the lesions seen on PSMA PET. The sequential combination of PSMA-RADS and PROMISE criteria reduces the number of lesions classified as equivocal. PSMA-RADS-3B lesions which are positive according to the PROMISE criteria should be considered highly suggestive of malignancy.
Collapse
Affiliation(s)
- Ismini C Mainta
- Division of Nuclear Medicine, Diagnostic Department, Geneva University Hospital, Geneva, Switzerland;
| | - Angeliki Neroladaki
- Division of Radiology, Diagnostic Department, Geneva University Hospital, Geneva, Switzerland
| | - Nicola Bianchetto Wolf
- Division of Nuclear Medicine, Diagnostic Department, Geneva University Hospital, Geneva, Switzerland
| | - Daniel Benamran
- Division of Urology, Surgery Department, Geneva University Hospital, Geneva, Switzerland
| | - Sana Boudabbous
- Division of Radiology, Diagnostic Department, Geneva University Hospital, Geneva, Switzerland
| | - Thomas Zilli
- Division of Radiation Oncology, Oncology Institute of Southern Switzerland, EOC, Bellinzona, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland; and
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Valentina Garibotto
- Division of Nuclear Medicine, Diagnostic Department, Geneva University Hospital, Geneva, Switzerland
- Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
6
|
Hou H, Lin Y, Pan Y, Ma Y, Hou G, Sun X, Gao F. Synthesis and preclinical evaluation of 68Ga-labeled PSMA tracers with improved pharmacological properties. Eur J Med Chem 2024; 274:116545. [PMID: 38823263 DOI: 10.1016/j.ejmech.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Prostate cancer (PCa) is one of the most common tumors in men, with the overexpression of prostate-specific membrane. In this study, we developed four new 68Ga-labeled PSMA-targeting tracers by introducing quinoline, phenylalanine and decanoic acid groups to enhance their lipophilicity, strategically limiting their metabolic pathway through the urinary system. Four radiotracers were synthesized with radiochemical purity >95 %, and exhibited high stability in vivo and in vitro. The inhibition constants (Ki) of SDTWS01-04 to PSMA were in the nanomolar range (<10 nM). Micro PET/CT imaging and biodistribution analysis revealed that 68Ga-SDTWS01 enabled clear tumor visualization in PET images at 1.5 h post-injection, with excellent pharmacokinetic properties. Notably, the kidney uptake of 68Ga-SDTWS01 significantly reduced, with higher tumor-to-kidney ratio (0.36 ± 0.02), tumor-to-muscle ratio (24.31 ± 2.10), compared with 68Ga-PSMA-11 (T/K: 0.15 ± 0.01; T/M: 14.97 ± 1.40), suggesting that 68Ga-SDTWS01 is a promising radiotracer for the diagnosis of PCa. Moreover, SDTWS01 with a chelator DOTA could also label 177Lu and 225Ac, which could be used for the treatment of PCa.
Collapse
Affiliation(s)
- Haodong Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yixiang Lin
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuan Pan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Yuze Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiangyang Sun
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China.
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
7
|
Sahafi P, Aryana K, Moghadam SZ, Sadri K, Askari E. Free TcO 4- in 99m Tc-PSMA Scan : A Case Report and Review of an Old Pitfall in the New Era of Modern Imaging. Clin Nucl Med 2024; 49:e327-e328. [PMID: 38687008 DOI: 10.1097/rlu.0000000000005240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
ABSTRACT In a recent 99m Tc-HYNIC-PSMA study conducted at our department, we examined 2 patients with prostate cancer referred for initial staging on the same day. The whole-body scans revealed radiotracer uptake in the gastric mucosa and thyroid glands, alluding to high levels of free TcO 4- in the injected vial. The scans were repeated after confirming acceptable radiopharmaceutical purity of 97% (normal range, 95%-100%). Interestingly, 1 patient had liver metastases at presentation, which remained non-PSMA-avid after repeating the scan. We have reviewed this pitfall, which has been reported with many radiotracers, yet not reported with PSMA tracers.
Collapse
Affiliation(s)
- Pegah Sahafi
- From the Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | |
Collapse
|
8
|
Hou H, Pan Y, Wang Y, Ma Y, Niu X, Sun S, Hou G, Tao W, Gao F. Development and first-in-human study of PSMA-targeted PET tracers with improved pharmacokinetic properties. Eur J Nucl Med Mol Imaging 2024; 51:2819-2832. [PMID: 38683349 DOI: 10.1007/s00259-024-06726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE A series of new 68Ga-labeled tracers based on [68Ga]Ga-PSMA-617 were developed to augment the tumor-to-kidney ratio and reduce the activity accumulation in bladder, ultimately minimize radiation toxicity to the urinary system. METHODS We introduced quinoline group, phenylalanine and decanoic acid into different tracers to enhance their lipophilicity, strategically limiting their metabolic pathway through the urinary system. Their binding affinity onto LNCaP cells was determined through in vitro saturation assays and competition binding assays. In vivo metabolic study, PET imaging and biodistribution experiment were performed in LNCaP tumor-bearing B-NSG male mice. The most promising tracer was selected for first-in-human study. RESULTS Four radiotracers were synthesized with radiochemical purity (RCP) > 95% and molar activity in a range of 20.0-25.5 GBq/μmol. The binding affinities (Ki) of TWS01, TWS02 to PSMA were in the low nanomolar range (< 10 nM), while TWS03 and TWS04 exhibited binding affinities with Ki > 20 nM (59.42 nM for TWS03 and 37.14 nM for TWS04). All radiotracers exhibited high stability in vivo except [68Ga]Ga-TWS03. Micro PET/CT imaging and biodistribution analysis revealed that [68Ga]Ga-TWS02 enabled clear tumor visualization in PET images at 1.5 h post-injection, with higher tumor-to-kidney ratio (T/K, 0.93) and tumor-to-muscle ratio (T/M, 107.62) compared with [68Ga]Ga-PSMA-617 (T/K: 0.39, T/M: 15.01) and [68Ga]Ga-PSMA-11 (T/K: 0.15, T/M: 24.00). In first-in-human study, [68Ga]Ga-TWS02 effectively detected PCa-associated lesions including primary and metastatic lesions, with lower accumulation in urinary system, suggesting that [68Ga]Ga-TWS02 might be applied in the detection of bladder invasion, with minimized radiation toxicity to the urinary system. CONCLUSION Introduction of quinoline group, phenylalanine and decanoic acid into different tracers can modulate the binding affinity and pharmacokinetics of PSMA in vivo. [68Ga]Ga-TWS02 showed high binding affinity to PSMA, excellent pharmacokinetic properties and clear imaging of PCa-associated lesions, making it a promising radiotracer for the clinical diagnosis of PCa. Moreover, TWS02 with a chelator DOTA could also label 177Lu and 225Ac, which could be used for PCa treatment without significant side effects. TRIAL REGISTRATION The clinical evaluation of this study was registered On October 30, 2021 at https://www.chictr.org.cn/ (No: ChiCTR2100052545).
Collapse
Affiliation(s)
- Haodong Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yuan Pan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yanzhi Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yuze Ma
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xiaobing Niu
- Department of Urology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Suan Sun
- Department of Pathology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| | - Weijing Tao
- Department of Nuclear Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huai'an, 223300, Jiangsu, China.
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Shandong University, No. 44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
9
|
Oldan JD, Almaguel F, Voter AF, Duran A, Gafita A, Pomper MG, Hope TA, Rowe SP. PSMA-Targeted Radiopharmaceuticals for Prostate Cancer Diagnosis and Therapy. Cancer J 2024; 30:176-184. [PMID: 38753752 DOI: 10.1097/ppo.0000000000000718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
ABSTRACT Prostate cancer (PCa) is the most common noncutaneous malignancy in men. Until recent years, accurate imaging of men with newly diagnosed PCa, or recurrent or low-volume metastatic disease, was limited. Further, therapeutic options for men with advanced, metastatic, castration-resistant disease were increasingly limited as a result of increasing numbers of systemic therapies being combined in the upfront metastatic setting. The advent of urea-based, small-molecule inhibitors of prostate-specific membrane antigen (PSMA) has partially addressed those shortcomings in diagnosis and therapy of PCa. On the diagnostic side, there are multiple pivotal phase III trials with several different agents having demonstrated utility in the initial staging setting, with generally modest sensitivity but very high specificity for determining otherwise-occult pelvic nodal involvement. That latter statistic drives the utility of the scan by allowing imaging interpreters to read with very high sensitivity while maintaining a robust specificity. Other pivotal phase III trials have demonstrated high detection efficiency in patients with biochemical failure, with high positive predictive value at the lesion level, opening up possible new avenues of therapy such as metastasis-directed therapy. Beyond the diagnostic aspects of PSMA-targeted radiotracers, the same urea-based chemical scaffolds can be altered to deliver therapeutic isotopes to PCa cells that express PSMA. To date, one such agent, when combined with best standard-of-care therapy, has demonstrated an ability to improve overall survival, progression-free survival, and freedom from skeletal events relative to best standard-of-care therapy alone in men with metastatic, castration-resistant PCa who are post chemotherapy. Within the current milieu, there are a number of important future directions including the use of artificial intelligence to better leverage diagnostic findings, further medicinal chemistry refinements to the urea-based structure that may allow improved tumor targeting and decreased toxicities, and the incorporation of new radionuclides that may better balance efficacy with toxicities than those nuclides that are available.
Collapse
Affiliation(s)
- Jorge D Oldan
- From the Department of Radiology, University of North Carolina, Chapel Hill, NC
| | - Frankis Almaguel
- Department of Radiology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Andrew F Voter
- The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alfonso Duran
- Department of Radiology, Loma Linda University School of Medicine, Loma Linda, CA
| | - Andrei Gafita
- The Russell H. Morgan Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Martin G Pomper
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA
| | - Steven P Rowe
- From the Department of Radiology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
10
|
Taş H, Bakos G, Bauder-Wüst U, Schäfer M, Remde Y, Roscher M, Benešová-Schäfer M. Human ABC and SLC Transporters: The Culprit Responsible for Unspecific PSMA-617 Uptake? Pharmaceuticals (Basel) 2024; 17:513. [PMID: 38675472 PMCID: PMC11053447 DOI: 10.3390/ph17040513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
[177Lu]Lu-PSMA-617 has recently been successfully approved by the FDA, the MHRA, Health Canada and the EMA as Pluvicto®. However, salivary gland (SG) and kidney toxicities account for its main dose-limiting side-effects, while its corresponding uptake and retention mechanisms still remain elusive. Recently, the presence of different ATP-binding cassette (ABC) transporters, such as human breast cancer resistance proteins (BCRP), multidrug resistance proteins (MDR1), multidrug-resistance-related proteins (MRP1, MRP4) and solute cassette (SLC) transporters, such as multidrug and toxin extrusion proteins (MATE1, MATE2-K), organic anion transporters (OAT1, OAT2v1, OAT3, OAT4) and peptide transporters (PEPT2), has been verified at different abundances in human SGs and kidneys. Therefore, our aim was to assess whether [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are substrates of these ABC and SLC transporters. For in vitro studies, the novel isotopologue ([α,β-3H]Nal)Lu-PSMA-617 was used in cell lines or vesicles expressing the aforementioned human ABC and SLC transporters for inhibition and uptake studies, respectively. The corresponding probe substrates and reference inhibitors were used as controls. Our results indicate that [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 are neither inhibitors nor substrates of the examined transporters. Therefore, our results show that human ABC and SLC transporters play no central role in the uptake and retention of [177Lu]Lu-PSMA-617 and [225Ac]Ac-PSMA-617 in the SGs and kidneys nor in the observed toxicities.
Collapse
Affiliation(s)
- Harun Taş
- German Cancer Research Center (DKFZ), Research Group Molecular Biology of Systemic Radiotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (H.T.); (G.B.); (U.B.-W.)
| | - Gábor Bakos
- German Cancer Research Center (DKFZ), Research Group Molecular Biology of Systemic Radiotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (H.T.); (G.B.); (U.B.-W.)
| | - Ulrike Bauder-Wüst
- German Cancer Research Center (DKFZ), Research Group Molecular Biology of Systemic Radiotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (H.T.); (G.B.); (U.B.-W.)
| | - Martin Schäfer
- German Cancer Research Center (DKFZ), Service Unit for Radiopharmaceuticals and Preclinical Trials, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (M.S.); (Y.R.); (M.R.)
| | - Yvonne Remde
- German Cancer Research Center (DKFZ), Service Unit for Radiopharmaceuticals and Preclinical Trials, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (M.S.); (Y.R.); (M.R.)
| | - Mareike Roscher
- German Cancer Research Center (DKFZ), Service Unit for Radiopharmaceuticals and Preclinical Trials, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (M.S.); (Y.R.); (M.R.)
| | - Martina Benešová-Schäfer
- German Cancer Research Center (DKFZ), Research Group Molecular Biology of Systemic Radiotherapy, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; (H.T.); (G.B.); (U.B.-W.)
| |
Collapse
|
11
|
Li H, Song L, Zhao M, Zhang W. Increased Prostate-Specific Membrane Antigen Uptake in a Gallbladder Stone. Clin Nucl Med 2024; 49:344-345. [PMID: 38427958 DOI: 10.1097/rlu.0000000000005121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
ABSTRACT An Al 18F-prostate-specific membrane antigen (PSMA) Q PET/CT scan was performed in a 67-year-old man to identify any potential recurrent prostate cancer lesions, which revealed no recurrent or metastatic lesions. However, a large gallbladder stone with increased PSMA uptake was incidentally detected, which could be a potential pitfall in the interpretation of PSMA PET imaging.
Collapse
Affiliation(s)
- Hui Li
- From the Department of Nuclear Medicine, Peking University Third Hospital, Beijing, China
| | | | | | | |
Collapse
|
12
|
Tateishi U, Kimura K, Tsuchiya J, Kano D, Watabe T, Nonomura N, Saito K, Yokoyama K, Yamagiwa K, Adachi T, Kojima Y, Yoshida S, Fujii Y. Phase I/IIa trial of 18F-prostate specific membrane antigen (PSMA) 1007 PET/CT in healthy volunteers and prostate cancer patients. Jpn J Clin Oncol 2024; 54:282-291. [PMID: 38066703 DOI: 10.1093/jjco/hyad166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 03/12/2024] Open
Abstract
OBJECTIVE 18F-PSMA 1007 is a promising PET tracer for prostate cancer. We aimed to examine the safety, biodistribution, radiation dosimetry, and clinical effectiveness in Japanese healthy volunteers and patients with prostate cancer. METHODS Part A evaluated the pharmacokinetics and exposure doses in three healthy volunteers. Part B evaluated the diagnostic accuracy in patients with untreated preoperative prostate cancer (Cohort 1, n = 7) and patients with biochemical recurrence (Cohort 2, n = 3). All subjects received a single dose of 3.7 MBq/kg 18F-PSMA 1007. Results: 18F-PSMA 1007 was found to be safe and well tolerated in all subjects. No serous AEs or drug-related AEs were identified during the present study. The average blood radioactivity concentration reached a maximum of 47.87 ± 1.05 (percentage of injected dose [%ID]/ml) at 5 min and then decreased to 1.60 ± 0.78 in 6 h. The systemic radioactivity reached a maximum of 211.05 ± 6.77 (%ID$\times$103) at 5 min and decreased to 7.18 ± 3.91 in 6 h. The sensitivity and positive predictive value were 100% and 100% based on both pathologic and imaging confirmation as gold standard. In Cohort 1, 15 primary foci (11.9%) were >5 mm in the largest diameter and identified in 39 of 126 segments (30.1%). The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy for 60 min uptake time acquisition were 80.0, 96.5, 91.4, 91.2 and 91.3%, respectively. CONCLUSIONS Our study revealed that 18F-PSMA 1007 was safe, well tolerated and showed high accuracy in the diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Ukihide Tateishi
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo
| | - Koichiro Kimura
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo
| | - Junichi Tsuchiya
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo
| | - Daisuke Kano
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo
- Pharmaceutical Department, National Cancer Center Hospital East, Chiba
| | - Tadashi Watabe
- Department of Nuclear Medicine and Tracer Kinetics, Graduate School of Medicine, Osaka University, Osaka
| | - Norio Nonomura
- Department of Urology, Graduate School of Medicine, Osaka University, Osaka
| | - Katsuhiko Saito
- Medical & Advanced Equipment Unit, Industrial Equipment Division, Sumitomo Heavy Industries. Ltd., Tokyo
| | - Kota Yokoyama
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo
| | - Ken Yamagiwa
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo
| | - Takuya Adachi
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo
| | - Yuji Kojima
- Department of Diagnostic Radiology and Nuclear Medicine, Tokyo Medical and Dental University, Tokyo
| | - Soichiro Yoshida
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuhisa Fujii
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Hirsch J, Voltin CA, Schmiel M, Kreuzberg N, Mauch C, Franklin C. Prostataspezifisches Membranantigen (PSMA)‐exprimierende Melanommetastasen bei einem Patienten mit Prostatakarzinom und Melanom. J Dtsch Dermatol Ges 2024; 22:446-449. [PMID: 38450949 DOI: 10.1111/ddg.15323_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/06/2023] [Indexed: 03/08/2024]
Affiliation(s)
- Johanna Hirsch
- Klinik für Dermatologie und Venerologie, Uniklinik Köln, Köln, Germany
- Center for Integrated Oncology Aachen - Bonn - Cologne - Düsseldorf (CIO ABCD), Köln
| | | | - Marcel Schmiel
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Uniklinik Köln
| | - Nicole Kreuzberg
- Klinik für Dermatologie und Venerologie, Uniklinik Köln, Köln, Germany
- Center for Integrated Oncology Aachen - Bonn - Cologne - Düsseldorf (CIO ABCD), Köln
| | - Cornelia Mauch
- Klinik für Dermatologie und Venerologie, Uniklinik Köln, Köln, Germany
- Center for Integrated Oncology Aachen - Bonn - Cologne - Düsseldorf (CIO ABCD), Köln
| | - Cindy Franklin
- Klinik für Dermatologie und Venerologie, Uniklinik Köln, Köln, Germany
- Center for Integrated Oncology Aachen - Bonn - Cologne - Düsseldorf (CIO ABCD), Köln
| |
Collapse
|
14
|
Hirsch J, Voltin CA, Schmiel M, Kreuzberg N, Mauch C, Franklin C. Prostate-specific membrane antigen (PSMA)-expressing melanoma metastases in a patient with prostate cancer and melanoma. J Dtsch Dermatol Ges 2024; 22:446-449. [PMID: 38402433 DOI: 10.1111/ddg.15323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/06/2023] [Indexed: 02/26/2024]
Affiliation(s)
- Johanna Hirsch
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen - Bonn - Cologne - Düsseldorf (CIO ABCD), Cologne, Germany
| | - Conrad-Amadeus Voltin
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Marcel Schmiel
- Department of Pathology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Nicole Kreuzberg
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen - Bonn - Cologne - Düsseldorf (CIO ABCD), Cologne, Germany
| | - Cornelia Mauch
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen - Bonn - Cologne - Düsseldorf (CIO ABCD), Cologne, Germany
| | - Cindy Franklin
- Department of Dermatology and Venereology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen - Bonn - Cologne - Düsseldorf (CIO ABCD), Cologne, Germany
| |
Collapse
|
15
|
Pepe P, Fandella A, Barbera M, Martino P, Merolla F, Caputo A, Fraggetta F. Advances in radiology and pathology of prostate cancer: a review for the pathologist. Pathologica 2024; 116:1-12. [PMID: 38349336 PMCID: PMC10938278 DOI: 10.32074/1591-951x-925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 03/16/2024] Open
Abstract
Multiparametric magnetic resonance imaging (mpMRI) has improved systematic prostate biopsy procedures in the diagnosis of clinically significant prostate cancer (csPCa) by reducing the number of unnecessary biopsies; numerous level one evidence studies have confirmed the accuracy of MRI-targeted biopsy, but, still today, systematic prostate biopsy is recommended to reduce the 15-20% false negative rate of mpMRI. New advanced imaging has been proposed to detect suspicious lesions and perform targeted biopsies especially when mpMRI cannot be performed. Transrectal ultrasound (TRUS) modalities are emerging as methods with greater sensitivity and specificity for the detection of PCa compared to the traditional TRUS; these techniques include elastography and contrast-enhanced ultrasound, as well as improved B-mode and Doppler techniques. These modalities can be combined to define a novel ultrasound approach: multiparametric ultrasound (mpUS). More recently, micro-ultrasound (MicroUS) and prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) have demonstrated to be sensitive for the detection of primary prostatic lesions resulting highly correlated with the aggressiveness of the primary prostatic tumor. In parallel, artificial intelligence is advancing and is set out to deeply change both radiology and pathology. In this study we address the role, advantages and shortcomings of novel imaging techniques for Pca, and discuss future directions including the applications of artificial intelligence-based techniques to imaging as well as histology. The significance of these findings for the practicing pathologist is discussed.
Collapse
Affiliation(s)
- Pietro Pepe
- Urology Unit, Cannizzaro Hospital, Catania, Italy
| | - Andrea Fandella
- Urology Unit, Casa di Cura Rizzola San Donà di Piave (VE), Italy
| | | | | | - Francesco Merolla
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | | | | |
Collapse
|
16
|
Grawe F, Blom F, Winkelmann M, Burgard C, Schmid-Tannwald C, Unterrainer LM, Sheikh GT, Pfitzinger PL, Kazmierczak P, Cyran CC, Ricke J, Stief CG, Bartenstein P, Ruebenthaler J, Fabritius MP, Geyer T. Reliability and practicability of PSMA-RADS 1.0 for structured reporting of PSMA-PET/CT scans in prostate cancer patients. Eur Radiol 2024; 34:1157-1166. [PMID: 37624414 PMCID: PMC10853294 DOI: 10.1007/s00330-023-10083-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 07/12/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVES As structured reporting is increasingly used in the evaluation of prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA-PET/CT) for prostate cancer, there is a need to assess the reliability of these frameworks. This study aimed to evaluate the intra- and interreader agreement among readers with varying levels of experience using PSMA-RADS 1.0 for interpreting PSMA-PET/CT scans, even when blinded to clinical data, and therefore to determine the feasibility of implementing this reporting system in clinical practice. METHODS PSMA-PET/CT scans of 103 patients were independently evaluated by 4 readers with different levels of experience according to the reporting and data system (RADS) for PSMA-PET/CT imaging PSMA-RADS 1.0 at 2 time points within 6 weeks. For each scan, a maximum of five target lesions were freely chosen and stratified according to PSMA-RADS 1.0. Overall scan score and compartment-based scores were assessed. Intra- and interreader agreement was determined using the intraclass correlation coefficient (ICC). RESULTS PSMA-RADS 1.0 demonstrated excellent interreader agreement for both overall scan scores (ICC ≥ 0.91) and compartment-based scores (ICC ≥ 0.93) across all four readers. The framework showed excellent intrareader agreement for overall scan scores (ICC ≥ 0.86) and compartment-based scores (ICC ≥ 0.95), even among readers with varying levels of experience. CONCLUSIONS PSMA-RADS 1.0 is a reliable method for assessing PSMA-PET/CT with strong consistency and agreement among readers. It shows great potential for establishing a standard approach to diagnosing and planning treatment for prostate cancer patients, and can be used confidently even by readers with less experience. CLINICAL RELEVANCE STATEMENT This study underlines that PSMA-RADS 1.0 is a valuable and highly reliable scoring system for PSMA-PET/CT scans of prostate cancer patients and can be used confidently by radiologists with different levels of experience in routine clinical practice. KEY POINTS PSMA-RADS version 1.0 is a scoring system for PSMA-PET/CT scans. Its reproducibility needs to be analyzed in order to make it applicable to clinical practice. Excellent interreader and intrareader agreement for overall scan scores and compartment-based scores using PSMA-RADS 1.0 were seen in readers with varying levels of experience. PSMA-RADS 1.0 is a reliable tool for accurately diagnosing and planning treatment for prostate cancer patients, and can be used confidently in clinical routine.
Collapse
Affiliation(s)
- Freba Grawe
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Franziska Blom
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Michael Winkelmann
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Caroline Burgard
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- Department of Nuclear Medicine, Saarland University Hospital, Kirrberger Str., Geb. 50, 66421, Homburg, Germany
| | - Christine Schmid-Tannwald
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lena M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Gabriel T Sheikh
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Paulo L Pfitzinger
- Department of Nuclear Medicine, Saarland University Hospital, Kirrberger Str., Geb. 50, 66421, Homburg, Germany
| | - Philipp Kazmierczak
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christian G Stief
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Johannes Ruebenthaler
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Matthias P Fabritius
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Thomas Geyer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
17
|
McKone EL, Sutton EA, Johnson GB, Phillips RM. Application of Advanced Imaging to Prostate Cancer Diagnosis and Management: A Narrative Review of Current Practice and Unanswered Questions. J Clin Med 2024; 13:446. [PMID: 38256579 PMCID: PMC10816977 DOI: 10.3390/jcm13020446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Major advances in prostate cancer diagnosis, staging, and management have occurred over the past decade, largely due to our improved understanding of the technical aspects and clinical applications of advanced imaging, specifically magnetic resonance imaging (MRI) and prostate-cancer-specific positron emission tomography (PET). Herein, we review the established utility of these important and exciting technologies, as well as areas of controversy and uncertainty that remain important areas for future study. There is strong evidence supporting the utility of MRI in guiding initial biopsy and assessing local disease. There is debate, however, regarding how to best use the imaging modality in risk stratification, treatment planning, and assessment of biochemical failure. Prostate-cancer-specific PET is a relatively new technology that provides great value to the evaluation of newly diagnosed, treated, and recurrent prostate cancer. However, its ideal use in treatment decision making, staging, recurrence detection, and surveillance necessitates further research. Continued study of both imaging modalities will allow for an improved understanding of their best utilization in improving cancer care.
Collapse
Affiliation(s)
| | - Elsa A. Sutton
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Geoffrey B. Johnson
- Department of Radiology, Nuclear Medicine Division, Mayo Clinic, Rochester, MN 55905, USA
| | - Ryan M. Phillips
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
Zang S, Jiang C, Zhang L, Fu J, Meng Q, Wu W, Shao G, Sun H, Jia R, Wang F. Deep learning based on 68Ga-PSMA-11 PET/CT for predicting pathological upgrading in patients with prostate cancer. Front Oncol 2024; 13:1273414. [PMID: 38260839 PMCID: PMC10800856 DOI: 10.3389/fonc.2023.1273414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Objectives To explore the feasibility and importance of deep learning (DL) based on 68Ga-prostate-specific membrane antigen (PSMA)-11 PET/CT in predicting pathological upgrading from biopsy to radical prostatectomy (RP) in patients with prostate cancer (PCa). Methods In this retrospective study, all patients underwent 68Ga-PSMA-11 PET/CT, transrectal ultrasound (TRUS)-guided systematic biopsy, and RP for PCa sequentially between January 2017 and December 2022. Two DL models (three-dimensional [3D] ResNet-18 and 3D DenseNet-121) based on 68Ga-PSMA-11 PET and support vector machine (SVM) models integrating clinical data with DL signature were constructed. The model performance was evaluated using area under the receiver operating characteristic curve (AUC), accuracy, sensitivity, and specificity. Results Of 109 patients, 87 (44 upgrading, 43 non-upgrading) were included in the training set and 22 (11 upgrading, 11 non-upgrading) in the test set. The combined SVM model, incorporating clinical features and signature of 3D ResNet-18 model, demonstrated satisfactory prediction in the test set with an AUC value of 0.628 (95% confidence interval [CI]: 0.365, 0.891) and accuracy of 0.727 (95% CI: 0.498, 0.893). Conclusion A DL method based on 68Ga-PSMA-11 PET may have a role in predicting pathological upgrading from biopsy to RP in patients with PCa.
Collapse
Affiliation(s)
- Shiming Zang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Cuiping Jiang
- Department of Ultrasound, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lele Zhang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jingjing Fu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qingle Meng
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wenyu Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongbin Sun
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
19
|
Simunic M, Joshi JT, Merkens H, Colpo N, Kuo HT, Lum JJ, Bénard F. PSMA imaging as a non-invasive tool to monitor inducible gene expression in vivo. EJNMMI Res 2024; 14:3. [PMID: 38177950 PMCID: PMC10767034 DOI: 10.1186/s13550-023-01063-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Affiliation(s)
- Marin Simunic
- Department of Hematology, Clinic for Internal Medicine, Clinical Hospital Centre, Spinciceva 1, 21000, Split, Croatia
| | - Jay T Joshi
- Deeley Research Centre, BC Cancer Research Institute, 2410 Lee Avenue, Victoria, BC, V8R 6V5, Canada
| | - Helen Merkens
- BC Cancer Research Institute, 675 West 10Th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Nadine Colpo
- BC Cancer Research Institute, 675 West 10Th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Hsiou-Ting Kuo
- BC Cancer Research Institute, 675 West 10Th Avenue, Vancouver, BC, V5Z 1L3, Canada
| | - Julian J Lum
- Deeley Research Centre, BC Cancer Research Institute, 2410 Lee Avenue, Victoria, BC, V8R 6V5, Canada
| | - François Bénard
- BC Cancer Research Institute, 675 West 10Th Avenue, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
20
|
Swiha M, Ayati N, Oprea-Lager DE, Ceci F, Emmett L. How to Report PSMA PET. Semin Nucl Med 2024; 54:14-29. [PMID: 37558507 DOI: 10.1053/j.semnuclmed.2023.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
Prostate cancer (PCa) is the most common cancer diagnosed in men in most developed countries and a leading cause of cancer-related morbidity and mortality. Prostate-specific membrane antigen positron emission tomography (PSMA-PET) has become a valuable tool in the staging and assessment of disease recurrence in PCa, and more recently for assessment for treatment eligibility to PSMA radioligand therapy (RLT). Harmonization of PSMA-PET interpretation and synoptic reports are needed to communicate concisely and reproducibly PSMA-PET/CT to referring physicians and to support clinician therapeutic management decisions in various stages of the disease. Uniform image interpretation is also important to provide comparable data between clinical trials and to translate such data from research to daily practice. This review provides an overview of the value of PSMA-PET across the different clinical stages of PCa, discusses published reporting criteria for PSMA-PET, identifies pitfalls in reporting PSMA, and provides recommendations for synoptic reports.
Collapse
Affiliation(s)
- Mina Swiha
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, Australia; Nuclear Medicine Division, Department of Medical Imaging, University of Western Ontario, London, Canada
| | - Narjess Ayati
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, Sydney, Australia
| | - Daniela E Oprea-Lager
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, VU University. Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Francesco Ceci
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital, Sydney, Australia; St Vincent's Clinical School, University of New South Wales, Sydney, Australia; Garvan Institute of Medical Research, Sydney, Australia.
| |
Collapse
|
21
|
Xu L, Chen R, Yu X, Liu J, Wang Y. 18F-FDG PET Is Not Inferior to 68Ga-PSMA PET for Detecting Biochemical Recurrent Prostate Cancer with a High Gleason Score: A Head-to-Head Comparison Study. Diagnostics (Basel) 2023; 14:7. [PMID: 38201316 PMCID: PMC10871097 DOI: 10.3390/diagnostics14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
Previous studies have indicated that 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in biochemical recurrence (BCR) patients with poorly differentiated prostate adenocarcinoma had higher diagnostic sensitivity than those with well differentiated adenocarcinoma, but whether the performance of FDG PET can achieve the effect of prostate-specific membrane antigen (PSMA) PET in BCR patients with a high Gleason score remains poorly understood. This study aimed to compare the efficacies of 18F-FDG PET/CT and 68Ga-PSMA PET/CT for BCR patients and evaluate whether 18F-FDG PET was not inferior to 68Ga-PSMA PET for detecting BCR with a high Gleason score. This was a retrospective, head-to-head comparative study completed at Ren Ji Hospital between May 2018 and June 2021. Patients underwent both 18F-FDG and 68Ga-PSMA PET/CT. The detection rate of BCR at the patient level and at the anatomical region level was evaluated. In total, 145 patients were enrolled in this study. 18F-FDG PET/CT (24.1%, 35/145) had lower detection rates than 68Ga-PSMA PET/CT (59.3%, 86/145; p < 0.001) at the patient level and at any anatomical region (p < 0.05). The PSA level (p < 0.001, OR = 11.026, 95% CI: 3.214-37.824) and the Gleason score (p < 0.001, OR = 20.227, 95% CI: 5.741-71.267) were independent predictive factors of the detection rate on 18F-FDG PET/CT, while the PSA level (p < 0.001, OR = 4.862, 95% CI: 2.338-10.110) was the only predictor of the detection rate on 68Ga-PSMA PET/CT. 18F-FDG PET/CT had a similar detection rate as 68Ga-PSMA PET/CT in patients with a Gleason score of 9 at the patient level (64.3% vs. 71.4%, p = 0.567) and any anatomical region (all p > 0.05), but 18F-FDG PET/CT had a lower detection rate than 68Ga-PSMA PET/CT in patients with a Gleason score of 6-8. 18F-FDG PET is not inferior to 68Ga-PSMA PET for detecting BCR with a Gleason score of 9; therefore, 18F-FDG PET/CT could be considered in BCR patients with a Gleason score of 9. However, 68Ga-PSMA is a better tracer than 18F-FDG in PET/CT for treatment decision making in BCR patients with a Gleason score of 6-8.
Collapse
Affiliation(s)
- Lian Xu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (R.C.); (X.Y.); (J.L.)
| | - Ruohua Chen
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (R.C.); (X.Y.); (J.L.)
| | - Xiaofeng Yu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (R.C.); (X.Y.); (J.L.)
| | - Jianjun Liu
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (R.C.); (X.Y.); (J.L.)
| | - Yuetao Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China;
- Institute of Clinical Translation of Nuclear Medicine and Molecular Imaging, Soochow University, Changzhou 213003, China
| |
Collapse
|
22
|
Pepe P, Pennisi M. Targeted Biopsy in Men High Risk for Prostate Cancer: 68Ga-PSMA PET/CT Versus mpMRI. Clin Genitourin Cancer 2023; 21:639-642. [PMID: 37394379 DOI: 10.1016/j.clgc.2023.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION/BACKGROUND To evaluate the accuracy of 68Ga-PSMA PET/CT versus mpMRI targeted biopsy (TPBx) in the diagnosis of clinically significant prostate cancer (csPCa) in men high risk for PCa. MATERIALS AND METHODS From January 2021 to March 2023, 125 men with clinical parameters high risk for PCa were evaluated by mpMRI and 68Ga-PSMA PET/CT; median PSA was 32.5 ng/mL (range: 12-160 ng/mL) and 60/125 (48%) had abnormal digital rectal examination. The mpMRI lesions with PI-RADS scores ≥ 3 and/or 68Ga-PSMA areas characterized by a standardized uptake value (SUVmax) values ≥ 8 were submitted to TPBx (4 cores); in addition, all the patients underwent systematic transperineal prostate biopsy (18 cores) under sedation and antibiotic prophylaxis. RESULTS In 80 of 125 men (64%) a csPCa was found: 10 (12.5%) had a ISUP Grade Group 3 (GG), 45 (56.2%) a ISUP GG4 and 25 (31.2%) ISUP GG5. The median intraprostatic 68Ga-PSMA SUVmax was 42.3 (range:10.5-164) and 72 of 80 (90%) had a PI-RADS score ≥ 3. 68GaPSMA PET/CT showed the presence of metastases in 20 of 80 (25%) men: the median SUVmax in bone (15 cases) and nodes (40 cases) metastases was 55 and 47, respectively. Accuracy of 68Ga PSMA PET/CT (SUVmax cut-off ≥ 8) versus mpMRI PI-RADS score ≥ 3 in the diagnosis of csPCa was 92 versus 86.2%. CONCLUSION 68GaPSMA PET/CT demonstrated a good diagnostic accuracy as a single procedure for the diagnosis and staging of high-risk PCa.
Collapse
Affiliation(s)
- Pietro Pepe
- Urology Unit, Imaging Department, Cannizzaro Hospital, Catania, Italy.
| | - Michele Pennisi
- Urology Unit, Imaging Department, Cannizzaro Hospital, Catania, Italy
| |
Collapse
|
23
|
Vanden Berg RNW, Zilli T, Achard V, Dorff T, Abern M. The diagnosis and treatment of castrate-sensitive oligometastatic prostate cancer: A review. Prostate Cancer Prostatic Dis 2023; 26:702-711. [PMID: 37422523 DOI: 10.1038/s41391-023-00688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Oligometastatic prostate cancer (OMPCa) is emerging as a transitional disease state between localized and polymetastatic disease. This review will assess the current knowledge of castrate-sensitive OMPCa. METHODS A review of the current literature was performed to summarize the definition and classification of OMPCa, assess the diagnostic methods and imaging modalities utilized, and to review the treatment options and outcomes. We further identify gaps in knowledge and areas for future research. RESULTS Currently there is no unified definition of OMPCa. National guidelines mostly recommend systemic therapies without distinguishing oligometastatic and polymetastatic disease. Next generation imaging is more sensitive than conventional imaging and has led to early detection of metastases at initial diagnosis or recurrence. While mostly retrospective in nature, recent studies suggest that treatment (surgical or radiation) of the primary tumor and/or metastatic sites might delay initiation of androgen deprivation therapy while increasing survival in selected patients. CONCLUSIONS Prospective data are required to better assess the incremental improvement in survival and quality of life achieved with various treatment strategies in patients with OMPCa.
Collapse
Affiliation(s)
| | - Thomas Zilli
- Radiation Oncology, Oncology Institute of Southern Switzerland (IOSI), EOC, Bellinzona, Switzerland
- Faculty of Medicine, Università della Svizzera Italiana, Lugano, Switzerland
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vérane Achard
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Radiation Oncology, HFR Fribourg, Villars-sur-Glâne, Switzerland
| | - Tanya Dorff
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Michael Abern
- Department of Urology, Duke University, Durham, NC, USA.
- Duke Cancer Institute, Durham, NC, USA.
| |
Collapse
|
24
|
Awiwi MO, Gjoni M, Vikram R, Altinmakas E, Dogan H, Bathala TK, Naik S, Ravizzini G, Kandemirli SG, Elsayes KM, Salem UI. MRI and PSMA PET/CT of Biochemical Recurrence of Prostate Cancer. Radiographics 2023; 43:e230112. [PMID: 37999983 DOI: 10.1148/rg.230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Prostate cancer may recur several years after definitive treatment, such as prostatectomy or radiation therapy. A rise in serum prostate-specific antigen (PSA) level is the first sign of disease recurrence, and this is termed biochemical recurrence. Patients with biochemical recurrence have worse survival outcomes. Radiologic localization of recurrent disease helps in directing patient management, which may vary from active surveillance to salvage radiation therapy, androgen-deprivation therapy, or other forms of systemic and local therapy. The likelihood of detecting the site of recurrence increases with higher serum PSA level. MRI provides optimal diagnostic performance for evaluation of the prostatectomy bed. Prostate-specific membrane antigen (PSMA) PET radiotracers currently approved by the U.S. Food and Drug Administration demonstrate physiologic urinary excretion, which can obscure recurrence at the vesicourethral junction. However, MRI and PSMA PET/CT have comparable diagnostic performance for evaluation of local recurrence after external-beam radiation therapy or brachytherapy. PSMA PET/CT outperforms MRI in identifying recurrence involving the lymph nodes and bones. Caveats for use of both PSMA PET/CT and MRI do exist and may cause false-positive or false-negative results. Hence, these techniques have complementary roles and should be interpreted in conjunction with each other, taking the patient history and results of any additional prior imaging studies into account. Novel PSMA agents at various stages of investigation are being developed, and preliminary data show promising results; these agents may revolutionize the landscape of prostate cancer recurrence imaging in the future. ©RSNA, 2023 Quiz questions for this article are available through the Online Learning Center. See the invited commentary by Turkbey in this issue. The slide presentation from the RSNA Annual Meeting is available for this article.
Collapse
Affiliation(s)
- Muhammad O Awiwi
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Migena Gjoni
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Raghunandan Vikram
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Emre Altinmakas
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Hakan Dogan
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Tharakeswara K Bathala
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Sagar Naik
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Gregory Ravizzini
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Sedat Giray Kandemirli
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Khaled M Elsayes
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| | - Usama I Salem
- From the Division of Diagnostic Imaging, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 2.132, Houston, TX 77030 (M.O.A.); Department of Medicine, Istanbul University-Cerrahpasa Hospital, Istanbul, Turkey (M.G.); Departments of Abdominal Imaging (R.V., T.K.B., S.N., K.M.E., U.I.S.) and Nuclear Medicine (G.R.), Division of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Tex; Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY (E.A.); Department of Radiology, Koç University School of Medicine, Istanbul, Turkey (E.A., H.D.); and Department of Nuclear Medicine, Division of Diagnostic Imaging, University of Iowa Hospitals and Clinics, Iowa City, Iowa (S.G.K.)
| |
Collapse
|
25
|
Urso L, Filippi L, Castello A, Marzola MC, Bartolomei M, Cittanti C, Florimonte L, Castellani M, Zucali P, Bruni A, Sabbatini R, Dominici M, Panareo S, Evangelista L. PSMA PET/CT in Castration-Resistant Prostate Cancer: Myth or Reality? J Clin Med 2023; 12:7130. [PMID: 38002742 PMCID: PMC10672135 DOI: 10.3390/jcm12227130] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND prostate-specific membrane antigen (PSMA) ligand PET has been recently incorporated into international guidelines for several different indications in prostate cancer (PCa) patients. However, there are still some open questions regarding the role of PSMA ligand PET in castration-resistant prostate cancer (CRPC). The aim of this work is to assess the clinical value of PSMA ligand PET/CT in patients with CRPC. RESULTS PSMA ligand PET has demonstrated higher detection rates in comparison to conventional imaging and allows for a significant reduction in the number of M0 CRPC patients. However, its real impact on patients' prognosis is still an open question. Moreover, in CRPC patients, PSMA ligand PET presents some sensitivity and specificity limitations. Due to its heterogeneity, CRPC may present a mosaic of neoplastic clones, some of which could be PSMA-/FDG+, or vice versa. Likewise, unspecific bone uptake (UBU) and second primary neoplasms (SNPs) overexpressing PSMA in the neoangiogenic vessels represent potential specificity issues. Integrated multi-tracer imaging (PSMA ligand and [18F]FDG PET) together with a multidisciplinary discussion could allow for reaching the most accurate evaluation of each patient from a precision medicine point of view.
Collapse
Affiliation(s)
- Luca Urso
- Department of Nuclear Medicine—PET/CT Center, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy; (L.U.); (M.C.M.)
| | - Luca Filippi
- Nuclear Medicine Unit, Department of Oncohaematology, Fondazione PTV, Policlinico Tor Vergata University Hospital, Viale Oxford 81, 00133 Rome, Italy;
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.F.); (M.C.)
| | - Maria Cristina Marzola
- Department of Nuclear Medicine—PET/CT Center, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy; (L.U.); (M.C.M.)
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Onco-Hematological Department, University Hospital of Ferrara, 44124 Ferrara, Italy; (M.B.); (C.C.)
| | - Corrado Cittanti
- Nuclear Medicine Unit, Onco-Hematological Department, University Hospital of Ferrara, 44124 Ferrara, Italy; (M.B.); (C.C.)
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Luigia Florimonte
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.F.); (M.C.)
| | - Massimo Castellani
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy; (L.F.); (M.C.)
| | - Paolo Zucali
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy; (P.Z.); (L.E.)
- Department of Oncology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Alessio Bruni
- Radiotherapy Unit, Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy;
| | - Roberto Sabbatini
- Oncology Unit, Department of Oncology and Hematology, University Hospital of Modena, Via del Pozzo 71, 41124 Modena, Italy; (R.S.); (M.D.)
| | - Massimo Dominici
- Oncology Unit, Department of Oncology and Hematology, University Hospital of Modena, Via del Pozzo 71, 41124 Modena, Italy; (R.S.); (M.D.)
| | - Stefano Panareo
- Nuclear Medicine Unit, Department of Oncology and Hematology, University Hospital of Modena, Via del Pozzo 71, 41124 Modena, Italy;
| | - Laura Evangelista
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Milan, Italy; (P.Z.); (L.E.)
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| |
Collapse
|
26
|
Luo L, Zheng A, Chang R, Li Y, Gao J, Wang Z, Duan X. Evaluating the value of 18F-PSMA-1007 PET/CT in the detection and identification of prostate cancer using histopathology as the standard. Cancer Imaging 2023; 23:108. [PMID: 37924154 PMCID: PMC10623763 DOI: 10.1186/s40644-023-00627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Prostate-specific membrane antigen (PSMA) PET/CT is a highly regarded radionuclide imaging modality for prostate cancer (PCa). This study aimed to evaluate the diagnostic performance of 18F-PSMA-1007 PET/CT in detecting intraprostatic lesions of PCa using radical prostatectomy (RP) specimens as a reference standard and to establish an optimal maximum standardized uptake value (SUVmax) cutoff for distinguishing between PCa and non-PCa lesions. METHODS We retrospectively collected 117 patients who underwent 18F-PSMA-1007 PET/CT before RP. The uptake of the index tumor and contralateral non-PCa lesion was assessed. Histopathology of RP specimens was used as the gold standard. Kappa test was used to evaluate the consistency of preoperative PSMA PET/CT staging and postoperative pathological staging. Finally, an SUVmax cutoff value was identified by receiver operating characteristic (ROC) curve analysis to distinguish PCa lesions from non-PCa lesions. A prospective cohort including 76 patients was used to validate the results. RESULTS The detection rate of 18F-PSMA-1007 PET/CT for prostate cancer was 96.6% (113/117). 18F-PSMA-1007 had a sensitivity of 91.2% and a positive predictive value (PPV) of 89.8% for the identification of intraprostatic lesions. The consistency test (Kappa = 0.305) indicated poor agreement between the pathologic T-stage and PSMA PET/CT T-stage. Based on ROC curve analysis, the appropriate SUVmax to diagnose PCa lesions was 8.3 (sensitivity of 71.3% and specificity 96.8%) with an area under the curve (AUC) of 0.93 (P < 0.001). This SUVmax cutoff discriminated PCa lesions from non-PCa lesions with a sensitivity of 74.4%, a specificity of 95.8% in the prospective validation group. CONCLUSIONS 18F-PSMA-1007 PET/CT demonstrated excellent performance in detecting PCa. An optimal SUVmax threshold (8.3) could be utilized to identify lesions of PCa by 18F-PSMA-1007 PET/CT. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT04521894, Registered: August 17, 2020.
Collapse
Affiliation(s)
- Liang Luo
- PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Shaanxi Province, Xi'an, 710061, China
| | - Anqi Zheng
- PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Shaanxi Province, Xi'an, 710061, China
| | - Ruxi Chang
- PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Shaanxi Province, Xi'an, 710061, China
| | - Yunxuan Li
- PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Shaanxi Province, Xi'an, 710061, China
| | - Jungang Gao
- PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Shaanxi Province, Xi'an, 710061, China
| | - Zhuonan Wang
- PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Shaanxi Province, Xi'an, 710061, China.
| | - Xiaoyi Duan
- PET/CT Center, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Shaanxi Province, Xi'an, 710061, China.
| |
Collapse
|
27
|
Werner RA, Hartrampf PE, Fendler WP, Serfling SE, Derlin T, Higuchi T, Pienta KJ, Gafita A, Hope TA, Pomper MG, Eiber M, Gorin MA, Rowe SP. Prostate-specific Membrane Antigen Reporting and Data System Version 2.0. Eur Urol 2023; 84:491-502. [PMID: 37414701 DOI: 10.1016/j.eururo.2023.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/19/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
Prostate-specific Membrane Antigen Reporting and Data System (PSMA-RADS) was introduced for standardized reporting, and PSMA-RADS version 1.0 allows classification of lesions based on their likelihood of representing a site of prostate cancer on PSMA-targeted positron emission tomography (PET). In recent years, this system has extensively been investigated. Increasing evidence has accumulated that the different categories reflect their actual meanings, such as true positivity in PSMA-RADS 4 and 5 lesions. Interobserver agreement studies demonstrated high concordance among a broad spectrum of 68Ga- or 18F-labeled, PSMA-directed radiotracers, even for less experienced readers. Moreover, this system has also been applied to challenging clinical scenarios and to assist in clinical decision-making, for example, to avoid overtreatment in oligometastatic disease. Nonetheless, with an increasing use of PSMA-RADS 1.0, this framework has shown not only benefits, but also limitations, for example, for follow-up assessment of locally treated lesions. Thus, we aimed to update the PSMA-RADS framework to include a refined set of categories in order to optimize lesion-level characterization and best assist in clinical decision-making (PSMA-RADS version 2.0).
Collapse
Affiliation(s)
- Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philipp E Hartrampf
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | | | - Thorsten Derlin
- Department of Nuclear Medicine, Hannover Medical School, Hannover, Germany
| | - Takahiro Higuchi
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany; Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kenneth J Pienta
- The Brady Urological Institute Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Andrei Gafita
- The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Martin G Pomper
- The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Brady Urological Institute Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael A Gorin
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven P Rowe
- The Russell H Morgan Department of Radiology and Radiological Science, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA; The Brady Urological Institute Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Fuscaldi LL, Sobral DV, Durante ACR, Mendonça FF, Miranda ACC, Salgueiro C, de Castiglia SG, Yamaga LYI, da Cunha ML, Malavolta L, de Barboza MF, Mejia J. Radiochemical and biological assessments of a PSMA-I&S cold kit for fast and inexpensive 99mTc-labeling for SPECT imaging and radioguided surgery in prostate cancer. Front Chem 2023; 11:1271176. [PMID: 37901160 PMCID: PMC10602725 DOI: 10.3389/fchem.2023.1271176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/29/2023] [Indexed: 10/31/2023] Open
Abstract
The expression of prostate-specific membrane antigen (PSMA) is upregulated in prostate cancer (PCa) cells and PSMA-ligands have been radiolabeled and used as radiopharmaceuticals for targeted radionuclide therapy (TRT), single photon emission computed tomography (SPECT) or positron emission tomography (PET) molecular imaging, and radioguided surgery in PCa patients. Herein, we aimed at radiolabeling the PSMA-I&S cold kit with 99mTc, resulting in a radiopharmaceutical with high radiochemical yield (RCY) and stability for SPECT imaging and radioguided surgery in PCa malignancies. Various pre-clinical assays were conducted to evaluate the [99mTc]Tc-PSMA-I&S obtained by the cold kit. These assays included assessments of RCY, radiochemical stability in saline, lipophilicity, serum protein binding (SPB), affinity for LNCaP-PCa cells (binding and internalization studies), and ex vivo biodistribution profile in naive and LNCaP-PCa-bearing mice. The radiopharmaceutical was obtained with good RCY (92.05% ± 2.20%) and remained stable for 6 h. The lipophilicity was determined to be -2.41 ± 0.06, while the SPB was ∼97%. The binding percentages to LNCaP cells were 9.41% ± 0.57% (1 h) and 10.45% ± 0.45% (4 h), with 63.12 ± 0.93 (1 h) and 65.72% ± 1.28% (4 h) of the bound material being internalized. Blocking assays, employing an excess of unlabeled PSMA-I&S, resulted in a reduction in the binding percentage by 2.6 times. The ex vivo biodistribution profile confirmed high accumulation of [99mTc]Tc-PSMA-I&S in the tumor and the tumor-to-contralateral muscle ratio was ∼6.5. In conclusion, [99mTc]Tc-PSMA-I&S was successfully obtained by radiolabeling the cold kit using freshly eluted [99mTc]NaTcO4, exhibiting good RCY and radiochemical stability. The preclinical assays demonstrated that the radiopharmaceutical shows favorable characteristics for SPECT imaging and radioguided surgery in PCa patients.
Collapse
Affiliation(s)
- Leonardo Lima Fuscaldi
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | - Danielle Vieira Sobral
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | | | - Fernanda Ferreira Mendonça
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | | | - Carla Salgueiro
- Departamento de Química, Universidad Kennedy, Buenos Aires, Argentina
| | | | | | | | - Luciana Malavolta
- Department of Physiological Sciences, Santa Casa de Sao Paulo School of Medical Sciences, Sao Paulo, Brazil
| | | | - Jorge Mejia
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil
| |
Collapse
|
29
|
Pontes ÍCDM, Souza AR, Fonseca EKUN, Osawa A, Baroni RH, Castro ADAE. Musculoskeletal pitfalls in 68Ga-PSMA PET/CT. Radiol Bras 2023; 56:220-225. [PMID: 37829586 PMCID: PMC10567088 DOI: 10.1590/0100-3984.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 10/14/2023] Open
Abstract
Prostate-specific membrane antigen (PSMA) is a transmembrane protein expressed in normal prostate cells and overexpressed in prostate cancer. Consequently, it is an important tool in the evaluation of prostate cancer, including the staging of high-risk patients and the assessment of biochemical recurrence. Despite the "specific" designation, benign musculoskeletal conditions, such as fractures, osteodegenerative changes, and fibrous dysplasia, can also show PSMA uptake, which can lead to misinterpretation of the imaging findings. Therefore, radiologists must be aware of these potential pitfalls, understand their causes, and fully analyze their morphologic features on unfused computed tomography (CT) and magnetic resonance imaging scans to correctly interpret the examination. In this pictorial essay, we review the basic characteristics of the 68Ga-PSMA positron-emission tomography/CT (PET/CT) radiotracer, discuss potential causes of false-positive findings on 68Ga-PSMA PET/CT in the musculoskeletal system, and illustrate the corresponding imaging findings.
Collapse
Affiliation(s)
| | - Anthony Reis Souza
- Imaging Department, Hospital Israelita Albert Einstein, São
Paulo, SP, Brazil
| | | | - Akemi Osawa
- Imaging Department, Hospital Israelita Albert Einstein, São
Paulo, SP, Brazil
| | - Ronaldo Hueb Baroni
- Imaging Department, Hospital Israelita Albert Einstein, São
Paulo, SP, Brazil
| | | |
Collapse
|
30
|
Moreau A, Khayi F, Maureille A, Bonneville-Levard A, Larrouquere L, Ducray F, Kryza D. Discriminating Inflammatory Radiation-Related Changes From Early Recurrence in Patients With Glioblastomas: A Preliminary Analysis of 68Ga-PSMA-11 PET/CT Compared With 18F-FDOPA PET/CT. Clin Nucl Med 2023; Publish Ahead of Print:00003072-990000000-00584. [PMID: 37276534 DOI: 10.1097/rlu.0000000000004716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
PURPOSE OF THE REPORT Using morphological and functional imaging to discriminate recurrence from postradiation-related modifications in patients with glioblastomas remains challenging. This pilot study aimed to assess the feasibility of using 68Ga-prostate-specific membrane antigen (PSMA) 11 PET/CT compared with 18F-FDOPA PET/CT to detect early recurrence. METHODS Nine patients followed up for glioblastomas who received MRI during 12 months of follow-up were referred for both 68Ga-PSMA-11 and 18F-FDOPA PET/CT. The SUVmax, lesion-to-striatum ratio, lesion-to-normal parenchyma ratio, and lesion-to-salivary gland ratio were calculated. RESULTS Good correlation between 18F-FDOPA and 68Ga-PSMA PET/CT findings was seen in 5 patients. In 4 patients, the findings of both examinations were consistent with recurrence but were better visualized with the PSMA PET/CT. Examinations of the fifth patient were suggestive of postradiation-related changes and were better analyzed with the PSMA PET/CT, which displayed relatively low uptake compared with DOPA PET/CT. Conversely, 4 patients showed conflicting results: recurrence was not detected on the PSMA PET/CT because of previously introduced bevacizumab treatment; in another patient, both examinations were consistent with recurrence, but there was an uptake mismatch at the suspected lesion sites, and 2 patients presented with inconsistent findings. CONCLUSIONS Despite a few discrepancies, this study highlights the potential role of 68Ga-PSMA-11 PET/CT for discriminating postradiation inflammation from recurrence. 68Ga-PSMA-11 PET/CT has an excellent lesion-to-background ratio, and false-positive and false-negative results could be minimized through implementing certain protocols before performing the examination. More powerful prospective studies are required to validate our results.
Collapse
|
31
|
Nguyen A, Martinez F, Nguyen BD. Chest Wall Keloids Depicted by 18 F-Piflufolastat PET/CT Imaging. Clin Nucl Med 2023; 48:e302-e303. [PMID: 36927676 DOI: 10.1097/rlu.0000000000004623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
ABSTRACT Keloids are pathological scars from exuberant fibroproliferative collagen response and excessive extracellular matrix production usually extending beyond the original wound margins. Although keloids are mostly of dermatological concern, they could be incidentally depicted on scintigraphic planar and PET/CT imaging and could mimic other types of skin diseases. The authors present a case of chest wall keloids documented on 18 F-piflufolastat PET/CT during the evaluation of prostate cancer recurrence.
Collapse
Affiliation(s)
- Amanda Nguyen
- From the Department of Radiology, Mayo Clinic, Scottsdale, AZ
| | | | | |
Collapse
|
32
|
Tamer F, Omur O. Incidental Meningioma With Altered PSMA Expression After Systemic Hormone Therapy and Local Radiotherapy Detected by 68 Ga-PSMA PET/CT. Clin Nucl Med 2023; 48:507-509. [PMID: 37019127 DOI: 10.1097/rlu.0000000000004650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
ABSTRACT A 59-year-old man underwent radical prostatectomy for adenocarcinoma in 2009. Because of the progression of PSA levels, a 68 Ga-PSMA PET/CT scan was performed in January 2020. A suspicious uptake was detected in the left cerebellar hemisphere, and there was no evidence of distant metastatic disease other than recurrent malignancy in the prostatectomy bed. MRI revealed a meningioma located in the left cerebellopontine angle. Although PSMA uptake of the lesion increased in the first imaging after hormone therapy, partial regression was noted after radiotherapy applied to this region.
Collapse
Affiliation(s)
- Fatih Tamer
- From the Department of Nuclear Medicine, Training and Research Hospital, Nigde Omer Halisdemir University, Niğde
| | - Ozgur Omur
- Department of Nuclear Medicine, Medical Faculty, Ege University, İzmir, Türkiye
| |
Collapse
|
33
|
McLaughlin LA, Yildirim O, Rosenblum MK, Imber BS, Haseltine JM, Zelefsky MJ, Schöder H, Morris MJ, Rafelson WM, Krebs S, Moss NS. Identification of incidental brain tumors in prostate cancer patients via PSMA PET/CT. J Neurooncol 2023; 163:455-462. [PMID: 37247180 PMCID: PMC10746351 DOI: 10.1007/s11060-023-04355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
PURPOSE Brain metastases are rare in patients with prostate cancer and portend poor outcome. Prostate-specific membrane antigen positron emission tomography (PSMA PET)/CT scans including the brain have identified incidental tumors. We sought to identify the incidental brain tumor detection rate of PSMA PET/CT performed at initial diagnosis or in the setting of biochemical recurrence. METHODS An institutional database was queried for patients who underwent 68Ga-PSMA-11 or 18F-DCFPyL (18F-piflufolastat) PET/CT imaging at an NCI-designated Comprehensive Cancer Center from 1/2018 to 12/2022. Imaging reports and clinical courses were reviewed to identify brain lesions and describe clinical and pathologic features. RESULTS Two-thousand seven hundred and sixty-three patients underwent 3363 PSMA PET/CT scans in the absence of neurologic symptoms. Forty-four brain lesions were identified, including 33 PSMA-avid lesions: 10 intraparenchymal metastases (30%), 4 dural-based metastases (12%), 16 meningiomas (48%), 2 pituitary macroadenomas (6%), and 1 epidermal inclusion cyst (3%) (incidences of 0.36, 0.14, 0.58, 0.07, and 0.04%). The mean parenchymal metastasis diameter and mean SUVmax were 1.99 cm (95%CI:1.25-2.73) and 4.49 (95%CI:2.41-6.57), respectively. At the time of parenchymal brain metastasis detection, 57% of patients had no concurrent extracranial disease, 14% had localized prostate disease only, and 29% had extracranial metastases. Seven of 8 patients with parenchymal brain metastases remain alive at a median 8.8 months follow-up. CONCLUSION Prostate cancer brain metastases are rare, especially in the absence of widespread metastatic disease. Nevertheless, incidentally detected brain foci of PSMA uptake may represent previously unknown prostate cancer metastases, even in small lesions and in the absence of systemic disease.
Collapse
Affiliation(s)
- Lily A McLaughlin
- Georgetown University School of Medicine, Washington, DC, USA
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Onur Yildirim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marc K Rosenblum
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brandon S Imber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Multidisciplinary Brain Metastasis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin M Haseltine
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael J Zelefsky
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William M Rafelson
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nelson S Moss
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Multidisciplinary Brain Metastasis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurosurgery and Brain Metastasis Center, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
34
|
Zheng A, Wang Z, Luo L, Chang R, Gao J, Wang B, Duan X. The prognostic value of 18F-PSMA-1007 PET/CT in predicting pathological upgrading of newly diagnosed prostate cancer from systematic biopsy to radical prostatectomy. Front Oncol 2023; 13:1169189. [PMID: 37234988 PMCID: PMC10206242 DOI: 10.3389/fonc.2023.1169189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
Objective This study aimed to evaluate predictors for upgrading of newly diagnosed prostate cancer from systematic biopsy (SB) to radical prostatectomy (RP) using fluorine-18 prostate-specific membrane antigen 1007 (18F-PSMA-1007) positron emission tomography/computed tomography (PET/CT) and association with clinical parameters. Materials and methods We retrospectively collected data from biopsy-confirmed prostate cancer (PCa) patients who underwent 18F-PSMA-1007 PET/CT prior to RP from July 2019 and October 2022. Imaging characteristics derived from 18F-PSMA-1007 PET/CT and clinical parameters were compared in patients of pathological upgrading and concordance subgroups. Univariable and multivariable logistic regressions were performed to analyze factors predicting histopathological upgrading from SB to RP specimens. Discrimination ability of independent predictors was further evaluated by receiver operating characteristic (ROC) analysis with corresponding area under the curve (AUC). Results Pathological upgrading occurred in 26.97% (41/152) PCa patients, and 23.03% (35/152) of all patients experienced pathological downgrading. Concordance rate reached 50% (76/152). International Society of Urological Pathology grade group (ISUP GG) 1(77.78%) and ISUP GG 2 (65.22%) biopsies were related with the highest rate of upgrading. Multivariable logistic regression analyses showed that prostate volume (OR= 0.933; 95% CI, 0.887-0.982; p = 0.008), ISUP GG 1 vs. 4 (OR= 13.856; 95% CI: 2.467-77.831; p = 0.003), and total uptake of PSMA-avid lesions (PSMA-TL) (OR = 1.003; 95% CI, 1.000-1.006; p = 0.029) were found to be independent risk factors of pathological upgrading after RP. The AUCs and corresponding sensitivity and specificity of the independent predictors of synthesis for upgrading were 0.839, 78.00%, and 83.30% respectively, which showed good discrimination capacity. Conclusion 18F-PSMA-1007 PET/CT may help to predict pathological upgrading between biopsy and RP specimens, particularly for ISUP GG 1 and ISUP GG 2 patients with higher PSMA-TL and smaller prostate volume.
Collapse
|
35
|
Fendler WP, Eiber M, Beheshti M, Bomanji J, Calais J, Ceci F, Cho SY, Fanti S, Giesel FL, Goffin K, Haberkorn U, Jacene H, Koo PJ, Kopka K, Krause BJ, Lindenberg L, Marcus C, Mottaghy FM, Oprea-Lager DE, Osborne JR, Piert M, Rowe SP, Schöder H, Wan S, Wester HJ, Hope TA, Herrmann K. PSMA PET/CT: joint EANM procedure guideline/SNMMI procedure standard for prostate cancer imaging 2.0. Eur J Nucl Med Mol Imaging 2023; 50:1466-1486. [PMID: 36604326 PMCID: PMC10027805 DOI: 10.1007/s00259-022-06089-w] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/18/2022] [Indexed: 01/07/2023]
Abstract
Here we aim to provide updated guidance and standards for the indication, acquisition, and interpretation of PSMA PET/CT for prostate cancer imaging. Procedures and characteristics are reported for a variety of available PSMA small radioligands. Different scenarios for the clinical use of PSMA-ligand PET/CT are discussed. This document provides clinicians and technicians with the best available evidence, to support the implementation of PSMA PET/CT imaging in research and routine practice.
Collapse
Affiliation(s)
- Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
- PET Committee of the German Society of Nuclear Medicine, Marburg, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Mohsen Beheshti
- Division of Molecular Imaging & Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Jamshed Bomanji
- Institute of Nuclear Medicine, UCLH NHS Foundation Trust, London, UK
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA, USA
| | - Francesco Ceci
- Division of Nuclear Medicine and Theranostics, IEO European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Steve Y Cho
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | | - Frederik L Giesel
- Department of Nuclear Medicine, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University and Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Karolien Goffin
- Department of Nuclear Medicine, Division of Nuclear Medicine and Molecular Imaging, University Hospital Leuven, KU Leuven, Louvain, Belgium
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Heather Jacene
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, USA
| | | | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technical University Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Bernd J Krause
- Department of Nuclear Medicine, University Medical Center, University of Rostock, Rostock, Germany
| | - Liza Lindenberg
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Charles Marcus
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Daniela E Oprea-Lager
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Joseph R Osborne
- Department of Radiology, Division of Molecular Imaging and Therapeutics, Weill Cornell Medicine, New York, NY, USA
| | - Morand Piert
- Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, University of Michigan, Ann Arbor, MI, USA
| | - Steven P Rowe
- Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heiko Schöder
- Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Simon Wan
- Institute of Nuclear Medicine, UCLH NHS Foundation Trust, London, UK
| | - Hans-Jürgen Wester
- Pharmaceutical Radiochemistry, Technische Universität München, Walther-Meißner-Str. 3, 85748, Garching, Germany
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.
| |
Collapse
|
36
|
Comparing digital to analog prostate-specific membrane antigen-targeted piflufolastat 18 F PET/CT in prostate cancer patients in early biochemical failure. Nucl Med Commun 2023; 44:187-193. [PMID: 36525002 DOI: 10.1097/mnm.0000000000001652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA) positron emission tomography/computer tomography (PET/CT) in prostate cancer patients with biochemical failure(BCF) showslimited sensitivity when the prostate-specific antigen(PSA) <0.5 ng/mL. The development of digital PET/CT has greatly improved smaller lesion detection. This study's goal was to compare the performance and clinical value of PSMA-targeted piflufolastat PET/CT for prostate cancer BCF with digital versus analog PET/CT. METHODS In this retrospective study, all piflufolastat PET/CT scans in subjects with PSA ≤ 3.0 ng/mL who were referred for prostate cancer BCF were included. The performance characteristics of 171 analog PET/CT studies in 155 subjects from May 2017 to January 2020 and 106 digital PET/CT studies in 103 subjects from February 2020 to December 2020 were compared. Lesions were considered malignant if they did not match the known physiological distribution of piflufolastat and did not represent uptake in benign lesions. PSMA PET/CT studies were considered positive if at least one malignant lesion was detected and negative if none were detected. RESULTS Digital piflufolastat PET/CT outperformed analog piflufolastat PET/CT in subjects with PSA < 0.5 ng/mL with a positivity rate of 69% versus 37%, respectively. In patients with PSA ≥ 0.5 ng/mL, both technologies performed similarly. There was no statistically significant difference between the number or size of piflufolastat-avid lesions detected per PET/CT study. CONCLUSION In prostate cancer patients with BCF and PSA < 0.5 ng/mL, digital piflufolastat PET/CT has a higher detection rate of malignant lesions than analog piflufolastat PET/CT.
Collapse
|
37
|
Bundschuh RA, Lütje S, Bundschuh L, Lapa C, Higuchi T, Hartrampf PE, Gorin MA, Kosmala A, Buck AK, Pomper MG, Rowe SP, Essler M, Sheikh GT, Werner RA. High Interobserver Agreement on PSMA PET/CT Even in the Absence of Clinical Data. Clin Nucl Med 2023; 48:207-212. [PMID: 36723879 PMCID: PMC9907678 DOI: 10.1097/rlu.0000000000004524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Recommended by current guidelines, prostate-specific membrane antigen (PSMA)-directed PET/CT is increasingly used in men with prostate cancer (PC). We aimed to provide concordance rates using the PSMA reporting and data system (RADS) for scan interpretation and also determine whether such agreement rates are affected by available patient characteristics at time of scan. PATIENTS AND METHODS Sixty men with PC, who all underwent 68Ga-PSMA-11 PET/CT, were included. Three independent, experienced readers indicated general scan parameters (including overall scan result, organ or lymph node [LN] involvement, and appropriateness of radioligand therapy). Applying PSMA-RADS 1.0, observers also had to conduct RADS scoring on a target lesion (TL) and overall scan level. During the first read, observers were masked to all relevant clinical information, whereas on a second read, relevant patient characteristics were displayed, thereby allowing for determination of impact of available clinical information for scan interpretation. We used intraclass correlation coefficients (ICCs; with 95% confidence intervals [CIs]), which were then rated according to Cicchetti (0.4-0.59 fair, 0.6-0.74 good, and 0.75-1 excellent agreement). RESULTS For general parameters, agreement rates were excellent, including an overall scan result (ICC, 0.85; 95% CI, 0.76-0.90), LN metastases (ICC, 0.89; 95% CI, 0.83-0.93), organ involvement (ICC, 0.82; 95% CI, 0.72-0.89), and indication for radioligand therapy (ICC, 0.94; 95% CI, 0.90-0.96). Overall RADS scoring was also excellent with an ICC of 0.91 (95% CI, 0.96-09.4). On a TL-based level, 251 different lesions were selected by the 3 observers (with 73 chosen by all 3 readers). RADS-based concordance rates were fair to excellent: all lesions, ICC of 0.78 (95% CI, 0.67-0.85); LN, ICC of 0.81 (95% CI, 0.63-0.92); skeleton, ICC of 0.55 (95% CI, 0-0.84); and prostate, ICC of 0.48 (95% CI, 0.17-0.78). When performing a second read displaying patient's characteristics, there were only minor modifications to the previously applied RADS scoring on a TL-based level (overall, n = 8): each reader 1 and 2 in 3/60 (5%) instances, and reader 3 in 2/60 (3.3%) instances. The main reason for recategorization (mainly upstaging) was provided information on PSA levels (4/8, 50%). CONCLUSIONS Applying PSMA-RADS, concordance rates were fair to excellent, whereas relevant modifications were rarely observed after providing clinical data. As such, even in the absence of patient information, standardized frameworks still provide guidance for reading PSMA PETs. Those findings may have implications for a high throughput in a busy PET practice, where patient details cannot always be retrieved at time of scan interpretation or in the context of clinical trials or central reviews in which readers may be blinded to clinical data.
Collapse
Affiliation(s)
- Ralph A. Bundschuh
- From the Medical Faculty, Department of Nuclear Medicine, University Hospital Augsburg, Augsburg, Germany
| | - Susanne Lütje
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Lena Bundschuh
- From the Medical Faculty, Department of Nuclear Medicine, University Hospital Augsburg, Augsburg, Germany
| | - Constantin Lapa
- From the Medical Faculty, Department of Nuclear Medicine, University Hospital Augsburg, Augsburg, Germany
| | - Takahiro Higuchi
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | | | - Michael A. Gorin
- Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Aleksander Kosmala
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K. Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Martin G. Pomper
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Steven P. Rowe
- The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Bonn, Germany
| | - Gabriel T. Sheikh
- Department of Nuclear Medicine, Ludwig Maximilian University of Munich, Munich, Germany
| | - Rudolf A. Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
38
|
Gravestock P, Somani BK, Tokas T, Rai BP. A Review of Modern Imaging Landscape for Prostate Cancer: A Comprehensive Clinical Guide. J Clin Med 2023; 12:jcm12031186. [PMID: 36769834 PMCID: PMC9918161 DOI: 10.3390/jcm12031186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The development of prostate cancer imaging is rapidly evolving, with many changes to the way patients are diagnosed, staged, and monitored for recurrence following treatment. New developments, including the potential role of imaging in screening and the combined diagnostic and therapeutic applications in the field of theranostics, are underway. In this paper, we aim to outline the current landscape in prostate cancer imaging and look to the future at the potential modalities and applications to come.
Collapse
Affiliation(s)
- Paul Gravestock
- Department of Urology, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK
| | - Bhaskar Kumar Somani
- Department of Urology, University Hospital Southampton NHS Trust, Southampton SO16 6YD, UK
| | - Theodoros Tokas
- Department of Urology and Andrology, General Hospital Hall in Tirol, 6060 Hall in Tirol, Austria
- Training and Research in Urological Surgery and Technology (T.R.U.S.T.)-Group, 6060 Hall in Tirol, Austria
| | - Bhavan Prasad Rai
- Department of Urology, Freeman Hospital, Newcastle upon Tyne NE7 7DN, UK
- Correspondence:
| |
Collapse
|
39
|
Kara Gedik G, Yılmaz F, Önner H. Characteristics of Radiopharmaceutical Uptake in Primary Tumor and Metastatic Lesions of Prostate Carcinoma: Comparison of Oligometastatic with Multimetastatic Disease. Mol Imaging Radionucl Ther 2023; 32:20-27. [PMID: 36817826 PMCID: PMC9950686 DOI: 10.4274/mirt.galenos.2022.71463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Objectives Oligometastases may generate secondary to indolent tumor biology. In this study, we investigated whether semiquantitative measures of 18F-fluorodeoxyglucose (FDG) and gallium-68 (68Ga) prostate-specific membrane antigen (PSMA) uptake of metastatic lesions and prostatic sites are different between oligometastatic (OM) and multimetastatic (MM) disease of prostate carcinoma (PC). Methods Patients with PC, who underwent positron emission tomography/computed tomography (PET/CT) from October 2012 to February 2020 were retrospectively reviewed. Patients, whose reports were consistent with metastatic diseases were selected. Patients classified as with MM or OM disease. Maximum standardized uptake values (SUVmax) were calculated from metastatic lesions and the prostatic site. The median of the SUVmax results between patients with OM and MM disease were compared. Results A totally 145 patients with a mean age of 71.46±9.26, were evaluated. In 59 of 145 patients, 18F-FDG PET/CT was performed;86 patients had gone through 68Ga PSMA PET/CT. Thirty-seven of 145 patients were OM, whereas 108 patients were MM. The median of the SUVmax of metastatic lesions in patients with OM and MM disease in the 18F-FDG group were 5.60 and 9.51, respectively. The results of the calculated median SUVmax values in OM and MM disease in the Ga-68 PSMA group were 13.44 and 29.84, respectively. A significant difference was observed in the median SUVmax results of metastatic lesions between OM and MM disease (p<0.05). Median values of SUVmax calculated from the prostatic site in OM and MM disease were 7.83 and 12.29 respectively in 18F-FDG; 26.23 and 26.74 in the 68Ga PSMA group. No significant difference was found in the SUVmax results of the prostatic site between OM and MM disease (p>0.05). Conclusion SUVmax results of metastatic lesions are significantly higher in patients with MM than in patients with OM disease in patients with PC, which may be secondary to their different biological contents in terms of aggressiveness.
Collapse
Affiliation(s)
- Gonca Kara Gedik
- Selçuk University Faculty of Medicine, Department of Nuclear Medicine, Konya, Turkey,* Address for Correspondence: Selçuk University Faculty of Medicine, Department of Nuclear Medicine, Konya, Turkey Phone: +90 332 224 40 77 E-mail:
| | - Farise Yılmaz
- Selçuk University Faculty of Medicine, Department of Nuclear Medicine, Konya, Turkey
| | - Hasan Önner
- Selçuk University Faculty of Medicine, Department of Nuclear Medicine, Konya, Turkey
| |
Collapse
|
40
|
Afshar-Oromieh A, Eiber M, Fendler W, Schmidt M, Rahbar K, Ahmadzadehfar H, Umutlu L, Hadaschik B, Hakenberg OW, Fornara P, Kurth J, Neels O, Wester HJ, Schwaiger M, Kopka K, Haberkorn U, Herrmann K, Krause BJ. [Procedure Guideline for Prostate Cancer Imaging with PSMA-ligand PET/CT]. Nuklearmedizin 2023; 62:5-19. [PMID: 36746147 DOI: 10.1055/a-1984-8167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PSMA-PET/CT for imaging prostate cancer (PC) has spread worldwide since its clinical introduction in 2011. The majority of experiences have been collected for PSMA-PET-imaging of recurrent PC. Data for primary staging of high-risk PC are highly promising. Meanwhile, a plethora of PSMA-ligands are available for clinical use (e. g. 68Ga-PSMA-11, 68Ga-PSMA-I&T, 68Ga-PSMA-617, 18F-DCFBC, 18F-DCFPyL, 18F-PSMA-1007, 18F-rhPSMA-7 and 18F-JK-PSMA-7). However, an official approval is available only for 68Ga-PSMA-11 (approved by the US FDA in 2020) and 18F-DCFPyL (approved by the US FDA in 2021).Recommendations for acquisition times vary from 1-2 h p. i. It has been shown that for the majority of tumour lesions, the contrast in PSMA-PET/CT increases with time. Therefore, additional late imaging can help to clarify unclear findings. PSMA-PET/CT should be performed prior to commencing an androgen deprivation therapy (ADT) since (long term) ADT reduces the visibility of PC lesions. Following injection of PSMA-ligands, hydration and forced diuresis are recommended for PSMA-ligands with primarily excretion via the kidneys in order to increase the visibility of tumour lesions adjacent to the urinary bladder.PSMA-ligands are physiologically taken up in multiple normal organs. For some 18F-labelled PSMA-ligands, presence of unspecific focal bone uptake has been reported. When using these tracers, focal bone uptake without CT-correlate should be interpreted with great caution. Besides prostate cancer, practically all solid tumors express PSMA in their neovasculature thereby taking up PSMA-ligands, although usually at a lower extent compared to PC. Also multiple benign lesions and inflammatory processes (e. g. lymph nodes) take up PSMA-ligands, also usually at lower extent compared to PC.
Collapse
Affiliation(s)
- Ali Afshar-Oromieh
- Universitätsklinikum Bern, Inselspital, Klinik für Nuklearmedizin, Universität Bern, Schweiz
| | - Matthias Eiber
- Technische Universität München, Klinik für Nuklearmedizin
| | | | - Matthias Schmidt
- Universitätsklinikum Köln, Klinik und Poliklinik für Nuklearmedizin
| | - Kambiz Rahbar
- Universitätsklinikum Münster, Klinik für Nuklearmedizin
| | | | - Lale Umutlu
- Universitätsklinikum Essen, Klinik für Radiologie
| | - Boris Hadaschik
- Universitätsklinikum Essen, Klinik und Poliklinik für Urologie, Kinderurologie und Uroonkologie
| | | | - Paolo Fornara
- Universitätsklinikum Halle, Universitätsklinik und Poliklinik für Urologie
| | - Jens Kurth
- Universitätsmedizin Rostock, Klinik und Poliklinik für Nuklearmedizin
| | - O Neels
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institut für Radiopharmazeutische Krebsforschung.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnerstandort Dresden
| | | | | | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institut für Radiopharmazeutische Krebsforschung.,Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partnerstandort Dresden
| | - Uwe Haberkorn
- Universitätsklinikum Heidelberg, Abteilung Nuklearmedizin der Radiologischen Klinik
| | - Ken Herrmann
- Universitätsklinikum Essen, Klinik für Nuklearmedizin
| | - Bernd J Krause
- Universitätsmedizin Rostock, Klinik und Poliklinik für Nuklearmedizin
| | | | | |
Collapse
|
41
|
Chandekar KR, Singh H, Kumar R, Kumar S, Kakkar N, Mittal BR, Singh SK. Comparison of 18 F-PSMA-1007 PET/CT With 68 Ga-PSMA-11 PET/CT for Initial Staging in Intermediate- and High-Risk Prostate Cancer. Clin Nucl Med 2023; 48:e1-e8. [PMID: 36240786 DOI: 10.1097/rlu.0000000000004430] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE This study aimed to compare 18 F-PSMA-1007 PET/CT with 68 Ga-PSMA-11 PET/CT for initial staging in intermediate- and high-risk prostate cancer (PCa) patients. METHODS Forty treatment-naive, biopsy-proven, intermediate- or high-risk PCa patients were prospectively recruited. Each patient underwent PET/CT with 68 Ga-PSMA-11 and 18 F-PSMA-1007 (within 2 weeks). Assessment of both set of images included delineating number and characteristics of lesions, measurement of tracer uptake (SUV max ), miPSMA scoring, and PET-based stage categorization. RESULTS Intraprostatic lesions were detected in all patients by both tracers with concordant PET-based T stage. Median SUV max of the dominant PSMA-positive prostatic lesions was not significantly different with 18 F-PSMA-1007 and 68 Ga-PSMA-11 (19.9 vs 19.4, P = 0.127, n = 40). Prostatic miPSMA scores were similar in 31/40 (77.5%) patients with both tracers (weighted κ = 0.71). In 23/40 (57.5%) patients, regional lymph nodes (n = 171) were detected by both tracers. Few additional PET-positive regional lymph nodes (n = 3) were exclusively detected by 18 F-PSMA in 2 patients without altering PET-based N stage. Extraregional lymph nodes (n = 123 in 17/40 patients) and visceral metastatic lesions (n = 18 in 3/40 patients) were detected concordantly by both tracers. PET-positive marrow based and skeletal metastases (n = 71) were detected in 14/40 (35%) patients by both tracers. Few additional marrow and skeletal lesions (n = 7) were exclusively detected on 18 F-PSMA-1007 in 5/14 patients, potentially upstaging PET-based M stage in 2/5 patients. Both radiotracers showed excellent interreader agreement for region-wise detection of lesions. CONCLUSIONS Our results suggest that 18 F-PSMA-1007 PET/CT is comparable to 68 Ga-PSMA-11 PET/CT in detecting primary and metastatic lesions of PCa.
Collapse
Affiliation(s)
| | | | | | | | - Nandita Kakkar
- Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | |
Collapse
|
42
|
Leung KH, Rowe SP, Leal JP, Ashrafinia S, Sadaghiani MS, Chung HW, Dalaie P, Tulbah R, Yin Y, VanDenBerg R, Werner RA, Pienta KJ, Gorin MA, Du Y, Pomper MG. Deep learning and radiomics framework for PSMA-RADS classification of prostate cancer on PSMA PET. EJNMMI Res 2022; 12:76. [PMID: 36580220 PMCID: PMC9800682 DOI: 10.1186/s13550-022-00948-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/12/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Accurate classification of sites of interest on prostate-specific membrane antigen (PSMA) positron emission tomography (PET) images is an important diagnostic requirement for the differentiation of prostate cancer (PCa) from foci of physiologic uptake. We developed a deep learning and radiomics framework to perform lesion-level and patient-level classification on PSMA PET images of patients with PCa. METHODS This was an IRB-approved, HIPAA-compliant, retrospective study. Lesions on [18F]DCFPyL PET/CT scans were assigned to PSMA reporting and data system (PSMA-RADS) categories and randomly partitioned into training, validation, and test sets. The framework extracted image features, radiomic features, and tissue type information from a cropped PET image slice containing a lesion and performed PSMA-RADS and PCa classification. Performance was evaluated by assessing the area under the receiver operating characteristic curve (AUROC). A t-distributed stochastic neighbor embedding (t-SNE) analysis was performed. Confidence and probability scores were measured. Statistical significance was determined using a two-tailed t test. RESULTS PSMA PET scans from 267 men with PCa had 3794 lesions assigned to PSMA-RADS categories. The framework yielded AUROC values of 0.87 and 0.90 for lesion-level and patient-level PSMA-RADS classification, respectively, on the test set. The framework yielded AUROC values of 0.92 and 0.85 for lesion-level and patient-level PCa classification, respectively, on the test set. A t-SNE analysis revealed learned relationships between the PSMA-RADS categories and disease findings. Mean confidence scores reflected the expected accuracy and were significantly higher for correct predictions than for incorrect predictions (P < 0.05). Measured probability scores reflected the likelihood of PCa consistent with the PSMA-RADS framework. CONCLUSION The framework provided lesion-level and patient-level PSMA-RADS and PCa classification on PSMA PET images. The framework was interpretable and provided confidence and probability scores that may assist physicians in making more informed clinical decisions.
Collapse
Affiliation(s)
- Kevin H. Leung
- grid.21107.350000 0001 2171 9311Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 601 N Caroline St. JHOC 4263, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Steven P. Rowe
- grid.21107.350000 0001 2171 9311The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jeffrey P. Leal
- grid.21107.350000 0001 2171 9311The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Saeed Ashrafinia
- grid.21107.350000 0001 2171 9311The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Mohammad S. Sadaghiani
- grid.21107.350000 0001 2171 9311The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Hyun Woo Chung
- grid.258676.80000 0004 0532 8339Department of Nuclear Medicine, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Pejman Dalaie
- grid.21107.350000 0001 2171 9311The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Rima Tulbah
- grid.21107.350000 0001 2171 9311The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Yafu Yin
- grid.16821.3c0000 0004 0368 8293Department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ryan VanDenBerg
- grid.21107.350000 0001 2171 9311The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Rudolf A. Werner
- grid.411760.50000 0001 1378 7891Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Kenneth J. Pienta
- grid.21107.350000 0001 2171 9311The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Michael A. Gorin
- grid.59734.3c0000 0001 0670 2351The Milton and Carroll Petrie Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Yong Du
- grid.21107.350000 0001 2171 9311The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Martin G. Pomper
- grid.21107.350000 0001 2171 9311Department of Biomedical Engineering, Johns Hopkins University School of Medicine, 601 N Caroline St. JHOC 4263, Baltimore, MD 21287 USA ,grid.21107.350000 0001 2171 9311The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311The James Buchanan Brady Urological Institute and Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
43
|
Nabian N, Ghalehtaki R, Couñago F. Necessity of Pelvic Lymph Node Irradiation in Patients with Recurrent Prostate Cancer after Radical Prostatectomy in the PSMA PET/CT Era: A Narrative Review. Biomedicines 2022; 11:biomedicines11010038. [PMID: 36672547 PMCID: PMC9855373 DOI: 10.3390/biomedicines11010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/28/2022] Open
Abstract
The main prostate cancer (PCa) treatments include surgery or radiotherapy (with or without ADT). However, none of the suggested treatments eliminates the risk of lymph node metastases. Conventional imaging methods, including MRI and CT scanning, are not sensitive enough for the diagnosis of lymph node metastases; however, the novel imaging method, PSMA PET/CT scanning, has provided valuable information about the pelvic LN involvement in patients with recurrent PCa (RPCa) after radical prostatectomy. The high sensitivity and negative predictive value enable accurate N staging in PCa patients. In this narrative review, we summarize the evidence on the treatment and extent of radiation in prostate-only or whole-pelvis radiation in patients with positive and negative LN involvement on PSMA PET/CT scans.
Collapse
Affiliation(s)
- Naeim Nabian
- Radiation Oncology Research Center, Cancer Research Institute, Tehran University of Medical Sciences, Tehran P.O. Box 1419733141, Iran
- Department of Radiation Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran P.O. Box 1419733141, Iran
| | - Reza Ghalehtaki
- Radiation Oncology Research Center, Cancer Research Institute, Tehran University of Medical Sciences, Tehran P.O. Box 1419733141, Iran
- Department of Radiation Oncology, Cancer Institute, Tehran University of Medical Sciences, Tehran P.O. Box 1419733141, Iran
- Correspondence:
| | - Felipe Couñago
- Department of Radiation Oncology, San Francisco de Asís and La Milagrosa Hospitals, GenesisCare, 28010 Madrid, Spain
| |
Collapse
|
44
|
Shahrokhi P, Emami-Ardekani A, Karamzade-Ziarati N. SSTR-based theranostics in neuroendocrine prostate cancer (NEPC). Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Oh SW, Suh M, Cheon GJ. Current Status of PSMA-Targeted Radioligand Therapy in the Era of Radiopharmaceutical Therapy Acquiring Marketing Authorization. Nucl Med Mol Imaging 2022; 56:263-281. [PMID: 36425273 PMCID: PMC9679068 DOI: 10.1007/s13139-022-00764-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/11/2022] [Accepted: 07/11/2022] [Indexed: 10/15/2022] Open
Abstract
Prostate-specific membrane antigen (PSMA) is highly expressed in PCa, which gradually increases in high-grade tumors, metastatic tumors, and tumors nonresponsive to androgen deprivation therapy. PSMA has been a topic of interest during the past decade for both diagnostic and therapeutic targets. Radioligand therapy (RLT) utilizes the delivery of radioactive nuclides to tumors and tumor-associated targets, and it has shown better efficacy with minimal toxicity compared to other systemic cancer therapies. Nuclear medicine has faced a new turning point claiming theranosis as the core of academic identity, since new RLTs have been introduced to clinics through the official new drug development processes for approval from the Food and Drug Administration (FDA) or European Medical Agency. Recently, PSMA targeting RLT was approved by the US FDA in March 2022. This review introduces PSMA RLT focusing on ongoing clinical trials to enhance our understanding of nuclear medicine theranosis and strive for the development of new radiopharmaceuticals.
Collapse
Affiliation(s)
- So Won Oh
- Department of Nuclear Medicine, Seoul National University Boramae Medical Center, Seoul, 07061 Korea
| | - Minseok Suh
- Department of Nuclear Medicine, Seoul National University Hospital, Seoul, 03080 Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, 03080 Korea
| |
Collapse
|
46
|
Denis CS, Cousin F, Laere BD, Hustinx R, Sautois BR, Withofs N. Using 68Ga-PSMA-11 PET/CT for Therapy Response Assessment in Patients with Metastatic Castration-Resistant Prostate Cancer: Application of EAU/EANM Recommendations in Clinical Practice. J Nucl Med 2022; 63:1815-1821. [PMID: 35450960 PMCID: PMC9730923 DOI: 10.2967/jnumed.121.263611] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/18/2022] [Indexed: 01/11/2023] Open
Abstract
For patients with metastatic castration-resistant prostate cancer (mCRPC), no reliable biomarkers for predicting therapeutic response or assisting in treatment selection and sequencing are currently available. Using the recent European Association of Urology and European Association of Nuclear Medicine recommendations, we aimed to compare response assessment between prostate-specific membrane antigen (PSMA) PET/CT and conventional imaging in mCRPC patients starting first-line treatment with a novel hormonal agent (NHA) and to perform a sequential comparative analysis of PSMA PET/CT-derived parameters after 4 and 12 wk of therapy. Methods: Data from 18 mCRPC patients who started NHA treatment and underwent 68Ga-PSMA-11 PET/CT before therapy initiation (baseline), at week 4 (W4), and at week 12 (W12) in addition to conventional imaging (bone scintigraphy, CT) at baseline and W12 were retrospectively included. PET/CT images were quantitatively analyzed for maximum and mean SUV and total PSMA ligand-positive lesions. Comparative analysis of PET/CT-derived parameters was performed, and patients were classified as having nonprogressive disease or progressive disease (PD) according to 68Ga-PSMA-11 PET/CT, prostate-specific antigen, and conventional imaging criteria. Results: Treatment response was evaluable by 68Ga-PSMA-11 PET/CT in 16 of 18 patients (89%) and by conventional imaging in 11 of 18 patients (61%). Five of 16 patients classified as having PD by 68Ga-PSMA-11 PET/CT at W12 had already met progression criteria at W4, and substantial agreement was observed between W4 and W12 (κ, 0.74) 68Ga-PSMA-11 PET/CT results. Nonetheless, 2 of 16 patients (13%) were incorrectly classified as having PD because of a flare phenomenon on PSMA PET/CT that disappeared at W12. Conclusion: Volumetric assessments of 68Ga-PSMA-11 PET/CT imaging can improve response evaluation in NHA-treated patients with mCRPC. Although early response assessments at W4 need to be approached with caution because of flare, 68Ga-PSMA-11 PET/CT imaging at W4 and W12 revealed substantial agreement in therapy response assessments; these findings warrant further investigation to distinguish PD from flare at W4 and help improve the understanding of resistance to therapy.
Collapse
Affiliation(s)
- Chloé S. Denis
- Medical Oncology Department, University Hospital of Liège, Liège, Belgium
| | - François Cousin
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liège, Liège, Belgium
| | - Bram De Laere
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden;,Department of Human Structure and Repair, Ghent University, Ghent, Belgium; and
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liège, Liège, Belgium;,GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
| | - Brieuc R. Sautois
- Medical Oncology Department, University Hospital of Liège, Liège, Belgium
| | - Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liège, Liège, Belgium;,GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
47
|
Late-Term Findings of Pancreatitis on 68 Ga-PSMA PET/CT in a Patient With Prostate Cancer. Clin Nucl Med 2022; 47:e733-e734. [PMID: 36026591 DOI: 10.1097/rlu.0000000000004371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ABSTRACT The 68 Ga-PSMA PET/CT imaging modality is used to evaluate biochemical recurrence, response to treatment, and staging in prostate cancer. Prostate-specific membrane antigen (PSMA) receptor activation can be seen in benign and malignant diseases as well as in many physiological tissues. Many pitfalls and artifacts have been reported when reporting 68 Ga-PSMA PET/CT. In this case, diffuse moderate PSMA receptor activation in pancreatic tissue due to the previous pancreatitis is presented in 68 Ga-PSMA PET/CT imaging modality that was performed for restaging of prostate cancer.
Collapse
|
48
|
PSMA-1007 Uptake in Ganglia of the Sympathetic Trunk and Its Intra-individual Reproducibility. Mol Imaging Biol 2022; 25:554-559. [PMID: 36369484 PMCID: PMC10172258 DOI: 10.1007/s11307-022-01784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Aim/Purpose
18F-labeled PSMA ligands offer various advantages as PET tracers over 68Ga-labeled PSMA counterparts. Especially, an improved spatial resolution leads to improved detection rates of smaller prostate cancer (PCa) lesions. However, physiological PSMA uptake of ganglia of the sympathetic trunk can be quickly misinterpreted as possible PSMA-positive lymph node metastases. The aim of this retrospective study is to investigate [18F]PSMA-1007 uptake and its intra-individual reproducibility in ganglia of the sympathetic trunk.
Methods
We retrospectively included 28 consecutive patients (median age 69 ± 9 with a range of 49–90) with biochemical recurrence of PCa who underwent [18F]PSMA-1007 PET/CT scan and, accordingly, a follow-up examination between August 2018 and August 2021. Cervical, coeliac, and sacral ganglia were identified on the iterative PET reconstructions and correlated with CT component. Tracer uptake of ganglia was determined by measuring SUVmax and SUVmean values. Anatomical position of the ganglia in relation to adjacent vertebral bodies were noted. Statistical analyses were conducted using two-way repeated measures ANOVA and descriptive statistics.
Results
The highest [18F]PSMA-1007 uptake was found in coeliac ganglia followed by cervical and sacral ganglia. The SUVmax in coeliac ganglia was 3.13 ± 0.85 (follow-up scan 3.11 ± 0.93), in cervical ganglia 2.73 ± 0.69 (follow-up scan 2.67 ± 0.74), and in sacral ganglia 1.67 ± 0.50 (follow-up scan 1.64 ± 0.52). The SUVmean in coeliac ganglia was 2.28 ± 0.64 (follow-up scan 2.28 ± 0.66), in cervical ganglia 1.62 ± 0.43 (follow-up scan 1.61 ± 0.43) and in sacral ganglia 1.15 ± 0.33 (follow-up scan 1.12 ± 0.34). In a given ganglion station, there was no statistically significant difference of SUVmax or SUVmean values between baseline and follow-up scans.
Conclusions
The first systematically described physiological [18F]PSMA-1007 uptake in ganglia of the sympathetic trunk showed a low variability of SUVmax or SUVmean and a good intra-individual reproducibility of [18F]PSMA-1007 uptake in follow-up scans. These findings might improve and guide the differentiation of ganglia from possible malignant lesions.
Collapse
|
49
|
Ulaner GA, Thomsen B, Bassett J, Torrey R, Cox C, Lin K, Patel T, Techasith T, Mauguen A, Rowe SP, Lindenberg L, Mena E, Choyke P, Yoshida J. 18F-DCFPyL PET/CT for Initially Diagnosed and Biochemically Recurrent Prostate Cancer: Prospective Trial with Pathologic Confirmation. Radiology 2022; 305:419-428. [PMID: 35852431 PMCID: PMC9619197 DOI: 10.1148/radiol.220218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 08/26/2023]
Abstract
Background Prostate-specific membrane antigen (PSMA) PET is standard for newly diagnosed high-risk and biochemically recurrent (BCR) prostate cancer. Although studies suggest high specificity of 2-(3-{1-carboxy-5-[(6-[(18)F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid (DCFPyL) for targeting PSMA, false-positive findings have been identified and most studies lack histologic confirmation of malignancy. Purpose To estimate the positive predictive value (PPV) of DCFPyL PET/CT by providing histopathologic proof for DCFPyL-avid lesions suspected of being distant metastases at initial diagnosis and recurrence in BCR prostate cancer. Materials and Methods In this prospective trial, men with newly diagnosed high-risk prostate cancer (sample 1) or BCR prostate cancer and negative findings at conventional CT and/or bone scanning (sample 2) were enrolled between January and December 2021. All men underwent DCFPyL PET/CT. Suspected distant metastases and/or recurrences were biopsied. PPV was calculated. Results A total of 92 men with newly diagnosed prostate cancer (median age, 70 years; IQR, 64-75 years) (sample 1) and 92 men with BCR prostate cancer (median age, 71 years; IQR, 66-75 years) (sample 2) were enrolled. In sample 1, 25 of the 92 men (27%) demonstrated DCFPyL-avid lesions suspicious for distant metastases. Biopsy was performed in 23 of the 25 men (92%), with 17 of the 23 (74%) biopsies positive for malignancy and six (26%) benign. Of the six benign biopsies, three were solitary rib foci and three were solitary pelvic bone foci. In sample 2, 57 of the 92 men (62%) demonstrated DCFPyL-avid lesions suspicious for recurrence. Biopsy was performed in 37 of the 57 men (65%), with 33 of the 37 (89%) biopsies positive for malignancy and four (11%) benign. Of the four benign biopsies, two were subcentimeter pelvic nodes and/or nodules, one was a rib, and one was a pelvic bone focus. Conclusion PET/CT with 2-(3-{1-carboxy-5-[(6-[(18)F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid (DCFPyL) had a high biopsy-proven positive predictive value for distant metastases in newly diagnosed prostate cancer (74%) and for recurrence sites in men with biochemical recurrence (89%). However, there were DCFPyL-avid false-positive findings (particularly in ribs and pelvic bones). Solitary DCFPyL avidity in these locations should not be presumed as malignant. Biopsy may still be needed prior to therapy decisions. ClinicalTrials.gov registration no. NCT04700332 © RSNA, 2022 See also the editorial by Zukotynski and Kuo in this issue.
Collapse
Affiliation(s)
- Gary A. Ulaner
- From the Departments of Molecular Imaging and Therapy (G.A.U., B.T.),
Urology (J.B., R.T., J.Y.), Radiation Oncology (C.C., K.L.), and Radiology
(T.P., T.T.), Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA
92618; Departments of Radiology and Translational Genomics, University of
Southern California, Los Angeles, Calif (G.A.U.); Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (A.M.); The
Russell H. Morgan Department of Radiology and Radiological Science, Johns
Hopkins University School of Medicine, Baltimore, Md (S.P.R.); and Molecular
Imaging Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Md (L.L., E.M., P.C.)
| | - Beth Thomsen
- From the Departments of Molecular Imaging and Therapy (G.A.U., B.T.),
Urology (J.B., R.T., J.Y.), Radiation Oncology (C.C., K.L.), and Radiology
(T.P., T.T.), Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA
92618; Departments of Radiology and Translational Genomics, University of
Southern California, Los Angeles, Calif (G.A.U.); Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (A.M.); The
Russell H. Morgan Department of Radiology and Radiological Science, Johns
Hopkins University School of Medicine, Baltimore, Md (S.P.R.); and Molecular
Imaging Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Md (L.L., E.M., P.C.)
| | - Jeffrey Bassett
- From the Departments of Molecular Imaging and Therapy (G.A.U., B.T.),
Urology (J.B., R.T., J.Y.), Radiation Oncology (C.C., K.L.), and Radiology
(T.P., T.T.), Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA
92618; Departments of Radiology and Translational Genomics, University of
Southern California, Los Angeles, Calif (G.A.U.); Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (A.M.); The
Russell H. Morgan Department of Radiology and Radiological Science, Johns
Hopkins University School of Medicine, Baltimore, Md (S.P.R.); and Molecular
Imaging Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Md (L.L., E.M., P.C.)
| | - Robert Torrey
- From the Departments of Molecular Imaging and Therapy (G.A.U., B.T.),
Urology (J.B., R.T., J.Y.), Radiation Oncology (C.C., K.L.), and Radiology
(T.P., T.T.), Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA
92618; Departments of Radiology and Translational Genomics, University of
Southern California, Los Angeles, Calif (G.A.U.); Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (A.M.); The
Russell H. Morgan Department of Radiology and Radiological Science, Johns
Hopkins University School of Medicine, Baltimore, Md (S.P.R.); and Molecular
Imaging Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Md (L.L., E.M., P.C.)
| | - Craig Cox
- From the Departments of Molecular Imaging and Therapy (G.A.U., B.T.),
Urology (J.B., R.T., J.Y.), Radiation Oncology (C.C., K.L.), and Radiology
(T.P., T.T.), Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA
92618; Departments of Radiology and Translational Genomics, University of
Southern California, Los Angeles, Calif (G.A.U.); Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (A.M.); The
Russell H. Morgan Department of Radiology and Radiological Science, Johns
Hopkins University School of Medicine, Baltimore, Md (S.P.R.); and Molecular
Imaging Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Md (L.L., E.M., P.C.)
| | - Kevin Lin
- From the Departments of Molecular Imaging and Therapy (G.A.U., B.T.),
Urology (J.B., R.T., J.Y.), Radiation Oncology (C.C., K.L.), and Radiology
(T.P., T.T.), Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA
92618; Departments of Radiology and Translational Genomics, University of
Southern California, Los Angeles, Calif (G.A.U.); Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (A.M.); The
Russell H. Morgan Department of Radiology and Radiological Science, Johns
Hopkins University School of Medicine, Baltimore, Md (S.P.R.); and Molecular
Imaging Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Md (L.L., E.M., P.C.)
| | - Trushar Patel
- From the Departments of Molecular Imaging and Therapy (G.A.U., B.T.),
Urology (J.B., R.T., J.Y.), Radiation Oncology (C.C., K.L.), and Radiology
(T.P., T.T.), Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA
92618; Departments of Radiology and Translational Genomics, University of
Southern California, Los Angeles, Calif (G.A.U.); Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (A.M.); The
Russell H. Morgan Department of Radiology and Radiological Science, Johns
Hopkins University School of Medicine, Baltimore, Md (S.P.R.); and Molecular
Imaging Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Md (L.L., E.M., P.C.)
| | - Tust Techasith
- From the Departments of Molecular Imaging and Therapy (G.A.U., B.T.),
Urology (J.B., R.T., J.Y.), Radiation Oncology (C.C., K.L.), and Radiology
(T.P., T.T.), Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA
92618; Departments of Radiology and Translational Genomics, University of
Southern California, Los Angeles, Calif (G.A.U.); Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (A.M.); The
Russell H. Morgan Department of Radiology and Radiological Science, Johns
Hopkins University School of Medicine, Baltimore, Md (S.P.R.); and Molecular
Imaging Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Md (L.L., E.M., P.C.)
| | - Audrey Mauguen
- From the Departments of Molecular Imaging and Therapy (G.A.U., B.T.),
Urology (J.B., R.T., J.Y.), Radiation Oncology (C.C., K.L.), and Radiology
(T.P., T.T.), Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA
92618; Departments of Radiology and Translational Genomics, University of
Southern California, Los Angeles, Calif (G.A.U.); Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (A.M.); The
Russell H. Morgan Department of Radiology and Radiological Science, Johns
Hopkins University School of Medicine, Baltimore, Md (S.P.R.); and Molecular
Imaging Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Md (L.L., E.M., P.C.)
| | - Steven P. Rowe
- From the Departments of Molecular Imaging and Therapy (G.A.U., B.T.),
Urology (J.B., R.T., J.Y.), Radiation Oncology (C.C., K.L.), and Radiology
(T.P., T.T.), Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA
92618; Departments of Radiology and Translational Genomics, University of
Southern California, Los Angeles, Calif (G.A.U.); Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (A.M.); The
Russell H. Morgan Department of Radiology and Radiological Science, Johns
Hopkins University School of Medicine, Baltimore, Md (S.P.R.); and Molecular
Imaging Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Md (L.L., E.M., P.C.)
| | - Liza Lindenberg
- From the Departments of Molecular Imaging and Therapy (G.A.U., B.T.),
Urology (J.B., R.T., J.Y.), Radiation Oncology (C.C., K.L.), and Radiology
(T.P., T.T.), Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA
92618; Departments of Radiology and Translational Genomics, University of
Southern California, Los Angeles, Calif (G.A.U.); Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (A.M.); The
Russell H. Morgan Department of Radiology and Radiological Science, Johns
Hopkins University School of Medicine, Baltimore, Md (S.P.R.); and Molecular
Imaging Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Md (L.L., E.M., P.C.)
| | - Esther Mena
- From the Departments of Molecular Imaging and Therapy (G.A.U., B.T.),
Urology (J.B., R.T., J.Y.), Radiation Oncology (C.C., K.L.), and Radiology
(T.P., T.T.), Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA
92618; Departments of Radiology and Translational Genomics, University of
Southern California, Los Angeles, Calif (G.A.U.); Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (A.M.); The
Russell H. Morgan Department of Radiology and Radiological Science, Johns
Hopkins University School of Medicine, Baltimore, Md (S.P.R.); and Molecular
Imaging Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Md (L.L., E.M., P.C.)
| | - Peter Choyke
- From the Departments of Molecular Imaging and Therapy (G.A.U., B.T.),
Urology (J.B., R.T., J.Y.), Radiation Oncology (C.C., K.L.), and Radiology
(T.P., T.T.), Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA
92618; Departments of Radiology and Translational Genomics, University of
Southern California, Los Angeles, Calif (G.A.U.); Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (A.M.); The
Russell H. Morgan Department of Radiology and Radiological Science, Johns
Hopkins University School of Medicine, Baltimore, Md (S.P.R.); and Molecular
Imaging Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Md (L.L., E.M., P.C.)
| | - Jeffrey Yoshida
- From the Departments of Molecular Imaging and Therapy (G.A.U., B.T.),
Urology (J.B., R.T., J.Y.), Radiation Oncology (C.C., K.L.), and Radiology
(T.P., T.T.), Hoag Family Cancer Institute, 16105 Sand Canyon Ave, Irvine, CA
92618; Departments of Radiology and Translational Genomics, University of
Southern California, Los Angeles, Calif (G.A.U.); Department of Epidemiology and
Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY (A.M.); The
Russell H. Morgan Department of Radiology and Radiological Science, Johns
Hopkins University School of Medicine, Baltimore, Md (S.P.R.); and Molecular
Imaging Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Md (L.L., E.M., P.C.)
| |
Collapse
|
50
|
Beyhan E, Erol Fenercioğlu Ö, Karagöz Y, Ergül N, Çermik TF. Mild 68Ga PSMA-11 Uptake in Incidental Pituitary Adenoma. Mol Imaging Radionucl Ther 2022; 31:244-245. [PMID: 36268938 DOI: 10.4274/mirt.galenos.2021.97752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A 76-year-old man with metastatic prostate cancer was referred to 68Ga prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) for restaging. A consecutive 18F-fluorodeoxyglucose (FDG) PET/CT was performed due to the history of lung cancer in the left lung treated with stereotactic radiotherapy. Intense 18F-FDG uptake was detected in the pituitary gland despite the mild uptake of 68Ga PSMA. Contrast-enhanced magnetic resonance imaging confirmed pituitary adenoma.
Collapse
Affiliation(s)
- Ediz Beyhan
- University of Health Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Nuclear Medicine, İstanbul, Turkey
| | - Özge Erol Fenercioğlu
- University of Health Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Nuclear Medicine, İstanbul, Turkey
| | - Yeşim Karagöz
- University of Health Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Radiology, İstanbul, Turkey
| | - Nurhan Ergül
- University of Health Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Nuclear Medicine, İstanbul, Turkey
| | - Tevfik Fikret Çermik
- University of Health Sciences Turkey, İstanbul Training and Research Hospital, Clinic of Nuclear Medicine, İstanbul, Turkey
| |
Collapse
|