1
|
Jo H, Cho SW, Hwang HJ. Estimating the distribution of parameters in differential equations with repeated cross-sectional data. PLoS Comput Biol 2024; 20:e1012696. [PMID: 39715279 PMCID: PMC11706453 DOI: 10.1371/journal.pcbi.1012696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 01/07/2025] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Differential equations are pivotal in modeling and understanding the dynamics of various systems, as they offer insights into their future states through parameter estimation fitted to time series data. In fields such as economy, politics, and biology, the observation data points in the time series are often independently obtained (i.e., Repeated Cross-Sectional (RCS) data). RCS data showed that traditional methods for parameter estimation in differential equations, such as using mean values of RCS data over time, Gaussian Process-based trajectory generation, and Bayesian-based methods, have limitations in estimating the shape of parameter distributions, leading to a significant loss of data information. To address this issue, this study proposes a novel method called Estimation of Parameter Distribution (EPD) that provides accurate distribution of parameters without loss of data information. EPD operates in three main steps: generating synthetic time trajectories by randomly selecting observed values at each time point, estimating parameters of a differential equation that minimizes the discrepancy between these trajectories and the true solution of the equation, and selecting the parameters depending on the scale of discrepancy. We then evaluated the performance of EPD across several models, including exponential growth, logistic population models, and target cell-limited models with delayed virus production, thereby demonstrating the ability of the proposed method in capturing the shape of parameter distributions. Furthermore, we applied EPD to real-world datasets, capturing various shapes of parameter distributions over a normal distribution. These results address the heterogeneity within systems, marking a substantial progression in accurately modeling systems using RCS data. Therefore, EPD marks a significant advancement in accurately modeling systems with RCS data, realizing a deeper understanding of system dynamics and parameter variability.
Collapse
Affiliation(s)
- Hyeontae Jo
- Department of Mathematics, Korea University Sejong Campus, Sejong, Republic of Korea
- Biomedical Mathematics Group, Pioneer Research Center for Mathematical and Computational Sciences, Institute for Basic Science, Daejeon, Republic of Korea
| | - Sung Woong Cho
- Stochastic Analysis and Application Research Center, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyung Ju Hwang
- Department of Mathematics & Graduate School of AI, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
2
|
Kuznetsov M, Adhikarla V, Caserta E, Wang X, Shively JE, Pichiorri F, Rockne RC. Mathematical Modeling Unveils Optimization Strategies for Targeted Radionuclide Therapy of Blood Cancers. CANCER RESEARCH COMMUNICATIONS 2024; 4:2955-2967. [PMID: 39466073 PMCID: PMC11562018 DOI: 10.1158/2767-9764.crc-24-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/17/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
SIGNIFICANCE Mathematical modeling yields general principles for optimization of TRT in mouse models of multiple myeloma that can be extrapolated to other cancer models and clinical settings.
Collapse
Affiliation(s)
- Maxim Kuznetsov
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Vikram Adhikarla
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Enrico Caserta
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California
| | - John E. Shively
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| | - Russell C. Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, California
| |
Collapse
|
3
|
Gu Z, Lin S, Yu J, Jin F, Zhang Q, Xia K, Chen L, Li Y, He B. Advances in dual-targeting inhibitors of HDAC6 for cancer treatment. Eur J Med Chem 2024; 275:116571. [PMID: 38857566 DOI: 10.1016/j.ejmech.2024.116571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Histone Deacetylase 6 (HDAC6) is an essential regulator of histone acetylation processes, exerting influence on a multitude of cellular functions such as cell motility, endocytosis, autophagy, apoptosis, and protein trafficking through its deacetylation activity. The significant implications of HDAC6 in diseases such as cancer, neurodegenerative disorders, and immune disorders have motivated extensive investigation into the development of specific inhibitors targeting this enzyme for therapeutic purposes. Single targeting drugs carry the risk of inducing drug resistance, thus prompting exploration of dual targeting therapy which offers the potential to impact multiple signaling pathways simultaneously, thereby lowering the likelihood of resistance development. While pharmacological studies have exhibited promise in combined therapy involving HDAC6, challenges related to potential drug interactions exist. In response to these challenges, researchers are investigating HDAC6 hybrid molecules which enable the concomitant targeting of HDAC6 and other key proteins, thus enhancing treatment efficacy while mitigating side effects and reducing the risk of resistance compared to traditional combination therapies. The published design strategies for dual targeting inhibitors of HDAC6 are summarized and discussed in this review. This will provide some valuable insights into more novel HDAC6 dual targeting inhibitors to meet the urgent need for innovative therapies in oncology and other related fields.
Collapse
Affiliation(s)
- Zhicheng Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Shuxian Lin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China; Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Junhui Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Fei Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Qingqing Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Keli Xia
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Li
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
4
|
Kuznetsov M, Adhikarla V, Caserta E, Wang X, Shively JE, Pichiorri F, Rockne RC. Mathematical Modeling Unveils Optimization Strategies for Targeted Radionuclide Therapy of Blood Cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595377. [PMID: 38826403 PMCID: PMC11142146 DOI: 10.1101/2024.05.22.595377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Targeted radionuclide therapy is based on injections of cancer-specific molecules conjugated with radioactive nuclides. Despite the specificity of this treatment, it is not devoid of side-effects limiting its use and is especially harmful for rapidly proliferating organs well perfused by blood, like bone marrow. Optimization of radioconjugates administration accounting for toxicity constraints can increase treatment efficacy. Based on our experiments on disseminated multiple myeloma mouse model treated by 225Ac-DOTA-daratumumab, we developed a mathematical model which investigation highlighted the following principles for optimization of targeted radionuclide therapy. 1) Nuclide to antibody ratio importance. The density of radioconjugates on cancer cells determines the density of radiation energy deposited in them. Low labeling ratio as well as accumulation of unlabeled antibodies and antibodies attached to decay products in the bloodstream can mitigate cancer radiation damage due to excessive occupation of specific receptors by antibodies devoid of radioactive nuclides. 2) Cancer binding capacity-based dosing. The rate of binding of drug to cancer cells depends on the total number of their specific receptors, which therefore can be estimated from the pharmacokinetic curve of diagnostic radioconjugates. Injection of doses significantly exceeding cancer binding capacity should be avoided since radioconjugates remaining in the bloodstream have negligible efficacy to toxicity ratio. 3) Particle range-guided multi-dosing. The use of short-range particle emitters and high-affinity antibodies allows for robust treatment optimization via initial saturation of cancer binding capacity, enabling redistribution of further injected radioconjugates and deposited dose towards still viable cells that continue expressing specific receptors.
Collapse
Affiliation(s)
- Maxim Kuznetsov
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Vikram Adhikarla
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Enrico Caserta
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Xiuli Wang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, United States
| | - John E Shively
- Department of Molecular Imaging & Therapy, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States
| | - Flavia Pichiorri
- Department of Hematologic Malignancies Translational Science, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Russell C Rockne
- Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
5
|
Liu Y, Li C, Liu H, Tan S. Combination therapy involving HSP90 inhibitors for combating cancer: an overview of clinical and preclinical progress. Arch Pharm Res 2024; 47:442-464. [PMID: 38632167 DOI: 10.1007/s12272-024-01494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
The molecular chaperone heat shock protein 90 (HSP90) regulates multiple crucial signalling pathways in cancer by driving the maturation of key signalling components, thereby playing a crucial role in tumorigenesis and drug resistance in cancer. Inhibition of HSP90 results in metastable conformational collapse of its client proteins and their proteasomal degradation. Considerable efforts have been devoted to the development of small-molecule inhibitors targeting HSP90, and more than 20 inhibitors have been evaluated in clinical trials for cancer therapy. However, owing to disadvantages such as organ toxicity and drug resistance, only one HSP90 inhibitor has been approved for use in clinical settings. In recent years, HSP90 inhibitors used in combination with other anti-cancer therapies have shown remarkable potential in the treatment of cancer. HSP90 inhibitors work synergistically with various anti-cancer therapies, including chemotherapy, targeted therapy, radiation therapy and immunotherapy. HSP90 inhibitors can improve the pharmacological effects of the above-mentioned therapies and reduce treatment resistance. This review provides an overview of the use of combination therapy with HSP90 inhibitors and other anti-cancer therapies in clinical and preclinical studies reported in the past decade and summarises design strategies and prospects for these combination therapies. Altogether, this review provides a theoretical basis for further research and application of these combination therapies in the treatment of cancer.
Collapse
Affiliation(s)
- Yajun Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, 110016, China.
| | - Chenyao Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Dagong Road 2, Panjin, 124221, China
| | - Hongwei Liu
- Department of Head and Neck Surgery, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China.
- Affiliated Cancer Hospital of Dalian University of Technology, Shenyang, 110042, China.
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Sanhao Street 36, Shenyang, 110004, China.
| |
Collapse
|
6
|
Berglund H, Salomonsson SL, Mohajershojai T, Gago FJF, Lane DP, Nestor M. p53 stabilisation potentiates [ 177Lu]Lu-DOTATATE treatment in neuroblastoma xenografts. Eur J Nucl Med Mol Imaging 2024; 51:768-778. [PMID: 37823909 PMCID: PMC10796565 DOI: 10.1007/s00259-023-06462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Molecular radiotherapy is a treatment modality that is highly suitable for targeting micrometastases and [177Lu]Lu-DOTATATE is currently being explored as a potential novel treatment option for high-risk neuroblastoma. p53 is a key player in the proapoptotic signalling in response to radiation-induced DNA damage and is therefore a potential target for radiosensitisation. METHODS This study investigated the use of the p53 stabilising peptide VIP116 and [177Lu]Lu-DOTATATE, either alone or in combination, for treatment of neuroblastoma tumour xenografts in mice. Initially, the uptake of [177Lu]Lu-DOTATATE in the tumours was confirmed, and the efficacy of VIP116 as a monotherapy was evaluated. Subsequently, mice with neuroblastoma tumour xenografts were treated with placebo, VIP116, [177Lu]Lu-DOTATATE or a combination of both agents. RESULTS The results demonstrated that monotherapy with either VIP116 or [177Lu]Lu-DOTATATE significantly prolonged median survival compared to the placebo group (90 and 96.5 days vs. 50.5 days, respectively). Notably, the combination treatment further improved median survival to over 120 days. Furthermore, the combination group exhibited the highest percentage of complete remission, corresponding to a twofold increase compared to the placebo group. Importantly, none of the treatments induced significant nephrotoxicity. Additionally, the therapies affected various molecular targets involved in critical processes such as apoptosis, hypoxia and angiogenesis. CONCLUSION In conclusion, the combination of VIP116 and [177Lu]Lu-DOTATATE presents a promising novel treatment approach for neuroblastoma. These findings hold potential to advance research efforts towards a potential cure for this vulnerable patient population.
Collapse
Affiliation(s)
- Hanna Berglund
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Sara Lundsten Salomonsson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
- Ridgeview Instruments AB, SE-752 38, Uppsala, Sweden
| | - Tabassom Mohajershojai
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | | | - David P Lane
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
- p53Lab, Agency for Science Technology and Research (A*STAR), Singapore, 138648, Singapore
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institute, SE-171 65, Solna, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
7
|
Richter S, Steenblock C, Fischer A, Lemm S, Ziegler CG, Bechmann N, Nölting S, Pietzsch J, Ullrich M. Improving susceptibility of neuroendocrine tumors to radionuclide therapies: personalized approaches towards complementary treatments. Theranostics 2024; 14:17-32. [PMID: 38164150 PMCID: PMC10750207 DOI: 10.7150/thno.87345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/30/2023] [Indexed: 01/03/2024] Open
Abstract
Radionuclide therapies are an important tool for the management of patients with neuroendocrine neoplasms (NENs). Especially [131I]MIBG and [177Lu]Lu-DOTA-TATE are routinely used for the treatment of a subset of NENs, including pheochromocytomas, paragangliomas and gastroenteropancreatic tumors. Some patients suffering from other forms of NENs, such as medullary thyroid carcinoma or neuroblastoma, were shown to respond to radionuclide therapy; however, no general recommendations exist. Although [131I]MIBG and [177Lu]Lu-DOTA-TATE can delay disease progression and improve quality of life, complete remissions are achieved rarely. Hence, better individually tailored combination regimes are required. This review summarizes currently applied radionuclide therapies in the context of NENs and informs about recent advances in the development of theranostic agents that might enable targeting subgroups of NENs that previously did not respond to [131I]MIBG or [177Lu]Lu-DOTA-TATE. Moreover, molecular pathways involved in NEN tumorigenesis and progression that mediate features of radioresistance and are particularly related to the stemness of cancer cells are discussed. Pharmacological inhibition of such pathways might result in radiosensitization or general complementary antitumor effects in patients with certain genetic, transcriptomic, or metabolic characteristics. Finally, we provide an overview of approved targeted agents that might be beneficial in combination with radionuclide therapies in the context of a personalized molecular profiling approach.
Collapse
Affiliation(s)
- Susan Richter
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Charlotte Steenblock
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Alessa Fischer
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich, Switzerland
| | - Sandy Lemm
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Christian G. Ziegler
- Department of Internal Medicine III, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- University Hospital Würzburg, Division of Endocrinology and Diabetes, Würzburg, Germany
| | - Nicole Bechmann
- Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Svenja Nölting
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich, Switzerland
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, Dresden, Germany
| | - Martin Ullrich
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| |
Collapse
|
8
|
Galbiati A, Dorten P, Gilardoni E, Gierse F, Bocci M, Zana A, Mock J, Claesener M, Cufe J, Büther F, Schäfers K, Hermann S, Schäfers M, Neri D, Cazzamalli S, Backhaus P. Tumor-Targeted Interleukin 2 Boosts the Anticancer Activity of FAP-Directed Radioligand Therapeutics. J Nucl Med 2023; 64:1934-1940. [PMID: 37734838 PMCID: PMC10690118 DOI: 10.2967/jnumed.123.266007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
We studied the antitumor efficacy of a combination of 177Lu-labeled radioligand therapeutics targeting the fibroblast activation protein (FAP) (OncoFAP and BiOncoFAP) with the antibody-cytokine fusion protein L19-interleukin 2 (L19-IL2) providing targeted delivery of interleukin 2 to tumors. Methods: The biodistribution of 177Lu-OncoFAP and 177Lu-BiOncoFAP at different molar amounts (3 vs. 250 nmol/kg) of injected ligand was studied via SPECT/CT in mice bearing subcutaneous HT-1080.hFAP tumors, and self-absorbed tumor and organ doses were calculated. The in vivo anticancer effect of 5 MBq of the radiolabeled preparations was evaluated as monotherapy or in combination with L19-IL2 in subcutaneously implanted HT-1080.hFAP and SK-RC-52.hFAP tumors. Tumor samples from animals treated with 177Lu-BiOncoFAP, L19-IL2, or both were analyzed by mass spectrometry-based proteomics to identify therapeutic signatures on cellular and stromal markers of cancer and on immunomodulatory targets. Results: 177Lu-BiOncoFAP led to a significantly higher self-absorbed dose in FAP-positive tumors (0.293 ± 0.123 Gy/MBq) than did 177Lu-OncoFAP (0.157 ± 0.047 Gy/MBq, P = 0.01) and demonstrated favorable tumor-to-organ ratios at high molar amounts of injected ligand. Administration of L19-IL2 or 177Lu-BiOncoFAP as single agents led to cancer cures in only a limited number of treated animals. In 177Lu-BiOncoFAP-plus-L19-IL2 combination therapy, complete remissions were observed in all injected mice (7/7 complete remissions for the HT-1080.hFAP model, and 4/4 complete remissions for the SK-RC-52.hFAP model), suggesting therapeutic synergy. Proteomic studies revealed a mechanism of action based on the activation of natural killer cells, with a significant enhancement of the expression of granzymes and perforin 1 in the tumor microenvironment after combination treatment. Conclusion: The combination of OncoFAP-based radioligand therapeutics with concurrent targeting of interleukin 2 shows synergistic anticancer effects in the treatment of FAP-positive tumors. This experimental finding should be corroborated by future clinical studies.
Collapse
Affiliation(s)
- Andrea Galbiati
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Paulina Dorten
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Ettore Gilardoni
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Florian Gierse
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Matilde Bocci
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Aureliano Zana
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Jacqueline Mock
- Research and Development Department, Philochem AG, Otelfingen, Switzerland
| | - Michael Claesener
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Juela Cufe
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Florian Büther
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Klaus Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Sven Hermann
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Michael Schäfers
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre, Münster, Germany
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland; and
- Philogen S.p.A., Siena, Italy
| | - Samuele Cazzamalli
- Research and Development Department, Philochem AG, Otelfingen, Switzerland;
| | - Philipp Backhaus
- European Institute for Molecular Imaging, University of Münster, Münster, Germany;
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
- West German Cancer Centre, Münster, Germany
| |
Collapse
|
9
|
Mortensen ACL, Berglund H, Hariri M, Papalanis E, Malmberg C, Spiegelberg D. Combination therapy of tyrosine kinase inhibitor sorafenib with the HSP90 inhibitor onalespib as a novel treatment regimen for thyroid cancer. Sci Rep 2023; 13:16844. [PMID: 37803074 PMCID: PMC10558458 DOI: 10.1038/s41598-023-43486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023] Open
Abstract
Thyroid cancer is the most common endocrine malignancy, affecting nearly 600,000 new patients worldwide. Treatment with the BRAF inhibitor sorafenib partially prolongs progression-free survival in thyroid cancer patients, but fails to improve overall survival. This study examines enhancing sorafenib efficacy by combination therapy with the novel HSP90 inhibitor onalespib. In vitro efficacy of sorafenib and onalespib monotherapy as well as in combination was assessed in papillary (PTC) and anaplastic (ATC) thyroid cancer cells using cell viability and colony formation assays. Migration potential was studied in wound healing assays. The in vivo efficacy of sorafenib and onalespib therapy was evaluated in mice bearing BHT-101 xenografts. Sorafenib in combination with onalespib significantly inhibited PTC and ATC cell proliferation, decreased metabolic activity and cancer cell migration. In addition, the drug combination approach significantly inhibited tumor growth in the xenograft model and prolonged the median survival. Our results suggest that combination therapy with sorafenib and onalespib could be used as a new therapeutic approach in the treatment of thyroid cancer, significantly improving the results obtained with sorafenib as monotherapy. This approach has the potential to reduce treatment adaptation while at the same time providing therapeutic anti-cancer benefits such as reducing tumor growth and metastatic potential.
Collapse
Affiliation(s)
- Anja Charlotte Lundgren Mortensen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Hanna Berglund
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Mehran Hariri
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Eleftherios Papalanis
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | - Diana Spiegelberg
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Niinimäki J, Sihto H, Arola J, Vesterinen T. HSP90 expression is associated with outcome in pulmonary carcinoid tumor patients. Transl Lung Cancer Res 2023; 12:1876-1886. [PMID: 37854156 PMCID: PMC10579826 DOI: 10.21037/tlcr-23-304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/18/2023] [Indexed: 10/20/2023]
Abstract
Background Pulmonary carcinoids (PCs) are rare tumors that account for <2% of all lung cancer cases. Patients who undergo resection for PC tumors generally have a favorable prognosis, but there is a risk for late recurrence and distant metastasis. The objective of this study was to identify biomarkers for PC tumors using RNA sequencing and immunohistochemistry. Methods A total of 128 formalin-fixed, paraffin-embedded PC tumor samples from patients surgically treated at Helsinki University Hospital between 1990 and 2013 were analyzed in the study. RNA sequencing was first used to detect genes with higher expression in specific histological subtypes and metastatic and nonmetastatic tumors than in adjacent lung tissue. The diagnostic potential of the biomarkers was assessed using immunohistochemistry. Results Through gene expression analysis, HSP90AB1 expression was found to be significantly elevated in metastatic PC tumors (P<0.0001). The paralog of the gene, HSP90AA1, was also overexpressed, but the finding was not statistically significant. Through immunohistochemical analysis, HSP90 protein expression was found to be associated with shorter disease-specific survival (DSS) (P=0.009) and increased risk of disease-specific death [hazard ratio (HR) 6.4, 95% confidence interval (CI): 1.3-31.8]. Conclusions This study confirms that HSP90 has a prognostic role in PC tumors and that inhibition of HSP90 may possess therapeutic potential in the management of PC tumor patients in the future.
Collapse
Affiliation(s)
- Jenni Niinimäki
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Sihto
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Johanna Arola
- HUS Diagnostic Center, HUSLAB, Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tiina Vesterinen
- HUS Diagnostic Center, HUSLAB, Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
11
|
Mohajershojai T, Spangler D, Chopra S, Frejd FY, Yazaki PJ, Nestor M. Enhanced Therapeutic Effects of 177Lu-DOTA-M5A in Combination with Heat Shock Protein 90 Inhibitor Onalespib in Colorectal Cancer Xenografts. Cancers (Basel) 2023; 15:4239. [PMID: 37686514 PMCID: PMC10486833 DOI: 10.3390/cancers15174239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Carcinoembryonic antigen (CEA) has emerged as an attractive target for theranostic applications in colorectal cancers (CRCs). In the present study, the humanized anti-CEA antibody hT84.66-M5A (M5A) was labeled with 177Lu for potential CRC therapy. Moreover, the novel combination of 177Lu-DOTA-M5A with the heat shock protein 90 inhibitor onalespib, suggested to mediate radiosensitizing properties, was assessed in vivo for the first time. M5A antibody uptake and therapeutic effects, alone or in combination with onalespib, were assessed in human CRC xenografts and visualized using SPECT/CT imaging. Although both 177Lu-DOTA-M5A and onalespib monotherapies effectively reduced tumor growth rates, the combination therapy demonstrated the most substantial impact, achieving a fourfold reduction in tumor growth compared to the control group. Median survival increased by 33% compared to 177Lu-DOTA-M5A alone, and tripled compared to control and onalespib groups. Importantly, combination therapy yielded comparable or superior effects to the double dose of 177Lu-DOTA-M5A monotherapy. 177Lu-DOTA-M5A increased apoptotic cell levels, indicating its potential to induce tumor cell death. These findings show promise for 177Lu-DOTA-M5A as a CRC therapeutic agent, and its combination with onalespib could significantly enhance treatment efficacy. Further in vivo studies are warranted to validate these findings fully and explore the treatment's potential for clinical use.
Collapse
Affiliation(s)
- Tabassom Mohajershojai
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.M.); (S.C.); (F.Y.F.)
| | - Douglas Spangler
- Department of Public Health and Caring Sciences, Uppsala University, 751 22 Uppsala, Sweden;
| | - Saloni Chopra
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.M.); (S.C.); (F.Y.F.)
| | - Fredrik Y. Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.M.); (S.C.); (F.Y.F.)
| | - Paul J. Yazaki
- Department of Immunology & Theranostics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA;
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden; (T.M.); (S.C.); (F.Y.F.)
| |
Collapse
|
12
|
Winuprasith T, Koirala P, McClements DJ, Khomein P. Emulsion Technology in Nuclear Medicine: Targeted Radionuclide Therapies, Radiosensitizers, and Imaging Agents. Int J Nanomedicine 2023; 18:4449-4470. [PMID: 37555189 PMCID: PMC10406121 DOI: 10.2147/ijn.s416737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Radiopharmaceuticals serve as a major part of nuclear medicine contributing to both diagnosis and treatment of several diseases, especially cancers. Currently, most radiopharmaceuticals are based on small molecules with targeting ability. However, some concerns over their stability or non-specific interactions leading to off-target localization are among the major challenges that need to be overcome. Emulsion technology has great potential for the fabrication of carrier systems for radiopharmaceuticals. It can be used to create particles with different compositions, structures, sizes, and surface characteristics from a wide range of generally recognized as safe (GRAS) materials, which allows their functionality to be tuned for specific applications. In particular, it is possible to carry out surface modifications to introduce targeting and stealth properties, as well as to control the particle dimensions to manipulate diffusion and penetration properties. Moreover, emulsion preparation methods are usually simple, economic, robust, and scalable, which makes them suitable for medical applications. In this review, we highlight the potential of emulsion technology in nuclear medicine for developing targeted radionuclide therapies, for use as radiosensitizers, and for application in radiotracer delivery in gamma imaging techniques.
Collapse
Affiliation(s)
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - David J McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Piyachai Khomein
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
13
|
Lückerath K, Trajkovic-Arsic M, Mona CE. Fibroblast Activation Protein Inhibitor Theranostics. PET Clin 2023:S1556-8598(23)00019-6. [PMID: 36990945 DOI: 10.1016/j.cpet.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Fibroblast activation protein (FAP)-radioligand therapy might be effective in some patients without being curative. FAP-radioligands deliver ionizing radiation directly to FAP+ cancer-associated fibroblasts and, in some cancers, to FAP+ tumor cells; in addition, they indirectly irradiate FAP- cells in tumor tissue via cross-fire and bystander effects. Here, we discuss the potential to improve FAP-radioligand therapy through interfering with DNA damage repair, immunotherapy, and co-targeting cancer-associated fibroblasts. As the molecular and cellular effects of FAP-radioligands on the tumor and its microenvironment have not been investigated yet, we call for future research to close this gap in knowledge, which prevents the development of more effective FAP-radioligand therapies.
Collapse
Affiliation(s)
- Katharina Lückerath
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, DKTK and German Cancer Research Center (DKFZ) Partner Side Essen, Hufelandstrasse 15, 45147, Germany; Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Christine E Mona
- Ahmanson Translational Theranostic Division, Department of Molecular and Medical Pharmacology, University of California Los Angeles, 650 Charles E Young Drive S, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Grzmil M, Wiesmann F, Schibli R, Behe M. Targeting mTORC1 Activity to Improve Efficacy of Radioligand Therapy in Cancer. Cancers (Basel) 2022; 15:cancers15010017. [PMID: 36612012 PMCID: PMC9817840 DOI: 10.3390/cancers15010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Radioligand therapy (RLT) represents an effective strategy to treat malignancy by cancer-selective delivery of radioactivity following systemic application. Despite recent therapeutic successes, cancer radioresistance and insufficient delivery of the radioactive ligands, as well as cytotoxicity to healthy organs, significantly impairs clinical efficacy. To improve disease management while minimizing toxicity, in recent years, the combination of RLT with molecular targeted therapies against cancer signaling networks showed encouraging outcomes. Characterization of the key deregulated oncogenic signaling pathways revealed their convergence to activate the mammalian target of rapamycin (mTOR), in which signaling plays an essential role in the regulation of cancer growth and survival. Therapeutic interference with hyperactivated mTOR pathways was extensively studied and led to the development of mTOR inhibitors for clinical applications. In this review, we outline the regulation and oncogenic role of mTOR signaling, as well as recapitulate and discuss mTOR complex 1 (mTORC1) inhibition to improve the efficacy of RLT in cancer.
Collapse
Affiliation(s)
- Michal Grzmil
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Correspondence:
| | - Fabius Wiesmann
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Martin Behe
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
15
|
Bodei L, Herrmann K, Schöder H, Scott AM, Lewis JS. Radiotheranostics in oncology: current challenges and emerging opportunities. Nat Rev Clin Oncol 2022; 19:534-550. [PMID: 35725926 PMCID: PMC10585450 DOI: 10.1038/s41571-022-00652-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 12/20/2022]
Abstract
Structural imaging remains an essential component of diagnosis, staging and response assessment in patients with cancer; however, as clinicians increasingly seek to noninvasively investigate tumour phenotypes and evaluate functional and molecular responses to therapy, theranostics - the combination of diagnostic imaging with targeted therapy - is becoming more widely implemented. The field of radiotheranostics, which is the focus of this Review, combines molecular imaging (primarily PET and SPECT) with targeted radionuclide therapy, which involves the use of small molecules, peptides and/or antibodies as carriers for therapeutic radionuclides, typically those emitting α-, β- or auger-radiation. The exponential, global expansion of radiotheranostics in oncology stems from its potential to target and eliminate tumour cells with minimal adverse effects, owing to a mechanism of action that differs distinctly from that of most other systemic therapies. Currently, an enormous opportunity exists to expand the number of patients who can benefit from this technology, to address the urgent needs of many thousands of patients across the world. In this Review, we describe the clinical experience with established radiotheranostics as well as novel areas of research and various barriers to progress.
Collapse
Affiliation(s)
- Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical School, New York, NY, USA
| | - Ken Herrmann
- German Cancer Consortium, University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, University of Duisburg-Essen, University Hospital Essen, Essen, Germany
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Weill Cornell Medical School, New York, NY, USA
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, Victoria, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Weill Cornell Medical School, New York, NY, USA.
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medical School, New York, NY, USA.
| |
Collapse
|
16
|
Mohajershojai T, Jha P, Boström A, Frejd FY, Yazaki PJ, Nestor M. In Vitro Characterization of 177Lu-DOTA-M5A Anti-Carcinoembryonic Antigen Humanized Antibody and HSP90 Inhibition for Potentiated Radioimmunotherapy of Colorectal Cancer. Front Oncol 2022; 12:849338. [PMID: 35433442 PMCID: PMC9010075 DOI: 10.3389/fonc.2022.849338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Carcinoembryonic antigen (CEA) is an antigen that is highly expressed in colorectal cancers and widely used as a tumor marker. 131I and 90Y-radiolabeled anti-CEA monoclonal antibodies (mAbs) have previously been assessed for radioimmunotherapy in early clinical trials with promising results. Moreover, the heat shock protein 90 inhibitor onalespib has previously demonstrated radiotherapy potentiation effects in vivo. In the present study, a 177Lu-radiolabeled anti-CEA hT84.66-M5A mAb (M5A) conjugate was developed and the potential therapeutic effects of 177Lu-DOTA-M5A and/or onalespib were investigated. The 177Lu radiolabeling of M5A was first optimized and characterized. Binding specificity and affinity of the conjugate were then evaluated in a panel of gastrointestinal cancer cell lines. The effects on spheroid growth and cell viability, as well as molecular effects from treatments, were then assessed in several three-dimensional (3D) multicellular colorectal cancer spheroid models. Stable and reproducible radiolabeling was obtained, with labeling yields above 92%, and stability was retained at least 48 h post-radiolabeling. Antigen-specific binding of the radiolabeled conjugate was demonstrated on all CEA-positive cell lines. Dose-dependent therapeutic effects of both 177Lu-DOTA-M5A and onalespib were demonstrated in the spheroid models. Moreover, effects were potentiated in several dose combinations, where spheroid sizes and viabilities were significantly decreased compared to the corresponding monotherapies. For example, the combination treatment with 350 nM onalespib and 20 kBq 177Lu-DOTA-M5A resulted in 2.5 and 2.3 times smaller spheroids at the experimental endpoint than the corresponding monotreatments in the SNU1544 spheroid model. Synergistic effects were demonstrated in several of the more effective combinations. Molecular assessments validated the therapy results and displayed increased apoptosis in several combination treatments. In conclusion, the combination therapy of anti-CEA 177Lu-DOTA-M5A and onalespib showed enhanced therapeutic effects over the individual monotherapies for the potential treatment of colorectal cancer. Further in vitro and in vivo studies are warranted to confirm the current study findings.
Collapse
Affiliation(s)
| | - Preeti Jha
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden.,Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | - Fredrik Y Frejd
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Paul J Yazaki
- Department of Immunology and Theranostics, Beckman Research Institute, City of Hope, Duarte, CA, United States
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Peptide Receptor Radionuclide Therapy with [ 177Lu]Lu-DOTA-TATE in Patients with Advanced GEP NENS: Present and Future Directions. Cancers (Basel) 2022; 14:cancers14030584. [PMID: 35158852 PMCID: PMC8833790 DOI: 10.3390/cancers14030584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Neuroendocrine neoplasms have been usually described as infrequent tumors, but their incidence has been rising over time. [177Lu]Lu-DOTA-TATE (PRRT-Lu) was approved by the European Medicines Agency and by the Food and Drug Administration as the first radiopharmaceutical for peptide receptor radionuclide therapy in progressive gastroenteropancreatic NET. PRRT-Lu is considered a therapeutic option in progressive SSTR-positive NETs with homogenous SSTR expression. The NETTER-1 study demonstrated that PRRT-Lu yielded a statistically and clinically significant improvement in PFS as a primary endpoint (HR: 0.18, p < 0.0001), as well as a clinical trend towards improvement in OS. These results made scientific societies incorporate PRRT-Lu into their clinical guidelines; however, some questions still remain unanswered. Abstract This review article summarizes findings published in the last years on peptide receptor radionuclide therapy in GEP NENs, as well as potential future developments and directions. Unanswered questions remain, such as the following: Which is the correct dose and individual dosimetry? Which is the place for salvage PRRT-Lu? Whicht is the role of PRRT-Lu in the pediatric population? Which is the optimal sequencing of PRRT-Lu in advanced GEP NETs? Which is the place of PRRT-Lu in G3 NENs? These, and future developments such as inclusion new radiopharmaceuticals and combination therapy with different agents, such as radiosensitizers, will be discussed.
Collapse
|
18
|
Suman SK, Subramanian S, Mukherjee A. Combination radionuclide therapy: A new paradigm. Nucl Med Biol 2021; 98-99:40-58. [PMID: 34029984 DOI: 10.1016/j.nucmedbio.2021.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
Targeted molecular radionuclide therapy (MRT) has shown its potential for the treatment of cancers of multiple origins. A combination therapy strategy employing two or more distinct therapeutic approaches in cancer management is aimed at circumventing tumor resistance by simultaneously targeting compensatory signaling pathways or bypassing survival selection mutations acquired in response to individual monotherapies. Combination radionuclide therapy (CRT) is a newer application of the concept, utilizing a combination of radiolabeled molecular targeting agents with chemotherapy and beam radiation therapy for enhanced therapeutic index. Encouraging results are reported with chemotherapeutic agents in combination with radiolabeled targeting molecules for cancer therapy. With increasing awareness of the various survival and stress response pathways activated after radionuclide therapy, different holistic combinations of MRT agents with radiosensitizers targeting such pathways have also been explored. MRT has also been studied in combination with beam radiotherapy modalities such as external beam radiation therapy and carbon ion radiation therapy to enhance the anti-tumor response. Nanotechnology aids in CRT by bringing together multiple monotherapies on a single nanostructure platform for treating cancers in a more precise or personalized way. CRT will be a key player in managing cancers if correctly tailored to the individual patient profile. The success of CRT lies in an in-depth understanding of the radiobiological principles and pathways activated in response.
Collapse
Affiliation(s)
- Shishu Kant Suman
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre; Homi Bhabha National Institute, Mumbai 400094, India
| | - Suresh Subramanian
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre; Homi Bhabha National Institute, Mumbai 400094, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre; Homi Bhabha National Institute, Mumbai 400094, India.
| |
Collapse
|
19
|
Das S, Dasari A. Novel therapeutics for patients with well-differentiated gastroenteropancreatic neuroendocrine tumors. Ther Adv Med Oncol 2021; 13:17588359211018047. [PMID: 34093744 PMCID: PMC8141991 DOI: 10.1177/17588359211018047] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastroenteropancreatic (GEP) neuroendocrine tumors (NETs) represent the most common subtype of NETs. The incidence of all NETs, and specifically GEP NETs, has risen exponentially over the last three decades. Only within the past several years have these tumors been appropriately classified, allowing for meaningful drug development. Broadly, some of the most exciting drug classes being developed for patients with well-differentiated GEP NETs include newer types of peptide receptor radionuclide therapy (PRRT) or combinations which increase the potency of lutetium-177 (177Lu)-Dotatate, novel multi-target receptor tyrosine kinase inhibitors (RTKIs) and immunotherapy modalities, beyond checkpoint inhibitors, which seek to unleash the immune system against NETs. Specifically looking at newer types of PRRT, somatostatin receptor antagonists and alpha-emitter radionuclides each have demonstrated the ability to elicit greater DNA damage than 177Lu-Dotatate in preclinical models. Early clinical experiences with each of these agents suggest they may be more cytotoxic than 177Lu-Dotatate. Other approaches seeking to build upon the DNA damage created by 177Lu-Dotatate include combinations of PRRT with radiosensitizers such as heat shock protein 90 inhibitors, hedgehog inhibitors, chemotherapy combinations, and triapine. Many of these combinations have just begun to be tested clinically. With regards to novel RTKIs, some of the ones which have demonstrated potent cytoreductive potential include cabozantinib and lenvatinib. Other RTKIs which are further along the clinical development spectrum and have demonstrated benefit in randomized trials include surufatinib and pazopanib. And though single-agent immune checkpoint inhibitors have not demonstrated significant anti-tumor activity in patients with GEP NETs, outside of certain biomarker selected subsets, somatostatin receptor-directed chimeric antigen receptor (CAR) T cells and vaccines such as SurVaxM, which targets survivin, represent two means through which NET-directed immunity may be modulated. The potential of these agents, if clinically realized, will likely improve outcomes for patients with well-differentiated GEP NETs.
Collapse
Affiliation(s)
- Satya Das
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, 777 Preston Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA
| | - Arvind Dasari
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
20
|
Drug Development in Neuroendocrine Tumors: What Is on the Horizon? Curr Treat Options Oncol 2021; 22:43. [PMID: 33786683 DOI: 10.1007/s11864-021-00834-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2021] [Indexed: 02/08/2023]
Abstract
OPINION STATEMENT Neuroendocrine neoplasms (NENs) constitute a heterogenous group of malignancies. Translational research into NEN cell biology is the cornerstone for drug development strategies in this field. Somatostatin receptor type 2 (SSTR2) expression is the hallmark of well-differentiated neuroendocrine tumors (NETs). Somatostatin analogs and peptide receptor radionuclide therapy (PRRT) form the basis of anti-SSTR2 treatment onto new combination strategies, antibody-drug conjugates and bispecific antibodies. Classical pathways involved in NET development (PI3K-Akt-mTOR and antiangiogenics) are reviewed but new potential targets for NET treatment will be explored. Epigenetic drugs have shown clinical activity in monotherapy and preclinical combination strategies are more than attractive. Immunotherapy has shown opposite results in different NEN settings. Although the NOTCH pathway has been targeted with disappointing results, new strategies are being developed. Finally, after years of solid preclinical evidence on different genetically engineered oncolytic viruses, clinical trials for refractory NET patients are now ongoing.
Collapse
|
21
|
Minczeles NS, Hofland J, de Herder WW, Brabander T. Strategies Towards Improving Clinical Outcomes of Peptide Receptor Radionuclide Therapy. Curr Oncol Rep 2021; 23:46. [PMID: 33721105 PMCID: PMC7960621 DOI: 10.1007/s11912-021-01037-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Peptide receptor radionuclide therapy (PRRT) with [177Lu-DOTA0,Tyr3] octreotate is an effective and safe second- or third-line treatment option for patients with low-grade advanced gastroenteropancreatic (GEP) neuroendocrine neoplasms (NEN). In this review, we will focus on possible extensions of the current use of PRRT and on new approaches which could further improve its treatment efficacy and safety. RECENT FINDINGS Promising results were published regarding PRRT in other NENs, including lung NENs or high-grade NENs, and applying PRRT as neoadjuvant or salvage therapy. Furthermore, a diversity of strategic approaches, including dosimetry, somatostatin receptor antagonists, somatostatin receptor upregulation, radiosensitization, different radionuclides, albumin binding, alternative renal protection, and liver-directed therapy in combination with PRRT, have the potential to improve the outcome of PRRT. Also, novel biomarkers are presented that could predict response to PRRT. Multiple preclinical and early clinical studies have shown encouraging potential to advance the clinical outcome of PRRT in NEN patients. However, at this moment, most of these strategies have not yet reached the clinical setting of randomized phase III trials.
Collapse
Affiliation(s)
- N S Minczeles
- Department of Internal Medicine, Section of Endocrinology, Erasmus MC and Erasmus MC Cancer Center, Rotterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- ENETS Center of Excellence Rotterdam, Rotterdam, The Netherlands
| | - J Hofland
- Department of Internal Medicine, Section of Endocrinology, Erasmus MC and Erasmus MC Cancer Center, Rotterdam, The Netherlands
- ENETS Center of Excellence Rotterdam, Rotterdam, The Netherlands
| | - W W de Herder
- Department of Internal Medicine, Section of Endocrinology, Erasmus MC and Erasmus MC Cancer Center, Rotterdam, The Netherlands
- ENETS Center of Excellence Rotterdam, Rotterdam, The Netherlands
| | - T Brabander
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
- ENETS Center of Excellence Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
22
|
Haider M, Das S, Al-Toubah T, Pelle E, El-Haddad G, Strosberg J. Somatostatin receptor radionuclide therapy in neuroendocrine tumors. Endocr Relat Cancer 2021; 28:R81-R93. [PMID: 33608483 PMCID: PMC8118168 DOI: 10.1530/erc-20-0360] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/28/2022]
Abstract
Peptide receptor radionuclide therapy (PRRT) using 177Lu-DOTATATE has been approved for the treatment of gastroenteropancreatic NETs. An understanding of benefits and risks is important for the appropriate implementation of this therapy. This review summarizes study data supporting the use of radiolabeled somatostatin analogs for the treatment of advanced NETs and highlights risks, including potential toxicities in specific populations. Key ongoing clinical trials, including randomized studies, are designed to better define the position of PRRT within the broader therapeutic landscape. Preclinical and early-phase human studies are focused on the development of novel somatostatin-receptor agonists and antagonists, new radionuclides, and radiosensitizing combination therapies.
Collapse
Affiliation(s)
- Mintallah Haider
- Moffitt Cancer Center, Department of GI Oncology, Tampa, Florida, USA
| | - Satya Das
- Department of GI Oncology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Eleonora Pelle
- Department of Oncology, University of Bari, Bari, Puglia, Italy
| | - Ghassan El-Haddad
- Moffitt Cancer Center, Department of Diagnostic Imaging and Interventional Radiology, Tampa, Florida, USA
| | | |
Collapse
|
23
|
Chan TG, O'Neill E, Habjan C, Cornelissen B. Combination Strategies to Improve Targeted Radionuclide Therapy. J Nucl Med 2020; 61:1544-1552. [PMID: 33037092 PMCID: PMC8679619 DOI: 10.2967/jnumed.120.248062] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 09/09/2020] [Indexed: 01/20/2023] Open
Abstract
In recent years, targeted radionuclide therapy (TRT) has emerged as a promising strategy for cancer treatment. In contrast to conventional radiotherapy, TRT delivers ionizing radiation to tumors in a targeted manner, reducing the dose that healthy tissues are exposed to. Existing TRT strategies include the use of 177Lu-DOTATATE, 131I-metaiodobenzylguanidine, Bexxar, and Zevalin, clinically approved agents for the treatment of neuroendocrine tumors, neuroblastoma, and non-Hodgkin lymphoma, respectively. Although promising results have been obtained with these agents, clinical evidence acquired to date suggests that only a small percentage of patients achieves complete response. Consequently, there have been attempts to improve TRT outcomes through combinations with other therapeutic agents; such strategies include administering concurrent TRT and chemotherapy, and the use of TRT with known or putative radiosensitizers such as poly(adenosine diphosphate ribose) polymerase and mammalian-target-of-rapamycin inhibitors. In addition to potentially achieving greater therapeutic effects than the respective monotherapies, these strategies may lead to lower dosages or numbers of cycles required and, in turn, reduce unwanted toxicities. As of now, several clinical trials have been conducted to assess the benefits of TRT-based combination therapies, sometimes despite limited preclinical evidence being available in the public domain to support their use. Although some clinical trials have yielded promising results, others have shown no clear survival benefit from particular combination treatments. Here, we present a comprehensive review of combination strategies with TRT reported in the literature to date and evaluate their therapeutic potential.
Collapse
Affiliation(s)
- Tiffany G Chan
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Edward O'Neill
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Christine Habjan
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Bart Cornelissen
- Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|