1
|
Sun Y, Zhai L, Ma L, Zhang W. Preclinical research progress in HER2-targeted small-molecule probes for breast cancer. RADIOLOGIE (HEIDELBERG, GERMANY) 2024:10.1007/s00117-024-01338-5. [PMID: 39039211 DOI: 10.1007/s00117-024-01338-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/22/2024] [Indexed: 07/24/2024]
Abstract
Breast cancer is a malignant tumor that has the highest morbidity and mortality in women worldwide. Human epidermal growth factor receptor 2 (HER2) is a key driver of breast cancer development. Therefore, accurate assessment of HER2 expression in cancer patients and timely initiation or termination of anti-HER2 treatment are crucial for the prognosis of breast cancer patients. The emergence of radiolabeled molecular probes targeting HER2 makes this assessment possible. This article describes different types of small-molecule probes that target HER2 and are used in current preclinical applications and summarizes their advantages and disadvantages.
Collapse
Affiliation(s)
- Yefan Sun
- Department of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, China
| | - Luoping Zhai
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Le Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, 030032, Taiyuan, China
| | - Wanchun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences Tongji Shanxi Hospital, 030032, Taiyuan, China.
| |
Collapse
|
2
|
Zhao L, Xing Y, Liu C, Ma S, Huang W, Cheng Z, Zhao J. Detection of HER2 expression using 99mTc-NM-02 nanobody in patients with breast cancer: a non-randomized, non-blinded clinical trial. Breast Cancer Res 2024; 26:40. [PMID: 38459598 PMCID: PMC10924314 DOI: 10.1186/s13058-024-01803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/03/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND 99mTc radiolabeled nanobody NM-02 (99mTc-NM-02) is a novel single photon emission computed tomography (SPECT) probe with a high affinity and specificity for human epidermal growth factor receptor 2 (HER2). In this study, a clinical imaging trial was conducted to investigate the relationship between 99mTc-NM-02 uptake and HER2 expression in patients with breast cancer. METHODS Thirty patients with pathologically confirmed breast cancer were recruited and imaged with both 99mTc-NM-02 SPECT/computed tomography (CT) and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/CT. According to the treatment conditions before recruitment, patients were divided into two groups, the newly diagnosed group (n = 24) and the treated group (n = 6). The maximal standard uptake value (SUVmax) of 18F-FDG and SUVmax and mean SUV (SUVmean) of 99mTc-NM-02 in the lesions were determined to analyze the relationship with HER2 expression. RESULTS No meaningful relationship was observed between 18F-FDG uptake and HER2 expression in 30 patients with breast cancer. 99mTc-NM-02 uptake was positively correlated with HER2 expression in the newly diagnosed group, but no correlation was observed in the treated group. 99mTc-NM-02 uptake in HER2-positive lesions was lower in those with effective HER2-targeted therapy compared with the newly diagnosed group. 99mTc-NM-02 SPECT/CT detected brain and bone metastases of breast cancer with a different imaging pattern from 18F-FDG PET/CT. 99mTc-NM-02 showed no non-specific uptake in inflamed tissues and revealed intra- and intertumoral HER2 heterogeneity by SPECT/CT imaging in 9 of the 30 patients with breast cancer. CONCLUSIONS 99mTc-NM-02 SPECT/CT has the potential for visualizing whole-body HER2 overexpression in untreated patients, making it a promising method for HER2 assessment in patients with breast cancer. TRIAL REGISTRATION NCT04674722, Date of registration: December 19, 2020.
Collapse
Affiliation(s)
- Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Yan Xing
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Changcun Liu
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Shaofei Ma
- Department of Pathology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Wenhua Huang
- Nanomab Technology Limited, No. 333, North Chengdu Road, Jingan District, Shanghai, 200041, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555, Zuchongzhi Road, Pudong New District, Shanghai, 201203, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, No. 198, Binhai East Road, High-Tech District, Yantai, 264000, Shandong, China.
| | - Jinhua Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
3
|
Ndlovu H, Lawal IO, Mokoala KMG, Sathekge MM. Imaging Molecular Targets and Metabolic Pathways in Breast Cancer for Improved Clinical Management: Current Practice and Future Perspectives. Int J Mol Sci 2024; 25:1575. [PMID: 38338854 PMCID: PMC10855575 DOI: 10.3390/ijms25031575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Breast cancer is the most frequently diagnosed cancer and leading cause of cancer-related deaths worldwide. Timely decision-making that enables implementation of the most appropriate therapy or therapies is essential for achieving the best clinical outcomes in breast cancer. While clinicopathologic characteristics and immunohistochemistry have traditionally been used in decision-making, these clinical and laboratory parameters may be difficult to ascertain or be equivocal due to tumor heterogeneity. Tumor heterogeneity is described as a phenomenon characterized by spatial or temporal phenotypic variations in tumor characteristics. Spatial variations occur within tumor lesions or between lesions at a single time point while temporal variations are seen as tumor lesions evolve with time. Due to limitations associated with immunohistochemistry (which requires invasive biopsies), whole-body molecular imaging tools such as standard-of-care [18F]FDG and [18F]FES PET/CT are indispensable in addressing this conundrum. Despite their proven utility, these standard-of-care imaging methods are often unable to image a myriad of other molecular pathways associated with breast cancer. This has stimulated interest in the development of novel radiopharmaceuticals targeting other molecular pathways and processes. In this review, we discuss validated and potential roles of these standard-of-care and novel molecular approaches. These approaches' relationships with patient clinicopathologic and immunohistochemical characteristics as well as their influence on patient management will be discussed in greater detail. This paper will also introduce and discuss the potential utility of novel PARP inhibitor-based radiopharmaceuticals as non-invasive biomarkers of PARP expression/upregulation.
Collapse
Affiliation(s)
- Honest Ndlovu
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA 30322, USA
| | - Kgomotso M. G. Mokoala
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| | - Mike M. Sathekge
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa; (H.N.); (K.M.G.M.)
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Private Bag X169, Pretoria 0001, South Africa;
| |
Collapse
|
4
|
McGale J, Khurana S, Huang A, Roa T, Yeh R, Shirini D, Doshi P, Nakhla A, Bebawy M, Khalil D, Lotfalla A, Higgins H, Gulati A, Girard A, Bidard FC, Champion L, Duong P, Dercle L, Seban RD. PET/CT and SPECT/CT Imaging of HER2-Positive Breast Cancer. J Clin Med 2023; 12:4882. [PMID: 37568284 PMCID: PMC10419459 DOI: 10.3390/jcm12154882] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
HER2 (Human Epidermal Growth Factor Receptor 2)-positive breast cancer is characterized by amplification of the HER2 gene and is associated with more aggressive tumor growth, increased risk of metastasis, and poorer prognosis when compared to other subtypes of breast cancer. HER2 expression is therefore a critical tumor feature that can be used to diagnose and treat breast cancer. Moving forward, advances in HER2 in vivo imaging, involving the use of techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), may allow for a greater role for HER2 status in guiding the management of breast cancer patients. This will apply both to patients who are HER2-positive and those who have limited-to-minimal immunohistochemical HER2 expression (HER2-low), with imaging ultimately helping clinicians determine the size and location of tumors. Additionally, PET and SPECT could help evaluate effectiveness of HER2-targeted therapies, such as trastuzumab or pertuzumab for HER2-positive cancers, and specially modified antibody drug conjugates (ADC), such as trastuzumab-deruxtecan, for HER2-low variants. This review will explore the current and future role of HER2 imaging in personalizing the care of patients diagnosed with breast cancer.
Collapse
Affiliation(s)
- Jeremy McGale
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Sakshi Khurana
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Alice Huang
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Tina Roa
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Randy Yeh
- Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dorsa Shirini
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Parth Doshi
- Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Abanoub Nakhla
- American University of the Caribbean School of Medicine, Cupecoy, Sint Maarten
| | - Maria Bebawy
- Touro College of Osteopathic Medicine, Middletown, NY 10940, USA
| | - David Khalil
- Campbell University School of Osteopathic Medicine, Lillington, NC 27546, USA
| | - Andrew Lotfalla
- Touro College of Osteopathic Medicine, Middletown, NY 10940, USA
| | - Hayley Higgins
- Touro College of Osteopathic Medicine, Middletown, NY 10940, USA
| | - Amit Gulati
- Department of Internal Medicine, Maimonides Medical Center, New York, NY 11219, USA
| | - Antoine Girard
- Department of Nuclear Medicine, CHU Amiens-Picardie, 80054 Amiens, France
| | - Francois-Clement Bidard
- Department of Medical Oncology, Inserm CIC-BT 1428, Curie Institute, Paris Saclay University, UVSQ, 78035 Paris, France
| | - Laurence Champion
- Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, 92210 Saint-Cloud, France
- Laboratory of Translational Imaging in Oncology, Paris Sciences et Lettres (PSL) Research University, Institut Curie, 91401 Orsay, France
| | - Phuong Duong
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Laurent Dercle
- Department of Radiology, Columbia University Medical Center, New York, NY 10032, USA
| | - Romain-David Seban
- Department of Nuclear Medicine and Endocrine Oncology, Institut Curie, 92210 Saint-Cloud, France
- Laboratory of Translational Imaging in Oncology, Paris Sciences et Lettres (PSL) Research University, Institut Curie, 91401 Orsay, France
| |
Collapse
|
5
|
Liu S, Tian Y, Jiang S, Wang Z. A Novel Homodimer Peptide-Drug Conjugate Improves the Efficacy of HER2-Positive Breast Cancer Therapy. Int J Mol Sci 2023; 24:ijms24054590. [PMID: 36902021 PMCID: PMC10003747 DOI: 10.3390/ijms24054590] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/11/2023] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Tumor-targeting peptide-drug conjugates (PDCs) have become a focus of research in recent years. However, due to the instability of peptides and their short in vivo effective half-life, they have limited clinical application. Herein, we propose a new DOX PDC based on a homodimer HER-2-targeting peptide and acid-sensitive hydrazone bond, which could enhance the anti-tumor effect of DOX and reduce systemic toxicities. The PDC could accurately deliver DOX into HER2-positive SKBR-3 cells, with it showing 2.9 times higher cellular uptake than free DOX and enhanced cytotoxicity with respect to IC50 of 140 nM (vs. 410 nM for free DOX). In vitro assays showed that the PDC had high cellular internalization efficiency and cytotoxicity. In vivo anti-tumor experiments indicated that the PDC could significantly inhibit the growth of HER2-positive breast cancer xenografts in mice and reduce the side effects of DOX. In summary, we constructed a novel PDC molecule targeting HER2-positive tumors, which may overcome some deficiencies of DOX in breast cancer therapy.
Collapse
|
6
|
Bai JW, Qiu SQ, Zhang GJ. Molecular and functional imaging in cancer-targeted therapy: current applications and future directions. Signal Transduct Target Ther 2023; 8:89. [PMID: 36849435 PMCID: PMC9971190 DOI: 10.1038/s41392-023-01366-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/19/2023] [Accepted: 02/14/2023] [Indexed: 03/01/2023] Open
Abstract
Targeted anticancer drugs block cancer cell growth by interfering with specific signaling pathways vital to carcinogenesis and tumor growth rather than harming all rapidly dividing cells as in cytotoxic chemotherapy. The Response Evaluation Criteria in Solid Tumor (RECIST) system has been used to assess tumor response to therapy via changes in the size of target lesions as measured by calipers, conventional anatomically based imaging modalities such as computed tomography (CT), and magnetic resonance imaging (MRI), and other imaging methods. However, RECIST is sometimes inaccurate in assessing the efficacy of targeted therapy drugs because of the poor correlation between tumor size and treatment-induced tumor necrosis or shrinkage. This approach might also result in delayed identification of response when the therapy does confer a reduction in tumor size. Innovative molecular imaging techniques have rapidly gained importance in the dawning era of targeted therapy as they can visualize, characterize, and quantify biological processes at the cellular, subcellular, or even molecular level rather than at the anatomical level. This review summarizes different targeted cell signaling pathways, various molecular imaging techniques, and developed probes. Moreover, the application of molecular imaging for evaluating treatment response and related clinical outcome is also systematically outlined. In the future, more attention should be paid to promoting the clinical translation of molecular imaging in evaluating the sensitivity to targeted therapy with biocompatible probes. In particular, multimodal imaging technologies incorporating advanced artificial intelligence should be developed to comprehensively and accurately assess cancer-targeted therapy, in addition to RECIST-based methods.
Collapse
Affiliation(s)
- Jing-Wen Bai
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Department of Medical Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China
| | - Si-Qi Qiu
- Diagnosis and Treatment Center of Breast Diseases, Clinical Research Center, Shantou Central Hospital, 515041, Shantou, China
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, 515041, Shantou, China
| | - Guo-Jun Zhang
- Fujian Key Laboratory of Precision Diagnosis and Treatment in Breast Cancer, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Xiamen Research Center of Clinical Medicine in Breast and Thyroid Cancers, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Department of Breast-Thyroid-Surgery and Cancer Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
- Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, 361100, Xiamen, China.
| |
Collapse
|
7
|
Shi J, Du S, Wang R, Gao H, Luo Q, Hou G, Zhou Y, Zhu Z, Wang F. Molecular imaging of HER2 expression in breast cancer patients using a novel peptide-based tracer 99mTc-HP-Ark2: a pilot study. J Transl Med 2023; 21:19. [PMID: 36631812 PMCID: PMC9835228 DOI: 10.1186/s12967-022-03865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/29/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Due to the temporal and spatial heterogeneity of human epidermal growth factor receptor 2 (HER2) expression in breast tumors, immunohistochemistry (IHC) cannot accurately reflect the HER2 status in real time, which may cause misguided treatment decisions. HER2-specific imaging can noninvasively determine HER2 status in primary and metastatic tumors. In this study, HER2 expression in breast cancer patients was determined in vivo by SPECT/CT of 99mTc-HP-Ark2, comparing with PET/CT of 18F-FDG lesion by lesion. METHODS A novel HER2-targeted peptide probe 99mTc-HP-Ark2 was constructed. Biodistribution and nanoScan SPECT/CT imaging were performed in mice models. The correlation between the quantified tumor uptake and HER2 expression in tumor cells was analyzed. In the pilot clinical study, a total of 34 breast cancer patients (mean age ± SD: 49 ± 10 y) suspected of having breast cancer according to mammography or ultrasonography were recruited at Peking Union Medical College Hospital, and 99mTc-HP-Ark2 SPECT/CT and 18F-FDG PET/CT were carried out with IHC and fluorescence in situ hybridization as validation. RESULTS Small animal SPECT/CT of 99mTc-HP-Ark2 clearly identified tumors with different HER2 expression. The quantified tumor uptake and tumor HER2 expression showed a significant linear correlation (r = 0.932, P < 0.01). Among the 36 primary lesions in the 34 patients, when IHC (2 +) or IHC (3 +) was used as the positive evaluation criterion, 99mTc-HP-Ark2 SPECT/CT imaging with a tumor-to-background ratio of 1.44 as the cutoff value reflected the HER2 status with sensitivity of 89.5% (17/19), specificity of 88.2% (15/17) and accuracy of 88.9% (32/36), while the 18F-FDG PET/CT showed sensitivity of 78.9% (15/19), specificity of 70.6% (12/17) and accuracy of 75.0% (27/36). In particular, 100% of IHC (3 +) tumors were all identified by 99mTc-HP-Ark2 SPECT/CT imaging. CONCLUSION 99mTc-HP-Ark2 SPECT/CT can provide a specific, noninvasive evaluation of HER2 expression in breast cancer, showing great potential to guide HER2-targeted therapies in clinical practice. CLINICALTRIALS gov Trial registration: NCT04267900. Registered 11th February 2020. Retrospectively registered, https://www. CLINICALTRIALS gov/ct2/results?pg=1&load=cart&id=NCT04267900 .
Collapse
Affiliation(s)
- Jiyun Shi
- grid.11135.370000 0001 2256 9319Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191 China ,grid.9227.e0000000119573309Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shuaifan Du
- grid.11135.370000 0001 2256 9319Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191 China
| | - Rongxi Wang
- grid.413106.10000 0000 9889 6335Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730 China
| | - Hannan Gao
- grid.11135.370000 0001 2256 9319Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191 China ,grid.9227.e0000000119573309Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qi Luo
- Guangzhou Laboratory, Guangzhou, 510005 China
| | - Guozhu Hou
- grid.413106.10000 0000 9889 6335Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730 China
| | - Yidong Zhou
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Zhaohui Zhu
- Department of Nuclear Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, 100191, China. .,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China. .,Guangzhou Laboratory, Guangzhou, 510005, China.
| |
Collapse
|
8
|
Sharma AK, Sharma R, Vats K, Sarma HD, Mukherjee A, Das T, Satpati D. Synthesis and comparative evaluation of 177Lu-labeled PEG and non-PEG variant peptides as HER2-targeting probes. Sci Rep 2022; 12:15720. [PMID: 36127494 PMCID: PMC9489682 DOI: 10.1038/s41598-022-19201-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Highest global cancer incidence of female breast cancer is a matter of great concern. HER2-positive breast cancers have high mortality rate hence detection at an early stage is vital for successful treatment, improved cancer care and survival rate. Radiolabeled peptides have emerged as new alternatives to radiolabeled antibodies to overcome the limitations of slow clearance and uptake in non-target tissues. Herein, DOTA-A9 peptide and its pegylated variant were constructed on solid phase and radiolabeled with [177Lu]LuCl3. [177Lu]DOTA-A9 and [177Lu]DOTA-PEG4-A9 displayed high binding affinity (Kd = 48.4 ± 1.4 and 55.7 ± 12.3 nM respectively) in human breast carcinoma SKBR3 cells. Two radiopeptides exhibited renal excretion and rapid clearance from normal organs. Uptake in SKBR3 tumor and tumor-to-background ratios were significantly higher (p < 0.05) for [177Lu]DOTA-PEG4-A9 at the three time points investigated. Xenografts could be clearly visualized by [177Lu]DOTA-PEG4-A9 in SPECT images at 3, 24 and 48 h p.i. indicating the potential for further exploration as HER2-targeting probe. The encouraging in vivo profile of PEG construct, [177Lu]DOTA-PEG4-A9 incentivizes future studies for clinical applications.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Rohit Sharma
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Kusum Vats
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Tapas Das
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Drishty Satpati
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
9
|
Han J, Chen Y, Zhao Y, Zhao X, Zhang J, Wang J, Zhang Z. Pre-Clinical Study of the [ 18F]AlF-Labeled HER2 Affibody for Non-Invasive HER2 Detection in Gastric Cancer. Front Med (Lausanne) 2022; 9:803005. [PMID: 35252244 PMCID: PMC8890119 DOI: 10.3389/fmed.2022.803005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 12/24/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is an important biomarker in gastric cancer (GC) and directly influences the therapeutic effect. Fluorine is firmly bound to Al3+ forming [18F]AlF-1,4,7-triazacyclononanetriacetic acid (NOTA)-HER2 affibody is a promising radiolabeled tracer that can monitor the changes of HER2 expression combining the advantages of simple preparation and the properties of 18F. The aim of this study was to develop a quick method for the synthesis of [18F]AlF-NOTA-HER2 affibody and evaluate its utility for HER2+ GC imaging in mouse models. Moreover, 68Ga-NOTA-HER2 affibody imaging was also performed to highlight the superiority of [18F]AlF-NOTA-HER2 affibody imaging in resolution. The HER2 affibody was conjugated with NOTA and labeled using 18F based on the complexation of [18F]AlF by NOTA. Its quality control and stability were performed by high-pressure liquid chromatography (HPLC). The molecular specificity and binding affinity of the novel radiotracer were evaluated in the GC cell line with HER2 overexpression (NCI-N87) and negative expression (MKN74). Distribution studies and PET/CT imaging were performed in mouse models. 68Ga-NOTA-HER2 affibody PET/CT imaging was also performed. [18F]AlF-NOTA-HER2 affibody was efficiently prepared within 30 min with a non-decay-corrected maximum yield of 32.69% and a radiochemical purity of more than 98%. [18F]AlF-NOTA-HER2 affibody was highly stable in incubation medium for 4 h in vitro and in the blood of nude mice at 30 min post-injection (p.i.). In vitro studies revealed specific binding and high binding affinity of the probe in NCI-N87 cells, while no binding was seen in MKN74 cells. PET imaging showed that NCI-N87 xenografts were differentiated from MKN74 xenografts with excellent contrast and low abdominal background, which was confirmed by the distribution results. High-level accumulation of the [18F]AlF-NOTA-HER2 affibody in HER2+ tumors was blocked by excess unlabeled NOTA-HER2 affibody. [18F]AlF-NOTA-HER2 affibody has a higher image resolution than that of 68Ga-NOTA-HER2 affibody. [18F]AlF-NOTA-HER2 affibody could be produced facilely with high radiochemical yield and may serve as a novel molecular probe with tremendous clinical potential for the non-invasive whole-body detection of the HER2 status in GC with good image contrast and resolution. This method could provide an in vivo understanding of GC biology that will ultimately guide the accurate diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Jingya Han
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Chen
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yan Zhao
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinming Zhao
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Hebei Provincial Key Laboratory of Tumor Microenvironment and Drug Resistance, Shijiazhuang, China
| | - Jingmian Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianfang Wang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhaoqi Zhang
- Department of Nuclear Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
10
|
Current status and future perspective of radiopharmaceuticals in China. Eur J Nucl Med Mol Imaging 2021; 49:2514-2530. [PMID: 34767047 PMCID: PMC8586637 DOI: 10.1007/s00259-021-05615-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022]
Abstract
Radiopharmaceuticals are essential components of nuclear medicine and serve as one of the cornerstones of molecular imaging and precision medicine. They provide new means and approaches for early diagnosis and treatment of diseases. After decades of development and hard efforts, a relatively matured radiopharmaceutical production and management system has been established in China with high-quality facilities. This review provides an overview of the current status of radiopharmaceuticals on production and distribution, clinical application, and regulatory supervision and also describes some important advances in research and development and clinical translation of radiopharmaceuticals in the past 10 years. Moreover, some prospects of research and development of radiopharmaceuticals in the near future are discussed.
Collapse
|
11
|
Review: Radionuclide Molecular Imaging Targeting HER2 in Breast Cancer with a Focus on Molecular Probes into Clinical Trials and Small Peptides. Molecules 2021; 26:molecules26216482. [PMID: 34770887 PMCID: PMC8588233 DOI: 10.3390/molecules26216482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
As the most frequently occurring cancer worldwide, breast cancer (BC) is the leading cause of cancer-related death in women. The overexpression of HER2 (human epidermal growth factor receptor 2) is found in about 15% of BC patients, and it is often associated with a poor prognosis due to the effect on cell proliferation, migration, invasion, and survival. As a result of the heterogeneity of BC, molecular imaging with HER2 probes can non-invasively, in real time, and quantitatively reflect the expression status of HER2 in tumors. This will provide a new approach for patients to choose treatment options and monitor treatment response. Furthermore, radionuclide molecular imaging has the potential of repetitive measurements, and it can help solve the problem of heterogeneous expression and conversion of HER2 status during disease progression or treatment. Different imaging probes of targeting proteins, such as monoclonal antibodies, antibody fragments, nanobodies, and affibodies, are currently in preclinical and clinical development. Moreover, in recent years, HER2-specific peptides have been widely developed for molecular imaging techniques for HER2-positive cancers. This article summarized different types of molecular probes targeting HER2 used in current clinical applications and the developmental trend of some HER2-specific peptides.
Collapse
|
12
|
Rinne SS, Orlova A, Tolmachev V. PET and SPECT Imaging of the EGFR Family (RTK Class I) in Oncology. Int J Mol Sci 2021; 22:ijms22073663. [PMID: 33915894 PMCID: PMC8036874 DOI: 10.3390/ijms22073663] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The human epidermal growth factor receptor family (EGFR-family, other designations: HER family, RTK Class I) is strongly linked to oncogenic transformation. Its members are frequently overexpressed in cancer and have become attractive targets for cancer therapy. To ensure effective patient care, potential responders to HER-targeted therapy need to be identified. Radionuclide molecular imaging can be a key asset for the detection of overexpression of EGFR-family members. It meets the need for repeatable whole-body assessment of the molecular disease profile, solving problems of heterogeneity and expression alterations over time. Tracer development is a multifactorial process. The optimal tracer design depends on the application and the particular challenges of the molecular target (target expression in tumors, endogenous expression in healthy tissue, accessibility). We have herein summarized the recent preclinical and clinical data on agents for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT) imaging of EGFR-family receptors in oncology. Antibody-based tracers are still extensively investigated. However, their dominance starts to be challenged by a number of tracers based on different classes of targeting proteins. Among these, engineered scaffold proteins (ESP) and single domain antibodies (sdAb) show highly encouraging results in clinical studies marking a noticeable trend towards the use of smaller sized agents for HER imaging.
Collapse
Affiliation(s)
- Sara S. Rinne
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
| | - Anna Orlova
- Department of Medicinal Chemistry, Uppsala University, 751 23 Uppsala, Sweden; (S.S.R.); (A.O.)
- Science for Life Laboratory, Uppsala University, 752 37 Uppsala, Sweden
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 37 Uppsala, Sweden
- Correspondence: ; Tel.: +46-704-250-782
| |
Collapse
|
13
|
Du S, Luo C, Yang G, Gao H, Wang Y, Li X, Zhao H, Luo Q, Ma X, Shi J, Wang F. Developing PEGylated Reversed D-Peptide as a Novel HER2-Targeted SPECT Imaging Probe for Breast Cancer Detection. Bioconjug Chem 2020; 31:1971-1980. [PMID: 32660241 DOI: 10.1021/acs.bioconjchem.0c00334] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human epidermal growth factor receptor-2 (HER2)-enriched breast cancer is characterized by strong invasiveness, high recurrence rate, and poor prognosis. HER2-specific imaging can help screening right patients for appropriate HER2-targeted therapies. Previously, we have developed a 99mTc-labeled HER2-targeted H6 peptide for SPECT imaging of breast cancer. However, the poor metabolic stability and high gallbladder uptake hamper its clinical application. In this study, a retro-inverso D-peptide of H6 (RDH6) was designed to increase the metabolic stability. PEGylation was used to improve its water solubility and in vivo pharmacokinetics. The results showed that the D-amino acids in 99mTc-PEG4-RDH6 brought better metabolic stability than 99mTc-PEG4-H6, thus achieving higher tumor uptake. As the length of the PEG chain increases, the hydrophilicity of the probes gradually increased, which may also be the main cause for the decreased liver uptake. Compared with radiotracers modified by PEG4 and PEG12, 99mTc-PEG24-RDH6 had a comparable tumor uptake and the lowest liver radioactivity. The SPECT imaging demonstrated that 99mTc-PEG24-RDH6 could specifically distinguish HER2-positive tumors from HER2-negative tumors with better imaging contrast, which thus has the potential for clinical screening of HER2-positive breast patients.
Collapse
Affiliation(s)
- Shuaifan Du
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Chuangwei Luo
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Guangjie Yang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Hannan Gao
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Yanpu Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaoda Li
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Huiyun Zhao
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Qi Luo
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| | - Xiaotu Ma
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiyun Shi
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Fan Wang
- Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing 100191, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China
| |
Collapse
|