1
|
Puig-Pijoan A, García-Escobar G, Fernández-Lebrero A, Manero-Borràs RM, Sánchez-Benavides G, Navalpotro-Gómez I, Cascales Lahoz D, Suárez-Calvet M, Grau-Rivera O, Boltes Alandí A, Pont-Sunyer MC, Ortiz-Gil J, Carrillo-Molina S, López-Villegas D, Abellán-Vidal MT, Martínez-Casamitjana MI, Hernández-Sánchez JJ, Peña-Casanova J, Roquer J, Padrós Fluvià A, Puente-Périz V. The CORCOBIA study: Cut-off points of Alzheimer's disease CSF biomarkers in a clinical cohort. Neurologia 2024; 39:756-765. [PMID: 35961506 DOI: 10.1016/j.nrleng.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/24/2022] [Indexed: 10/15/2022] Open
Abstract
INTRODUCTION The analysis of the core biomarkers of Alzheimer's Disease (AD) in the cerebrospinal fluid (CSF) is recommended in the clinical units where it is available. Because of the absence of universal validated values, the determination of specific cut-off points for each center and its population is recommended. The main objective of the CORCOBIA study was to determine the cut-off points of core AD CSF biomarkers for several centers (Parc de Salut Mar, Barcelona and Hospital General de Granollers), which work with the same reference laboratory (Laboratori de Referència de Catalunya). METHODS Prospective study including cognitively unimpaired individuals (CU, n = 42), subjects with amnestic mild cognitive impairment (aMCI, n = 35) and patients with dementia due to Alzheimer's Disease (AD, n = 48), in whom clinical and neuropsychological assessment, neuroimaging, APOE genotyping and lumbar puncture to analyse amyloid beta peptides (Aβ42, Aβ40), total tau (tTau) and phosphorylated Tau (pTau181) using the Lumipulse G600II (Fujirebio) was performed. The values of sensitivity (SE), specificity (SP), predictive values and area under the curve (AUC) were calculated, determining the cut-off point according to the Youden index by comparing the CU and AD groups. RESULTS The resulting cut-offs and their AUC were the following: Aβ42 750 pg/mL (AUC 0.809); Aβ42/Aβ40 0.062 (AUC 0.78); pTau181 69.85 pg/mL (AUC 0.81); tTau 522.0 pg/mL (AUC 0.79); Aβ42/tTau 1.76 (AUC 0.86); Aβ42/pTau181 10.25 (AUC 0.86). CONCLUSIONS The determination of cut-off points of core AD CSF biomarkers for the participating centers allows a better diagnostic accuracy. The ratio CSF Aβ42/pTau181 shows the highest AUC and better balance between sensitivity and specificity.
Collapse
Affiliation(s)
- A Puig-Pijoan
- Unitat de Deteriorament Cognitiu i Transtorns del Moviment, Servei de Neurologia, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Farmacologia Integrada i Neurociència de Sistemes, Programa de Neurociències, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.
| | - G García-Escobar
- Farmacologia Integrada i Neurociència de Sistemes, Programa de Neurociències, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - A Fernández-Lebrero
- Unitat de Deteriorament Cognitiu i Transtorns del Moviment, Servei de Neurologia, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Farmacologia Integrada i Neurociència de Sistemes, Programa de Neurociències, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Barcelonaβeta Brain Research Center (BBRC), Fundació Pasqual Maragall, Barcelona, Spain
| | - R M Manero-Borràs
- Unitat de Deteriorament Cognitiu i Transtorns del Moviment, Servei de Neurologia, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Farmacologia Integrada i Neurociència de Sistemes, Programa de Neurociències, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - G Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Fundació Pasqual Maragall, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
| | - I Navalpotro-Gómez
- Unitat de Deteriorament Cognitiu i Transtorns del Moviment, Servei de Neurologia, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Farmacologia Integrada i Neurociència de Sistemes, Programa de Neurociències, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain; Barcelonaβeta Brain Research Center (BBRC), Fundació Pasqual Maragall, Barcelona, Spain
| | - D Cascales Lahoz
- Unitat de Deteriorament Cognitiu i Transtorns del Moviment, Servei de Neurologia, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | - M Suárez-Calvet
- Unitat de Deteriorament Cognitiu i Transtorns del Moviment, Servei de Neurologia, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Barcelonaβeta Brain Research Center (BBRC), Fundació Pasqual Maragall, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - O Grau-Rivera
- Unitat de Deteriorament Cognitiu i Transtorns del Moviment, Servei de Neurologia, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Barcelonaβeta Brain Research Center (BBRC), Fundació Pasqual Maragall, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - A Boltes Alandí
- Servei de Neurologia, Hospital General de Granollers, Granollers, Barcelona, Spain
| | - M C Pont-Sunyer
- Servei de Neurologia, Hospital General de Granollers, Granollers, Barcelona, Spain
| | - J Ortiz-Gil
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain; Unitat de Psicologia, Hospital General de Granollers, Granollers, Barcelona, Spain; Fundación para la Investigación y Docencia Maria Angustias Gimenez (FIDMAG), Sant Boi de Llobregat, Barcelona, Spain
| | - S Carrillo-Molina
- Servei de Neurologia, Hospital General de Granollers, Granollers, Barcelona, Spain; Unitat de Psicologia, Hospital General de Granollers, Granollers, Barcelona, Spain
| | - D López-Villegas
- Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain; Centre Emili Mira, Institut de Neuropsiquiatria i Addiccions (INAD), Parc de Salut Mar, Santa Coloma de Gramenet, Barcelona, Spain
| | - M T Abellán-Vidal
- Centre Emili Mira, Institut de Neuropsiquiatria i Addiccions (INAD), Parc de Salut Mar, Santa Coloma de Gramenet, Barcelona, Spain
| | - M I Martínez-Casamitjana
- Centre Emili Mira, Institut de Neuropsiquiatria i Addiccions (INAD), Parc de Salut Mar, Santa Coloma de Gramenet, Barcelona, Spain
| | | | - J Peña-Casanova
- Farmacologia Integrada i Neurociència de Sistemes, Programa de Neurociències, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - J Roquer
- Unitat de Deteriorament Cognitiu i Transtorns del Moviment, Servei de Neurologia, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Hospital del Mar, Barcelona, Spain
| | - A Padrós Fluvià
- Laboratori de Referència de Catalunya, Sant Boi de Llobregat, Barcelona, Spain
| | - V Puente-Périz
- Unitat de Deteriorament Cognitiu i Transtorns del Moviment, Servei de Neurologia, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain; Farmacologia Integrada i Neurociència de Sistemes, Programa de Neurociències, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.
| |
Collapse
|
2
|
Milos T, Vuic B, Balic N, Farkas V, Nedic Erjavec G, Svob Strac D, Nikolac Perkovic M, Pivac N. Cerebrospinal fluid in the differential diagnosis of Alzheimer's disease: an update of the literature. Expert Rev Neurother 2024; 24:1063-1079. [PMID: 39233323 DOI: 10.1080/14737175.2024.2400683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
INTRODUCTION The importance of cerebrospinal fluid (CSF) biomarkers in Alzheimer's disease (AD) diagnosis is rapidly increasing, and there is a growing interest in the use of CSF biomarkers in monitoring the response to therapy, especially in the light of newly available approaches to the therapy of neurodegenerative diseases. AREAS COVERED In this review we discuss the most relevant measures of neurodegeneration that are being used to distinguish patients with AD from healthy controls and individuals with mild cognitive impairment, in order to provide an overview of the latest information available in the scientific literature. We focus on markers related to amyloid processing, markers associated with neurofibrillary tangles, neuroinflammation, neuroaxonal injury and degeneration, synaptic loss and dysfunction, and markers of α-synuclein pathology. EXPERT OPINION In addition to neuropsychological evaluation, core CSF biomarkers (Aβ42, t-tau, and p-tau181) have been recommended for improvement of timely, accurate and differential diagnosis of AD, as well as to assess the risk and rate of disease progression. In addition to the core CSF biomarkers, various other markers related to synaptic dysfunction, neuroinflammation, and glial activation (neurogranin, SNAP-25, Nfl, YKL-40, TREM2) are now investigated and have yet to be validated for future potential clinical use in AD diagnosis.
Collapse
Affiliation(s)
- Tina Milos
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Barbara Vuic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Nikola Balic
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | - Vladimir Farkas
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
| | | | | | | | - Nela Pivac
- Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Krapina, Croatia
| |
Collapse
|
3
|
Cecchetti G, Agosta F, Canu E, Basaia S, Rugarli G, Curti DG, Coraglia F, Cursi M, Spinelli EG, Santangelo R, Caso F, Fanelli GF, Magnani G, Filippi M. Analysis of individual alpha frequency in a large cohort from a tertiary memory center. Eur J Neurol 2024; 31:e16424. [PMID: 39087560 DOI: 10.1111/ene.16424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND AND PURPOSE Precise and timely diagnosis is crucial for the optimal use of emerging disease-modifying treatments for Alzheimer disease (AD). Electroencephalography (EEG), which is noninvasive and cost-effective, can capture neural abnormalities linked to various dementias. This study explores the use of individual alpha frequency (IAF) derived from EEG as a diagnostic and prognostic tool in cognitively impaired patients. METHODS This retrospective study included 375 patients from the tertiary Memory Clinic of IRCCS San Raffaele Hospital, Milan, Italy. Participants underwent clinical and neuropsychological assessments, brain imaging, cerebrospinal fluid biomarker analysis, and resting-state EEG. Patients were categorized by amyloid status, the AT(N) classification system, clinical diagnosis, and mild cognitive impairment (MCI) progression to AD dementia. IAF was calculated and compared among study groups. Receiver operating characteristic (ROC) analysis was used to calculate its discriminative performance. RESULTS IAF was higher in amyloid-negative subjects and varied significantly across AT(N) groups. ROC analysis confirmed IAF's ability to distinguish A-T-N- from the A+T+N+ and A+T-N+ groups. IAF was lower in AD and Lewy body dementia patients compared to MCI and other dementia types, with moderate discriminatory capability. Among A+ MCI patients, IAF was significantly lower in those who converted to AD within 2 years compared to stable MCI patients and predicted time to conversion (p < 0.001, R = 0.38). CONCLUSIONS IAF is a valuable tool for dementia diagnosis and prognosis, correlating with amyloid status and neurodegeneration. It effectively predicts MCI progression to AD, supporting its use in early, targeted interventions in the context of disease-modifying treatments.
Collapse
Affiliation(s)
- Giordano Cecchetti
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Rugarli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Davide G Curti
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | | | - Marco Cursi
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo G Spinelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Roberto Santangelo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Caso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Giuseppe Magnani
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
4
|
Heyer S, Simon M, Doyen M, Mortada A, Roch V, Jeanbert E, Thilly N, Malaplate C, Kearney-Schwartz A, Jonveaux T, Bannay A, Verger A. 18F-FDG PET can effectively rule out conversion to dementia and the presence of CSF biomarker of neurodegeneration: a real-world data analysis. Alzheimers Res Ther 2024; 16:182. [PMID: 39135067 PMCID: PMC11320856 DOI: 10.1186/s13195-024-01535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Precisely defining the delay in onset of dementia is a particular challenge for early diagnosis. Brain [18F] fluoro-2-deoxy-2-D-glucose (18F-FDG) Positron Emission Tomography (PET) is a particularly interesting tool for the early diagnosis of neurodegenerative diseases, through the measurement of the cerebral glucose metabolic rate. There is currently a lack of longitudinal studies under real-life conditions, with sufficient patients, to accurately evaluate the predictive values of brain 18F-FDG PET scans. Here, we aimed to estimate the value of brain 18F-FDG PET for predicting the risk of dementia conversion and the risk of occurrence of a neurodegenerative pathology. METHODS Longitudinal data for a cohort of patients with no diagnosis of dementia at the time of recruitment referred by a tertiary memory clinic for brain 18F-FDG PET were matched with (Prince M, Wimo A, Guerchet Maëlenn, Ali G-C, Wu Y-T et al. World Alzheimer Report 2015. The Global Impact of Dementia: An analysis of prevalence, incidence, cost and trends. [Research Report] Alzheimer's Disease International. 2015. 2015.) data from the French National Health Data System (NHDS), (Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. Alzheimers Dement. 2018;14(4):535-62.) data from the National Alzheimer Bank (NAB), and (Davis M, O`Connell T, Johnson S, Cline S, Merikle E, Martenyi F, et al. Estimating Alzheimer's Disease Progression Rates from Normal Cognition Through Mild Cognitive Impairment and Stages of Dementia. CAR. 2018;15(8):777-88.) lumbar puncture (LP) biomarker data. The criteria for dementia conversion were the designation, within the three years after the brain 18F-FDG PET scan, of a long-term condition for dementia in the NHDS and a dementia stage of cognitive impairment in the NAB. The criterion for the identification of a neurodegenerative disease in the medical records was the determination of LP biomarker levels. RESULTS Among the 403 patients (69.9 ± 11.4 years old, 177 women) from the initial cohort with data matched with the NHDS data, 137 were matched with the NAB data, and 61 were matched with LP biomarker data. Within three years of the scan, a 18F-FDG PET had negative predictive values of 85% for dementia conversion (according to the NHDS and NAB datasets) and 95% for the presence of LP neurodegeneration biomarkers. CONCLUSION A normal brain 18F-FDG PET scan can help rule out the risk of dementia conversion and the presence of cerebrospinal fluid (CSF) biomarker of neurodegeneration early with high certainty, allowing modifications to patient management regimens in the short term. TRIAL REGISTRATION Clinical Trials database (NCT04804722). March 18, 2021. Retrospectively registered.
Collapse
Affiliation(s)
- Sébastien Heyer
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy, F-54000, France
| | - Maïa Simon
- Department of Methodology, Promotion and Investigation, Université de Lorraine, CHRU-Nancy, Nancy, F-54000, France
| | - Matthieu Doyen
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy, F-54000, France
- Université de Lorraine, IADI, INSERM U1254, Nancy, F-54000, France
| | - Ali Mortada
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy, F-54000, France
| | - Véronique Roch
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy, F-54000, France
| | - Elodie Jeanbert
- Department of Methodology, Promotion and Investigation, Université de Lorraine, CHRU-Nancy, Nancy, F-54000, France
| | - Nathalie Thilly
- Department of Methodology, Promotion and Investigation, Université de Lorraine, CHRU-Nancy, Nancy, F-54000, France
| | - Catherine Malaplate
- Department of Biochemistry, Université de Lorraine, CHRU-Nancy, Nancy, F-54000, France
| | - Anna Kearney-Schwartz
- Department of Geriatrics, Université de Lorraine, CHRU-Nancy, Nancy, F-54000, France
- CMRR, University Hospital Nancy, Nancy, F-54000, France
| | - Thérèse Jonveaux
- CMRR, University Hospital Nancy, Nancy, F-54000, France
- Department of Neurology, University Hospital Nancy, Nancy, F-54000, France
| | - Aurélie Bannay
- Medical Assessment and Information Department, Université de Lorraine, CHRU-Nancy, Nancy, 54000, France
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, Université de Lorraine, CHRU Nancy, Nancy, F-54000, France.
- Université de Lorraine, IADI, INSERM U1254, Nancy, F-54000, France.
| |
Collapse
|
5
|
Cotta Ramusino M, Massa F, Festari C, Gandolfo F, Nicolosi V, Orini S, Nobili F, Frisoni GB, Morbelli S, Garibotto V. Diagnostic performance of molecular imaging methods in predicting the progression from mild cognitive impairment to dementia: an updated systematic review. Eur J Nucl Med Mol Imaging 2024; 51:1876-1890. [PMID: 38355740 DOI: 10.1007/s00259-024-06631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017-2022), highlighting methodological shortcomings. METHODS Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy. RESULTS Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer's dementia were 43-100% and 63-94% for [18F]FDG-PET and 64-94% and 48-93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47-100% SE and 71-100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [123I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47-100% SE and 71-100% SP. CONCLUSION Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer's dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.
Collapse
Affiliation(s)
- Matteo Cotta Ramusino
- Unit of Behavior Neurology and Dementia Research Center, IRCCS Mondino Foundation, via Mondino 2, 27100, Pavia, Italy.
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cristina Festari
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Federica Gandolfo
- Department of Geriatric Care, Orthogeriatrics and Rehabilitation, E.O. Galliera Hospital, Genoa, Italy
| | - Valentina Nicolosi
- UOC Neurologia Ospedale Magalini Di Villafranca Di Verona (VR) ULSS 9, Verona, Italy
| | - Stefania Orini
- Alzheimer's Unit-Memory Clinic, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Flavio Nobili
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
- NIMTLab, Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| |
Collapse
|
6
|
Takahashi H, Takami Y, Takeda S, Hayakawa N, Nakajima T, Takeya Y, Matsuo-Hagiyama C, Arisawa A, Rakugi H, Tomiyama N. Imaging Biomarker for Early-Stage Alzheimer Disease: Utility of Hippocampal Histogram Analysis of Diffusion Metrics. AJNR Am J Neuroradiol 2024; 45:320-327. [PMID: 38331963 DOI: 10.3174/ajnr.a8106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/17/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND AND PURPOSE Biomarkers have been required for diagnosing early Alzheimer disease. We assessed the utility of hippocampal diffusion parameters for diagnosing Alzheimer disease pathology in mild cognitive impairment. MATERIALS AND METHODS Sixty-nine patients with mild cognitive impairment underwent both CSF measurement and multi-shell diffusion imaging at 3T. Based on the CSF biomarker level, patients were classified according to the presence (Alzheimer disease group, n = 35) or absence (non-Alzheimer disease group, n = 34) of Alzheimer disease pathology. Neurite orientation dispersion and density imaging and diffusion tensor imaging parametric maps were generated. Two observers independently created the hippocampal region of interest for calculating histogram features. Interobserver correlations were calculated. The statistical significance of intergroup differences was tested by using the Mann-Whitney U test. Logistic regression analyses, using both the clinical scale and the image data, were used to predict intergroup differences, after which group discriminations were performed. RESULTS Most intraclass correlation coefficient values were between 0.59 and 0.91. In the regions of interest of both observers, there were statistically significant intergroup differences for the left-side neurite orientation dispersion and density imaging-derived intracellular volume fraction, right-side diffusion tensor imaging-derived mean diffusivity, left-side diffusion tensor imaging-derived mean diffusivity, axial diffusivity, and radial diffusivity (P < .05). Logistic regression models revealed that diffusion parameters contributed the most to discriminating between the groups. The areas under the receiver operating characteristic curve for the regions of interest of observers A/B were 0.69/0.68, 0.69/0.68, 0.73/0.68, 0.71/0.68, and 0.68/0.68 for the left-side intracellular volume fraction (mean), right-side mean diffusivity (mean), left-side mean diffusivity (10th percentile), axial diffusivity (10th percentile), and radial diffusivity (mean). CONCLUSIONS Hippocampal diffusion parameters might be useful for the early diagnosis of Alzheimer disease.
Collapse
Affiliation(s)
- Hiroto Takahashi
- From the Department of Diagnostic and Interventional Radiology (H.T., C.M.-H., A.A., N.T.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine (Y. Takami, N.H., T.N., Y. Takeya, H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Shuko Takeda
- Department of Clinical Gene Therapy, Graduate School of Medicine (S.T.), Osaka University, Suita, Osaka, Japan
- Osaka Psychiatric Research Center (S.T.), Osaka Psychiatric Medical Center, Hirakata, Osaka, Japan
| | - Naoki Hayakawa
- Department of Geriatric and General Medicine (Y. Takami, N.H., T.N., Y. Takeya, H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsuneo Nakajima
- Department of Geriatric and General Medicine (Y. Takami, N.H., T.N., Y. Takeya, H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yasushi Takeya
- Department of Geriatric and General Medicine (Y. Takami, N.H., T.N., Y. Takeya, H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Chisato Matsuo-Hagiyama
- From the Department of Diagnostic and Interventional Radiology (H.T., C.M.-H., A.A., N.T.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Atsuko Arisawa
- From the Department of Diagnostic and Interventional Radiology (H.T., C.M.-H., A.A., N.T.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine (Y. Takami, N.H., T.N., Y. Takeya, H.R.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Noriyuki Tomiyama
- From the Department of Diagnostic and Interventional Radiology (H.T., C.M.-H., A.A., N.T.), Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
7
|
Muir RT, Ismail Z, Black SE, Smith EE. Comparative methods for quantifying plasma biomarkers in Alzheimer's disease: Implications for the next frontier in cerebral amyloid angiopathy diagnostics. Alzheimers Dement 2024; 20:1436-1458. [PMID: 37908054 PMCID: PMC10916950 DOI: 10.1002/alz.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 11/02/2023]
Abstract
Plasma amyloid beta (Aβ) and tau are emerging as accessible biomarkers for Alzheimer's disease (AD). However, many assays exist with variable test performances, highlighting the need for a comparative assessment to identify the most valid assays for future use in AD and to apply to other settings in which the same biomarkers may be useful, namely, cerebral amyloid angiopathy (CAA). CAA is a progressive cerebrovascular disease characterized by deposition of Aβ40 and Aβ42 in cortical and leptomeningeal vessels. Novel immunotherapies for AD can induce amyloid-related imaging abnormalities resembling CAA-related inflammation. Few studies have evaluated plasma biomarkers in CAA. Identifying a CAA signature could facilitate diagnosis, prognosis, and a safer selection of patients with AD for emerging immunotherapies. This review evaluates studies that compare the diagnostic test performance of plasma biomarker techniques in AD and cerebrovascular and plasma biomarker profiles of CAA; it also discusses novel hypotheses and future avenues for plasma biomarker research in CAA.
Collapse
Affiliation(s)
- Ryan T. Muir
- Calgary Stroke ProgramDepartment of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Zahinoor Ismail
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Department of PsychiatryUniversity of CalgaryCalgaryAlbertaCanada
| | - Sandra E. Black
- Division of NeurologyDepartment of MedicineSunnybrook Health Sciences CentreTorontoOntarioCanada
- LC Campbell Cognitive Neurology Research UnitDr Sandra Black Centre for Brain Resilience and Recovery, and Hurvitz Brain Sciences ProgramSunnybrook Research InstituteUniversity of TorontoTorontoOntarioCanada
| | - Eric E. Smith
- Calgary Stroke ProgramDepartment of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Department of Community Health SciencesUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| |
Collapse
|
8
|
Huang YH, Chen WY, Liu YH, Li TY, Lin CP, Cheong PL, Wang YM, Jeng JS, Sun CW, Wu CC. Mild cognitive impairment estimation based on functional near-infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300251. [PMID: 37697821 DOI: 10.1002/jbio.202300251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/13/2023]
Abstract
Patients with mild cognitive impairment (MCI) are at a high risk of developing future dementia. However, early identification and active intervention could potentially reduce its morbidity and the incidence of dementia. Functional near-infrared spectroscopy (fNIRS) has been proposed as a noninvasive modality for detecting oxygenation changes in the time-varying hemodynamics of the prefrontal cortex. This study sought to provide an effective method for detecting patients with MCI using fNIRS and the Wisconsin card sorting test (WCST) to evaluate changes in blood oxygenation. The results revealed that all groups with a lower mini-mental state examination grade had a higher increase in HHb concentration during a modified WCST (MCST). The increase in the change in oxygenated hemoglobin concentration in the stroke group was smaller than that in the normal group due to weak cerebrovascular reactivity.
Collapse
Affiliation(s)
- Yi-Hua Huang
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Yu Chen
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yao-Hong Liu
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ting-Ying Li
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ching-Po Lin
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pou-Leng Cheong
- Department of Pediatrics, National Taiwan University Hospital, Hsinchu, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Yi-Min Wang
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Jiann-Shing Jeng
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Wei Sun
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Chau-Chung Wu
- Department of Internal Medicine (Cardiology Section), National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Medical Education and Bioethics, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Caminiti SP, De Francesco S, Tondo G, Galli A, Redolfi A, Perani D. FDG-PET markers of heterogeneity and different risk of progression in amnestic MCI. Alzheimers Dement 2024; 20:159-172. [PMID: 37505996 PMCID: PMC10962797 DOI: 10.1002/alz.13385] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/19/2023] [Accepted: 06/12/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION Amnestic mild cognitive impairment (aMCI) is emerging as a heterogeneous condition. METHODS We looked at a cohort of N = 207 aMCI subjects, with baseline fluorodeoxyglucose positron emission tomography (FDG-PET), T1 magnetic resonance imaging, cerebrospinal fluid (CSF), apolipoprotein E (APOE), and neuropsychological assessment. An algorithm based on FDG-PET hypometabolism classified each subject into subtypes, then compared biomarker measures and clinical progression. RESULTS Three subtypes emerged: hippocampal sparing-cortical hypometabolism, associated with younger age and the highest level of Alzheimer's disease (AD)-CSF pathology; hippocampal/cortical hypometabolism, associated with a high percentage of APOE ε3/ε4 or ε4/ε4 carriers; medial-temporal hypometabolism, characterized by older age, the lowest AD-CSF pathology, the most severe hippocampal atrophy, and a benign course. Within the whole cohort, the severity of temporo-parietal hypometabolism, correlated with AD-CSF pathology and marked the rate of progression of cognitive decline. DISCUSSION FDG-PET can distinguish clinically comparable aMCI at single-subject level with different risk of progression to AD dementia or stability. The obtained results can be useful for the optimization of pharmacological trials and automated-classification models. HIGHLIGHTS Algorithm based on FDG-PET hypometabolism demonstrates distinct subtypes across aMCI; Three different subtypes show heterogeneous biological profiles and risk of progression; The cortical hypometabolism is associated with AD pathology and cognitive decline; MTL hypometabolism is associated with the lowest conversion rate and CSF-AD pathology.
Collapse
Affiliation(s)
- Silvia Paola Caminiti
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Silvia De Francesco
- Laboratory of NeuroinformaticsIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Giacomo Tondo
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Alice Galli
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | - Alberto Redolfi
- Laboratory of NeuroinformaticsIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
| | - Daniela Perani
- Vita‐Salute San Raffaele UniversityMilanItaly
- Division of NeuroscienceIRCCS San Raffaele Scientific InstituteMilanItaly
| | | |
Collapse
|
10
|
Méndez-Barrio C, Medina-Rodríguez M, Mendoza-Vázquez G, García-Roldán E, Rodrigo-Herrero S, Luque-Tirado A, Almodóvar-Sierra Á, Franco-Macías E. Prodromal Alzheimer's Disease: Global Cognition, Cue Efficiency, and Cerebrospinal Fluid Neurofilament Light Values Predict Short-Term Conversion to Dementia. J Alzheimers Dis 2024; 101:877-887. [PMID: 39302377 DOI: 10.3233/jad-240689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Predicting which patients with prodromal AD (pAD) will imminently convert to dementia may be paramount in a memory clinical setting, especially with potential disease-modifying therapies on the horizon. Objective To explore a practical tool for this prediction, combining cognitive tests and cerebrospinal fluid (CSF) biomarkers. Methods We designed a longitudinal prospective, observational, and multicenter study, enrolling patients with pAD. Inclusion criteria comprised memory complaints, Mini-Mental State Examination (MMSE) score of≥22, memory impairment as indicated by the Free and Cued Selective Reminding Test with Immediate Recall (FCSRT + IR) and/or TMA-93, Clinical Dementia Rating-Global Score (CDR-GS) of 0.5, and positive CSF Aβ42/Aβ40 ratio (<0.095, Euroimmun). The primary outcome was the conversion to dementia (CDR-GS≥1) within the first year of follow-up, referred to as "short-term conversion". A multiple regression logistic model was adopted to design the "Predict Short-Term Conversion" (PSTC) score. Results Between 2020 and 2022, 83 patients were recruited. The median age was 74, with 49.4% being women. Twenty-five (30.1%) patients were classified as short-term converters. The PSTC score incorporated baseline scores on MMSE ( ≤24 = 3, >24 = 0) and FCSRT + IR Total Recall ( ≤14 = 4, >14 = 0), and CSF neurofilament light chains (NfLs) concentrations (β=0.001299). The PSTC score demonstrated an area under the curve of 0.78 (95% CI: 0.67-0.90, p < 0.001), with a cutoff value of 5.14 presenting 76% sensitivity and 80% specificity. Conclusions The PSTC score, comprising two relatively brief cognitive test scores and NfLs CSF concentrations, could be useful for predicting short-term converters among patients diagnosed with pAD.
Collapse
Affiliation(s)
- Carlota Méndez-Barrio
- Department of Neurology, Memory Unit, Juan Ramón Jiménez University Hospital, Huelva, Spain
| | - Manuel Medina-Rodríguez
- Department of Neurology, University Hospital Virgen del Rocío, Seville, Spain
- Biomedicine Institute of Seville IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, Seville, Spain
| | | | - Ernesto García-Roldán
- Biomedicine Institute of Seville IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, Seville, Spain
- Department of Neurology, Memory Unit, Virgen del Rocío University Hospital, Seville, Spain
| | - Silvia Rodrigo-Herrero
- Department of Neurology, Memory Unit, Juan Ramón Jiménez University Hospital, Huelva, Spain
| | - Andrea Luque-Tirado
- Department of Neurology, Memory Unit, Virgen del Rocío University Hospital, Seville, Spain
| | | | - Emilio Franco-Macías
- Biomedicine Institute of Seville IBiS, University Hospital Virgen del Rocio/CSIC/University of Seville, Seville, Spain
- Department of Neurology, Memory Unit, Virgen del Rocío University Hospital, Seville, Spain
| |
Collapse
|
11
|
Li J, Yang M, Wei R, Cao Y, Fan X, Zhang S. The Predictive Ability of Blood Neurofilament Light Chain in Predicting Cognitive Decline in the Alzheimer's Disease Continuum: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2024; 97:1589-1620. [PMID: 38306045 DOI: 10.3233/jad-231080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease with insidious onset. Identifying candidate predictors to forecast AD dementia risk before disease onset is crucial for early diagnosis and treatment. Objective We aimed to assess the predictive ability of blood neurofilament light (NfL) chain in anticipating cognitive decline in the AD continuum. Methods We systematically searched PubMed, Web of Science, and Embase from inception until April 7, 2023. Longitudinal observational studies examining the association between baseline blood NfL and cognitive decline or clinical disease conversion were included based on inclusion/exclusion criteria. The final effect size was represented by adjusted hazard ratios (HR) or standardized beta (s.β) coefficients with a 95% confidence interval (CI). Results A total of 2,862 articles were identified, and 26 studies were included in this meta-analysis. The results indicated that baseline blood NfL could predict cognitive decline, with MMSE [s.β= -0.17, 95% CI (-0.26, -0.07)]; PACC [s.β= -0.09, 95% CI (-0.16, -0.03)]; ADAS-cog [s.β= 0.21, 95% CI (0.13, 0.29)]; CDR-SOB [s.β= 0.27, 95% CI (0.03, 0.50)]; Global cognitive composite [s.β= -0.05, 95% CI (-0.08, -0.01)]; Memory subdomain [s.β= -0.06, 95% CI (-0.09, -0.03)]; Language subdomain [s.β= -0.07, 95% CI (-0.10, -0.05)]; Executive function subdomain [s.β= -0.02, 95% CI (-0.03, -0.01)]; Visuospatial subdomain [s.β= -0.06, 95% CI (-0.08, -0.04)]. Additionally, baseline blood NfL could predict disease progression (conversion from CU/SCD/MCI to MCI/AD) in the AD continuum [Adjust HR = 1.32, 95% CI (1.12, 1.56)]. Conclusions Baseline blood NfL demonstrated predictive capabilities for global cognition and its memory, language, executive function, visuospatial subdomains decline in the AD continuum. Moreover, it exhibited the potential to predict disease progression in non-AD dementia participants.
Collapse
Affiliation(s)
- Jianhong Li
- Fujian Key Laboratory of Aptamers Technology, 900TH hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou, Fujian, China
| | - Minguang Yang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Renli Wei
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Yue Cao
- Fujian Key Laboratory of Aptamers Technology, 900TH hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou, Fujian, China
| | - Xu Fan
- The Institute of Rehabilitation Industry, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, 900TH hospital of Joint Logistics Support Force, People's Liberation Army (PLA), Fuzhou, Fujian, China
| |
Collapse
|
12
|
Blanco K, Salcidua S, Orellana P, Sauma-Pérez T, León T, Steinmetz LCL, Ibañez A, Duran-Aniotz C, de la Cruz R. Systematic review: fluid biomarkers and machine learning methods to improve the diagnosis from mild cognitive impairment to Alzheimer's disease. Alzheimers Res Ther 2023; 15:176. [PMID: 37838690 PMCID: PMC10576366 DOI: 10.1186/s13195-023-01304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/15/2023] [Indexed: 10/16/2023]
Abstract
Mild cognitive impairment (MCI) is often considered an early stage of dementia, with estimated rates of progression to dementia up to 80-90% after approximately 6 years from the initial diagnosis. Diagnosis of cognitive impairment in dementia is typically based on clinical evaluation, neuropsychological assessments, cerebrospinal fluid (CSF) biomarkers, and neuroimaging. The main goal of diagnosing MCI is to determine its cause, particularly whether it is due to Alzheimer's disease (AD). However, only a limited percentage of the population has access to etiological confirmation, which has led to the emergence of peripheral fluid biomarkers as a diagnostic tool for dementias, including MCI due to AD. Recent advances in biofluid assays have enabled the use of sophisticated statistical models and multimodal machine learning (ML) algorithms for the diagnosis of MCI based on fluid biomarkers from CSF, peripheral blood, and saliva, among others. This approach has shown promise for identifying specific causes of MCI, including AD. After a PRISMA analysis, 29 articles revealed a trend towards using multimodal algorithms that incorporate additional biomarkers such as neuroimaging, neuropsychological tests, and genetic information. Particularly, neuroimaging is commonly used in conjunction with fluid biomarkers for both cross-sectional and longitudinal studies. Our systematic review suggests that cost-effective longitudinal multimodal monitoring data, representative of diverse cultural populations and utilizing white-box ML algorithms, could be a valuable contribution to the development of diagnostic models for AD due to MCI. Clinical assessment and biomarkers, together with ML techniques, could prove pivotal in improving diagnostic tools for MCI due to AD.
Collapse
Affiliation(s)
- Kevin Blanco
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Diagonal Las Torres 2640, Peñalolén, Santiago, Chile
| | - Stefanny Salcidua
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal Las Torres 2700, Building D, Peñalolén, Santiago, Chile
| | - Paulina Orellana
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Diagonal Las Torres 2640, Peñalolén, Santiago, Chile
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Tania Sauma-Pérez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Tomás León
- Global Brain Health Institute, Trinity College, Dublin, Ireland
- Memory and Neuropsychiatric Center (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Lorena Cecilia López Steinmetz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Technische Universität Berlin, Berlin, Deutschland
- Instituto de Investigaciones Psicológicas (IIPsi), Universidad Nacional de Córdoba (UNC) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Agustín Ibañez
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
- Global Brain Health Institute, Trinity College, Dublin, Ireland
- Global Brain Health Institute, University of California San Francisco (UCSF), San Francisco, CA, USA
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés, & National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Claudia Duran-Aniotz
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Diagonal Las Torres 2640, Peñalolén, Santiago, Chile.
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
| | - Rolando de la Cruz
- Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile.
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Diagonal Las Torres 2700, Building D, Peñalolén, Santiago, Chile.
- Data Observatory Foundation, ANID Technology Center No. DO210001, Santiago, Chile.
| |
Collapse
|
13
|
Fu X, Qin M, Liu X, Cheng L, Zhang L, Zhang X, Lei Y, Zhou Q, Sun P, Lin L, Su Y, Wang J. Decreased GABA levels of the anterior and posterior cingulate cortex are associated with executive dysfunction in mild cognitive impairment. Front Neurosci 2023; 17:1220122. [PMID: 37638325 PMCID: PMC10450953 DOI: 10.3389/fnins.2023.1220122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Background and purpose Executive function impairment, a slight but noticeable cognitive deficit in mild cognitive impairment (MCI) patients, is influenced by gamma-aminobutyric acid (GABA) levels. Reduced cognitive function is accompanied by thinning of the cerebral cortex, which has higher GABA levels than white matter. However, the relationships among GABA levels, cortical thickness, and executive function in MCI patients have not yet been elucidated. We investigated the relationships among GABA levels, cortical thickness, and executive function in MCI patients. Methods In this study, a total of 36 MCI patients and 36 sex-, age-, and education-matched healthy controls (HC) were recruited. But 33 MCI patients and 35 HC were included because of head motion or poor data quality for three MCI patients and one HC. The levels of gamma-aminobutyric acid plus relative to creatine (GABA+/Cr) and glutamate-glutamine relative to creatine (Glx/Cr) in the anterior cingulate cortex (ACC) and posterior cingulate cortex (PCC) were measured using the Meshcher-Garwood point resolved spectroscopy (MEGA-PRESS) sequence. Metabolite ratios, cortical thickness, and executive function and their interrelationships were determined in the MCI and HC groups. Results Patients with MCI showed lower GABA+/Cr levels in the ACC and PCC. Combined levels of GABA+ and Glx in the ACC and GABA+ in the PCC showed good diagnostic efficacy for MCI (AUC: 0.82). But no differences in cortical thickness were found between the two groups. In the MCI group, lower GABA+/Cr level was correlated to worse performance on the digit span test backward, and the shape trail test-B. The cortical thickness was not associated with GABA+ levels and executive function in patients. Conclusion These results implied that decreased GABA levels in the ACC and PCC had a critical role in the early diagnosis of impaired executive function of MCI. Therefore, GABA in the ACC and PCC could be a potential diagnostic marker of the executive function decline of MCI.
Collapse
Affiliation(s)
- Xiaona Fu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mengting Qin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoming Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lan Cheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lan Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Xinli Zhang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yu Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qidong Zhou
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Sun
- Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Liangjie Lin
- Clinical & Technical Solutions, Philips Healthcare, Beijing, China
| | - Ying Su
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| |
Collapse
|
14
|
Ismail Z, Leon R, Creese B, Ballard C, Robert P, Smith EE. Optimizing detection of Alzheimer's disease in mild cognitive impairment: a 4-year biomarker study of mild behavioral impairment in ADNI and MEMENTO. Mol Neurodegener 2023; 18:50. [PMID: 37516848 PMCID: PMC10386685 DOI: 10.1186/s13024-023-00631-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/05/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND Disease-modifying drug use necessitates better Alzheimer disease (AD) detection. Mild cognitive impairment (MCI) leverages cognitive decline to identify the risk group; similarly, mild behavioral impairment (MBI) leverages behavioral change. Adding MBI to MCI improves dementia prognostication over conventional approaches of incorporating neuropsychiatric symptoms (NPS). Here, to determine if adding MBI would better identify AD, we interrogated associations between MBI in MCI, and cerebrospinal fluid biomarkers [β-amyloid (Aβ), phosphorylated-tau (p-tau), and total-tau (tau)-ATN], cross-sectionally and longitudinally. METHODS Data were from two independent referral-based cohorts, ADNI (mean[SD] follow-up 3.14[1.07] years) and MEMENTO (4.25[1.40] years), collected 2003-2021. Exposure was based on three-group stratification: 1) NPS meeting MBI criteria; 2) conventionally measured NPS (NPSnotMBI); and 3) noNPS. Cohorts were analyzed separately for: 1) cross-sectional associations between NPS status and ATN biomarkers (linear regressions); 2) 4-year longitudinal repeated-measures associations of MBI and NPSnotMBI with ATN biomarkers (hierarchical linear mixed-effects models-LMEs); and 3) rates of incident dementia (Cox proportional hazards regressions). RESULTS Of 510 MCI participants, 352 were from ADNI (43.5% females; mean [SD] age, 71.68 [7.40] years), and 158 from MEMENTO (46.2% females; 68.98 [8.18] years). In ADNI, MBI was associated with lower Aβ42 (standardized β [95%CI], -5.52% [-10.48-(-0.29)%]; p = 0.039), and Aβ42/40 (p = 0.01); higher p-tau (9.67% [3.96-15.70%]; p = 0.001), t-tau (7.71% [2.70-12.97%]; p = 0.002), p-tau/Aβ42 (p < 0.001), and t-tau/Aβ42 (p = 0.001). NPSnotMBI was associated only with lower Aβ42/40 (p = 0.045). LMEs revealed a similar 4-year AD-specific biomarker profile for MBI, with NPSnotMBI associated only with higher t-tau. MBI had a greater rate of incident dementia (HR [95%CI], 3.50 [1.99-6.17; p < 0.001). NPSnotMBI did not differ from noNPS (HR 0.96 [0.49-1.89]; p = 0.916). In MEMENTO, MBI demonstrated a similar magnitude and direction of effect for all biomarkers, but with a greater reduction in Aβ40. HR for incident dementia was 3.93 (p = 0.004) in MBI, and 1.83 (p = 0.266) in NPSnotMBI. Of MBI progressors to dementia, 81% developed AD dementia. CONCLUSIONS These findings support a biological basis for NPS that meet MBI criteria, the continued inclusion of MBI in NIA-AA ATN clinical staging, and the utility of MBI criteria to improve identification of patients for enrollment in disease-modifying drug trials or for clinical care.
Collapse
Affiliation(s)
- Zahinoor Ismail
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada.
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada.
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada.
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada.
- O'Brien Institute for Public Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Dr NW, Calgary, AB, T2N 4Z6, Canada.
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, B3183, Exeter, EX1 2HZ, UK.
| | - Rebeca Leon
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Byron Creese
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, B3183, Exeter, EX1 2HZ, UK
| | - Clive Ballard
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, B3183, Exeter, EX1 2HZ, UK
| | | | - Eric E Smith
- Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, T2N 4N1, Canada
| |
Collapse
|
15
|
Filippi M, Cecchetti G, Cagnin A, Marra C, Nobili F, Parnetti L, Agosta F. Redefinition of dementia care in Italy in the era of amyloid-lowering agents for the treatment of Alzheimer's disease: an expert opinion and practical guideline. J Neurol 2023; 270:3159-3170. [PMID: 36892630 PMCID: PMC10188416 DOI: 10.1007/s00415-023-11642-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023]
Abstract
No disease-modifying therapies are currently available for Alzheimer's disease (AD) in Europe. Current evidence from clinical trials testing anti-beta amyloid (Aβ) monoclonal antibodies (mAbs) in patients with early AD, though, suggests a likely marketing authorization in the next years. Since the implementation of disease-modifying therapies for AD in the clinical practice will evidently require a huge change of dementia care in all countries, a group of prominent AD clinical experts in Italy met to discuss patients' selection and management strategies. The current diagnostic-therapeutic standard of care in Italy was taken as the starting point. The prescription of new therapies cannot ignore the definition of a biological diagnosis through the assessment of both amyloid- and tau-related biomarkers. The high risk/benefit ratio of anti-Aβ immunotherapies, moreover, needs a highly specialized diagnostic work-up and a thorough exclusion criteria assessment, which should be provided by a neurology specialist. The Expert Panel also suggests a reorganization of the Centers for dementia and cognitive decline in Italy into 3 levels of increasing complexity: community center, first- and second-level center. Tasks and requirements for each level were defined. Finally, specific characteristics of a center deputed to prescribe anti-Aβ mAbs were discussed.
Collapse
Affiliation(s)
- Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy.
| | - Giordano Cecchetti
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
| | - Annachiara Cagnin
- Neurology Unit, Department of Neuroscience, University of Padova, Padua, Italy
- Padova Neuroscience Center (PNC), University of Padova, Padua, Italy
| | - Camillo Marra
- Memory Clinic, IRCCS Policlinico Gemelli, Rome, Italy
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Flavio Nobili
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Neuroscience (DINOGMI), University of Genova, Genoa, Italy
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Section of Neurology, Lab of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina, 60, 20132, Milan, Italy
| |
Collapse
|
16
|
Ren P, Ding W, Li S, Liu G, Luo M, Zhou W, Cheng R, Li Y, Wang P, Li Z, Yao L, Jiang Q, Liang X. Regional transcriptional vulnerability to basal forebrain functional dysconnectivity in mild cognitive impairment patients. Neurobiol Dis 2023; 177:105983. [PMID: 36586468 DOI: 10.1016/j.nbd.2022.105983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/07/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Nucleus basalis of Meynert (NbM), one of the earliest targets of Alzheimer's disease (AD), may act as a seed for pathological spreading to its connected regions. However, the underlying basis of regional vulnerability to NbM dysconnectivity remains unclear. NbM functional dysconnectivity was assessed using resting-state fMRI data of health controls and mild cognitive impairment (MCI) patients from the Alzheimer's disease Neuroimaging Initiative (ADNI2/GO phase). Transcriptional correlates of NbM dysconnectivity was explored by leveraging public intrinsic and differential post-mortem brain-wide gene expression datasets from Allen Human Brain Atlas (AHBA) and Mount Sinai Brain Bank (MSBB). By constructing an individual-level tissue-specific gene set risk score (TGRS), we evaluated the contribution of NbM dysconnectivity-correlated gene sets to change rate of cerebral spinal fluid (CSF) biomarkers during preclinical stage of AD, as well as to MCI onset age. An independent cohort of health controls and MCI patients from ADNI3 was used to validate our main findings. Between-group comparison revealed significant connectivity reduction between the right NbM and right middle temporal gyrus in MCI. This regional vulnerability to NbM dysconnectivity correlated with intrinsic expression of genes enriched in protein and immune functions, as well as with differential expression of genes enriched in cholinergic receptors, immune, vascular and energy metabolism functions. TGRS of these NbM dysconnectivity-correlated gene sets are associated with longitudinal amyloid-beta change at preclinical stages of AD, and contributed to MCI onset age independent of traditional AD risks. Our findings revealed the transcriptional vulnerability to NbM dysconnectivity and their crucial role in explaining preclinical amyloid-beta change and MCI onset age, which offer new insights into the early AD pathology and encourage more investigation and clinical trials targeting NbM.
Collapse
Affiliation(s)
- Peng Ren
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001, China
| | - Wencai Ding
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Siyang Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001, China
| | - Guiyou Liu
- Beijing Institute for Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100069, China; Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Zhipeng Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001, China
| | - Lifen Yao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; Key Laboratory of Biological Big Data (Harbin Institute of Technology), Ministry of Education, Harbin 150001, China.
| | - Xia Liang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; Laboratory for Space Environment and Physical Science, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
17
|
Puig-Pijoan A, García-Escobar G, Fernández-Lebrero A, Manero Borràs R, Sánchez-Benavides G, Navalpotro-Gómez I, Cascales Lahoz D, Suárez-Calvet M, Grau-Rivera O, Boltes Alandí A, Pont-Sunyer M, Ortiz-Gil J, Carrillo-Molina S, López-Villegas D, Abellán-Vidal M, Martínez-Casamitjana M, Hernández-Sánchez J, Peña-Casanova J, Roquer J, Padrós Fluvià A, Puente-Périz V. Estudio CORCOBIA: determinación de puntos de corte de biomarcadores de enfermedad de Alzheimer en LCR en una cohorte clínica. Neurologia 2022. [DOI: 10.1016/j.nrl.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
18
|
Ma Y, Brettschneider J, Collingwood JF. A Systematic Review and Meta-Analysis of Cerebrospinal Fluid Amyloid and Tau Levels Identifies Mild Cognitive Impairment Patients Progressing to Alzheimer's Disease. Biomedicines 2022; 10:1713. [PMID: 35885018 PMCID: PMC9313367 DOI: 10.3390/biomedicines10071713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Reported levels of amyloid-beta and tau in human cerebrospinal fluid (CSF) were evaluated to discover if these biochemical markers can predict the transition from Mild Cognitive Impairment (MCI) to Alzheimer’s disease (AD). A systematic review of the literature in PubMed and Web of Science (April 2021) was performed by a single researcher to identify studies reporting immunologically-based (xMAP or ELISA) measures of CSF analytes Aβ(1-42) and/or P-tau and/or T-tau in clinical studies with at least two timepoints and a statement of diagnostic criteria. Of 1137 screened publications, 22 met the inclusion criteria for CSF Aβ(1-42) measures, 20 studies included T-tau, and 17 included P-tau. Six meta-analyses were conducted to compare the analytes for healthy controls (HC) versus progressive MCI (MCI_AD) and for non-progressive MCI (Stable_MCI) versus MCI_AD; effect sizes were determined using random effects models. The heterogeneity of effect sizes across studies was confirmed with very high significance (p < 0.0001) for all meta-analyses except HC versus MCI_AD T-tau (p < 0.05) and P-tau (non-significant). Standard mean difference (SMD) was highly significant (p < 0.0001) for all comparisons (Stable_MCI versus MCI_AD: SMD [95%-CI] Aβ(1-42) = 1.19 [0.96,1.42]; T-tau = −1.03 [−1.24,−0.82]; P-tau = −1.03 [−1.47,−0.59]; HC versus MCI_AD: SMD Aβ(1-42) = 1.73 [1.39,2.07]; T-tau = −1.13 [−1.33,−0.93]; P-tau = −1.10 [−1.23,−0.96]). The follow-up interval in longitudinal evaluations was a critical factor in clinical study design, and the Aβ(1−42)/P-tau ratio most robustly differentiated progressive from non-progressive MCI. The value of amyloid-beta and tau as markers of patient outcome are supported by these findings.
Collapse
Affiliation(s)
- Yunxing Ma
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK;
| | | | | |
Collapse
|
19
|
Stoccoro A, Baldacci F, Ceravolo R, Giampietri L, Tognoni G, Siciliano G, Migliore L, Coppedè F. Increase in Mitochondrial D-Loop Region Methylation Levels in Mild Cognitive Impairment Individuals. Int J Mol Sci 2022; 23:ijms23105393. [PMID: 35628202 PMCID: PMC9142993 DOI: 10.3390/ijms23105393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 12/25/2022] Open
Abstract
Methylation levels of the mitochondrial displacement loop (D-loop) region have been reported to be altered in the brain and blood of Alzheimer’s disease (AD) patients. Moreover, a dynamic D-loop methylation pattern was observed in the brain of transgenic AD mice along with disease progression. However, investigations on the blood cells of AD patients in the prodromal phases of the disease have not been performed so far. The aim of this study was to analyze D-loop methylation levels by means of the MS-HRM technique in the peripheral blood cells of 14 mild cognitive impairment (MCI) patients, 18 early stage AD patients, 70 advanced stage AD patients, and 105 healthy control subjects. We found higher D-loop methylation levels in MCI patients than in control subjects and AD patients. Moreover, higher D-loop methylation levels were observed in control subjects than in AD patients in advanced stages of the disease, but not in those at early stages. The present pilot study shows that peripheral D-loop methylation levels differ in patients at different stages of AD pathology, suggesting that further studies deserve to be performed in order to validate the usefulness of D-loop methylation analysis as a peripheral biomarker for the early detection of AD.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Correspondence: (A.S.); (F.C.); Tel.: +39-0502-218549 (A.S.); +39-0502-218544 (F.C.)
| | - Filippo Baldacci
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.B.); (R.C.); (L.G.); (G.T.); (G.S.)
| | - Roberto Ceravolo
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.B.); (R.C.); (L.G.); (G.T.); (G.S.)
| | - Linda Giampietri
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.B.); (R.C.); (L.G.); (G.T.); (G.S.)
| | - Gloria Tognoni
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.B.); (R.C.); (L.G.); (G.T.); (G.S.)
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (F.B.); (R.C.); (L.G.); (G.T.); (G.S.)
| | - Lucia Migliore
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Correspondence: (A.S.); (F.C.); Tel.: +39-0502-218549 (A.S.); +39-0502-218544 (F.C.)
| |
Collapse
|
20
|
Pichet Binette A, Palmqvist S, Bali D, Farrar G, Buckley CJ, Wolk DA, Zetterberg H, Blennow K, Janelidze S, Hansson O. Combining plasma phospho-tau and accessible measures to evaluate progression to Alzheimer's dementia in mild cognitive impairment patients. Alzheimers Res Ther 2022; 14:46. [PMID: 35351181 PMCID: PMC8966264 DOI: 10.1186/s13195-022-00990-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Up to now, there are no clinically available minimally invasive biomarkers to accurately identify mild cognitive impairment (MCI) patients who are at greater risk to progress to Alzheimer's disease (AD) dementia. The recent advent of blood-based markers opens the door for more accessible biomarkers. We aimed to identify which combinations of AD related plasma biomarkers and other easily accessible assessments best predict progression to AD dementia in patients with mild cognitive impairment (MCI). METHODS We included patients with amnestic MCI (n = 110) followed prospectively over 3 years to assess clinical status. Baseline plasma biomarkers (amyloid-β 42/40, phosphorylated tau217 [p-tau217], neurofilament light and glial fibrillary acidic protein), hippocampal volume, APOE genotype, and cognitive tests were available. Logistic regressions with conversion to amyloid-positive AD dementia within 3 years as outcome was used to evaluate the performance of different biomarkers measured at baseline, used alone or in combination. The first analyses included only the plasma biomarkers to determine the ones most related to AD dementia conversion. Second, hippocampal volume, APOE genotype and a brief cognitive composite score (mPACC) were combined with the best plasma biomarker. RESULTS Of all plasma biomarker combinations, p-tau217 alone had the best performance for discriminating progression to AD dementia vs all other combinations (AUC 0.84, 95% CI 0.75-0.93). Next, combining p-tau217 with hippocampal volume, cognition, and APOE genotype provided the best discrimination between MCI progressors vs. non-progressors (AUC 0.89, 0.82-0.95). Across the few best models combining different markers, p-tau217 and cognition were consistently the main contributors. The most parsimonious model including p-tau217 and cognition had a similar model fit, but a slightly lower AUC (0.87, 0.79-0.95, p = 0.07). CONCLUSION We identified that combining plasma p-tau217 and a brief cognitive composite score was strongly related to greater risk of progression to AD dementia in MCI patients, suggesting that these measures could be key components of future prognostic algorithms for early AD. TRIAL REGISTRATION NCT01028053 , registered December 9, 2009.
Collapse
Affiliation(s)
- Alexa Pichet Binette
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Sebastian Palmqvist
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, SE-20502, Malmö, Sweden
| | - Divya Bali
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | | | | | - David A Wolk
- Department of Neurology, Penn Memory Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Shorena Janelidze
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, SE-20502, Malmö, Sweden.
| |
Collapse
|
21
|
Ren R, Qi J, Lin S, Liu X, Yin P, Wang Z, Tang R, Wang J, Huang Q, Li J, Xie X, Hu Y, Cui S, Zhu Y, Yu X, Wang P, Zhu Y, Wang Y, Huang Y, Hu Y, Wang Y, Li C, Zhou M, Wang G. The China Alzheimer Report 2022. Gen Psychiatr 2022; 35:e100751. [PMID: 35372787 PMCID: PMC8919463 DOI: 10.1136/gpsych-2022-100751] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 01/22/2023] Open
Abstract
China’s population has rapidly aged over the recent decades of social and economic development as neurodegenerative disorders have proliferated, especially Alzheimer’s disease (AD) and related dementias (ADRD). AD’s incidence rate, morbidity, and mortality have steadily increased to make it presently the fifth leading cause of death among urban and rural residents in China and magnify the resulting financial burdens on individuals, families and society. The ‘Healthy China Action’ plan of 2019–2030 promotes the transition from disease treatment to health maintenance for this expanding population with ADRD. This report describes related epidemiological trends, evaluates the economic burden of the disease, outlines current clinical diagnosis and treatment status and delineates existing available public health resources. More specifically, it examines the public health impact of ADRD, including prevalence, mortality, costs, usage of care, and the overall effect on caregivers and society. In addition, this special report presents technical guidance and supports for the prevention and treatment of AD, provides expertise to guide relevant governmental healthcare policy development and suggests an information platform for international exchange and cooperation.
Collapse
Affiliation(s)
- Rujing Ren
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlei Qi
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shaohui Lin
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinya Liu
- School of Public Health, Fudan University, Shanghai, China
- NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhihui Wang
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ran Tang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jintao Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianping Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Xie
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongbo Hu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Cui
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Zhu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Yu
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pengfei Wang
- School of Public Health, Fudan University, Shanghai, China
- NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Yikang Zhu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiran Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Huang
- Department of Geriatrics, Huashan Hospital, Fudan University, Shanghai, China
| | - Yisong Hu
- National Survey Research Center, Renmin University of China, Beijing, China
| | - Ying Wang
- School of Public Health, Fudan University, Shanghai, China
- NHC Key Laboratory of Health Technology Assessment, Fudan University, Shanghai, China
| | - Chunbo Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Maigeng Zhou
- National Center for Chronic and Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Gang Wang
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Kim H, Levine A, Cohen D, Gehrman P, Zhu X, Devanand DP, Lee S, Goldberg TE. The Role of Amyloid, Tau, and APOE Genotype on the Relationship Between Informant-Reported Sleep Disturbance and Alzheimer's Disease Risks. J Alzheimers Dis 2022; 87:1567-1580. [PMID: 35491776 PMCID: PMC9644449 DOI: 10.3233/jad-215417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The association between sleep and Alzheimer's disease (AD) biomarkers are well-established, but little is known about how they interact to change the course of AD. OBJECTIVE To determine the potential interaction between sleep disturbance and Aβ, tau, and APOE4 on brain atrophy and cognitive decline. METHODS Sample included 351 participants (mean age 72.01 ± 6.67, 50.4%female) who were followed for approximately 5 years as part of the Alzheimer's Disease Neuroimaging Initiative. Informant-reported sleep disturbance (IRSD) was measured using the Neuropsychiatric Inventory (NPI). Changes in magnetic resonance imaging (MRI)-measured AD signature brain regions and cognitive performance and IRSD's interaction with cerebrospinal fluid amyloid-β (Aβ42) and p-Tau depositions and APOE4 status were examined using the linear mixed models. RESULTS Baseline IRSD was not significantly associated with the rate of atrophy after adjusting for covariates (age, sex, education, total NPI severity score, and sleep medications). However, there was a significant interaction between IRSD and AD biomarkers on faster atrophy rates in multiple brain regions, including the cortical and middle temporal volumes. Post-hoc analyses indicated that Aβ and p-Tau/Aβ predicted a faster decline in these regions/domains in IRSD, compared with biomarker-negative individuals with IRSD (ps≤0.001). There was a significant IRSD*APOE4 interaction for brain atrophy rate (ps≤0.02) but not for cognition. CONCLUSION IRSD may increase the future risk of AD by contributing to faster brain atrophy and cognitive decline when combined with the presence of AD biomarkers and APOE4. Early intervention for sleep disturbance could help reduce the risk of developing AD.
Collapse
Affiliation(s)
- Hyun Kim
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Alina Levine
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
| | - Daniel Cohen
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
| | - Philip Gehrman
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
- Mental Illness Research, Education, and Clinical Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Xi Zhu
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Anxiety, Mood, Eating, and Related Disorder, New York State Psychiatric Institute, New York, NY, USA
| | - Davangere P. Devanand
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Seonjoo Lee
- Division of Mental Health Data Science, New York State Psychiatric Institute, New York, NY, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Terry E. Goldberg
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Division of Geriatric Psychiatry, New York State Psychiatric Institute, New York, NY, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
23
|
Ricci M, Cimini A, Camedda R, Chiaravalloti A, Schillaci O. Tau Biomarkers in Dementia: Positron Emission Tomography Radiopharmaceuticals in Tauopathy Assessment and Future Perspective. Int J Mol Sci 2021; 22:ijms222313002. [PMID: 34884804 PMCID: PMC8657996 DOI: 10.3390/ijms222313002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/14/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Abnormal accumulation of Tau protein is closely associated with neurodegeneration and cognitive impairment and it is a biomarker of neurodegeneration in the dementia field, especially in Alzheimer’s disease (AD); therefore, it is crucial to be able to assess the Tau deposits in vivo. Beyond the fluid biomarkers of tauopathy described in this review in relationship with the brain glucose metabolic patterns, this review aims to focus on tauopathy assessment by using Tau PET imaging. In recent years, several first-generation Tau PET tracers have been developed and applied in the dementia field. Common limitations of first-generation tracers include off-target binding and subcortical white-matter uptake; therefore, several institutions are working on developing second-generation Tau tracers. The increasing knowledge about the distribution of first- and second-generation Tau PET tracers in the brain may support physicians with Tau PET data interpretation, both in the research and in the clinical field, but an updated description of differences in distribution patterns among different Tau tracers, and in different clinical conditions, has not been reported yet. We provide an overview of first- and second-generation tracers used in ongoing clinical trials, also describing the differences and the properties of novel tracers, with a special focus on the distribution patterns of different Tau tracers. We also describe the distribution patterns of Tau tracers in AD, in atypical AD, and further neurodegenerative diseases in the dementia field.
Collapse
Affiliation(s)
- Maria Ricci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Correspondence:
| | - Andrea Cimini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy; (A.C.); (R.C.); (A.C.); (O.S.)
- Nuclear Medicine Section, IRCCS Neuromed, 86077 Pozzilli, Italy
| |
Collapse
|
24
|
Santangelo R, Agosta F, Masi F, Spinelli EG, Cecchetti G, Caso F, Mandelli A, Cardamone R, Barbieri A, Furlan R, Magnani G, Filippi M. Plasma neurofilament light chain levels and cognitive testing as predictors of fast progression in Alzheimer's disease. Eur J Neurol 2021; 28:2980-2988. [PMID: 34176186 DOI: 10.1111/ene.14999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a heterogeneous course. Predicting a fast rather than a slow decline over time is crucial to both provide a reliable prognosis and elaborate stricter enrolment criteria in clinical trials. Here we searched for independent predictors of cognitive decline rate to assess the risk of fast disease progression already at baseline. METHODS Fifty-three subjects with an "in-vivo biomarker confirmed" diagnosis of AD were included. Neuropsychological assessment, plasma neurofilaments (NfL) concentrations and, in a subsample of 23 patients, brain magnetic resonance imaging were available. Patients were labelled FAST or SLOW depending on the Mini-Mental State Examination (MMSE) points lost per year (FAST if more than 3 points). We adopted single logistic regression models to search for independent predictors of FAST progression. RESULTS At baseline no differences were found between FAST and SLOW subgroups in demographics, MMSE scores, vascular burden and medial temporal lobe atrophy measurements. Higher plasma NfL concentrations and worse scores at semantic verbal fluency (SVF) and clock drawing test (CDT) were independent predictors of FAST decline, after controlling for age, education, sex and baseline disease severity stage. The regression model combining all the predictors correctly classified 80% of patients overall. The risk of FAST decline was 81.2% if all the three predictors were abnormal (i.e., SVF ≤21.5, CDT ≤5.5, NfL ≥22.19). CONCLUSIONS An easily applicable algorithm, including plasma NfL measurement and two neuropsychological tests worldwide adopted in clinical practice (SVF and CDT), may allow clinicians to reliably stratify AD patients in relation to the risk of fast cognitive decline.
Collapse
Affiliation(s)
- Roberto Santangelo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Masi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Giordano Cecchetti
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Caso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Mandelli
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe Magnani
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
25
|
Gjerum L, Andersen BB, Bruun M, Simonsen AH, Henriksen OM, Law I, Hasselbalch SG, Frederiksen KS. Comparison of the clinical impact of 2-[18F]FDG-PET and cerebrospinal fluid biomarkers in patients suspected of Alzheimer's disease. PLoS One 2021; 16:e0248413. [PMID: 33711065 PMCID: PMC7954298 DOI: 10.1371/journal.pone.0248413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The two biomarkers 2-[18F]FDG-PET and cerebrospinal fluid biomarkers are both recommended to support the diagnosis of Alzheimer's disease. However, there is a lack of knowledge for the comparison of the two biomarkers in a routine clinical setting. OBJECTIVE The aim was to compare the clinical impact of 2-[18F]FDG-PET and cerebrospinal fluid biomarkers on diagnosis, prognosis, and patient management in patients suspected of Alzheimer's disease. METHODS Eighty-one patients clinically suspected of Alzheimer's disease were retrospectively included from the Copenhagen Memory Clinic. As part of the clinical work-up all patients had a standard diagnostic program examination including MRI and ancillary investigations with 2-[18F]FDG-PET and cerebrospinal fluid biomarkers. An incremental study design was used to evaluate the clinical impact of the biomarkers. First, the diagnostic evaluation was based on the standard diagnostic program, then the diagnostic evaluation was revised after addition of either cerebrospinal fluid biomarkers or 2-[18F]FDG-PET. At each diagnostic evaluation, two blinded dementia specialists made a consensus decision on diagnosis, prediction of disease course, and change in patient management. Confidence in the decision was measured on a visual analogue scale (0-100). After 6 months, the diagnostic evaluation was performed with addition of the other biomarker. A clinical follow-up after 12 months was used as reference for diagnosis and disease course. RESULTS The two biomarkers had a similar clinical value across all diagnosis when added individually to the standard diagnostic program. However, for the correctly diagnosed patient with Alzheimer's disease cerebrospinal fluid biomarkers had a significantly higher impact on diagnostic confidence (mean scores±SD: 88±11 vs. 82±11, p = 0.046) and a significant reduction in the need for ancillary investigations (23 vs. 18 patients, p = 0.049) compared to 2-[18F]FDG-PET. CONCLUSION The two biomarkers had similar clinical impact on diagnosis, but cerebrospinal fluid biomarkers had a more significant value in corroborating the diagnosis of Alzheimer's disease compared to 2-[18F]FDG-PET.
Collapse
Affiliation(s)
- Le Gjerum
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Bo Andersen
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Marie Bruun
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anja Hviid Simonsen
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Otto Mølby Henriksen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Steen Gregers Hasselbalch
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Steen Frederiksen
- Department of Neurology, Danish Dementia Research Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
2020 update on the clinical validity of cerebrospinal fluid amyloid, tau, and phospho-tau as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework. Eur J Nucl Med Mol Imaging 2021; 48:2121-2139. [PMID: 33674895 PMCID: PMC8175301 DOI: 10.1007/s00259-021-05258-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
Purpose In the last decade, the research community has focused on defining reliable biomarkers for the early detection of Alzheimer’s disease (AD) pathology. In 2017, the Geneva AD Biomarker Roadmap Initiative adapted a framework for the systematic validation of oncological biomarkers to cerebrospinal fluid (CSF) AD biomarkers—encompassing the 42 amino-acid isoform of amyloid-β (Aβ42), phosphorylated-tau (P-tau), and Total-tau (T-tau)—with the aim to accelerate their development and clinical implementation. The aim of this work is to update the current validation status of CSF AD biomarkers based on the Biomarker Roadmap methodology. Methods A panel of experts in AD biomarkers convened in November 2019 at a 2-day workshop in Geneva. The level of maturity (fully achieved, partly achieved, preliminary evidence, not achieved, unsuccessful) of CSF AD biomarkers was assessed based on the Biomarker Roadmap methodology before the meeting and presented and discussed during the workshop. Results By comparison to the previous 2017 Geneva Roadmap meeting, the primary advances in CSF AD biomarkers have been in the area of a unified protocol for CSF sampling, handling and storage, the introduction of certified reference methods and materials for Aβ42, and the introduction of fully automated assays. Additional advances have occurred in the form of defining thresholds for biomarker positivity and assessing the impact of covariates on their discriminatory ability. Conclusions Though much has been achieved for phases one through three, much work remains in phases four (real world performance) and five (assessment of impact/cost). To a large degree, this will depend on the availability of disease-modifying treatments for AD, given these will make accurate and generally available diagnostic tools key to initiate therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05258-7.
Collapse
|
27
|
Hansen EO, Dias NS, Burgos ICB, Costa MV, Carvalho AT, Teixeira AL, Barbosa IG, Santos LAV, Rosa DVF, Ribeiro AJF, Viana BM, Bicalho MAC. Millipore xMap® Luminex (HATMAG-68K): An Accurate and Cost-Effective Method for Evaluating Alzheimer's Biomarkers in Cerebrospinal Fluid. Front Psychiatry 2021; 12:716686. [PMID: 34531769 PMCID: PMC8438166 DOI: 10.3389/fpsyt.2021.716686] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Alzheimer's disease (AD) biomarkers are of great relevance in clinical research, especially after the AT(N) framework. They enable early diagnosis, disease staging and research with new promising drugs, monitoring therapeutic response. However, the high cost and low availability of the most well-known methods limits their use in low and medium-income countries. In this context, Millipore xMap® Luminex may be a cost-effective alternative. In our study, using INNOTEST® as reference, we assess the diagnostic accuracy of Millipore xMap® and propose a cutoff point for AD. Methods: We performed lumbar puncture of seven older individuals with clinically defined AD, 17 with amnestic mild cognitive impairment (aMCI) and 11 without objective cognitive impairment-control group (CG). Cerebrospinal fluid (CSF) biomarkers concentrations for aB42, p-Tau, and t-Tau were measured by INNOTEST® and Millipore xMap®, and then the techniques were compared to assess the diagnostic accuracy of the new test and to define a cutoff. Results: INNOTEST® and Millipore xMap® measurements showed all correlations >0.8 for the same biomarker, except for t-Tau that was 0.66. Millipore xMap® measurements showed a robust accuracy for all biomarkers, with AUC higher than 0.808 (t-Tau), and the best for Aβ42 (AUC = 0.952). The most accurate cutoffs were found at 1012.98 pg/ml (Aβ42), 64.54 pg/ml (p-tau), 3251.81 pg/ml (t-tau), 3.370 (t-Tau/Aβ42), and 0.059 (p-Tau/Aβ42). Conclusion: Given its good accuracy and cost-effectiveness, Milliplex xMap® tests seems a reliable and promising tool, especially for low and middle-income countries.
Collapse
Affiliation(s)
- Erika Oliveira Hansen
- Jenny de Andrade Faria Institute- Reference Center for the Elderly, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Molecular Medicine Program, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Natalia Silva Dias
- Neuroscience Program, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Elderly Psychiatry and Psychology Extension Program (PROEPSI), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ivonne Carolina Bolaños Burgos
- Adult Health Sciences Applied Program, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Monica Vieira Costa
- Molecular Medicine Program, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Antonio Lucio Teixeira
- Department of Psychiatry and Behavioral Sciences, UT Health, Houston, TX, United States.,Instituto de Ensino e Pesquisa, Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Izabela Guimarães Barbosa
- Neuroscience Program, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Elderly Psychiatry and Psychology Extension Program (PROEPSI), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Mental Health, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lorena Aline Valu Santos
- National Institute of Science and Technology of Molecular Medicine (INCT-MM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniela Valadão Freitas Rosa
- National Institute of Science and Technology of Molecular Medicine (INCT-MM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Bernardo Mattos Viana
- Jenny de Andrade Faria Institute- Reference Center for the Elderly, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Elderly Psychiatry and Psychology Extension Program (PROEPSI), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Mental Health, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Aparecida Camargos Bicalho
- Jenny de Andrade Faria Institute- Reference Center for the Elderly, Hospital das Clínicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Molecular Medicine Program, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Elderly Psychiatry and Psychology Extension Program (PROEPSI), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,National Institute of Science and Technology of Molecular Medicine (INCT-MM), Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Department of Clinical Medicine, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|