1
|
Leder T, Kühnel C, Gröber S, Drescher R, Freesmeyer M. 68 Ga-Oxine-Labeled Erythrocytes as a New PET Tracer for the Localization of Gastrointestinal Bleeding. Clin Nucl Med 2024; 49:280-282. [PMID: 38109049 DOI: 10.1097/rlu.0000000000005021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
ABSTRACT A 69-year-old man presented with recurring drops in hemoglobin levels and suspected gastrointestinal bleeding. Endoscopy did not show a site of bleeding so further examinations became necessary. Scintigraphy and SPECT/CT with 99m TcO 4- -labeled red blood cells were performed without evidence of a hemorrhage. Based on an established protocol for splenic PET/CT, autologous erythrocytes can be labeled with 68 Ga-oxine and used as a tracer for the localization of active bleeding sites. In the patient, PET/CT with 68 Ga-oxine-labeled undamaged erythrocytes was performed successfully and revealed a hemorrhage of the gastric corpus that was confirmed and treated by endoscopy.
Collapse
Affiliation(s)
- Theresa Leder
- From the Clinic of Nuclear Medicine, Jena University Hospital, Jena, Germany
| | | | | | | | | |
Collapse
|
2
|
Bose RJ, Kessinger CW, Dhammu T, Singh T, Shealy MW, Ha K, Collandra R, Himbert S, Garcia FJ, Oleinik N, Xu B, Vikas, Kontaridis MI, Rheinstädter MC, Ogretmen B, Menick DR, McCarthy JR. Biomimetic Nanomaterials for the Immunomodulation of the Cardiosplenic Axis Postmyocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304615. [PMID: 37934471 PMCID: PMC10922695 DOI: 10.1002/adma.202304615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/16/2023] [Indexed: 11/08/2023]
Abstract
The spleen is an important mediator of both adaptive and innate immunity. As such, attempts to modulate the immune response provided by the spleen may be conducive to improved outcomes for numerous diseases throughout the body. Here, biomimicry is used to rationally design nanomaterials capable of splenic retention and immunomodulation for the treatment of disease in a distant organ, the postinfarct heart. Engineered senescent erythrocyte-derived nanotheranostic (eSENTs) are generated, demonstrating significant uptake by the immune cells of the spleen including T and B cells, as well as monocytes and macrophages. When loaded with suberoylanilide hydroxamic acid (SAHA), the nanoagents exhibit a potent therapeutic effect, reducing infarct size by 14% at 72 h postmyocardial infarction when given as a single intravenous dose 2 h after injury. These results are supportive of the hypothesis that RBC-derived biomimicry may provide new approaches for the targeted modulation of the pathological processes involved in myocardial infarction, thus further experiments to decisively confirm the mechanisms of action are currently underway. This novel concept may have far-reaching applicability for the treatment of a number of both acute and chronic conditions where the immune responses are either stimulated or suppressed by the splenic (auto)immune milieu.
Collapse
Affiliation(s)
- Rajendran Jc Bose
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, 13501, USA
| | - Chase W Kessinger
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, 13501, USA
| | - Tajinder Dhammu
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Toolika Singh
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Miller W Shealy
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Khanh Ha
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, 13501, USA
| | - Rena Collandra
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, 13501, USA
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Fernando J Garcia
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Bing Xu
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, 13501, USA
| | - Vikas
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, 13501, USA
| | - Maria I Kontaridis
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, 13501, USA
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Donald R Menick
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC, 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, 29401, USA
| | - Jason R McCarthy
- Department of Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, NY, 13501, USA
| |
Collapse
|
3
|
Drescher R, Gröber S, Freesmeyer M, Greiser J. Preparation and labelling of red blood cells with [ 68Ga]Ga-oxine for PET/CT imaging of the human spleen. Nucl Med Biol 2023; 118-119:108333. [PMID: 36940567 DOI: 10.1016/j.nucmedbio.2023.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/01/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
INTRODUCTION With the introduction of automated synthetization methods, the in-house production of several 68Ga-based tracers became feasible in hospital laboratories. We describe a possible standard operating procedure (SOP) for [68Ga]Ga-oxine-labeled heat-denaturated erythrocytes, which can be used for selective imaging in patients with splenic disorders. METHODS Heat-denaturated erythrocytes were labeled with [68Ga]Ga-oxine, which was produced from 68Ga and 8-hydroxyquinoline on an automated synthesizer. The workflow was validated in a good manufacturing/good radiopharmaceutical practice (GMP/GRP) certified laboratory. A patient underwent [68Ga]Ga-oxine-erythrocyte PET/CT for differentiation of an intrapancreatic mass. RESULTS [68Ga]Ga-oxine and [68Ga]Ga-oxine-labeled erythrocytes could be synthesized reproducibly and reliably. The products met GMP quality standards. The tracer showed high accumulation in the intrapancreatic mass, consistent with an accessory spleen. CONCLUSIONS PET/CT imaging with [68Ga]Ga-oxine-labeled, heat-denaturated erythrocytes can be a backup method for the differentiation of functioning splenic tissue from tumors. An SOP for the production of the tracer in a clinical setting could be established.
Collapse
Affiliation(s)
- Robert Drescher
- Clinic of Nuclear Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Sebastian Gröber
- Clinic of Nuclear Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Martin Freesmeyer
- Clinic of Nuclear Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| | - Julia Greiser
- Clinic of Nuclear Medicine, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| |
Collapse
|
4
|
PET/CT of the Spleen with Gallium-Oxine-Labeled, Heat-Damaged Red Blood Cells: Clinical Experience and Technical Aspects. Diagnostics (Basel) 2023; 13:diagnostics13030566. [PMID: 36766669 PMCID: PMC9913950 DOI: 10.3390/diagnostics13030566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Several scintigraphic techniques have been supplemented or replaced by PET/CT methods because of their superior sensitivity, high resolution, and absolute activity quantification capability. The purpose of this project was the development of a PET tracer for splenic imaging, its radiopharmaceutical validation, and its application in selected patients in whom unclear constellations of findings could not be resolved with established imaging methods. Heat-damaged red blood cells (RBCs) were labeled with [68Ga]gallium-oxine, which was produced from [68Ga]gallium and 8-Hydroxyquinoline (oxine) on an automated synthesizer. Ten patients underwent [68Ga]gallium-oxine-RBC-PET/CT for the classification of eleven unclear lesions (3 intra-, 8 extrapancreatic). [68Ga]gallium-oxine and [68Ga]gallium-oxine-labeled RBCs could be synthesized reproducibly and reliably. The products met GMP quality standards. The tracer showed high accumulation in splenic tissue. Of the 11 lesions evaluated by PET/CT, 3 were correctly classified as non-splenic, 6 as splenic, 1 as equivocal, and 1 lesion as a splenic hypoplasia. All lesions classified as non-splenic were malignant, and all lesions classified as splenic did not show malignant features during follow-up. PET/CT imaging of the spleen with [68Ga]gallium-oxine-labeled, heat-damaged RBCs is feasible and allowed differentiation of splenic from non-splenic tissues, and the diagnosis of splenic anomalies.
Collapse
|
5
|
Gawne P, Man F, Blower PJ, T. M. de Rosales R. Direct Cell Radiolabeling for in Vivo Cell Tracking with PET and SPECT Imaging. Chem Rev 2022; 122:10266-10318. [PMID: 35549242 PMCID: PMC9185691 DOI: 10.1021/acs.chemrev.1c00767] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Indexed: 02/07/2023]
Abstract
The arrival of cell-based therapies is a revolution in medicine. However, its safe clinical application in a rational manner depends on reliable, clinically applicable methods for determining the fate and trafficking of therapeutic cells in vivo using medical imaging techniques─known as in vivo cell tracking. Radionuclide imaging using single photon emission computed tomography (SPECT) or positron emission tomography (PET) has several advantages over other imaging modalities for cell tracking because of its high sensitivity (requiring low amounts of probe per cell for imaging) and whole-body quantitative imaging capability using clinically available scanners. For cell tracking with radionuclides, ex vivo direct cell radiolabeling, that is, radiolabeling cells before their administration, is the simplest and most robust method, allowing labeling of any cell type without the need for genetic modification. This Review covers the development and application of direct cell radiolabeling probes utilizing a variety of chemical approaches: organic and inorganic/coordination (radio)chemistry, nanomaterials, and biochemistry. We describe the key early developments and the most recent advances in the field, identifying advantages and disadvantages of the different approaches and informing future development and choice of methods for clinical and preclinical application.
Collapse
Affiliation(s)
- Peter
J. Gawne
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Francis Man
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
- Institute
of Pharmaceutical Science, School of Cancer
and Pharmaceutical Sciences, King’s College London, London, SE1 9NH, U.K.
| | - Philip J. Blower
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| | - Rafael T. M. de Rosales
- School
of Biomedical Engineering & Imaging Sciences, King’s College London, St Thomas’ Hospital, London, SE1 7EH, U.K.
| |
Collapse
|
7
|
Abstract
8-Hydroxyquinoline (8-HQ, oxine) is a small, monoprotic, bicyclic aromatic compound and its relative donor group orientation imparts impressive bidentate metal chelating abilities that have been exploited in a vast array of applications over decades. 8-HQ and its derivatives have been explored in medicinal applications including anti-neurodegeneration, anticancer properties, and antimicrobial activities. One long established use of 8-HQ in medicinal inorganic chemistry is the coordination of radioactive isotopes of metal ions in nuclear medicine. The metal-oxine complex with the single photon emission computed tomography (SPECT) imaging isotope [111In]In3+ was developed in the 1970s and 1980s to radiolabel leukocytes for inflammation and infection imaging. The [111In][In(oxine)3] complex functions as an ionophore: a moderately stable lipophilic complex to enter cells; however, inside the cell environment [111In]In3+ undergoes exchange and remains localized. As new developments have progressed towards radiopharmaceuticals capable of both imaging and therapy (theranostics), 8-HQ has been re-explored in recent years to investigate its potential to chelate larger radiometal ions with longer half-lives and different indications. Further, metal-oxine complexes have been used to study liposomes and other nanomaterials by tracking these nanomedicines in vivo. Expanding 8-HQ to multidentate ligands for highly thermodynamically stable and kinetically inert complexes has increased the possibilities of this small molecule in nuclear medicine. This article outlines the historic use of metal-oxine complexes in inorganic radiopharmaceutical chemistry, with a focus on recent advances highlighting the possibilities of developing higher denticity, targeted bifunctional chelators with 8-HQ.
Collapse
Affiliation(s)
- Lily Southcott
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada.,Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| |
Collapse
|