1
|
Losa M, Garbarino S, Cirone A, Argenti L, Lombardo L, Calizzano F, Girtler N, Brugnolo A, Mattioli P, Bauckneht M, Raffa S, Sambuceti G, Canosa A, Caneva S, Piana M, Bozzo G, Roccatagliata L, Serafini G, Uccelli A, Gotta F, Origone P, Mandich P, Massa F, Morbelli S, Arnaldi D, Orso B, Pardini M. Clinical and metabolic profiles in behavioural frontotemporal dementia: Impact of age at onset. Cortex 2025; 185:84-95. [PMID: 39999654 DOI: 10.1016/j.cortex.2025.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 02/27/2025]
Abstract
AIM Frontotemporal dementia (FTD) is a heterogeneous neurodegenerative disorder, with considerable variability of age-at-onset. We explored clinical and metabolic differences between early- and late-onset behavioural FTD (bvFTD), assuming that they might represent different disease phenotypes. MATERIALS AND METHODS We retrospectively studied consecutive patients diagnosed with prodromal or overt bvFTD with [18F]FDG PET scan, neuropsychological assessment (NPS), and Neuropsychiatric Inventory (NPI) available at baseline. Patients were divided into three groups based on age-at-onset: early onset-bvFTD (EO-bvFTD, age<70), late onset-bvFTD (LO-bvFTD, age 70-75) and very late onset-bvFTD (vLO-bvFTD, age>75). NPS and NPI were compared between groups and in the subset of prodromal patients, to study different syndromic phenotypes. Voxel-based analysis compared brain [18F]FDG PET of EO-bvFTD, LO-bvFTD and vLO-bvFTD independently, with respect to healthy controls, to explore metabolic differences. An inter-regional metabolic covariance analysis was performed in frontal lobe subregions, to explore differences in brain connectivity. Moreover, we supported our result using a correlation-based approach on clinical and metabolic variables. RESULTS 101 bvFTD (62 prodromal bvFTD) were enrolled (EO-bvFTD: n = 36, prodromal n = 21; LO-bvFTD: n = 36, prodromal: n = 22; vLO-bvFTD: n = 29, prodromal: n = 19). Greater verbal memory deficit was evident in LO-bvFTD and vLO-bvFTD compared to EO-bvFTD (immediate recall: p = .018; p = .024; delayed recall: both p = .001, respectively), with similar results in the subset of prodromal patients. EO-bvFTD and LO-bvFTD had a higher behavioural severity than vLO-bvFTD. LO-bvFTD and vLO-bvFTD showed more widespread relative hypometabolism, with a greater involvement of posterior, subcortical and temporo-limbic regions compared with EO-bvFTD. Moreover, vLO-bvFTD showed a different pattern of intrafrontal metabolic covariance compared to EO-bvFTD and LO-bvFTD. DISCUSSION The cognitive-behavioural profile of bvFTD differs between early- and late-onset, already from the prodromal stage of the disease. Both metabolic pattern and functional connectivity vary based on age-at-onset. Understanding these differences could contribute to improve diagnostic accuracy and understanding the underling pathological heterogeneity.
Collapse
Affiliation(s)
- Mattia Losa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Sara Garbarino
- Liscomp Lab, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Alessio Cirone
- Liscomp Lab, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Lucia Argenti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Lorenzo Lombardo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Francesco Calizzano
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Nicola Girtler
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Clinical Psychology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Andrea Brugnolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Clinical Psychology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Neurophysiopathology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Matteo Bauckneht
- Department of Health Science (DISSAL), University of Genoa, Genoa Italy; Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefano Raffa
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Antonio Canosa
- Department of Neuroscience, ALS Centre, 'Rita Levi Montalcini', University of Turin, Turin, Italy
| | - Stefano Caneva
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Michele Piana
- Liscomp Lab, IRCCS Ospedale Policlinico San Martino, Genova, Italy; MIDA, Department of Mathematics, University of Genoa, Genoa, Italy
| | - Giulia Bozzo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Luca Roccatagliata
- Department of Health Science (DISSAL), University of Genoa, Genoa Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Fabio Gotta
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Genetic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Origone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Genetic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Genetic Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, AOU Città Della Salute e Della Scienza di Torino, Turin, Italy; Department of Medical Sciences, University of Turin, Turin, Italy
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; Neurophysiopathology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
2
|
Mao H, Shi Y, Gao Q, Xu M, Hu X, Wang F, Fang X. Cortical structural degeneration and functional network connectivity changes in patients with subcortical vascular cognitive impairment. Neuroradiology 2025:10.1007/s00234-025-03550-z. [PMID: 39899046 DOI: 10.1007/s00234-025-03550-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/22/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025]
Abstract
PURPOSE To explore the structural basis of functional network connectivity (FNC) changes and early cortical degenerative patterns in subcortical vascular cognitive impairment (SVCI). METHODS We prospectively included SVCI cases and healthy controls (HCs). FNC alterations were evaluated using group-independent component analysis of resting-state functional MRI data. Cortical microstructural and macrostructural alterations were assessed using gray matter-based spatial statistics analysis with neurite orientation dispersion and density imaging and cortical thickness analysis with FreeSurfer software on T1-weighted images, respectively. Spearman correlation analyses were performed to assess relationships between FNC alterations and cortical microstructural/macrostructural alterations and between FNC, cortical thickness, or neurite density index (NDI)/orientation dispersion index (ODI) alterations and cognitive performance. RESULTS Forty-six SVCI patients and 73 HCs were recruited. FNC analysis showed lower network connectivity between the visual network (VN) and sensorimotor network (SMN) in SVCI, positively correlated with information processing speed (p=0.008) and negatively with summary SVD score (p = 0.037). Cortical microstructural analyses exhibited a lower NDI, mainly in the VN and default mode network (DMN) areas (PFWE < 0.05, cluster > 100 voxels), and lower ODI, mainly in the SMN and DMN areas (PFWE < 0.05, cluster > 100 voxels) in SVCI, both of which were related to cognitive function (p < 0.05). However, cortical thickness did not differ between groups. Lower NDI in the lateral occipital cortex was linked to lower VN-SMN connectivity in SVCI (p = 0.002). CONCLUSION Cortical microstructural alterations may serve as the basis for FNC changes in SVCI.
Collapse
Affiliation(s)
- Haixia Mao
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yachen Shi
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Qianqian Gao
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Min Xu
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Xiaoyun Hu
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Feng Wang
- Department of Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
- Department of Interventional Neurology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| | - Xiangming Fang
- Department of Radiology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
3
|
Lin H, Cheng X, Xu Y, Wu J, Zhu J, Mao C, Jiang Z. Multimodal MRI changes associated with non-motor symptoms of rapid eye movement sleep behaviour disorder in Parkinson's disease patients. Neuroradiology 2025; 67:153-162. [PMID: 39476126 DOI: 10.1007/s00234-024-03492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/11/2024] [Accepted: 10/11/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND AND OBJECTIVE Parkinson's disease (PD), a prevalent neurodegenerative disorder, assumes a more adverse prognosis when accompanied by rapid eye movement sleep disorder (RBD). Non-motor symptoms, particularly sleep and emotional disturbances, significantly impair patients' quality of life. This study aimed to investigate the neuroimaging underpinnings of PD-RBD using structural and functional magnetic resonance imaging (MRI) and to explore the associations between these imaging biomarkers and non-motor symptoms. METHOD Brain scans were acquired from 33 PD patients without and 21 with probable RBD (PD-pRBD). Comparative analyses were performed to evaluate structural and functional alterations between the two groups. Additionally, the correlations between neuroimaging metrics and clinical assessment scales were assessed. RESULTS PD-pRBD patients demonstrated more pronounced grey matter atrophy, particularly in the putamen and insula. Functional MRI revealed decreased amplitude of low-frequency fluctuations (ALFF) in the bilateral posterior cingulate cortex and left precuneus of PD-pRBD patients. Furthermore, reduced functional connectivity (FC) was observed in specific regions of the whole brain and within the default mode network (DMN) in PD-pRBD. Notably, a negative correlation was found between mean ALFF values in the left posterior cingulate cortex of PD-pRBD patients and Hamilton Depression Rating Scale scores. CONCLUSION PD-pRBD is characterized by more severe grey matter loss and functional MRI abnormalities compared to PD alone. Dysfunction of the posterior cingulate cortex is implicated in more pronounced affective impairments, providing novel insights into the complex pathophysiology of PD-RBD.
Collapse
Affiliation(s)
- Huihui Lin
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Xiaoyu Cheng
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Yiwen Xu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Jiayu Wu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Jiangtao Zhu
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Chengjie Mao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China.
| | - Zhen Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Baun AM, Iranzo A, Terkelsen MH, Stokholm MG, Stær K, Serradell M, Otto M, Svendsen KB, Garrido A, Vilas D, Santamaria J, Møller A, Gaig C, Brooks DJ, Borghammer P, Tolosa E, Eskildsen SF, Pavese N. Cuneus atrophy and Parkinsonian phenoconversion in cognitively unimpaired patients with isolated REM sleep behavior disorder. J Neurol 2024; 272:59. [PMID: 39680182 DOI: 10.1007/s00415-024-12762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 12/17/2024]
Abstract
Isolated rapid-eye-movement sleep behavior disorder (iRBD) is a strong predictor of Parkinson's disease and Dementia with Lewy bodies. Previous studies indicate that cortical atrophy in iRBD patients may be linked to cognitive impairment, but the pattern of atrophy is inconsistently reported. This study aimed to elucidate cortical atrophy patterns in a cognitively unimpaired iRBD cohort, focusing on regions associated with cognitive functions, particularly the cuneus/precuneus, and evaluated the predictive value for future phenoconversion. We conducted voxel-based morphometry and region of interest (ROI) analysis of structural MRI scans of 36 healthy controls and 19 iRBD patients, nine of whom also received a 3-year follow-up MRI scan. The iRBD patients were followed clinically for 8 years, and time-to-event analyses, using Cox regression, were performed based on baseline ROI volumes. The iRBD patients had lower gray-matter volume in the cuneus/precuneus region as well as in subcortical structures (caudate nuclei and putamen) compared to controls. Eight iRBD patients developed either Parkinson's disease (N = 4) or Dementia with Lewy bodies (N = 4) during the follow-up period. Time-to-event analyses showed that lower right cuneus volume was associated with a higher risk of phenoconversion to alpha-synuclein-linked Parkinsonism in the iRBD patients (Hazard ratio = 13.0, CI: 1.53-110), and correlated with shorter time to conversion. In addition, lower volumes of the bilateral precuneus trended to indicate a higher risk of phenoconversion. These findings suggest a potential predictive value of cuneus and precuneus volumes in identifying iRBD patients at risk of disease progression, even before the onset of cognitive impairment.
Collapse
Affiliation(s)
- Andreas Myhre Baun
- Department of Nuclear Medicine & PET Centre, J220, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark.
| | - Alex Iranzo
- Neurology Service, Department of Neurology, Hospital Clínic de Barcelona, 08036, Barcelona, Spain.
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain.
- Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain.
| | - Miriam Højholt Terkelsen
- Department of Nuclear Medicine & PET Centre, J220, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Gersel Stokholm
- Department of Nuclear Medicine & PET Centre, J220, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
| | - Kristian Stær
- Department of Nuclear Medicine & PET Centre, J220, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
| | - Mónica Serradell
- Neurology Service, Department of Neurology, Hospital Clínic de Barcelona, 08036, Barcelona, Spain
- Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain
| | - Marit Otto
- Department of Clinical Neurophysiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Alicia Garrido
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Catalonia, Spain
| | - Dolores Vilas
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Catalonia, Spain
| | - Joan Santamaria
- Neurology Service, Department of Neurology, Hospital Clínic de Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain
- Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain
| | - Arne Møller
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Carles Gaig
- Neurology Service, Department of Neurology, Hospital Clínic de Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain
- Multidisciplinary Sleep Unit, Hospital Clinic, Barcelona, Spain
| | - David J Brooks
- Department of Nuclear Medicine & PET Centre, J220, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, England
| | - Per Borghammer
- Department of Nuclear Medicine & PET Centre, J220, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
| | - Eduardo Tolosa
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic, IDIBAPS, Universitat de Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Catalonia, Spain
| | - Simon Fristed Eskildsen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Nicola Pavese
- Department of Nuclear Medicine & PET Centre, J220, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, Aarhus, Denmark
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, England
| |
Collapse
|
5
|
Orso B, Mattioli P, Yoon EJ, Kim YK, Kim H, Shin JH, Kim R, Famà F, Brugnolo A, Massa F, Chiaravalloti A, Fernandes M, Spanetta M, Placidi F, Pardini M, Bauckneht M, Morbelli S, Lee JY, Liguori C, Arnaldi D. Progression trajectories from prodromal to overt synucleinopathies: a longitudinal, multicentric brain [ 18F]FDG-PET study. NPJ Parkinsons Dis 2024; 10:200. [PMID: 39448609 PMCID: PMC11502916 DOI: 10.1038/s41531-024-00813-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/01/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
The phenoconversion trajectory from idiopathic/isolated Rapid eye movement (REM) sleep behavior disorder (iRBD) towards either Parkinson's Disease (PD) or Dementia with Lewy Bodies (DLB) is currently uncertain. We investigated the capability of baseline brain [18F]FDG-PET in differentiating between iRBD patients eventually phenoconverting to PD or DLB, by deriving the denovoPDRBD-related pattern (denovoPDRBD-RP) from 32 de novo PD patients; and the denovoDLBRBD-RP from 30 de novo DLB patients, both with evidence of RBD at diagnosis. To explore [18F]FDG-PET phenoconversion trajectories prediction power, we applied these two patterns on a group of 115 iRBD patients followed longitudinally. At follow-up (25.6 ± 17.2 months), 42 iRBD patients progressed through overt alpha-synucleinopathy (21 iRBD-PD and 21 iRBD-DLB converters), while 73 patients remained stable at the last follow-up visit (43.2 ± 27.6 months). At survival analysis, both patterns were significantly associated with the phenoconversion trajectories. Brain [18F]FDG-PET is a promising biomarker to study progression trajectories in the alpha-synucleinopathy continuum.
Collapse
Grants
- MNESYS (PE0000006) Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- PRIN 2022, Protocol N. 20228XKKCM_001 Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- MNESYS (PE0000006) Ministero dell'Istruzione, dell'Università e della Ricerca (Ministry of Education, University and Research)
- Fondi per la Ricerca Corrente Ministero della Salute (Ministry of Health, Italy)
- PNRR POC Ministero della Salute (Ministry of Health, Italy)
- 5x1000 founding scheme Ministero della Salute (Ministry of Health, Italy)
- NRF-2022R1A2C4001834 National Research Foundation of Korea (NRF)
Collapse
Affiliation(s)
- Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.
| | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Neurophysiopathology Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Eun-Jin Yoon
- Memory Network Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine and Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine and Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ryul Kim
- Department of Neurology, Inha University Hospital, Incheon, Republic of Korea
| | - Francesco Famà
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Neurophysiopathology Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Psychology Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Neurology Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Agostino Chiaravalloti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Mariana Fernandes
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | | | - Fabio Placidi
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Sleep Medicine Center, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Neurology Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Matteo Bauckneht
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, AOU Città Della Salute e Della Scienza di Torino, Torino, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Jee-Young Lee
- Department of Neurology, Seoul National University College of Medicine and Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
- Sleep Medicine Center, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Neurophysiopathology Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| |
Collapse
|
6
|
Lin M, Liu W, Ma C, Gao J, Huang L, Zhu J, Liang S, He Y, Liu J, Tao J, Liu Z, Huang J, Wang Z, Chen L. Tai Chi-Induced Exosomal LRP1 is Associated With Memory Function and Hippocampus Plasticity in aMCI Patients. Am J Geriatr Psychiatry 2024; 32:1215-1230. [PMID: 38824049 DOI: 10.1016/j.jagp.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 11/02/2023] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVES The study was designed to identify the potential peripheral processes of circulating exosome in response to Tai Chi (TC) exercise and the possibility of its loaded cargos in mediating the effects of TC training on cognitive function among older adults with amnestic mild cognitive impairment (aMCI). DESIGN, SETTING, AND PARTICIPANTS This was a multicenter randomized controlled trial. One hundred community-dwelling old adults with aMCI were randomly assigned (1:1) to experimental (n = 50) and control groups (n = 50). INTERVENTION The experimental group participated in TC exercise 5 times/week, with each session lasting 60 minutes for 12 weeks. Both experimental and control groups received health education every 4 weeks. MEASUREMENTS The primary outcome was global cognitive function. Neurocognitive assessments, MRI examination, and large-scale proteomics analysis of peripheric exosome were conducted at baseline and after 12-week training. Outcome assessors and statisticians were blinded to group allocation. RESULTS A total of 96 participants (96%) completed all outcome measurements. TC training improved global cognitive function (adjusted mean difference [MD] = 1.9, 95%CI 0.93-2.87, p <0.001) and memory (adjusted MD = 6.42, 95%CI 2.09-10.74, p = 0.004), increased right hippocampus volume (adjusted MD = 88.52, 95%CI 13.63-163.4, p = 0.021), and enhanced rest state functional connectivity (rsFC) between hippocampus and cuneus, which mediated the group effect on global cognitive function (bootstrapping CIs: [0.0208, 1.2826], [0.0689, 1.2211]) and verbal delay recall (bootstrapping CI: [0.0002, 0.6277]). Simultaneously, 24 differentially expressed exosomal proteins were detected in tandem mass tag-labelling proteomic analysis. Of which, the candidate protein low-density lipoprotein receptor-related protein 1 (LRP1) was further confirmed by parallel reaction monitoring and ELISA. Moreover, the up-regulated LRP1 was both positively associated with verbal delay recall and rsFC (left hippocampus-right cuneus). CONCLUSION TC promotes LRP1 release via exosome, which was associated with enhanced memory function and hippocampus plasticity in aMCI patients. Our findings provided an insight into potential therapeutic neurobiological targets focusing on peripheric exosome in respond to TC exercise.
Collapse
Affiliation(s)
- Miaoran Lin
- The Institute of Rehabilitation Industry (ML, WL, CM, JL, LC), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Weilin Liu
- The Institute of Rehabilitation Industry (ML, WL, CM, JL, LC), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Chuyi Ma
- The Institute of Rehabilitation Industry (ML, WL, CM, JL, LC), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jiahui Gao
- Rehabilitation Medical Technology Joint National Local Engineering Research Center (JG, LH, JZ, SL, YH, ZL), Fuzhou 350122, China
| | - Li Huang
- Rehabilitation Medical Technology Joint National Local Engineering Research Center (JG, LH, JZ, SL, YH, ZL), Fuzhou 350122, China
| | - Jingfang Zhu
- Rehabilitation Medical Technology Joint National Local Engineering Research Center (JG, LH, JZ, SL, YH, ZL), Fuzhou 350122, China
| | - Shengxiang Liang
- Rehabilitation Medical Technology Joint National Local Engineering Research Center (JG, LH, JZ, SL, YH, ZL), Fuzhou 350122, China
| | - Youze He
- Rehabilitation Medical Technology Joint National Local Engineering Research Center (JG, LH, JZ, SL, YH, ZL), Fuzhou 350122, China
| | - Jiao Liu
- The Institute of Rehabilitation Industry (ML, WL, CM, JL, LC), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jing Tao
- TCM Rehabilitation Research Center of SATCM (JT, JH), Fuzhou 350122, China
| | - Zhizhen Liu
- Rehabilitation Medical Technology Joint National Local Engineering Research Center (JG, LH, JZ, SL, YH, ZL), Fuzhou 350122, China
| | - Jia Huang
- TCM Rehabilitation Research Center of SATCM (JT, JH), Fuzhou 350122, China
| | - Zhifu Wang
- The Affiliated Rehabilitation Hospital (ZW), Fujian University of Traditional Chinese Medicine, Fuzhou 350003, China
| | - Lidian Chen
- The Institute of Rehabilitation Industry (ML, WL, CM, JL, LC), Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China; Fujian University of Traditional Chinese Medicine (LC), Shangjie University Town, Fuzhou, China.
| |
Collapse
|
7
|
Churchill L, Chen YC, Lewis SJG, Matar E. Understanding REM Sleep Behavior Disorder through Functional MRI: A Systematic Review. Mov Disord 2024; 39:1679-1696. [PMID: 38934216 DOI: 10.1002/mds.29898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/23/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Neuroimaging studies in rapid eye movement sleep behavior disorder (RBD) can inform fundamental questions about the pathogenesis of Parkinson's disease (PD). Across modalities, functional magnetic resonance imaging (fMRI) may be better suited to identify changes between neural networks in the earliest stages of Lewy body diseases when structural changes may be subtle or absent. This review synthesizes the findings from all fMRI studies of RBD to gain further insight into the pathophysiology and progression of Lewy body diseases. A total of 32 studies were identified using a systematic review conducted according to PRISMA guidelines between January 2000 to February 2024 for original fMRI studies in patients with either isolated RBD (iRBD) or RBD secondary to PD. Common functional alterations were detectable in iRBD patients compared with healthy controls across brainstem nuclei, basal ganglia, frontal and occipital lobes, and whole brain network measures. Patients with established PD and RBD demonstrated decreased functional connectivity across the whole brain and brainstem nuclei, but increased functional connectivity in the cerebellum and frontal lobe compared with those PD patients without RBD. Finally, longitudinal changes in resting state functional connectivity were found to track with disease progression. Currently, fMRI studies in RBD have demonstrated early signatures of neurodegeneration across both motor and non-motor pathways. Although more work is needed, such findings have the potential to inform our understanding of disease, help to distinguish between prodromal PD and prodromal dementia with Lewy bodies, and support the development of fMRI-based outcome measures of phenoconversion and progression in future disease modifying trials. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lachlan Churchill
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yu-Chi Chen
- Brain Dynamic Centre, Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | - Simon J G Lewis
- Macquarie Medical School and Macquarie University Centre for Parkinson's Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Elie Matar
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
- Centre for Integrated Research and Understanding of Sleep (CIRUS), Woolcock Institute of Medical Research, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
He J, Wang P, He J, Sun C, Xu X, Zhang L, Wang X, Gao X. Utilizing graph convolutional networks for identification of mild cognitive impairment from single modal fMRI data: a multiconnection pattern combination approach. Cereb Cortex 2024; 34:bhae065. [PMID: 38466115 DOI: 10.1093/cercor/bhae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/21/2024] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/12/2024] Open
Abstract
Mild cognitive impairment plays a crucial role in predicting the early progression of Alzheimer's disease, and it can be used as an important indicator of the disease progression. Currently, numerous studies have focused on utilizing the functional brain network as a novel biomarker for mild cognitive impairment diagnosis. In this context, we employed a graph convolutional neural network to automatically extract functional brain network features, eliminating the need for manual feature extraction, to improve the mild cognitive impairment diagnosis performance. However, previous graph convolutional neural network approaches have primarily concentrated on single modes of brain connectivity, leading to a failure to leverage the potential complementary information offered by diverse connectivity patterns and limiting their efficacy. To address this limitation, we introduce a novel method called the graph convolutional neural network with multimodel connectivity, which integrates multimode connectivity for the identification of mild cognitive impairment using fMRI data and evaluates the graph convolutional neural network with multimodel connectivity approach through a mild cognitive impairment diagnostic task on the Alzheimer's Disease Neuroimaging Initiative dataset. Overall, our experimental results show the superiority of the proposed graph convolutional neural network with multimodel connectivity approach, achieving an accuracy rate of 92.2% and an area under the Receiver Operating Characteristic (ROC) curve of 0.988.
Collapse
Affiliation(s)
- Jie He
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China
- Department of PET/MR, Shanghai Universal Medical Imaging Diagnostic Center, Shanghai 200233, China
| | - Peng Wang
- Department of Radiology, Shanghai 411 Hospital, Shanghai 200080, China
- RongTong Medical Healthcare Group Co. Ltd., Shanghai 20080, China
| | - Jun He
- College of Information Science and Technology, Chongqing Jiaotong University, Chongqing 400074, China
| | - Chenhao Sun
- Department of Radiology, Rugao Jian'an Hospital, Rugao, Jiangsu 226500, China
| | - Xiaowen Xu
- Tongji University School of Medicine, Tongji University, Shanghai 200092, China
- Department of Medical Imaging, Tongji Hospital, Shanghai 200092, China
| | - Lei Zhang
- School of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xin Wang
- College of Information Science and Technology, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xin Gao
- Department of PET/MR, Shanghai Universal Medical Imaging Diagnostic Center, Shanghai 200233, China
| |
Collapse
|
9
|
Ravan M, Noroozi A, Sanchez MM, Borden L, Alam N, Flor-Henry P, Colic S, Khodayari-Rostamabad A, Minuzzi L, Hasey G. Diagnostic deep learning algorithms that use resting EEG to distinguish major depressive disorder, bipolar disorder, and schizophrenia from each other and from healthy volunteers. J Affect Disord 2024; 346:285-298. [PMID: 37963517 DOI: 10.1016/j.jad.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Mood disorders and schizophrenia affect millions worldwide. Currently, diagnosis is primarily determined by reported symptomatology. As symptoms may overlap, misdiagnosis is common, potentially leading to ineffective or destabilizing treatment. Diagnostic biomarkers could significantly improve clinical care by reducing dependence on symptomatic presentation. METHODS We used deep learning analysis (DLA) of resting electroencephalograph (EEG) to differentiate healthy control (HC) subjects (N = 239), from those with major depressive disorder (MDD) (N = 105), MDD-atypical (MDD-A) (N = 27), MDD-psychotic (MDD-P) (N = 35), bipolar disorder-depressed episode (BD-DE) (N = 71), BD-manic episode (BD-ME) (N = 49), and schizophrenia (SCZ) (N = 122) and also differentiate subjects with mental disorders on a pair-wise basis. DSM-III-R diagnoses were determined and supplemented by computerized Quick Diagnostic Interview Schedule. After EEG preprocessing, robust exact low-resolution electromagnetic tomography (ReLORETA) computed EEG sources for 82 brain regions. 20 % of all subjects were then set aside for independent testing. Feature selection methods were then used for the remaining subjects to identify brain source regions that are discriminating between diagnostic categories. RESULTS Pair-wise classification accuracies between 90 % and 100 % were obtained using independent test subjects whose data were not used for training purposes. The most frequently selected features across various pairs are in the postcentral, supramarginal, and fusiform gyri, the hypothalamus, and the left cuneus. Brain sites discriminating SCZ from HC were mainly in the left hemisphere while those separating BD-ME from HC were on the right. LIMITATIONS The use of superseded DSM-III-R diagnostic system and relatively small sample size in some disorder categories that may increase the risk of overestimation. CONCLUSIONS DLA of EEG could be trained to autonomously classify psychiatric disorders with over 90 % accuracy compared to an expert clinical team using standardized operational methods.
Collapse
Affiliation(s)
- Maryam Ravan
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA.
| | - Amin Noroozi
- Department of Digital, Technologies, and Arts, Staffordshire University, Staffordshire, England, UK
| | - Mary Margarette Sanchez
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA
| | - Lee Borden
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA
| | - Nafia Alam
- Department of Electrical and Computer Engineering, New York Institute of Technology, New York, NY, USA
| | | | - Sinisa Colic
- Department of Electrical Engineering, University of Toronto, Canada
| | | | - Luciano Minuzzi
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Gary Hasey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Brugnolo A, Orso B, Girtler N, Ferraro PM, Arnaldi D, Mattioli P, Massa F, Famà F, Argenti L, Biffa G, Morganti W, Buonopane S, Uccelli A, Morbelli S, Pardini M. Tracking the progression of Alzheimer's disease: Insights from metabolic patterns of SOMI stages. Cortex 2024; 171:413-422. [PMID: 38113612 DOI: 10.1016/j.cortex.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 11/08/2023] [Indexed: 12/21/2023]
Abstract
BACKGROUND SOMI (Stages of Objective Memory Impairment) is a novel classification that identifies six stages of memory decline in Alzheimer's Disease (AD) using the Free and Cued Selective Reminding Test (FCSRT). However, the relationship between SOMI stages and brain metabolism remains unexplored. This study aims to investigate the metabolic correlates of SOMI stages using FDG-PET in Mild Cognitive Impairment due to AD (MCI-AD) and early AD patients. METHODS One hundred twenty-nine-patients (99 aMCI-AD and 30 AD), and 42 healthy controls (HCs) (MMSE = 29.2 ± .8; age:69.1 ± 8.6 years; education:10.7 ± 3.8 years) who underwent an extensive neuropsychological battery including FCSRT and brain FDG-PET were enrolled. According to their clinical relevance and available sample sizes, SOMI-4 (N = 24 subjects; MMSE score:26.6 ± 2.6: age:75.4 ± 3.2; education:9.9 ± 4.5) and SOMI-5 groups (N = 97; MMSE:25.3 ± 2.6; age:73.9 ± 5.8; education:9.4 ± 4.1) were investigated. RESULTS Compared to HCs, SOMI-4 showed hypometabolism in the precuneus, medial temporal gyrus bilaterally, right pecuneus and angular gyrus. SOMI-5 exhibited broader hypometabolism, extending to the left posterior cingulate and medial frontal gyrus bilaterally. The conjunction analysis revealed overlapping areas in the precuneus, medial temporal gyrus bilaterally, and in the right angular gyrus and cuneus. The disjunction analysis identified SOMI-5 specific hypometabolism encompassing left inferior temporal gyrus, uncus and parahippocampal gyrus, and medial frontal gyrus bilaterally (p < .001, p-value (FWE) < .05). DISCUSSION SOMI-4 relates to posterior hypometabolism, while SOMI-5 to more extensive hypometabolism further encompassing frontal cortices, suggesting SOMI as a biologically relevant classification system of memory decline. CONCLUSION Memory decline staged with SOMI is associated with hypometabolism spreading in amnesic MCI-AD/AD, suggesting its usefulness as a clinical marker of increasing neurodegeneration.
Collapse
Affiliation(s)
- Andrea Brugnolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Italy; Clinical Psychology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Italy.
| | - Nicola Girtler
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Italy; Clinical Psychology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | | | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Italy; Neurology Clinics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Italy; Neurology Clinics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Italy; Neurology Clinics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Francesco Famà
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Italy; Neurology Clinics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Lucia Argenti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Italy.
| | - Gabriella Biffa
- Clinical Psychology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Wanda Morganti
- Geriatrics Unit, Department of Geriatric Care, Orthogeriatrics and Rehabilitation, E.O. Galliera Hospital, Genoa, Italy.
| | - Silvia Buonopane
- Geriatrics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Silvia Morbelli
- Department of Health Sciences, University of Genoa, Italy; Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Mother-Child Health (DINOGMI), University of Genoa, Italy; Neurology Clinics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
11
|
Lyu W, Wu Y, Huang H, Chen Y, Tan X, Liang Y, Ma X, Feng Y, Wu J, Kang S, Qiu S, Yap PT. Aberrant dynamic functional network connectivity in type 2 diabetes mellitus individuals. Cogn Neurodyn 2023; 17:1525-1539. [PMID: 37969945 PMCID: PMC10640562 DOI: 10.1007/s11571-022-09899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/04/2022] [Revised: 09/11/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022] Open
Abstract
An increasing number of recent brain imaging studies are dedicated to understanding the neuro mechanism of cognitive impairment in type 2 diabetes mellitus (T2DM) individuals. In contrast to efforts to date that are limited to static functional connectivity, here we investigate abnormal connectivity in T2DM individuals by characterizing the time-varying properties of brain functional networks. Using group independent component analysis (GICA), sliding-window analysis, and k-means clustering, we extracted thirty-one intrinsic connectivity networks (ICNs) and estimated four recurring brain states. We observed significant group differences in fraction time (FT) and mean dwell time (MDT), and significant negative correlation between the Montreal Cognitive Assessment (MoCA) scores and FT/MDT. We found that in the T2DM group the inter- and intra-network connectivity decreases and increases respectively for the default mode network (DMN) and task-positive network (TPN). We also found alteration in the precuneus network (PCUN) and enhanced connectivity between the salience network (SN) and the TPN. Our study provides evidence of alterations of large-scale resting networks in T2DM individuals and shed light on the fundamental mechanisms of neurocognitive deficits in T2DM.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Ye Wu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu China
| | - Haoming Huang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Yuna Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Yi Liang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Xiaomeng Ma
- Department of Radiology, Jingzhou First People’s Hospital of Hubei Province, Jingzhou, Hubei China
| | - Yue Feng
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Jinjian Wu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Shangyu Kang
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong China
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
12
|
Qiang YR, Zhang SW, Li JN, Li Y, Zhou QY. Diagnosis of Alzheimer's disease by joining dual attention CNN and MLP based on structural MRIs, clinical and genetic data. Artif Intell Med 2023; 145:102678. [PMID: 37925204 DOI: 10.1016/j.artmed.2023.102678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2022] [Revised: 07/12/2023] [Accepted: 10/03/2023] [Indexed: 11/06/2023]
Abstract
Alzheimer's disease (AD) is an irreversible central nervous degenerative disease, while mild cognitive impairment (MCI) is a precursor state of AD. Accurate early diagnosis of AD is conducive to the prevention and early intervention treatment of AD. Although some computational methods have been developed for AD diagnosis, most employ only neuroimaging, ignoring other data (e.g., genetic, clinical) that may have potential disease information. In addition, the results of some methods lack interpretability. In this work, we proposed a novel method (called DANMLP) of joining dual attention convolutional neural network (CNN) and multilayer perceptron (MLP) for computer-aided AD diagnosis by integrating multi-modality data of the structural magnetic resonance imaging (sMRI), clinical data (i.e., demographics, neuropsychology), and APOE genetic data. Our DANMLP consists of four primary components: (1) the Patch-CNN for extracting the image characteristics from each local patch, (2) the position self-attention block for capturing the dependencies between features within a patch, (3) the channel self-attention block for capturing dependencies of inter-patch features, (4) two MLP networks for extracting the clinical features and outputting the AD classification results, respectively. Compared with other state-of-the-art methods in the 5CV test, DANMLP achieves 93% and 82.4% classification accuracy for the AD vs. MCI and MCI vs. NC tasks on the ADNI database, which is 0.2%∼15.2% and 3.4%∼26.8% higher than that of other five methods, respectively. The individualized visualization of focal areas can also help clinicians in the early diagnosis of AD. These results indicate that DANMLP can be effectively used for diagnosing AD and MCI patients.
Collapse
Affiliation(s)
- Yan-Rui Qiang
- Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Jia-Ni Li
- Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yan Li
- Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qin-Yi Zhou
- Key Laboratory of Information Fusion Technology, School of Automation, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
13
|
Figorilli M, Meloni F, Lecca R, Tamburrino L, Mascia MG, Cocco V, Meloni M, Marques AR, Vidal T, Congiu P, Defazio G, Durif F, Lanza G, Ferri R, Schenck CH, Fantini ML, Puligheddu M. Severity of REM sleep without atonia correlates with measures of cognitive impairment and depressive symptoms in REM sleep behaviour disorder. J Sleep Res 2023; 32:e13880. [PMID: 36998161 DOI: 10.1111/jsr.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 04/01/2023]
Abstract
This study aimed to correlate REM sleep without atonia (RSWA) and neuropsychological data in patients with idiopathic/isolated REM sleep behaviour disorder (iRBD) and those with RBD associated with Parkinson's disease (PDRBD), in order to assess whether higher degrees of RSWA are related to poorer cognitive performance. A total of 142 subjects were enrolled: 48 with iRBD, 55 with PDRBD, and 39 PD without RBD (PDnoRBD). All participants underwent video-polysomnographic recording, clinical and neuropsychological assessment. RSWA was quantified according to two manual scoring methods (Montréal, SINBAR) and one automated (REM atonia index, RAI). Mild cognitive impairment (MCI) was diagnosed according to diagnostic criteria for MCI in Parkinson's disease. The relationship between neuropsychological scores and RSWA metrics was explored by multiple linear regression analysis and logistic regression models. Patients with iRBD showed significantly lower visuospatial functions and working memory, compared with the others. More severe RSWA was associated with a higher risk of reduced visuospatial abilities (OR 0.15), working memory (OR 2.48), attention (OR 2.53), and semantic fluency (OR 0.15) in the iRBD. In the whole group, a greater RSWA was associated with an increased risk for depressive symptoms (OR 3.6). A total of 57(40%) MCI subjects were found (17 iRBD, 26 PDRBD, and 14 PDnoRBD). Preserved REM-atonia was associated with a reduced odds of multi-domain MCI in the whole study population (OR 0.54). In conclusion, a greater severity of RSWA was associated with an increased risk for poor cognitive performance and depressive mood in patients with RBD. Moreover, higher RAI was associated with a lower risk of multi-domain MCI.
Collapse
Affiliation(s)
- Michela Figorilli
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Federico Meloni
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Rosamaria Lecca
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Ludovica Tamburrino
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Viola Cocco
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Mario Meloni
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Ana Raquel Marques
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurophysiology Department, Clermont-Ferrand, France
| | - Tiphaine Vidal
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurophysiology Department, Clermont-Ferrand, France
| | - Patrizia Congiu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giovanni Defazio
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| | - Frank Durif
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurophysiology Department, Clermont-Ferrand, France
| | - Giuseppe Lanza
- Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute-IRCCS, Troina, Italy
| | - Carlos H Schenck
- Minnesota Regional Sleep Disorders Center, and Departments of Psychiatry, Hennepin County Medical Center and University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Maria Livia Fantini
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, Clermont-Ferrand University Hospital, Neurophysiology Department, Clermont-Ferrand, France
| | - Monica Puligheddu
- Sleep Disorder Research Center, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Neurology Unit, Department of Medical Sciences and Public Health, University of Cagliari and AOU Cagliari, Monserrato, Cagliari, Italy
| |
Collapse
|
14
|
Yang A, Li G. Nucleus basalis of Meynert predicts cognitive changes in isolated REM sleep behavior disorder. Sleep Med 2023; 109:11-17. [PMID: 37393717 DOI: 10.1016/j.sleep.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/10/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Degeneration of the nucleus basalis of Meynert (NBM) has been implicated in cognitive impairments in Parkinson's disease. The role of the NBM volumes in the cognitive function in isolated rapid eye movement (REM) sleep behavior disorder (iRBD) has not been explored. METHOD We investigated changes in NBM volumes and their associations with cognitive deficits in iRBD. Baseline NBM volumes were compared between 29 iRBD patients and 29 healthy controls by using structural MRI data from the Parkinson Progression Marker Initiative database. Partial correlation analyses were used to evaluate cross-sectional relationships between baseline NBM volumes and cognitive performance in iRBD. Linear mixed models were applied to assess between-group differences in longitudinal cognitive changes, and whether baseline NBM volumes could predict longitudinal changes of cognition in iRBD. RESULTS Compared with controls, NBM volumes were significantly reduced in iRBD patients. In patients with iRBD, higher NBM volumes were significantly associated with greater performance in global cognition function. In the longitudinal analyses, iRBD patients showed more severe and rapid decline on tests of global cognition compared to healthy controls. Furthermore, greater baseline NBM volumes were significantly associated with greater follow-up Montreal Cognitive Assessment (MoCA) scores, thus predicting less longitudinal cognitive changes in iRBD. CONCLUSION This study provides important in vivo evidence for an association between the NBM degeneration and cognitive impairments in iRBD.
Collapse
Affiliation(s)
- Amei Yang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanglu Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
15
|
Orso B, Mattioli P, Yoon EJ, Kim YK, Kim H, Shin JH, Kim R, Liguori C, Famà F, Donniaquio A, Massa F, García DV, Meles SK, Leenders KL, Chiaravalloti A, Pardini M, Bauckneht M, Morbelli S, Nobili F, Lee JY, Arnaldi D. Validation of the REM behaviour disorder phenoconversion-related pattern in an independent cohort. Neurol Sci 2023; 44:3161-3168. [PMID: 37140829 PMCID: PMC10415520 DOI: 10.1007/s10072-023-06829-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/25/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND A brain glucose metabolism pattern related to phenoconversion in patients with idiopathic/isolated REM sleep behaviour disorder (iRBDconvRP) was recently identified. However, the validation of the iRBDconvRP in an external, independent group of iRBD patients is needed to verify the reproducibility of such pattern, so to increase its importance in clinical and research settings. The aim of this work was to validate the iRBDconvRP in an independent group of iRBD patients. METHODS Forty iRBD patients (70 ± 5.59 years, 19 females) underwent brain [18F]FDG-PET in Seoul National University. Thirteen patients phenoconverted at follow-up (7 Parkinson disease, 5 Dementia with Lewy bodies, 1 Multiple system atrophy; follow-up time 35 ± 20.56 months) and 27 patients were still free from parkinsonism/dementia after 62 ± 29.49 months from baseline. We applied the previously identified iRBDconvRP to validate its phenoconversion prediction power. RESULTS The iRBDconvRP significantly discriminated converters from non-converters iRBD patients (p = 0.016; Area under the Curve 0.74, Sensitivity 0.69, Specificity 0.78), and it significantly predicted phenoconversion (Hazard ratio 4.26, C.I.95%: 1.18-15.39). CONCLUSIONS The iRBDconvRP confirmed its robustness in predicting phenoconversion in an independent group of iRBD patients, suggesting its potential role as a stratification biomarker for disease-modifying trials.
Collapse
Affiliation(s)
- Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy.
| | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
| | - Eun-Jin Yoon
- Memory Network Medical Research Center, Seoul National University, Seoul, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine and Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine and Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University College of Medicine, Seoul, South Korea
| | - Ryul Kim
- Department of Neurology, Inha University Hospital, Incheon, South Korea
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome 'Tor Vergata", Rome, Italy
- Sleep Medicine Center, Neurology Unit, University Hospital "Tor Vergata", Rome, Italy
| | - Francesco Famà
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Andrea Donniaquio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
| | - David Vállez García
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Location VuMC, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Sanne K Meles
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Klaus L Leenders
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Agostino Chiaravalloti
- IRCCS Neuromed, Pozzilli, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico S. Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Via Antonio Pastore 1, 16132, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico S. Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Via Antonio Pastore 1, 16132, Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Jee-Young Lee
- Department of Neurology, Seoul National University College of Medicine and Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), Clinical Neurology, University of Genoa, Largo Daneo 3, 16132, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| |
Collapse
|
16
|
Samizadeh MA, Fallah H, Toomarisahzabi M, Rezaei F, Rahimi-Danesh M, Akhondzadeh S, Vaseghi S. Parkinson's Disease: A Narrative Review on Potential Molecular Mechanisms of Sleep Disturbances, REM Behavior Disorder, and Melatonin. Brain Sci 2023; 13:914. [PMID: 37371392 DOI: 10.3390/brainsci13060914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/08/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases. There is a wide range of sleep disturbances in patients with PD, such as insomnia and rapid eye movement (REM) sleep behavior disorder (or REM behavior disorder (RBD)). RBD is a sleep disorder in which a patient acts out his/her dreams and includes abnormal behaviors during the REM phase of sleep. On the other hand, melatonin is the principal hormone that is secreted by the pineal gland and significantly modulates the circadian clock and mood state. Furthermore, melatonin has a wide range of regulatory effects and is a safe treatment for sleep disturbances such as RBD in PD. However, the molecular mechanisms of melatonin involved in the treatment or control of RBD are unknown. In this study, we reviewed the pathophysiology of PD and sleep disturbances, including RBD. We also discussed the potential molecular mechanisms of melatonin involved in its therapeutic effect. It was concluded that disruption of crucial neurotransmitter systems that mediate sleep, including norepinephrine, serotonin, dopamine, and GABA, and important neurotransmitter systems that mediate the REM phase, including acetylcholine, serotonin, and norepinephrine, are significantly involved in the induction of sleep disturbances, including RBD in PD. It was also concluded that accumulation of α-synuclein in sleep-related brain regions can disrupt sleep processes and the circadian rhythm. We suggested that new treatment strategies for sleep disturbances in PD may focus on the modulation of α-synuclein aggregation or expression.
Collapse
Affiliation(s)
- Mohammad-Ali Samizadeh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Hamed Fallah
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran 1417935840, Iran
| | - Mohadeseh Toomarisahzabi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Fereshteh Rezaei
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Mehrsa Rahimi-Danesh
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Psychiatric Hospital, Tehran University of Medical Sciences, Tehran 13337159140, Iran
| | - Salar Vaseghi
- Cognitive Neuroscience Lab, Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj 3365166571, Iran
| |
Collapse
|
17
|
Grisanti SG, Massa F, Chincarini A, Pretta S, Rissotto R, Serrati C, Monacelli F, Serafini G, Calcagno P, Brugnolo A, Pardini M, Nobili F, Girtler N. Discrepancy Between Patient and Caregiver Estimate of Apathy Predicts Dementia in Patients with Amnestic Mild Cognitive Impairment. J Alzheimers Dis 2023; 93:75-86. [PMID: 36938731 DOI: 10.3233/jad-220418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/16/2023]
Abstract
BACKGROUND Apathy is a frequent behavioral symptom of Alzheimer's disease (AD). The Apathy Evaluation Scale (AES) is a tool exploring the perception of apathy by both caregivers (CG-AES) and patients (PT-AES), and the discrepancy in their ratings is a proxy of patients' disease unawareness. OBJECTIVE To assess in a cohort study of patients with amnesic mild cognitive impairment (aMCI) whether apathy and awareness of apathy predict progression to dementia and timing. METHODS From the global AES scores of 110 patients with aMCI and their caregivers, we obtained two principal indices for analysis: 1) 'Apathy', the mean of PT-AES and CG-AES, and 2) 'Discrepancy', obtained by subtracting CG-AES from PT-AES. Patients were followed with visits every six months for three years or until dementia. AES indices and the principal demographical/neuropsychological variables were filtered from multicollinearity. The most robust variables entered a logistic regression model and survival analyses (Cox regression, log-rank test of Kaplan-Meier curves) to estimate which predicted the risk and timing of progression, respectively. RESULTS Sixty patients (54.5%) developed dementia (57 AD) after 6.0-36.0 months, 22 (20%) remained in an MCI stage, and 28 (25.5%) dropped out. 'Discrepancy' was a robust and accurate predictor of the risk of progression (AUC = 0.73) and, after binarization according to a computed cutoff, of timing to dementia. CONCLUSION A structured evaluation of apathy, both self-assessed and estimated by caregivers, can provide useful information on the risk and timing of progression from aMCI to dementia. The discrepancy between the two estimates is a fairly reliable index for prediction purposes as a proxy of disease unawareness.
Collapse
Affiliation(s)
- Stefano Giuseppe Grisanti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | | | | | - Carlo Serrati
- Neurology Unit, ASL 1 Hospital, Imperia, Italy; formerly at the Neurology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fiammetta Monacelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Internal Medicine (DIMI), University of Genoa, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Andrea Brugnolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicola Girtler
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | |
Collapse
|
18
|
Hafiz R, Gandhi TK, Mishra S, Prasad A, Mahajan V, Natelson BH, Di X, Biswal BB. Assessing functional connectivity differences and work-related fatigue in surviving COVID-negative patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.02.01.478677. [PMID: 35132408 PMCID: PMC8820653 DOI: 10.1101/2022.02.01.478677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19) has affected all aspects of life around the world. Neuroimaging evidence suggests the novel coronavirus can attack the central nervous system (CNS), causing cerebro-vascular abnormalities in the brain. This can lead to focal changes in cerebral blood flow and metabolic oxygen consumption rate in the brain. However, the extent and spatial locations of brain alterations in COVID-19 survivors are largely unknown. In this study, we have assessed brain functional connectivity (FC) using resting-state functional MRI (RS-fMRI) in 38 (25 males) COVID patients two weeks after hospital discharge, when PCR negative and 31 (24 males) healthy subjects. FC was estimated using independent component analysis (ICA) and dual regression. When compared to the healthy group, the COVID group demonstrated significantly enhanced FC in the basal ganglia and precuneus networks (family wise error (fwe) corrected, pfwe < 0.05), while, on the other hand, reduced FC in the language network (pfwe < 0.05). The COVID group also experienced higher fatigue levels during work, compared to the healthy group (p < 0.001). Moreover, within the precuneus network, we noticed a significant negative correlation between FC and fatigue scores across groups (Spearman's ρ = -0.47, p = 0.001, r2 = 0.22). Interestingly, this relationship was found to be significantly stronger among COVID survivors within the left parietal lobe, which is known to be structurally and functionally associated with fatigue in other neurological disorders.
Collapse
Affiliation(s)
- Rakibul Hafiz
- Department of Biomedical Engineering, New Jersey Institute of Technology (NJIT), 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| | - Tapan Kumar Gandhi
- Department of Electrical Engineering, Indian Institute of Technology (IIT), Block II, IIT Delhi Main Rd, IIT Campus, Hauz Khas, New Delhi, Delhi 110016, India
| | - Sapna Mishra
- Department of Electrical Engineering, Indian Institute of Technology (IIT), Block II, IIT Delhi Main Rd, IIT Campus, Hauz Khas, New Delhi, Delhi 110016, India
| | - Alok Prasad
- Internal Medicine, Irene Hospital & Senior Consultant Medicine, Metro Heart and Super-specialty Hospital, New Delhi, India
| | - Vidur Mahajan
- Centre for Advanced Research in Imaging, Neuroscience & Genomics, Mahajan Imaging, New Delhi, India
| | - Benjamin H. Natelson
- Pain and Fatigue Study Center, Department of Neurology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology (NJIT), 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| | - Bharat B. Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology (NJIT), 323 Dr Martin Luther King Jr Blvd, Newark, NJ 07102, USA
| |
Collapse
|
19
|
Vacca M, Assogna F, Pellicano C, Chiaravalloti A, Placidi F, Izzi F, Camedda R, Schillaci O, Spalletta G, Lombardo C, Mercuri NB, Liguori C. Neuropsychiatric, neuropsychological, and neuroimaging features in isolated REM sleep behavior disorder: The importance of MCI. Sleep Med 2022; 100:230-237. [PMID: 36116292 DOI: 10.1016/j.sleep.2022.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 05/16/2022] [Revised: 07/23/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is frequently diagnosed in patients with isolated rapid eye movement (REM) sleep behavior disorder (iRBD), although the extent of MCI-associated neuropathology has not yet been quantified. The present study compared the differences in neuropsychiatric, neuropsychological, and neuroimaging markers of neurodegeneration in MCI-iRBD and iRBD patients with normal cognition. METHODS Sixty-one patients with iRBD were included in the study: 30 patients were included in the MCI subgroup (RBD-MCI) and 31 in the normal cognition subgroup (RBD-NC). Both groups underwent neuropsychiatric and neuropsychological assessments to evaluate psychopathological symptoms and neuropsychological functions. Brain [18F]FDG PET and 123I-FP-CIT-SPECT were performed to evaluate brain glucose metabolism and nigrostriatal dopaminergic function in convenient subgroups of patients, respectively. RESULTS Neuropsychological measures generally confirmed overall cognitive decline in patients with iRBD-MCI. Immediate long-term verbal memory and visuospatial functions, as well as attentional-executive impairment were evident in the MCI group compared to the NC group. Neuroimaging results indicated reduced brain glucose uptake in the bilateral posterior cingulate cortex and more evident nigrostriatal deafferentation in the RBD-MCI group. There were no differences in psychopathological symptoms between the two groups. CONCLUSIONS This study confirmed that iRBD patients with MCI had a more impaired cognitive status that those with NC. Moreover, the MCI subgroup presented reduced cerebral glucose consumption in brain areas critical for cognition, and a more severe deafferentation of the nigro-striatal regions, highlighting the importance of identifying iRBD patients with MCI for urgent neuroprotective trials.
Collapse
Affiliation(s)
| | | | | | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Fabio Placidi
- Sleep Medicine Center, Neurology Unit, University Hospital of Rome "Tor Vergata", Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Francesca Izzi
- Sleep Medicine Center, Neurology Unit, University Hospital of Rome "Tor Vergata", Italy
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy
| | | | | | - Nicola Biagio Mercuri
- IRCCS Santa Lucia Foundation, Rome, Italy; Sleep Medicine Center, Neurology Unit, University Hospital of Rome "Tor Vergata", Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Claudio Liguori
- Sleep Medicine Center, Neurology Unit, University Hospital of Rome "Tor Vergata", Italy; Department of Systems Medicine, University of Rome "Tor Vergata", Italy.
| |
Collapse
|
20
|
Mattioli P, Pardini M, Girtler N, Brugnolo A, Orso B, Andrea D, Calizzano F, Mancini R, Massa F, Michele T, Bauckneht M, Morbelli S, Sambuceti G, Flavio N, Arnaldi D. Cognitive and Brain Metabolism Profiles of Mild Cognitive Impairment in Prodromal Alpha-Synucleinopathy. J Alzheimers Dis 2022; 90:433-444. [DOI: 10.3233/jad-220653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
Background: Mild cognitive impairment (MCI) is a heterogeneous condition. Idiopathic REM sleep behavior disorder (iRBD) can be associated with MCI (MCI-RBD). Objective: To investigate neuropsychological and brain metabolism features of patients with MCI-RBD by comparison with matched MCI-AD patients. To explore their predictive value toward conversion to a full-blown neurodegenerative disease. Methods: Seventeen MCI-RBD patients (73.6±6.5 years) were enrolled. Thirty-four patients with MCI-AD were matched for age (74.8±4.4 years), Mini-Mental State Exam score and education with a case-control criterion. All patients underwent a neuropsychological assessment and brain 18F-FDG-PET. Images were compared between groups to identify hypometabolic volumes of interest (MCI-RBD-VOI and MCI-AD-VOI). The dependency of whole-brain scaled metabolism levels in MCI-RBD-VOI and MCI-AD-VOI on neuropsychological test scores was explored with linear regression analyses in both groups, adjusting for age and education. Survival analysis was performed to investigate VOIs phenoconversion prediction power. Results: MCI-RBD group scored lower in executive functions and higher in verbal memory compared to MCI-AD group. Also, compared with MCI-AD, MCI-RBD group showed relative hypometabolism in a posterior brain area including cuneus, precuneus, and occipital regions while the inverse comparison revealed relative hypometabolism in the hippocampus/parahippocampal areas in MCI-AD group. MCI-RBD-VOI metabolism directly correlated with executive functions in MCI-RBD (p = 0.04). MCI-AD-VOI metabolism directly correlated with verbal memory in MCI-AD (p = 0.001). MCI-RBD-VOI metabolism predicted (p = 0.03) phenoconversion to an alpha-synucleinopathy. MCI-AD-VOI metabolism showed a trend (p = 0.07) in predicting phenoconversion to dementia. Conclusion: MCI-RBD and MCI-AD showed distinct neuropsychological and brain metabolism profiles, that may be helpful for both diagnosis and prognosis purposes.
Collapse
Affiliation(s)
- Pietro Mattioli
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nicola Girtler
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Psychology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Psychology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Beatrice Orso
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Donniaquio Andrea
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Raffaele Mancini
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Terzaghi Michele
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Dept. of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Dept. of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Nuclear Medicine Unit, Dept. of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nobili Flavio
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
21
|
Yoon EJ, Lee JY, Kim H, Yoo D, Shin JH, Nam H, Jeon B, Kim YK. Brain Metabolism Related to Mild Cognitive Impairment and Phenoconversion in Patients With Isolated REM Sleep Behavior Disorder. Neurology 2022; 98:e2413-e2424. [PMID: 35437260 PMCID: PMC9231839 DOI: 10.1212/wnl.0000000000200326] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/22/2021] [Accepted: 02/17/2022] [Indexed: 11/15/2022] Open
Abstract
Background and Objectives Mild cognitive impairment (MCI) in isolated REM sleep behavior disorder (iRBD) is a risk factor for subsequent neurodegeneration. We aimed to identify brain metabolism and functional connectivity changes related to MCI in patients with iRBD and the neuroimaging markers' predictive value for phenoconversion. Methods This is a prospective cohort study of patients with iRBD with a mean follow-up of 4.2 ± 2.6 years. At baseline, patients with iRBD and age- and sex-matched healthy controls (HCs) underwent 18F-fluorodeoxyglucose (FDG)–PET and resting-state fMRI scans and a comprehensive neuropsychological test battery. Voxel-wise group comparisons for FDG-PET data were performed using a general linear model. Seed-based connectivity maps were computed using brain regions showing significant hypometabolism associated with MCI in patients with iRBD and compared between groups. A Cox regression analysis was applied to investigate the association between brain metabolism and risk of phenoconversion. Results Forty patients with iRBD, including 21 with MCI (iRBD-MCI) and 19 with normal cognition (iRBD-NC), and 24 HCs were included in the study. The iRBD-MCI group revealed relative hypometabolism in the inferior parietal lobule, lateral and medial occipital, and middle and inferior temporal cortex bilaterally compared with HC and the iRBD-NC group. In seed-based connectivity analyses, the iRBD-MCI group exhibited decreased functional connectivity of the left angular gyrus with the occipital cortex. Of 40 patients with iRBD, 12 patients converted to Parkinson disease (PD) or dementia with Lewy bodies (DLB). Hypometabolism of the occipital pole (hazard ratio [95% CI] 6.652 [1.387–31.987]), medial occipital (4.450 [1.143–17.327]), and precuneus (3.635 [1.009–13.093]) was associated with higher phenoconversion rate to PD/DLB. Discussion MCI in iRBD is related to functional and metabolic changes in broad brain areas, particularly the occipital and parietal areas. Moreover, hypometabolism in these brain regions was a predictor of phenoconversion to PD or DLB. Evaluation of cognitive function and neuroimaging characteristics could be useful for risk stratification in patients with iRBD.
Collapse
Affiliation(s)
- Eun Jin Yoon
- Memory Network Medical Research Center, Seoul National University, Seoul, Korea, Republic of.,Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Jee-Young Lee
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Heejung Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of.,Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Korea, Republic of
| | - Dallah Yoo
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of.,Department of Neurology, Kyung Hee University Hospital, Seoul, Korea, Republic of
| | - Jung Hwan Shin
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Hyunwoo Nam
- Department of Neurology, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Beomseok Jeon
- Department of Neurology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, Seoul National University-Seoul Metropolitan Government Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea, Republic of
| |
Collapse
|
22
|
Arnaldi D, Mattioli P, Famà F, Girtler N, Brugnolo A, Pardini M, Donniaquio A, Massa F, Orso B, Raffa S, Bauckneht M, Morbelli S, Nobili F. Stratification Tools for Disease-Modifying Trials in Prodromal Synucleinopathy. Mov Disord 2022; 37:52-61. [PMID: 34533239 PMCID: PMC9292414 DOI: 10.1002/mds.28785] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Dopamine transporter single photon-emission computed tomography (DAT-SPECT) is the strongest risk factor for phenoconversion in patients with idiopathic rapid eye movement (REM)-sleep behavior disorder (iRBD). However, it might be used as a second-line stratification tool in clinical trials, because it is expensive and mini-invasive. OBJECTIVE Aim of the study is to investigate whether other cost-effective and non-invasive biomarkers may be proposed as first-line stratification tools. METHODS Forty-seven consecutive iRBD patients (68.53 ± 7.16 years, 40 males) underwent baseline clinical and neuropsychological assessment, olfaction test, resting electroencephalogram (EEG), and DAT-SPECT. All patients underwent 6 month-based clinical follow-up to investigate the emergence of parkinsonism and/or dementia. Survival analysis and Cox regression were used to estimate conversion risk. RESULTS Seventeen patients developed an overt synucleinopathy (eight Parkinsonism and nine dementia) 32.8 ± 22 months after diagnosis. The strongest risk factors were putamen specific to non-displaceable binding ratio (SBR) (hazard ratio [HR], 7.3), attention/working memory cognitive function (NPS-AT/WM) (HR, 5.9), EEG occipital mean frequency (HR, 2.7) and clinical motor assessment (HR, 2.3). On multivariate Cox-regression analysis, only putamen SBR and NPS-AT/WM significantly contributed to the model (HR, 6.2, 95% confidence interval [CI], 1.9-19.8). At post-hoc analysis, the trail-making test B (TMT-B) was the single most efficient first-line stratification tool that allowed to reduce the number of eligible subjects to 76.6% (sensitivity 1, specificity 0.37). Combining TMT-B and DAT-SPECT further reduced the sample to 66% (sensitivity 0.88, specificity 0.47). CONCLUSION The TMT-B seems to be a cost-effective and efficient first-line screening tool, to be used to select patients that deserve DAT-SPECT as second-line screening tool for disease-modifying clinical trials. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dario Arnaldi
- Department of Neuroscience (DINOGMI)University of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Pietro Mattioli
- Department of Neuroscience (DINOGMI)University of GenoaGenoaItaly
| | - Francesco Famà
- Department of Neuroscience (DINOGMI)University of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Nicola Girtler
- Department of Neuroscience (DINOGMI)University of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Andrea Brugnolo
- Department of Neuroscience (DINOGMI)University of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Matteo Pardini
- Department of Neuroscience (DINOGMI)University of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| | | | - Federico Massa
- Department of Neuroscience (DINOGMI)University of GenoaGenoaItaly
| | - Beatrice Orso
- Department of Neuroscience (DINOGMI)University of GenoaGenoaItaly
| | - Stefano Raffa
- Department of Health Sciences (DISSAL)University of GenoaGenoaItaly
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
- Department of Health Sciences (DISSAL)University of GenoaGenoaItaly
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
- Department of Health Sciences (DISSAL)University of GenoaGenoaItaly
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI)University of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San MartinoGenoaItaly
| |
Collapse
|
23
|
Orso B, Arnaldi D, Peira E, Famá F, Giorgetti L, Girtler N, Brugnolo A, Mattioli P, Biassoni E, Donniaquio A, Massa F, Bauckneht M, Miceli A, Morbelli S, Nobili F, Pardini M. The Role of Monoaminergic Tones and Brain Metabolism in Cognition in De Novo Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1945-1955. [PMID: 35811536 DOI: 10.3233/jpd-223308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/15/2023]
Abstract
BACKGROUND Cognitive impairment is frequent in Parkinson's disease (PD) and several neurotransmitter changes have been reported since the time of diagnosis, although seldom investigated altogether in the same patient cohort. OBJECTIVE Our aim was to evaluate the association between neurotransmitter impairment, brain metabolism, and cognition in a cohort of de novo, drug-naïve PD patients. METHODS We retrospectively selected 95 consecutive drug-naïve PD patients (mean age 71.89±7.53) undergoing at the time of diagnosis a brain [18F]FDG-PET as a marker of brain glucose metabolism and proxy measure of neurodegeneration, [123I]FP-CIT-SPECT as a marker and dopaminergic deafferentation in the striatum and frontal cortex, as well as a marker of serotonergic deafferentation in the thalamus, and quantitative electroencephalography (qEEG) as an indirect measure of cholinergic deafferentation. Patients also underwent a complete neuropsychological battery. RESULTS Positive correlations were observed between (i) executive functions and left cerebellar cortex metabolism, (ii) prefrontal dopaminergic tone and working memory (r = 0.304, p = 0.003), (iii) qEEG slowing in the posterior leads and both memory (r = 0.299, p = 0.004) and visuo-spatial functions (r = 0.357, p < 0.001). CONCLUSIONS In subjects with PD, the impact of regional metabolism and diffuse projection systems degeneration differs across cognitive domains. These findings suggest possible tailored approaches to the treatment of cognitive deficits in PD.
Collapse
Affiliation(s)
- Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Enrico Peira
- Istituto nazionale di Fisica Nucleare (IN FN), Genoa section, Genoa, Italy
| | - Francesco Famá
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | | | - Nicola Girtler
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Erica Biassoni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Andrea Donniaquio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Alberto Miceli
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
- Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| |
Collapse
|
24
|
Jeong E, Cha KS, Shin HR, Kim EY, Jun JS, Kim TJ, Byun JI, Shin JW, Sunwoo JS, Jung KY. Alerting network alteration in isolated rapid eye movement sleep behavior disorder patients with mild cognitive impairment. Sleep Med 2021; 89:10-18. [PMID: 34864507 DOI: 10.1016/j.sleep.2021.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 11/03/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Mild cognitive impairment (MCI) was found in 30-50% of the isolated REM sleep behavior disorder (iRBD) patients. Furthermore, it is known that patients with Parkinson's disease have attention network defects. Given that iRBD is known to be the prodromal disease of α-synucleinopathies, our aim was to investigate whether there are attention network dysfunctions in iRBD patients following the presence of MCI. METHODS 14 healthy controls, 48 iRBD patients, 24 with MCI and 24 without MCI, were included in this study. Attention network task (ANT) was used to assess alerting, orienting, and executive control networks. Event-related potentials (ERPs) and behavioral performances were recorded during the ANT. Parietal N1 and P3 components were analyzed to find effects of the three attention networks. RESULTS IRBD patients without MCI showed neuropsychological, behavioral, and ERP results similar to those of healthy controls. On the other hand, iRBD patients with MCI showed a general decline in cognitive domains with no alerting effect (controls, p = 0.043; iRBD-noMCI, p = 0.014; iRBD-MCI, p = 0.130) while preserving orienting and executive control effect. Furthermore, iRBD patients with MCI had impairments in executive function and verbal memory domains, compared to iRBD patients without MCI. CONCLUSIONS Our findings indicate that when cognition is reduced to MCI levels in iRBD patients, the attention network, especially the alerting component, is impaired. The attention network and cognition, on the other hand, can be preserved in iRBD patients due to the compensatory mechanism.
Collapse
Affiliation(s)
- El Jeong
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, South Korea
| | - Kwang Su Cha
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hye-Rim Shin
- Department of Neurology, Dankook University Hospital, Cheonan, South Korea
| | - Eun Young Kim
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, South Korea
| | - Jin-Sun Jun
- Department of Neurology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, South Korea
| | - Tae-Joon Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, South Korea
| | - Jung-Ick Byun
- Department of Neurology, Kyung Hee University Hospital at Gangdong, Seoul, South Korea
| | - Jung-Won Shin
- Department of Neurology, CHA University, Bundang CHA Medical Center, Seongnam, South Korea
| | - Jun-Sang Sunwoo
- Department of Neurosurgery, Seoul National University Hospital, Seoul, South Korea
| | - Ki-Young Jung
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
25
|
Orso B, Famà F, Giorgetti L, Mattioli P, Donniaquio A, Girtler N, Brugnolo A, Massa F, Peira E, Pardini M, Morbelli S, Nobili F, Arnaldi D. Polysomnographic correlates of sleep disturbances in de novo, drug naïve Parkinson's Disease. Neurol Sci 2021; 43:2531-2536. [PMID: 34586541 PMCID: PMC8918173 DOI: 10.1007/s10072-021-05622-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022]
Abstract
Background Sleep disturbances
are common non-motor symptoms of Parkinson’s Disease (PD). Methods The aim of this study was to investigate the polysomnographic correlates of sleep changes, as investigated by the Parkinson’s Disease Sleep Scale-2 (PDSS-2), in a cohort of sixty-two consecutive de novo, drug naïve PD patients (71.40 ± 7.84 y/o). Results PDSS-2 total score showed a direct correlation with stage shifts (p = 0.008). Fragmented sleep showed an inverse correlation with sleep efficiency (p = 0.012). Insomnia symptoms showed an inverse correlation with wake after sleep onset (p = 0.005) and direct correlation with periodic leg movements (p = 0.006) and stage shift indices (p = 0.003). Motor Symptoms showed a direct correlation with Apnoea-Hypopnoea (AHI; p = 0.02) and awakenings indices (p = 0.003). Dream distressing showed a direct correlation with REM without atonia (RWA, p = 0.042) and an inverse correlation with AHI (p = 0.012). Sleep quality showed an inverse correlation with RWA (p = 0.008). Conclusion PDSS-2 features are significantly correlated with polysomnography objective findings, thus further supporting its reliability to investigate sleep disturbances in PD patients.
Collapse
Affiliation(s)
- Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Francesco Famà
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Andrea Donniaquio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Nicola Girtler
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Enrico Peira
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,National Institute of Nuclear Physics (INFN), Genoa section, Via Dodecaneso 33, 16146, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy.,Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy. .,IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
26
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Neurochemical Features of Rem Sleep Behaviour Disorder. J Pers Med 2021; 11:jpm11090880. [PMID: 34575657 PMCID: PMC8468296 DOI: 10.3390/jpm11090880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Dopaminergic deficiency, shown by many studies using functional neuroimaging with Single Photon Emission Computerized Tomography (SPECT) and Positron Emission Tomography (PET), is the most consistent neurochemical feature of rapid eye movement (REM) sleep behaviour disorder (RBD) and, together with transcranial ultrasonography, and determination of alpha-synuclein in certain tissues, should be considered as a reliable marker for the phenoconversion of idiopathic RBD (iRBD) to a synucleopathy (Parkinson’s disease –PD- or Lewy body dementia -LBD). The possible role in the pathogenesis of RBD of other neurotransmitters such as noradrenaline, acetylcholine, and excitatory and inhibitory neurotransmitters; hormones such as melatonin, and proinflammatory factors have also been suggested by recent reports. In general, brain perfusion and brain glucose metabolism studies have shown patterns resembling partially those of PD and LBD. Finally, the results of structural and functional MRI suggest the presence of structural changes in deep gray matter nuclei, cortical gray matter atrophy, and alterations in the functional connectivity within the basal ganglia, the cortico-striatal, and the cortico-cortical networks, but they should be considered as preliminary.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, C/Marroquina 14, 3 B, E28030 Madrid, Spain;
- Correspondence: or ; Tel.: +34-636968395; Fax: +34-913280704
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, C/Marroquina 14, 3 B, E28030 Madrid, Spain;
| | - Elena García-Martín
- UNEx, ARADyAL, Instituto de Salud Carlos III, University Institute of Molecular Pathology, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- UNEx, ARADyAL, Instituto de Salud Carlos III, University Institute of Molecular Pathology, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
27
|
Orso B, Arnaldi D, Girtler N, Brugnolo A, Doglione E, Mattioli P, Biassoni E, Fancellu R, Massa F, Bauckneht M, Chiola S, Morbelli S, Nobili F, Pardini M. Dopaminergic and Serotonergic Degeneration and Cortical [ 18 F]Fluorodeoxyglucose Positron Emission Tomography in De Novo Parkinson's Disease. Mov Disord 2021; 36:2293-2302. [PMID: 34021923 DOI: 10.1002/mds.28654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Degeneration of the nigrostriatal dopaminergic (DA) and the raphe-thalamic serotonergic (SE) systems is among the earliest changes observed in Parkinson's disease (PD). The consequences of those changes on brain metabolism, especially regarding their impact on the cortex, are poorly understood. OBJECTIVES Using multi-tracer molecular imaging, we assessed in a cohort of drug-naive PD patients the association between cortical metabolism and DA and SE system deafferentation of either striatum or thalamus, and we explored whether this association was mediated by either striatum or thalamus metabolism. METHODS We recruited 96 drug-naive PD patients (aged 71.9 ± 7.5 years) who underwent [123 I]ioflupane single-photon emission computed tomography ([123 I]FP-CIT-SPECT) and brain [18 F]fluorodeoxyglucose positron emission tomography ([18 F]FDG-PET). We used a voxel-wise analysis of [18 F]FDG-PET images to correlate regional metabolism with striatal DA and thalamic SE innervation as assessed using [123 I]FP-CIT-SPECT. RESULTS We found that [123 I]FP-CIT specific to nondisplaceable binding ratio (SBR) and glucose metabolism positively correlated with one another in the deep gray matter (thalamus: P = 0.001, r = 0.541; caudate P = 0.001, r = 0.331; putamen P = 0.001, r = 0.423). We then observed a direct correlation between temporoparietal metabolism and caudate DA innervation, as well as a direct correlation between prefrontal metabolism and thalamus SE innervation. The effect of caudate [123 I]FP-CIT SBR values on temporoparietal metabolism was mediated by caudate metabolic values (percentage mediated: 89%, P-value = 0.008), and the effect of thalamus [123 I]FP-CIT SBR values on prefrontal metabolism was fully mediated by thalamus metabolic values (P < 0.001). CONCLUSIONS These data suggest that the impact of deep gray matter monoaminergic deafferentation on cortical function is mediated by striatal and thalamic metabolism in drug-naive PD. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Nicola Girtler
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | | | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Erica Biassoni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Bauckneht
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy.,Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Silvia Chiola
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico S. Martino, Genoa, Italy.,Department of Health Science (DISSAL), University of Genoa, Genoa, Italy
| | - Flavio Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| |
Collapse
|