1
|
Lopes L, Lopez-Montes A, Chen Y, Koller P, Rathod N, Blomgren A, Caobelli F, Rominger A, Shi K, Seifert R. The Evolution of Artificial Intelligence in Nuclear Medicine. Semin Nucl Med 2025:S0001-2998(25)00005-4. [PMID: 39934005 DOI: 10.1053/j.semnuclmed.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Nuclear medicine has continuously evolved since its beginnings, constantly improving the diagnosis and treatment of various diseases. The integration of artificial intelligence (AI) is one of the latest revolutionizing chapters, promising significant advancements in diagnosis, prognosis, segmentation, image quality enhancement, and theranostics. Early AI applications in nuclear medicine focused on improving diagnostic accuracy, leveraging machine learning algorithms for disease classification and outcome prediction. Advances in deep learning, including convolutional and more recently transformer-based neural networks, have further enabled more precise diagnosis and image segmentation as well as low-dose imaging, and patient-specific dosimetry for personalized treatment. Generative AI, driven by large language models and diffusion techniques, is now allowing the process, interpretation, and generation of complex medical language and images. Despite these achievements, challenges such as data scarcity, heterogeneity, and ethical concerns remain barriers to clinical translation. Addressing these issues through interdisciplinary collaboration will pave the way for a broader adoption of AI in nuclear medicine, potentially enhancing patient care and optimizing diagnosis and therapeutic outcomes.
Collapse
Affiliation(s)
- Leonor Lopes
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Alejandro Lopez-Montes
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yizhou Chen
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Pia Koller
- Department of Computer Science, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Narendra Rathod
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - August Blomgren
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Federico Caobelli
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Informatics, Technical University of Munich, Munich, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Rakvongthai Y, Patipipittana S. AI-powered FDG-PET radiomics: a door to better Alzheimer's disease classification? Eur Radiol 2025:10.1007/s00330-025-11381-y. [PMID: 39870903 DOI: 10.1007/s00330-025-11381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/29/2025]
Affiliation(s)
- Yothin Rakvongthai
- Chulalongkorn University Biomedical Imaging Group, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Division of Nuclear Medicine, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Supanuch Patipipittana
- Chulalongkorn University Biomedical Imaging Group, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Medical Physics Program, Department of Radiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Jahani I, Jahani A, Delrobaei M, Khadem A, MacIntosh BJ. Classifying cognitive impairment based on FDG-PET and combined T1-MRI and rs-fMRI: An ADNI study. J Alzheimers Dis 2025; 103:452-464. [PMID: 39623970 DOI: 10.1177/13872877241302493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
BACKGROUND Mild cognitive impairment (MCI) refers to a memory impairment among non-demented adults. It is a condition that increases the risk of dementia, notably due to Alzheimer's disease (AD). MCI is heterogeneous and there is a need for novel diagnostic approaches. Fluorodeoxyglucose positron emission tomography (FDG-PET) imaging provides robust AD biomarker characteristics, while anatomical and functional magnetic resonance imaging (MRI) offer complementary information. OBJECTIVE Classify MCI and cognitively normal (CN) adults using FDG-PET images; predict individuals with MCI that convert to AD dementia; determine if MRI can achieve comparable performance to FDG-PET classification. METHODS Four ADNI cohorts were created. Cohort 1: 805 participants (MCI n = 455; CN n = 350) that underwent FDG-PET. FDG-PET images were inputs to a one-channel 3-dimensional (3D) DenseNet deep learning model. Cohort 2: 348 participants (MCI n = 174; CN n = 174) with MRI and functional MRI. Cohort 3: overlapping cases from cohorts 1 and 2 (MCI n = 70; CN n = 70). Cohort 4: 336 participants (MCI-converters n = 168; MCI-stable n = 168) with FDG-PET from cohort 1. The one/two-channel models' inputs were T1-weighted MRI and/or amplitude of low-frequency fluctuations images, with classification metrics evaluated through 10-fold cross-validation. RESULTS The FDG-PET model achieved 88.02%±3.82 accuracy for MCI versus CN classification, with 88.70%±4.70 sensitivity and 87.14%±5.03 specificity. Neither MRI model outperformed the FDG-PET model, as the highest MRI-based accuracy was 76.86%±1.95. The FDG-PET model achieved 63.23%±4.68 accuracy in classifying MCI-converters versus MCI-stable. CONCLUSIONS FDG-PET images produced the highest accuracy in classifying MCI versus CN. While MRI-based approaches were inferior to FDG-PET, multi-contrast MRI still offers value for neurodegeneration classification.
Collapse
Affiliation(s)
- Iman Jahani
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Ali Jahani
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mehdi Delrobaei
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Ali Khadem
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences, Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Sandra Black Centre for Brain Resilience & Recovery, Toronto, ON, Canada
- Computational Radiology & Artificial Intelligence Unit, Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Yousefi M, Akhbari M, Mohamadi Z, Karami S, Dasoomi H, Atabi A, Sarkeshikian SA, Abdoullahi Dehaki M, Bayati H, Mashayekhi N, Varmazyar S, Rahimian Z, Asadi Anar M, Shafiei D, Mohebbi A. Machine learning based algorithms for virtual early detection and screening of neurodegenerative and neurocognitive disorders: a systematic-review. Front Neurol 2024; 15:1413071. [PMID: 39717687 PMCID: PMC11663744 DOI: 10.3389/fneur.2024.1413071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/05/2024] [Indexed: 12/25/2024] Open
Abstract
Background and aim Neurodegenerative disorders (e.g., Alzheimer's, Parkinson's) lead to neuronal loss; neurocognitive disorders (e.g., delirium, dementia) show cognitive decline. Early detection is crucial for effective management. Machine learning aids in more precise disease identification, potentially transforming healthcare. This comprehensive systematic review discusses how machine learning (ML), can enhance early detection of these disorders, surpassing traditional diagnostics' constraints. Methods In this review, databases were examined up to August 15th, 2023, for ML data on neurodegenerative and neurocognitive diseases using PubMed, Scopus, Google Scholar, and Web of Science. Two investigators used the RAYYAN intelligence tool for systematic reviews to conduct the screening. Six blinded reviewers reviewed titles/abstracts. Cochrane risk of bias tool was used for quality assessment. Results Our search found 7,069 research studies, of which 1,365 items were duplicates and thus removed. Four thousand three hundred and thirty four studies were screened, and 108 articles met the criteria for inclusion after preprocessing. Twelve ML algorithms were observed for dementia, showing promise in early detection. Eighteen ML algorithms were identified for Parkinson's, each effective in detection and diagnosis. Studies emphasized that ML algorithms are necessary for Alzheimer's to be successful. Fourteen ML algorithms were discovered for mild cognitive impairment, with LASSO logistic regression being the only one with unpromising results. Conclusion This review emphasizes the pressing necessity of integrating verified digital health resources into conventional medical practice. This integration may signify a new era in the early detection of neurodegenerative and neurocognitive illnesses, potentially changing the course of these conditions for millions globally. This study showcases specific and statistically significant findings to illustrate the progress in the area and the prospective influence of these advancements on the global management of neurocognitive and neurodegenerative illnesses.
Collapse
Affiliation(s)
- Milad Yousefi
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Matin Akhbari
- Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Türkiye
| | - Zhina Mohamadi
- School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shaghayegh Karami
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hediyeh Dasoomi
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Atabi
- School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahdi Abdoullahi Dehaki
- Master’s of AI Engineering, Islamic Azad University Tehran Science and Research Branch, Tehran, Iran
| | - Hesam Bayati
- Department of Radiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Negin Mashayekhi
- Department of Neuroscience, Bahçeşehir University, Istanbul, Türkiye
| | - Shirin Varmazyar
- School of Medicine, Shahroud University of Medical Sciences, Shahrud, Iran
| | - Zahra Rahimian
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsa Asadi Anar
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Daniel Shafiei
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mohebbi
- Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
5
|
Aljuhani M, Ashraf A, Edison P. Use of Artificial Intelligence in Imaging Dementia. Cells 2024; 13:1965. [PMID: 39682713 DOI: 10.3390/cells13231965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/16/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease is the most common cause of dementia in the elderly population (aged 65 years and over), followed by vascular dementia, Lewy body dementia, and rare types of neurodegenerative diseases, including frontotemporal dementia. There is an unmet need to improve diagnosis and prognosis for patients with dementia, as cycles of misdiagnosis and diagnostic delays are challenging scenarios in neurodegenerative diseases. Neuroimaging is routinely used in clinical practice to support the diagnosis of neurodegenerative diseases. Clinical neuroimaging is amenable to errors owing to varying human judgement as the imaging data are complex and multidimensional. Artificial intelligence algorithms (machine learning and deep learning) enable automation of neuroimaging interpretation and may reduce potential bias and ameliorate clinical decision-making. Graph convolutional network-based frameworks implicitly provide multimodal sparse interpretability to support the detection of Alzheimer's disease and its prodromal stage, mild cognitive impairment. In patients with amyloid-related imaging abnormalities, radiologists had significantly better detection performances with both ARIA-E (sensitivity higher in the assisted/deep learning method [87%] compared to unassisted [71%]) and for ARIA-H signs (sensitivity was higher in assisted [79%] compared to unassisted [69%]). A convolutional neural network method was developed, and external validation predicted final clinical diagnoses of Alzheimer's disease, dementia with Lewy bodies, mild cognitive impairment due to Alzheimer's disease, or cognitively normal with FDG-PET. The translation of artificial intelligence to clinical practice is plagued with technical, disease-related, and institutional challenges. The implementation of artificial intelligence methods in clinical practice has the potential to transform the diagnostic and treatment landscape and improve patient health and outcomes.
Collapse
Affiliation(s)
- Manal Aljuhani
- Radiological Science and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Azhaar Ashraf
- Division of Neurology, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff CF24 4HQ, Wales, UK
| |
Collapse
|
6
|
Wang Y, Chen S, Tian X, Lin Y, Han D, Yao P, Xu H, Wang Y, Zhao J. A multi-scale feature selection module based architecture for the diagnosis of Alzheimer's disease on [ 18F]FDG PET. Int J Med Inform 2024; 191:105551. [PMID: 39079318 DOI: 10.1016/j.ijmedinf.2024.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Accepted: 07/14/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a prevalent form of dementia worldwide as a cryptic neurodegenerative disease. The symptoms of AD will last for several years, which brings great mental and economic burden to patients and their families. Unfortunately, the complete cure of AD still faces great challenges. Therefore, it is crucial to diagnose the disease in the early stage. MATERIALS AND METHODS The Visual Geometry Group (VGG) network serves as the backbone for feature extraction, which could reduce the time cost of network training to a certain extent. In order to better extract image information and pay attention to the association information in the images, the group convolutional module and the multi-scale RNN-based feature selection module are proposed. The dataset employed in the study are drawn from [18F]FDG-PET images within the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. RESULTS Comprehensive experimental results show that the proposed model outperforms several competing approaches in AD-related diagnostic tasks. In addition, the model reduces the number of parameters of the model compared to the backbone model, from 134.27 M to 17.36 M. Furthermore, the ablation reaserch is conducted to confirm the effectiveness of the proposed module. CONCLUSIONS The paper introduces a lightweight network architecture for the early diagnosis of AD. In contrast to analogous methodologies, the proposed method yields acceptable results.
Collapse
Affiliation(s)
- Yuling Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Shijie Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Xin Tian
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Yuan Lin
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Dongqi Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Ping Yao
- Xuzhou First People's Hosipital, Xuzhou, China
| | - Hang Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | | | - Jie Zhao
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
7
|
Zia-Ur-Rehman, Awang MK, Ali G, Faheem M. Deep learning techniques for Alzheimer's disease detection in 3D imaging: A systematic review. Health Sci Rep 2024; 7:e70025. [PMID: 39296636 PMCID: PMC11409051 DOI: 10.1002/hsr2.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/08/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
Background and Aims Alzheimer's disease (AD) is a degenerative neurological condition that worsens over time and leads to deterioration in cognitive abilities, reduced memory, and, eventually, a decrease in overall functioning. Timely and correct identification of Alzheimer's is essential for effective treatment. The systematic study specifically examines the application of deep learning (DL) algorithms in identifying AD using three-dimensional (3D) imaging methods. The main goal is to evaluate these methods' current state, efficiency, and potential enhancements, offering valuable insights into how DL could improve AD's rapid and precise diagnosis. Methods We searched different online repositories, such as IEEE Xplore, Elsevier, MDPI, PubMed Central, Science Direct, ACM, Springer, and others, to thoroughly summarize current research on DL methods to diagnose AD by analyzing 3D imaging data published between 2020 and 2024. We use PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines to ensure the organization and understandability of the information collection process. We thoroughly analyzed the literature to determine the primary techniques used in these investigations and their findings. Results and Conclusion The ability of convolutional neural networks (CNNs) and their variations, including 3D CNNs and recurrent neural networks, to detect both temporal and spatial characteristics in volumetric data has led to their widespread use. Methods such as transfer learning, combining multimodal data, and using attention procedures have improved models' precision and reliability. We selected 87 articles for evaluation. Out of these, 31 papers included various concepts, explanations, and elucidations of models and theories, while the other 56 papers primarily concentrated on issues related to practical implementation. This article introduces popular imaging types, 3D imaging for Alzheimer's detection, discusses the benefits and restrictions of the DL-based approach to AD assessment, and gives a view toward future developments resulting from critical evaluation.
Collapse
Affiliation(s)
- Zia-Ur-Rehman
- Faculty of Informatics and Computing Universiti Sultan Zainal Abidin (UniSZA) Terengganu Malaysia
| | - Mohd Khalid Awang
- Faculty of Informatics and Computing Universiti Sultan Zainal Abidin (UniSZA) Terengganu Malaysia
| | - Ghulam Ali
- Department of Computer Science University of Okara Okara Pakistan
| | - Muhammad Faheem
- School of Technology and Innovations University of Vaasa Vaasa Finland
| |
Collapse
|
8
|
Cotta Ramusino M, Massa F, Festari C, Gandolfo F, Nicolosi V, Orini S, Nobili F, Frisoni GB, Morbelli S, Garibotto V. Diagnostic performance of molecular imaging methods in predicting the progression from mild cognitive impairment to dementia: an updated systematic review. Eur J Nucl Med Mol Imaging 2024; 51:1876-1890. [PMID: 38355740 DOI: 10.1007/s00259-024-06631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/27/2024] [Indexed: 02/16/2024]
Abstract
PURPOSE Epidemiological and logistical reasons are slowing the clinical validation of the molecular imaging biomarkers in the initial stages of neurocognitive disorders. We provide an updated systematic review of the recent advances (2017-2022), highlighting methodological shortcomings. METHODS Studies reporting the diagnostic accuracy values of the molecular imaging techniques (i.e., amyloid-, tau-, [18F]FDG-PETs, DaT-SPECT, and cardiac [123I]-MIBG scintigraphy) in predicting progression from mild cognitive impairment (MCI) to dementia were selected according to the Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) method and evaluated with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Main eligibility criteria were as follows: (1) ≥ 50 subjects with MCI, (2) follow-up ≥ 3 years, (3) gold standard: progression to dementia or diagnosis on pathology, and (4) measures of prospective accuracy. RESULTS Sensitivity (SE) and specificity (SP) in predicting progression to dementia, mainly to Alzheimer's dementia were 43-100% and 63-94% for [18F]FDG-PET and 64-94% and 48-93% for amyloid-PET. Longitudinal studies were lacking for less common disorders (Dementia with Lewy bodies-DLB and Frontotemporal lobe degeneration-FTLD) and for tau-PET, DaT-SPECT, and [123I]-MIBG scintigraphy. Therefore, the accuracy values from cross-sectional studies in a smaller sample of subjects (n > 20, also including mild dementia stage) were chosen as surrogate outcomes. DaT-SPECT showed 47-100% SE and 71-100% SP in differentiating Lewy body disease (LBD) from non-LBD conditions; tau-PET: 88% SE and 100% SP in differentiating DLB from Posterior Cortical Atrophy. [123I]-MIBG scintigraphy differentiated LBD from non-LBD conditions with 47-100% SE and 71-100% SP. CONCLUSION Molecular imaging has a moderate-to-good accuracy in predicting the progression of MCI to Alzheimer's dementia. Longitudinal studies are sparse in non-AD conditions, requiring additional efforts in these settings.
Collapse
Affiliation(s)
- Matteo Cotta Ramusino
- Unit of Behavior Neurology and Dementia Research Center, IRCCS Mondino Foundation, via Mondino 2, 27100, Pavia, Italy.
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cristina Festari
- Laboratory of Alzheimer's Neuroimaging and Epidemiology, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
| | - Federica Gandolfo
- Department of Geriatric Care, Orthogeriatrics and Rehabilitation, E.O. Galliera Hospital, Genoa, Italy
| | - Valentina Nicolosi
- UOC Neurologia Ospedale Magalini Di Villafranca Di Verona (VR) ULSS 9, Verona, Italy
| | - Stefania Orini
- Alzheimer's Unit-Memory Clinic, IRCCS Istituto Centro San Giovanni Di Dio Fatebenefratelli, Brescia, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Flavio Nobili
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Giovanni B Frisoni
- Laboratory of Neuroimaging of Aging (LANVIE), University of Geneva, Geneva, Switzerland
- Geneva Memory Center, Department of Rehabilitation and Geriatrics, Geneva University and University Hospitals, Geneva, Switzerland
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
- NIMTLab, Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Geneva, Switzerland
| |
Collapse
|
9
|
Rogeau A, Hives F, Bordier C, Lahousse H, Roca V, Lebouvier T, Pasquier F, Huglo D, Semah F, Lopes R. A 3D convolutional neural network to classify subjects as Alzheimer's disease, frontotemporal dementia or healthy controls using brain 18F-FDG PET. Neuroimage 2024; 288:120530. [PMID: 38311126 DOI: 10.1016/j.neuroimage.2024.120530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/06/2024] Open
Abstract
With the arrival of disease-modifying drugs, neurodegenerative diseases will require an accurate diagnosis for optimal treatment. Convolutional neural networks are powerful deep learning techniques that can provide great help to physicians in image analysis. The purpose of this study is to introduce and validate a 3D neural network for classification of Alzheimer's disease (AD), frontotemporal dementia (FTD) or cognitively normal (CN) subjects based on brain glucose metabolism. Retrospective [18F]-FDG-PET scans of 199 CE, 192 FTD and 200 CN subjects were collected from our local database, Alzheimer's disease and frontotemporal lobar degeneration neuroimaging initiatives. Training and test sets were created using randomization on a 90 %-10 % basis, and training of a 3D VGG16-like neural network was performed using data augmentation and cross-validation. Performance was compared to clinical interpretation by three specialists in the independent test set. Regions determining classification were identified in an occlusion experiment and Gradient-weighted Class Activation Mapping. Test set subjects were age- and sex-matched across categories. The model achieved an overall 89.8 % accuracy in predicting the class of test scans. Areas under the ROC curves were 93.3 % for AD, 95.3 % for FTD, and 99.9 % for CN. The physicians' consensus showed a 69.5 % accuracy, and there was substantial agreement between them (kappa = 0.61, 95 % CI: 0.49-0.73). To our knowledge, this is the first study to introduce a deep learning model able to discriminate AD and FTD based on [18F]-FDG PET scans, and to isolate CN subjects with excellent accuracy. These initial results are promising and hint at the potential for generalization to data from other centers.
Collapse
Affiliation(s)
- Antoine Rogeau
- Department of Nuclear Medicine, Lille University Hospitals, Lille, France; Institute of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK.
| | - Florent Hives
- Department of Nuclear Medicine, Lille University Hospitals, Lille, France
| | - Cécile Bordier
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France; Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, US 41 - UAR 2014 - PLBS, Lille F-59000, France
| | - Hélène Lahousse
- Department of Nuclear Medicine, Lille University Hospitals, Lille, France
| | - Vincent Roca
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France; Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, US 41 - UAR 2014 - PLBS, Lille F-59000, France
| | - Thibaud Lebouvier
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France; Memory Clinic, Lille University Hospitals, Lille, France
| | - Florence Pasquier
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France; Memory Clinic, Lille University Hospitals, Lille, France
| | - Damien Huglo
- Department of Nuclear Medicine, Lille University Hospitals, Lille, France; Inserm, CHU Lille, University of Lille, U1189 OncoTHAI, Lille, France
| | - Franck Semah
- Department of Nuclear Medicine, Lille University Hospitals, Lille, France; University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France
| | - Renaud Lopes
- University of Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, Lille, France; Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, US 41 - UAR 2014 - PLBS, Lille F-59000, France
| |
Collapse
|
10
|
Stockbauer A, Beyer L, Huber M, Kreuzer A, Palleis C, Katzdobler S, Rauchmann BS, Morbelli S, Chincarini A, Bruffaerts R, Vandenberghe R, Kramberger MG, Trost M, Garibotto V, Nicastro N, Lathuilière A, Lemstra AW, van Berckel BNM, Pilotto A, Padovani A, Ochoa-Figueroa MA, Davidsson A, Camacho V, Peira E, Bauckneht M, Pardini M, Sambuceti G, Aarsland D, Nobili F, Gross M, Vöglein J, Perneczky R, Pogarell O, Buerger K, Franzmeier N, Danek A, Levin J, Höglinger GU, Bartenstein P, Cumming P, Rominger A, Brendel M. Metabolic network alterations as a supportive biomarker in dementia with Lewy bodies with preserved dopamine transmission. Eur J Nucl Med Mol Imaging 2024; 51:1023-1034. [PMID: 37971501 PMCID: PMC10881642 DOI: 10.1007/s00259-023-06493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE Metabolic network analysis of FDG-PET utilizes an index of inter-regional correlation of resting state glucose metabolism and has been proven to provide complementary information regarding the disease process in parkinsonian syndromes. The goals of this study were (i) to evaluate pattern similarities of glucose metabolism and network connectivity in dementia with Lewy bodies (DLB) subjects with subthreshold dopaminergic loss compared to advanced disease stages and to (ii) investigate metabolic network alterations of FDG-PET for discrimination of patients with early DLB from other neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, multiple system atrophy) at individual patient level via principal component analysis (PCA). METHODS FDG-PETs of subjects with probable or possible DLB (n = 22) without significant dopamine deficiency (z-score < 2 in putamen binding loss on DaT-SPECT compared to healthy controls (HC)) were scaled by global-mean, prior to volume-of-interest-based analyses of relative glucose metabolism. Single region metabolic changes and network connectivity changes were compared against HC (n = 23) and against DLB subjects with significant dopamine deficiency (n = 86). PCA was applied to test discrimination of patients with DLB from disease controls (n = 101) at individual patient level. RESULTS Similar patterns of hypo- (parietal- and occipital cortex) and hypermetabolism (basal ganglia, limbic system, motor cortices) were observed in DLB patients with and without significant dopamine deficiency when compared to HC. Metabolic connectivity alterations correlated between DLB patients with and without significant dopamine deficiency (R2 = 0.597, p < 0.01). A PCA trained by DLB patients with dopamine deficiency and HC discriminated DLB patients without significant dopaminergic loss from other neurodegenerative parkinsonian disorders at individual patient level (area-under-the-curve (AUC): 0.912). CONCLUSION Disease-specific patterns of altered glucose metabolism and altered metabolic networks are present in DLB subjects without significant dopaminergic loss. Metabolic network alterations in FDG-PET can act as a supporting biomarker in the subgroup of DLB patients without significant dopaminergic loss at symptoms onset.
Collapse
Affiliation(s)
- Anna Stockbauer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Leonie Beyer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Maria Huber
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Annika Kreuzer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Carla Palleis
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabrina Katzdobler
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Neuroradiology, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Silvia Morbelli
- Nuclear Medicine Uni, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Andrea Chincarini
- National Institute of Nuclear Physics (INFN), Genoa Section, Genoa, Italy
| | - Rose Bruffaerts
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
- Neurology Department, University Hospitals Leuven, Louvain, Belgium
- Biomedical Research Institute, Hasselt University, Hasselt, Belgium
- Experimental Neurobiology Unit, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
- Neurology Department, University Hospitals Leuven, Louvain, Belgium
| | - Milica G Kramberger
- Department of Neurology and Department for Nuclear Medicine, University Medical Centre, Ljubljana, Slovenia
| | - Maja Trost
- Department of Neurology and Department for Nuclear Medicine, University Medical Centre, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals and NIMTLab, Geneva University, Geneva, Switzerland
| | - Nicolas Nicastro
- Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Aurélien Lathuilière
- LANVIE (Laboratoire de Neuroimagerie du Vieillissement), Department of Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Parkinson's Disease Rehabilitation Centre, FERB ONLUS - S. Isidoro Hospital, Trescore Balneario, BG, Italy
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Miguel A Ochoa-Figueroa
- Department of Clinical Physiology in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Diagnostic Radiology, Linköping University Hospital, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Anette Davidsson
- Department of Clinical Physiology in Linköping, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Valle Camacho
- Servicio de Medicina Nuclear, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enrico Peira
- National Institute of Nuclear Physics (INFN), Genoa Section, Genoa, Italy
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Matteo Bauckneht
- Nuclear Medicine Uni, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Uni, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Dag Aarsland
- Centre of Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology, and Neuroscience, King's College, London, UK
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Clinical Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mattes Gross
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Jonathan Vöglein
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
- Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College, London, UK
| | - Oliver Pogarell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institut for Stroke and Dementia Research, University of Munich, Munich, Germany
| | | | - Adrian Danek
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Johannes Levin
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Paul Cumming
- Department of Nuclear Medicine, University of Bern, Inselspital Bern, Bern, Switzerland
- School of Psychology and Counselling and IHBI, Queensland University of Technology, Brisbane, Australia
| | - Axel Rominger
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, University of Bern, Inselspital Bern, Bern, Switzerland
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
11
|
Khan AA, Mahendran RK, Perumal K, Faheem M. Dual-3DM 3AD: Mixed Transformer Based Semantic Segmentation and Triplet Pre-Processing for Early Multi-Class Alzheimer's Diagnosis. IEEE Trans Neural Syst Rehabil Eng 2024; 32:696-707. [PMID: 38261494 DOI: 10.1109/tnsre.2024.3357723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Alzheimer's Disease (AD) is a widespread, chronic, irreversible, and degenerative condition, and its early detection during the prodromal stage is of utmost importance. Typically, AD studies rely on single data modalities, such as MRI or PET, for making predictions. Nevertheless, combining metabolic and structural data can offer a comprehensive perspective on AD staging analysis. To address this goal, this paper introduces an innovative multi-modal fusion-based approach named as Dual-3DM3-AD. This model is proposed for an accurate and early Alzheimer's diagnosis by considering both MRI and PET image scans. Initially, we pre-process both images in terms of noise reduction, skull stripping and 3D image conversion using Quaternion Non-local Means Denoising Algorithm (QNLM), Morphology function and Block Divider Model (BDM), respectively, which enhances the image quality. Furthermore, we have adapted Mixed-transformer with Furthered U-Net for performing semantic segmentation and minimizing complexity. Dual-3DM3-AD model is consisted of multi-scale feature extraction module for extracting appropriate features from both segmented images. The extracted features are then aggregated using Densely Connected Feature Aggregator Module (DCFAM) to utilize both features. Finally, a multi-head attention mechanism is adapted for feature dimensionality reduction, and then the softmax layer is applied for multi-class Alzheimer's diagnosis. The proposed Dual-3DM3-AD model is compared with several baseline approaches with the help of several performance metrics. The final results unveil that the proposed work achieves 98% of accuracy, 97.8% of sensitivity, 97.5% of specificity, 98.2% of f-measure, and better ROC curves, which outperforms other existing models in multi-class Alzheimer's diagnosis.
Collapse
|
12
|
Vedaei F, Mashhadi N, Alizadeh M, Zabrecky G, Monti D, Wintering N, Navarreto E, Hriso C, Newberg AB, Mohamed FB. Deep learning-based multimodality classification of chronic mild traumatic brain injury using resting-state functional MRI and PET imaging. Front Neurosci 2024; 17:1333725. [PMID: 38312737 PMCID: PMC10837852 DOI: 10.3389/fnins.2023.1333725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/28/2023] [Indexed: 02/06/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is a public health concern. The present study aimed to develop an automatic classifier to distinguish between patients with chronic mTBI (n = 83) and healthy controls (HCs) (n = 40). Resting-state functional MRI (rs-fMRI) and positron emission tomography (PET) imaging were acquired from the subjects. We proposed a novel deep-learning-based framework, including an autoencoder (AE), to extract high-level latent and rectified linear unit (ReLU) and sigmoid activation functions. Single and multimodality algorithms integrating multiple rs-fMRI metrics and PET data were developed. We hypothesized that combining different imaging modalities provides complementary information and improves classification performance. Additionally, a novel data interpretation approach was utilized to identify top-performing features learned by the AEs. Our method delivered a classification accuracy within the range of 79-91.67% for single neuroimaging modalities. However, the performance of classification improved to 95.83%, thereby employing the multimodality model. The models have identified several brain regions located in the default mode network, sensorimotor network, visual cortex, cerebellum, and limbic system as the most discriminative features. We suggest that this approach could be extended to the objective biomarkers predicting mTBI in clinical settings.
Collapse
Affiliation(s)
- Faezeh Vedaei
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Najmeh Mashhadi
- Department of Computer Science and Engineering, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Mahdi Alizadeh
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - George Zabrecky
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Daniel Monti
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Nancy Wintering
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Emily Navarreto
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chloe Hriso
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrew B. Newberg
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
- Department of Integrative Medicine and Nutritional Sciences, Marcus Institute of Integrative, Health, Thomas Jefferson University, Philadelphia, PA, United States
| | - Feroze B. Mohamed
- Department of Radiology, Jefferson Integrated Magnetic Resonance Imaging Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
13
|
Gonçalves de Oliveira CE, de Araújo WM, de Jesus Teixeira ABM, Gonçalves GL, Itikawa EN. PCA and logistic regression in 2-[ 18F]FDG PET neuroimaging as an interpretable and diagnostic tool for Alzheimer's disease. Phys Med Biol 2024; 69:025003. [PMID: 37976549 DOI: 10.1088/1361-6560/ad0ddd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
Objective.to develop an optimization and training pipeline for a classification model based on principal component analysis and logistic regression using neuroimages from PET with 2-[18F]fluoro-2-deoxy-D-glucose (FDG PET) for the diagnosis of Alzheimer's disease (AD).Approach.as training data, 200 FDG PET neuroimages were used, 100 from the group of patients with AD and 100 from the group of cognitively normal subjects (CN), downloaded from the repository of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Regularization methods L1 and L2 were tested and their respective strength varied by the hyperparameter C. Once the best combination of hyperparameters was determined, it was used to train the final classification model, which was then applied to test data, consisting of 192 FDG PET neuroimages, 100 from subjects with no evidence of AD (nAD) and 92 from the AD group, obtained at the Centro de Diagnóstico por Imagem (CDI).Main results.the best combination of hyperparameters was L1 regularization andC≈ 0.316. The final results on test data were accuracy = 88.54%, recall = 90.22%, precision = 86.46% and AUC = 94.75%, indicating that there was a good generalization to neuroimages outside the training set. Adjusting each principal component by its respective weight, an interpretable image was obtained that represents the regions of greater or lesser probability for AD given high voxel intensities. The resulting image matches what is expected by the pathophysiology of AD.Significance.our classification model was trained on publicly available and robust data and tested, with good results, on clinical routine data. Our study shows that it serves as a powerful and interpretable tool capable of assisting in the diagnosis of AD in the possession of FDG PET neuroimages. The relationship between classification model output scores and AD progression can and should be explored in future studies.
Collapse
|
14
|
Jönemo J, Eklund A. Brain Age Prediction Using 2D Projections Based on Higher-Order Statistical Moments and Eigenslices from 3D Magnetic Resonance Imaging Volumes. J Imaging 2023; 9:271. [PMID: 38132689 PMCID: PMC10743800 DOI: 10.3390/jimaging9120271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
Brain age prediction from 3D MRI volumes using deep learning has recently become a popular research topic, as brain age has been shown to be an important biomarker. Training deep networks can be very computationally demanding for large datasets like the U.K. Biobank (currently 29,035 subjects). In our previous work, it was demonstrated that using a few 2D projections (mean and standard deviation along three axes) instead of each full 3D volume leads to much faster training at the cost of a reduction in prediction accuracy. Here, we investigated if another set of 2D projections, based on higher-order statistical central moments and eigenslices, leads to a higher accuracy. Our results show that higher-order moments do not lead to a higher accuracy, but that eigenslices provide a small improvement. We also show that an ensemble of such models provides further improvement.
Collapse
Affiliation(s)
- Johan Jönemo
- Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden
| | - Anders Eklund
- Division of Medical Informatics, Department of Biomedical Engineering, Linköping University, 581 83 Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, 581 83 Linköping, Sweden
- Division of Statistics and Machine Learning, Department of Computer and Information Science, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
15
|
Gao X, Shi F, Shen D, Liu M. Multimodal transformer network for incomplete image generation and diagnosis of Alzheimer's disease. Comput Med Imaging Graph 2023; 110:102303. [PMID: 37832503 DOI: 10.1016/j.compmedimag.2023.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 06/27/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
Multimodal images such as magnetic resonance imaging (MRI) and positron emission tomography (PET) could provide complementary information about the brain and have been widely investigated for the diagnosis of neurodegenerative disorders such as Alzheimer's disease (AD). However, multimodal brain images are often incomplete in clinical practice. It is still challenging to make use of multimodality for disease diagnosis with missing data. In this paper, we propose a deep learning framework with the multi-level guided generative adversarial network (MLG-GAN) and multimodal transformer (Mul-T) for incomplete image generation and disease classification, respectively. First, MLG-GAN is proposed to generate the missing data, guided by multi-level information from voxels, features, and tasks. In addition to voxel-level supervision and task-level constraint, a feature-level auto-regression branch is proposed to embed the features of target images for an accurate generation. With the complete multimodal images, we propose a Mul-T network for disease diagnosis, which can not only combine the global and local features but also model the latent interactions and correlations from one modality to another with the cross-modal attention mechanism. Comprehensive experiments on three independent datasets (i.e., ADNI-1, ADNI-2, and OASIS-3) show that the proposed method achieves superior performance in the tasks of image generation and disease diagnosis compared to state-of-the-art methods.
Collapse
Affiliation(s)
- Xingyu Gao
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China
| | - Feng Shi
- Department of Research and Development, Shanghai United Imaging Intelligence Co.,Ltd., China.
| | - Dinggang Shen
- Department of Research and Development, Shanghai United Imaging Intelligence Co.,Ltd., China; School of Biomedical Engineering, ShanghaiTech University, China.
| | - Manhua Liu
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China; MoE Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University, China.
| |
Collapse
|
16
|
Huang Z, Li W, Wu Y, Guo N, Yang L, Zhang N, Pang Z, Yang Y, Zhou Y, Shang Y, Zheng H, Liang D, Wang M, Hu Z. Short-axis PET image quality improvement based on a uEXPLORER total-body PET system through deep learning. Eur J Nucl Med Mol Imaging 2023; 51:27-39. [PMID: 37672046 DOI: 10.1007/s00259-023-06422-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/30/2023] [Indexed: 09/07/2023]
Abstract
PURPOSE The axial field of view (AFOV) of a positron emission tomography (PET) scanner greatly affects the quality of PET images. Although a total-body PET scanner (uEXPLORER) with a large AFOV is more sensitive, it is more expensive and difficult to widely use. Therefore, we attempt to utilize high-quality images generated by uEXPLORER to optimize the quality of images from short-axis PET scanners through deep learning technology while controlling costs. METHODS The experiments were conducted using PET images of three anatomical locations (brain, lung, and abdomen) from 335 patients. To simulate PET images from different axes, two protocols were used to obtain PET image pairs (each patient was scanned once). For low-quality PET (LQ-PET) images with a 320-mm AFOV, we applied a 300-mm FOV for brain reconstruction and a 500-mm FOV for lung and abdomen reconstruction. For high-quality PET (HQ-PET) images, we applied a 1940-mm AFOV during the reconstruction process. A 3D Unet was utilized to learn the mapping relationship between LQ-PET and HQ-PET images. In addition, the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) were employed to evaluate the model performance. Furthermore, two nuclear medicine doctors evaluated the image quality based on clinical readings. RESULTS The generated PET images of the brain, lung, and abdomen were quantitatively and qualitatively compatible with the HQ-PET images. In particular, our method achieved PSNR values of 35.41 ± 5.45 dB (p < 0.05), 33.77 ± 6.18 dB (p < 0.05), and 38.58 ± 7.28 dB (p < 0.05) for the three beds. The overall mean SSIM was greater than 0.94 for all patients who underwent testing. Moreover, the total subjective quality levels of the generated PET images for three beds were 3.74 ± 0.74, 3.69 ± 0.81, and 3.42 ± 0.99 (the highest possible score was 5, and the minimum score was 1) from two experienced nuclear medicine experts. Additionally, we evaluated the distribution of quantitative standard uptake values (SUV) in the region of interest (ROI). Both the SUV distribution and the peaks of the profile show that our results are consistent with the HQ-PET images, proving the superiority of our approach. CONCLUSION The findings demonstrate the potential of the proposed technique for improving the image quality of a PET scanner with a 320 mm or even shorter AFOV. Furthermore, this study explored the potential of utilizing uEXPLORER to achieve improved short-axis PET image quality at a limited economic cost, and computer-aided diagnosis systems that are related can help patients and radiologists.
Collapse
Affiliation(s)
- Zhenxing Huang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wenbo Li
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yaping Wu
- Department of Medical Imaging, Henan Provincial People's Hospital & People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Nannan Guo
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Mathematics and Statistics, Henan University, Kaifeng, 475004, China
| | - Lin Yang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Mathematics and Statistics, Henan University, Kaifeng, 475004, China
| | - Na Zhang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhifeng Pang
- School of Mathematics and Statistics, Henan University, Kaifeng, 475004, China
| | - Yongfeng Yang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yun Zhou
- Central Research Institute, United Imaging Healthcare Group, Shanghai, 201807, China
| | - Yue Shang
- Performance Strategy & Analytics, UCLA Health, Los Angeles, CA, 90001, USA
| | - Hairong Zheng
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Dong Liang
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Meiyun Wang
- School of Mathematics and Statistics, Henan University, Kaifeng, 475004, China.
| | - Zhanli Hu
- Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
17
|
Santorsola M, Lescai F. The promise of explainable deep learning for omics data analysis: Adding new discovery tools to AI. N Biotechnol 2023; 77:1-11. [PMID: 37329982 DOI: 10.1016/j.nbt.2023.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Deep learning has already revolutionised the way a wide range of data is processed in many areas of daily life. The ability to learn abstractions and relationships from heterogeneous data has provided impressively accurate prediction and classification tools to handle increasingly big datasets. This has a significant impact on the growing wealth of omics datasets, with the unprecedented opportunity for a better understanding of the complexity of living organisms. While this revolution is transforming the way these data are analyzed, explainable deep learning is emerging as an additional tool with the potential to change the way biological data is interpreted. Explainability addresses critical issues such as transparency, so important when computational tools are introduced especially in clinical environments. Moreover, it empowers artificial intelligence with the capability to provide new insights into the input data, thus adding an element of discovery to these already powerful resources. In this review, we provide an overview of the transformative effects explainable deep learning is having on multiple sectors, ranging from genome engineering and genomics, from radiomics to drug design and clinical trials. We offer a perspective to life scientists, to better understand the potential of these tools, and a motivation to implement them in their research, by suggesting learning resources they can use to move their first steps in this field.
Collapse
Affiliation(s)
| | - Francesco Lescai
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| |
Collapse
|
18
|
Cao E, Ma D, Nayak S, Duong TQ. Deep learning combining FDG-PET and neurocognitive data accurately predicts MCI conversion to Alzheimer's dementia 3-year post MCI diagnosis. Neurobiol Dis 2023; 187:106310. [PMID: 37769746 DOI: 10.1016/j.nbd.2023.106310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
INTRODUCTION This study reports a novel deep learning approach to predict mild cognitive impairment (MCI) conversion to Alzheimer's dementia (AD) within three years using whole-brain fluorodeoxyglucose (FDG) positron emission tomography (PET) and cognitive scores (CS). METHODS This analysis consisted of 150 normal controls (CN), 257 MCI, and 205 AD subjects from ADNI. FDG-PET and CS were obtained at MCI diagnosis to predict AD conversion within three years of MCI diagnosis using convolutional neural networks. RESULTS Neurocognitive scores predicted better than FDG-PET per se, but the best model was a combination of FDG-PET, age, and neurocognitive data, yielding an AUC of 0.785 ± 0.096 and a balanced accuracy of 0.733 ± 0.098. Saliency maps highlighted putamen, thalamus, inferior frontal gyrus, parietal operculum, precuneus cortices, calcarine cortices, temporal gyrus, and planum temporale to be important for prediction. DISCUSSION Deep learning accurately predicts MCI conversion to AD and provides neural correlates of brain regions associated with AD conversion.
Collapse
Affiliation(s)
- Eric Cao
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10467, United States
| | - Da Ma
- Department of Internal Medicine Section of Gerontology and Geriatric Medicine, Wake Forest, University School of Medicine, Winston-Salam, NC 27109, United States
| | - Siddharth Nayak
- Department of Radiology, Weill Cornell Medicine, New York, 10065, United States
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10467, United States.
| |
Collapse
|
19
|
Mattoli MV, Cocciolillo F, Chiacchiaretta P, Dotta F, Trevisi G, Carrarini C, Thomas A, Sensi S, Pizzi AD, Nicola ADD, Crosta AD, Mammarella N, Padovani A, Pilotto A, Moda F, Tiraboschi P, Martino G, Bonanni L. Combined 18F-FDG PET-CT markers in dementia with Lewy bodies. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12515. [PMID: 38145190 PMCID: PMC10746864 DOI: 10.1002/dad2.12515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023]
Abstract
INTRODUCTION 18F-Fluoro-deoxyglucose-positron emission tomography (FDG-PET) is a supportive biomarker in dementia with Lewy bodies (DLB) diagnosis and its advanced analysis methods, including radiomics and machine learning (ML), were developed recently. The aim of this study was to evaluate the FDG-PET diagnostic performance in predicting a DLB versus Alzheimer's disease (AD) diagnosis. METHODS FDG-PET scans were visually and semi-quantitatively analyzed in 61 patients. Radiomics and ML analyses were performed, building five ML models: (1) clinical features; (2) visual and semi-quantitative PET features; (3) radiomic features; (4) all PET features; and (5) overall features. RESULTS At follow-up, 34 patients had DLB and 27 had AD. At visual analysis, DLB PET signs were significantly more frequent in DLB, having the highest diagnostic accuracy (86.9%). At semi-quantitative analysis, the right precuneus, superior parietal, lateral occipital, and primary visual cortices showed significantly reduced uptake in DLB. The ML model 2 had the highest diagnostic accuracy (84.3%). DISCUSSION FDG-PET is a valuable tool in DLB diagnosis, having visual and semi-quantitative analyses with the highest diagnostic accuracy at ML analyses.
Collapse
Affiliation(s)
- Maria Vittoria Mattoli
- Department of NeuroscienceImaging and Clinical SciencesUniversity G. d'Annunzio of Chieti‐PescaraChietiItaly
- Nuclear Medicine UnitPresidio Ospedaliero Santo SpiritoPescaraItaly
| | - Fabrizio Cocciolillo
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed EmatologiaUOC di Medicina Nucleare, Fondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine and DentistryUniversity G. d'Annunzio of Chieti – PescaraChietiItaly
- Advanced Computing Core, Center for Advanced Studies and Technology ‐ C.A.S.TUniversity G. d'Annunzio of Chieti – PescaraChietiItaly
| | - Francesco Dotta
- Department of Innovative Technologies in Medicine and DentistryUniversity G. d'Annunzio of Chieti – PescaraChietiItaly
| | - Gianluca Trevisi
- Department of NeuroscienceImaging and Clinical SciencesUniversity G. d'Annunzio of Chieti‐PescaraChietiItaly
| | - Claudia Carrarini
- Department of NeuroscienceCatholic University of Sacred HeartRomeItaly
- IRCCS San RaffaeleRomeItaly
| | - Astrid Thomas
- Department of NeuroscienceImaging and Clinical SciencesUniversity G. d'Annunzio of Chieti‐PescaraChietiItaly
| | - Stefano Sensi
- Department of NeuroscienceImaging and Clinical SciencesUniversity G. d'Annunzio of Chieti‐PescaraChietiItaly
| | - Andrea Delli Pizzi
- Department of Innovative Technologies in Medicine and DentistryUniversity G. d'Annunzio of Chieti – PescaraChietiItaly
| | | | - Adolfo Di Crosta
- Department of Psychological ScienceHumanities and TerritoryUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Department of Medicine and Aging SciencesUniversity G d'Annunzio of Chieti‐PescaraChietiItaly
| | - Nicola Mammarella
- Department of Psychological ScienceHumanities and TerritoryUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Alessandro Padovani
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental SciencesUniversity of BresciaBresciaItaly
- Parkinson's Disease Rehabilitation CentreFERB ONLUS‐S. Isidoro HospitalTrescore BalnearioBergamoItaly
| | - Fabio Moda
- Division of Neurology 5 and NeuropathologyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Pietro Tiraboschi
- Division of Neurology 5 and NeuropathologyFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Gianluigi Martino
- Department of Radiological Sciences, Nuclear Medicine UniteSS. Annunziata HospitalVia dei Vestini 31ChietiItaly
| | - Laura Bonanni
- Department of Medicine and Aging SciencesUniversity G d'Annunzio of Chieti‐PescaraChietiItaly
| |
Collapse
|
20
|
Chaitanuwong P, Singhanetr P, Chainakul M, Arjkongharn N, Ruamviboonsuk P, Grzybowski A. Potential Ocular Biomarkers for Early Detection of Alzheimer's Disease and Their Roles in Artificial Intelligence Studies. Neurol Ther 2023; 12:1517-1532. [PMID: 37468682 PMCID: PMC10444735 DOI: 10.1007/s40120-023-00526-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. Early detection is believed to be essential to disease management because it enables physicians to initiate treatment in patients with early-stage AD (early AD), with the possibility of stopping the disease or slowing disease progression, preserving function and ultimately reducing disease burden. The purpose of this study was to review prior research on the use of eye biomarkers and artificial intelligence (AI) for detecting AD and early AD. The PubMed database was searched to identify studies for review. Ocular biomarkers in AD research and AI research on AD were reviewed and summarized. According to numerous studies, there is a high likelihood that ocular biomarkers can be used to detect early AD: tears, corneal nerves, retina, visual function and, in particular, eye movement tracking have been identified as ocular biomarkers with the potential to detect early AD. However, there is currently no ocular biomarker that can be used to definitely detect early AD. A few studies that used AI with ocular biomarkers to detect AD reported promising results, demonstrating that using AI with ocular biomarkers through multimodal imaging could improve the accuracy of identifying AD patients. This strategy may become a screening tool for detecting early AD in older patients prior to the onset of AD symptoms.
Collapse
Affiliation(s)
- Pareena Chaitanuwong
- Ophthalmology Department, Rajavithi Hospital, Ministry of Public Health, Bangkok, Thailand
- Department of Ophthalmology, Faculty of Medicine, Rangsit University, Bangkok, Thailand
| | - Panisa Singhanetr
- Mettapracharak Eye Institute, Mettapracharak (Wat Rai Khing) Hospital, Nakhon Pathom, Thailand
| | - Methaphon Chainakul
- Ophthalmology Department, Rajavithi Hospital, Ministry of Public Health, Bangkok, Thailand
- Department of Ophthalmology, Faculty of Medicine, Rangsit University, Bangkok, Thailand
| | - Niracha Arjkongharn
- Ophthalmology Department, Rajavithi Hospital, Ministry of Public Health, Bangkok, Thailand
- Department of Ophthalmology, Faculty of Medicine, Rangsit University, Bangkok, Thailand
| | - Paisan Ruamviboonsuk
- Ophthalmology Department, Rajavithi Hospital, Ministry of Public Health, Bangkok, Thailand
- Department of Ophthalmology, Faculty of Medicine, Rangsit University, Bangkok, Thailand
| | - Andrzej Grzybowski
- Institute of Research in Ophthalmology, Foundation for Ophthalmology Development, Mickiewicza 24/3B, 60-836, Poznan, Poland.
| |
Collapse
|
21
|
Zhao Y, Guo Q, Zhang Y, Zheng J, Yang Y, Du X, Feng H, Zhang S. Application of Deep Learning for Prediction of Alzheimer's Disease in PET/MR Imaging. Bioengineering (Basel) 2023; 10:1120. [PMID: 37892850 PMCID: PMC10604050 DOI: 10.3390/bioengineering10101120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide. Positron emission tomography/magnetic resonance (PET/MR) imaging is a promising technique that combines the advantages of PET and MR to provide both functional and structural information of the brain. Deep learning (DL) is a subfield of machine learning (ML) and artificial intelligence (AI) that focuses on developing algorithms and models inspired by the structure and function of the human brain's neural networks. DL has been applied to various aspects of PET/MR imaging in AD, such as image segmentation, image reconstruction, diagnosis and prediction, and visualization of pathological features. In this review, we introduce the basic concepts and types of DL algorithms, such as feed forward neural networks, convolutional neural networks, recurrent neural networks, and autoencoders. We then summarize the current applications and challenges of DL in PET/MR imaging in AD, and discuss the future directions and opportunities for automated diagnosis, predictions of models, and personalized medicine. We conclude that DL has great potential to improve the quality and efficiency of PET/MR imaging in AD, and to provide new insights into the pathophysiology and treatment of this devastating disease.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Information Center, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Qianrui Guo
- Department of Nuclear Medicine, Beijing Cancer Hospital, Beijing 100142, China;
| | - Yukun Zhang
- Department of Radiology, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Jia Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Yang Yang
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing 100094, China
| | - Xuemei Du
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Hongbo Feng
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| | - Shuo Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital, Dalian Medical University, Dalian 116011, China
| |
Collapse
|
22
|
Ayubcha C, Singh SB, Patel KH, Rahmim A, Hasan J, Liu L, Werner T, Alavi A. Machine learning in the positron emission tomography imaging of Alzheimer's disease. Nucl Med Commun 2023; 44:751-766. [PMID: 37395538 DOI: 10.1097/mnm.0000000000001723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The utilization of machine learning techniques in medicine has exponentially increased over the last decades due to innovations in computer processing, algorithm development, and access to big data. Applications of machine learning techniques to neuroimaging specifically have unveiled various hidden interactions, structures, and mechanisms related to various neurological disorders. One application of interest is the imaging of Alzheimer's disease, the most common cause of progressive dementia. The diagnoses of Alzheimer's disease, mild cognitive impairment, and preclinical Alzheimer's disease have been difficult. Molecular imaging, particularly via PET scans, holds tremendous value in the imaging of Alzheimer's disease. To date, many novel algorithms have been developed with great success that leverage machine learning in the context of Alzheimer's disease. This review article provides an overview of the diverse applications of machine learning to PET imaging of Alzheimer's disease.
Collapse
Affiliation(s)
- Cyrus Ayubcha
- Harvard Medical School
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Shashi B Singh
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Krishna H Patel
- Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jareed Hasan
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Litian Liu
- Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Thomas Werner
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| | - Abass Alavi
- Department of Radiology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
23
|
Leming MJ, Bron EE, Bruffaerts R, Ou Y, Iglesias JE, Gollub RL, Im H. Challenges of implementing computer-aided diagnostic models for neuroimages in a clinical setting. NPJ Digit Med 2023; 6:129. [PMID: 37443276 DOI: 10.1038/s41746-023-00868-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Advances in artificial intelligence have cultivated a strong interest in developing and validating the clinical utilities of computer-aided diagnostic models. Machine learning for diagnostic neuroimaging has often been applied to detect psychological and neurological disorders, typically on small-scale datasets or data collected in a research setting. With the collection and collation of an ever-growing number of public datasets that researchers can freely access, much work has been done in adapting machine learning models to classify these neuroimages by diseases such as Alzheimer's, ADHD, autism, bipolar disorder, and so on. These studies often come with the promise of being implemented clinically, but despite intense interest in this topic in the laboratory, limited progress has been made in clinical implementation. In this review, we analyze challenges specific to the clinical implementation of diagnostic AI models for neuroimaging data, looking at the differences between laboratory and clinical settings, the inherent limitations of diagnostic AI, and the different incentives and skill sets between research institutions, technology companies, and hospitals. These complexities need to be recognized in the translation of diagnostic AI for neuroimaging from the laboratory to the clinic.
Collapse
Affiliation(s)
- Matthew J Leming
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| | - Esther E Bron
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Rose Bruffaerts
- Computational Neurology, Experimental Neurobiology Unit (ENU), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Yangming Ou
- Boston Children's Hospital, 300 Longwood Ave, Boston, MA, USA
| | - Juan Eugenio Iglesias
- Center for Medical Image Computing, University College London, London, UK
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Randy L Gollub
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hyungsoon Im
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
24
|
Xu M, Ouyang Y, Yuan Z. Deep Learning Aided Neuroimaging and Brain Regulation. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23114993. [PMID: 37299724 DOI: 10.3390/s23114993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Currently, deep learning aided medical imaging is becoming the hot spot of AI frontier application and the future development trend of precision neuroscience. This review aimed to render comprehensive and informative insights into the recent progress of deep learning and its applications in medical imaging for brain monitoring and regulation. The article starts by providing an overview of the current methods for brain imaging, highlighting their limitations and introducing the potential benefits of using deep learning techniques to overcome these limitations. Then, we further delve into the details of deep learning, explaining the basic concepts and providing examples of how it can be used in medical imaging. One of the key strengths is its thorough discussion of the different types of deep learning models that can be used in medical imaging including convolutional neural networks (CNNs), recurrent neural networks (RNNs), and generative adversarial network (GAN) assisted magnetic resonance imaging (MRI), positron emission tomography (PET)/computed tomography (CT), electroencephalography (EEG)/magnetoencephalography (MEG), optical imaging, and other imaging modalities. Overall, our review on deep learning aided medical imaging for brain monitoring and regulation provides a referrable glance for the intersection of deep learning aided neuroimaging and brain regulation.
Collapse
Affiliation(s)
- Mengze Xu
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau SAR 999078, China
| | - Yuanyuan Ouyang
- Nanomicro Sino-Europe Technology Company Limited, Zhuhai 519031, China
- Jiangfeng China-Portugal Technology Co., Ltd., Macau SAR 999078, China
| | - Zhen Yuan
- Centre for Cognitive and Brain Sciences, Institute of Collaborative Innovation, University of Macau, Macau SAR 999078, China
| |
Collapse
|
25
|
Tripathi S, Mattioli P, Liguori C, Chiaravalloti A, Arnaldi D, Giancardo L. Brain Hemisphere Dissimilarity, a Self-Supervised Learning Approach for alpha-synucleinopathies prediction with FDG PET. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2023; 2023:10.1109/isbi53787.2023.10230560. [PMID: 37706192 PMCID: PMC10496490 DOI: 10.1109/isbi53787.2023.10230560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Idiopathic Rem sleep Behavior Disorder (iRBD) is a significant biomarker for the development of alpha-synucleinopathies, such as Parkinson's disease (PD) or Dementia with Lewy bodies (DLB). Methods to identify patterns in iRBD patients can help in the prediction of the future conversion to these diseases during the long prodromal phase when symptoms are non-specific. These methods are essential for disease management and clinical trial recruitment. Brain PET scans with 18F-FDG PET radiotracers have recently shown promise, however, the scarcity of longitudinal data and PD/DLB conversion information makes the use of representation learning approaches such as deep convolutional networks not feasible if trained in a supervised manner. In this work, we propose a self-supervised learning strategy to learn features by comparing the brain hemispheres of iRBD non-convertor subjects, which allows for pre-training a convolutional network on a small data regimen. We introduce a loss function called hemisphere dissimilarity loss (HDL), which extends the Barlow Twins loss, that promotes the creation of invariant and non-redundant features for brain hemispheres of the same subject, and the opposite for hemispheres of different subjects. This loss enables the pre-training of a network without any information about the disease, which is then used to generate full brain feature vectors that are fine-tuned to two downstream tasks: follow-up conversion, and the type of conversion (PD or DLB) using baseline 18F-FDG PET. In our results, we find that the HDL outperforms the variational autoencoder with different forms of inputs.
Collapse
Affiliation(s)
- S Tripathi
- School of Biomedical Informatics, University of Texas Health Center at Houston, TX, USA
| | - P Mattioli
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - C Liguori
- Department of Systems Medicine, University of Rome, Rome, Italy
- Sleep Medicine Center, Neurology Unit, University Hospital of Rome, Rome, Italy
| | - A Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - D Arnaldi
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - L Giancardo
- School of Biomedical Informatics, University of Texas Health Center at Houston, TX, USA
| |
Collapse
|
26
|
Woyk K, Sahlmann CO, Hansen N, Timäus C, Müller SJ, Khadhraoui E, Wiltfang J, Lange C, Bouter C. Brain 18 F-FDG-PET and an optimized cingulate island ratio to differentiate Lewy body dementia and Alzheimer's disease. J Neuroimaging 2023; 33:256-268. [PMID: 36465027 DOI: 10.1111/jon.13068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE The diagnosis of Dementia with Lewy Bodies (DLB) is challenging due to various clinical presentations and clinical and neuropathological features that overlap with Alzheimer's disease (AD). The use of 18 F-Fluorodeoxyglucose-PET (18 F-FDG-PET) can be limited due to similar patterns in DLB and AD. However, metabolism in the posterior cingulate cortex is known to be relatively preserved in DLB and visual assessment of the "cingulate island sign" became a helpful tool in the analysis of 18F-FDG-PET. The aim of this study was the evaluation of visual and semiquantitative 18F-FDG-PET analyses in the diagnosis of DLB and the differentiation to AD as well as its relation to other dementia biomarkers. METHODS This retrospective study comprises 81 patients with a clinical diagnosis of DLB or AD that underwent 18 F-FDG-PET/CT. PET scans were analyzed visually and semiquantitatively and results were compared to clinical data, cerebrospinal fluid results, dopamine transporter scintigraphy, and 18F-Florbetaben-PET. Furthermore, different cingulate island ratios were calculated to analyze their diagnostic accuracy. RESULTS Visual assessment of 18F-FDG-PET showed an accuracy of 62%-77% in differentiating between DLB and AD. Standard uptake values were significantly lower in the primary visual cortex and the lateral occipital cortex of DLB patients compared to AD patients. The cingulate island ratio was significantly higher in the DLB group compared to the AD group and the ratio posterior cingulate cortex to visual cortex plus lateral occipital cortex showed the highest diagnostic accuracy to discriminate between DLB and AD at 81%. CONCLUSIONS Semiquantitative 18F-FDG-PET imaging and especially the use of an optimized cingulate island ratio are valuable tools to differentiate between DLB and AD.
Collapse
Affiliation(s)
- Katharina Woyk
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Carsten Oliver Sahlmann
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Niels Hansen
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Charles Timäus
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Sebastian Johannes Müller
- Department of Neuroradiology, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Eya Khadhraoui
- Department of Neuroradiology, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany.,Neurosciences and Signaling Group, Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal.,German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Claudia Lange
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Caroline Bouter
- Department of Nuclear Medicine, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| |
Collapse
|
27
|
Xu X, Lin L, Sun S, Wu S. A review of the application of three-dimensional convolutional neural networks for the diagnosis of Alzheimer's disease using neuroimaging. Rev Neurosci 2023:revneuro-2022-0122. [PMID: 36729918 DOI: 10.1515/revneuro-2022-0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/02/2023] [Indexed: 02/03/2023]
Abstract
Alzheimer's disease (AD) is a degenerative disorder that leads to progressive, irreversible cognitive decline. To obtain an accurate and timely diagnosis and detect AD at an early stage, numerous approaches based on convolutional neural networks (CNNs) using neuroimaging data have been proposed. Because 3D CNNs can extract more spatial discrimination information than 2D CNNs, they have emerged as a promising research direction in the diagnosis of AD. The aim of this article is to present the current state of the art in the diagnosis of AD using 3D CNN models and neuroimaging modalities, focusing on the 3D CNN architectures and classification methods used, and to highlight potential future research topics. To give the reader a better overview of the content mentioned in this review, we briefly introduce the commonly used imaging datasets and the fundamentals of CNN architectures. Then we carefully analyzed the existing studies on AD diagnosis, which are divided into two levels according to their inputs: 3D subject-level CNNs and 3D patch-level CNNs, highlighting their contributions and significance in the field. In addition, this review discusses the key findings and challenges from the studies and highlights the lessons learned as a roadmap for future research. Finally, we summarize the paper by presenting some major findings, identifying open research challenges, and pointing out future research directions.
Collapse
Affiliation(s)
- Xinze Xu
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Platform for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Lan Lin
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Platform for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Shen Sun
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Platform for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Shuicai Wu
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Platform for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
28
|
Soliman A, Chang JR, Etminani K, Byttner S, Davidsson A, Martínez-Sanchis B, Camacho V, Bauckneht M, Stegeran R, Ressner M, Agudelo-Cifuentes M, Chincarini A, Brendel M, Rominger A, Bruffaerts R, Vandenberghe R, Kramberger MG, Trost M, Nicastro N, Frisoni GB, Lemstra AW, Berckel BNMV, Pilotto A, Padovani A, Morbelli S, Aarsland D, Nobili F, Garibotto V, Ochoa-Figueroa M. Adopting transfer learning for neuroimaging: a comparative analysis with a custom 3D convolution neural network model. BMC Med Inform Decis Mak 2022; 22:318. [PMID: 36476613 PMCID: PMC9727842 DOI: 10.1186/s12911-022-02054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In recent years, neuroimaging with deep learning (DL) algorithms have made remarkable advances in the diagnosis of neurodegenerative disorders. However, applying DL in different medical domains is usually challenged by lack of labeled data. To address this challenge, transfer learning (TL) has been applied to use state-of-the-art convolution neural networks pre-trained on natural images. Yet, there are differences in characteristics between medical and natural images, also image classification and targeted medical diagnosis tasks. The purpose of this study is to investigate the performance of specialized and TL in the classification of neurodegenerative disorders using 3D volumes of 18F-FDG-PET brain scans. RESULTS Results show that TL models are suboptimal for classification of neurodegenerative disorders, especially when the objective is to separate more than two disorders. Additionally, specialized CNN model provides better interpretations of predicted diagnosis. CONCLUSIONS TL can indeed lead to superior performance on binary classification in timely and data efficient manner, yet for detecting more than a single disorder, TL models do not perform well. Additionally, custom 3D model performs comparably to TL models for binary classification, and interestingly perform better for diagnosis of multiple disorders. The results confirm the superiority of the custom 3D-CNN in providing better explainable model compared to TL adopted ones.
Collapse
Affiliation(s)
- Amira Soliman
- Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Halmstad, Sweden.
| | - Jose R Chang
- Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Halmstad, Sweden
- National Cheng Kung University in Tainan, Taipei City, Taiwan
| | - Kobra Etminani
- Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Halmstad, Sweden
| | - Stefan Byttner
- Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Halmstad, Sweden
| | - Anette Davidsson
- Department of Clinical Physiology, Institution of Medicine and Health Sciences, Linköping, Sweden
| | - Begoña Martínez-Sanchis
- Department of Nuclear Medicine, Medical Imaging Area, La Fe University Hospital, Valencia, Spain
| | - Valle Camacho
- Servicio de Medicina Nuclear, Hospital de la Santa Creu i Sant Pau, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Roxana Stegeran
- Department of Diagnostic Radiology, Linköping University Hospital, Linköping, Sweden
| | - Marcus Ressner
- Department of Medical Physics, Linköping University Hospital, Linköping, Sweden
| | - Marc Agudelo-Cifuentes
- Department of Nuclear Medicine, Medical Imaging Area, La Fe University Hospital, Valencia, Spain
| | - Andrea Chincarini
- National Institute of Nuclear Physics (INFN), Genoa section, Genoa, Italy
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University Hospital Bern, Bern, Switzerland
| | - Rose Bruffaerts
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | | | - Maja Trost
- Department of Neurology, University Medical Centre, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nicolas Nicastro
- Department of Clinical Neurosciences, Geneva University Hospitals, Geneva, Switzerland
| | - Giovanni B Frisoni
- LANVIE (Laboratoire de Neuroimagerie du Vieillissement), Department of Psychiatry, University Hospitals, Geneva, Switzerland
| | - Afina W Lemstra
- VU Medical Center Alzheimer Center, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience , Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Andrea Pilotto
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Silvia Morbelli
- Centre for Age-Related Medicine (SESAM), Stavanger University Hospital, Stavanger, Norway
| | - Dag Aarsland
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England
| | - Flavio Nobili
- Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Valentina Garibotto
- Division of Nuclear Medicine and Molecular Imaging, University Hospitals and NIMTLab, Geneva University, Geneva, Switzerland
| | - Miguel Ochoa-Figueroa
- Department of Clinical Physiology, Institution of Medicine and Health Sciences, Linköping, Sweden
- Department of Diagnostic Radiology, Linköping University Hospital, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| |
Collapse
|
29
|
Perovnik M, Vo A, Nguyen N, Jamšek J, Rus T, Tang CC, Trošt M, Eidelberg D. Automated differential diagnosis of dementia syndromes using FDG PET and machine learning. Front Aging Neurosci 2022; 14:1005731. [PMID: 36408106 PMCID: PMC9667048 DOI: 10.3389/fnagi.2022.1005731] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Metabolic brain imaging with 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG PET) is a supportive diagnostic and differential diagnostic tool for neurodegenerative dementias. In the clinic, scans are usually visually interpreted. However, computer-aided approaches can improve diagnostic accuracy. We aimed to build two machine learning classifiers, based on two sets of FDG PET-derived features, for differential diagnosis of common dementia syndromes. METHODS We analyzed FDG PET scans from three dementia cohorts [63 dementia due to Alzheimer's disease (AD), 79 dementia with Lewy bodies (DLB) and 23 frontotemporal dementia (FTD)], and 41 normal controls (NCs). Patients' clinical diagnosis at follow-up (25 ± 20 months after scanning) or cerebrospinal fluid biomarkers for Alzheimer's disease was considered a gold standard. FDG PET scans were first visually evaluated. Scans were pre-processed, and two sets of features extracted: (1) the expressions of previously identified metabolic brain patterns, and (2) the mean uptake value in 95 regions of interest (ROIs). Two multi-class support vector machine (SVM) classifiers were tested and their diagnostic performance assessed and compared to visual reading. Class-specific regional feature importance was assessed with Shapley Additive Explanations. RESULTS Pattern- and ROI-based classifier achieved higher overall accuracy than expert readers (78% and 80% respectively, vs. 71%). Both SVM classifiers performed similarly to one another and to expert readers in AD (F1 = 0.74, 0.78, and 0.78) and DLB (F1 = 0.81, 0.81, and 0.78). SVM classifiers outperformed expert readers in FTD (F1 = 0.87, 0.83, and 0.63), but not in NC (F1 = 0.71, 0.75, and 0.92). Visualization of the SVM model showed bilateral temporal cortices and cerebellum to be the most important features for AD; occipital cortices, hippocampi and parahippocampi, amygdala, and middle temporal lobes for DLB; bilateral frontal cortices, middle and anterior cingulum for FTD; and bilateral angular gyri, pons, and vermis for NC. CONCLUSION Multi-class SVM classifiers based on the expression of characteristic metabolic brain patterns or ROI glucose uptake, performed better than experts in the differential diagnosis of common dementias using FDG PET scans. Experts performed better in the recognition of normal scans and a combined approach may yield optimal results in the clinical setting.
Collapse
Affiliation(s)
- Matej Perovnik
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,Center for Neurosciences, The Feinstein Institutes for Medical Research, New York, NY, United States,*Correspondence: Matej Perovnik,
| | - An Vo
- Center for Neurosciences, The Feinstein Institutes for Medical Research, New York, NY, United States
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, United States
| | - Jan Jamšek
- Department of Nuclear Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Tomaž Rus
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Chris C. Tang
- Center for Neurosciences, The Feinstein Institutes for Medical Research, New York, NY, United States
| | - Maja Trošt
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia,Department of Nuclear Medicine, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, New York, NY, United States
| |
Collapse
|
30
|
Roy S, Meena T, Lim SJ. Demystifying Supervised Learning in Healthcare 4.0: A New Reality of Transforming Diagnostic Medicine. Diagnostics (Basel) 2022; 12:2549. [PMID: 36292238 PMCID: PMC9601517 DOI: 10.3390/diagnostics12102549] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
The global healthcare sector continues to grow rapidly and is reflected as one of the fastest-growing sectors in the fourth industrial revolution (4.0). The majority of the healthcare industry still uses labor-intensive, time-consuming, and error-prone traditional, manual, and manpower-based methods. This review addresses the current paradigm, the potential for new scientific discoveries, the technological state of preparation, the potential for supervised machine learning (SML) prospects in various healthcare sectors, and ethical issues. The effectiveness and potential for innovation of disease diagnosis, personalized medicine, clinical trials, non-invasive image analysis, drug discovery, patient care services, remote patient monitoring, hospital data, and nanotechnology in various learning-based automation in healthcare along with the requirement for explainable artificial intelligence (AI) in healthcare are evaluated. In order to understand the potential architecture of non-invasive treatment, a thorough study of medical imaging analysis from a technical point of view is presented. This study also represents new thinking and developments that will push the boundaries and increase the opportunity for healthcare through AI and SML in the near future. Nowadays, SML-based applications require a lot of data quality awareness as healthcare is data-heavy, and knowledge management is paramount. Nowadays, SML in biomedical and healthcare developments needs skills, quality data consciousness for data-intensive study, and a knowledge-centric health management system. As a result, the merits, demerits, and precautions need to take ethics and the other effects of AI and SML into consideration. The overall insight in this paper will help researchers in academia and industry to understand and address the future research that needs to be discussed on SML in the healthcare and biomedical sectors.
Collapse
Affiliation(s)
- Sudipta Roy
- Artificial Intelligence & Data Science, Jio Institute, Navi Mumbai 410206, India
| | - Tanushree Meena
- Artificial Intelligence & Data Science, Jio Institute, Navi Mumbai 410206, India
| | - Se-Jung Lim
- Division of Convergence, Honam University, 120, Honamdae-gil, Gwangsan-gu, Gwangju 62399, Korea
| |
Collapse
|
31
|
Nguyen D, Nguyen H, Ong H, Le H, Ha H, Duc NT, Ngo HT. Ensemble learning using traditional machine learning and deep neural network for diagnosis of Alzheimer's disease. IBRO Neurosci Rep 2022; 13:255-263. [PMID: 36590098 PMCID: PMC9795286 DOI: 10.1016/j.ibneur.2022.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/07/2022] [Accepted: 08/31/2022] [Indexed: 01/04/2023] Open
Abstract
In recent years, Alzheimer's disease (AD) diagnosis using neuroimaging and deep learning has drawn great research attention. However, due to the scarcity of training neuroimaging data, many deep learning models have suffered from severe overfitting. In this study, we propose an ensemble learning framework that combines deep learning and machine learning. The deep learning model was based on a 3D-ResNet to exploit 3D structural features of neuroimaging data. Meanwhile, Extreme Gradient Boosting (XGBoost) machine learning was applied on a voxel-wise basis to draw the most significant voxel groups out of the image. The 3D-ResNet and XGBoost predictions were combined with patient demographics and cognitive test scores (Mini-Mental State Examination (MMSE) and Clinical Dementia Rating (CDR)) to give a final diagnosis prediction. Our proposed method was trained and validated on brain MRI brain images of the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset. During the training phase, multiple data augmentation methods were employed to tackle overfitting. Our test set contained only baseline scans, i.e., the first visit scans since we aimed to investigate the ability of our approach in detecting AD during the first visit of AD patients. Our 5-fold cross-validation implementation achieved an average AUC of 100% during training and 96% during testing. Using the same computer, our method was much faster in scoring a prediction, approximately 10 min, than feature extraction-based machine learning methods, which often take many hours to score a prediction. To make the prediction explainable, we visualized the brain MRI image regions that primarily affected the 3D-ResNet model's prediction via heatmap. Lastly, we observed that proper generation of test sets was critical to avoiding the data leakage issue and ensuring the validity of results.
Collapse
Affiliation(s)
- Dong Nguyen
- School of Biomedical Engineering, International University, Vietnam,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoang Nguyen
- School of Biomedical Engineering, International University, Vietnam,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hong Ong
- School of Biomedical Engineering, International University, Vietnam,Vietnam National University, Ho Chi Minh City, Vietnam
| | - Hoang Le
- Department of Electrical Engineering and Computer Science, York University, Toronto, Ontario, Canada
| | - Huong Ha
- School of Biomedical Engineering, International University, Vietnam,Vietnam National University, Ho Chi Minh City, Vietnam,Corresponding authors at: School of Biomedical Engineering, International University, Vietnam.
| | - Nguyen Thanh Duc
- Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, South Korea,Montreal Neurological Institute, McGill University, Montreal, Canada,Corresponding author at: Department of Biomedical Science and Engineering, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju, South Korea.
| | - Hoan Thanh Ngo
- School of Biomedical Engineering, International University, Vietnam,Vietnam National University, Ho Chi Minh City, Vietnam,Corresponding authors at: School of Biomedical Engineering, International University, Vietnam.
| |
Collapse
|
32
|
Zhang J, He X, Qing L, Xu Y, Liu Y, Chen H. Multi-scale discriminative regions analysis in FDG-PET imaging for early diagnosis of Alzheimer's disease. J Neural Eng 2022; 19. [PMID: 35882218 DOI: 10.1088/1741-2552/ac8450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/26/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Alzheimer's disease (AD) is a degenerative brain disorder, one of the main causes of death in elderly people, so early diagnosis of AD is vital to prompt access to medication and medical care. Fluorodeoxyglucose positron emission tomography (FDG-PET) proves to be effective to help understand neurological changes via measuring glucose uptake. Our aim is to explore information-rich regions of FDG-PET imaging, which enhance the accuracy and interpretability of AD-related diagnosis. APPROACH We develop a novel method for early diagnosis of AD based on multi-scale discriminative regions in FDG-PET imaging, which considers the diagnosis interpretability. Specifically, a multi-scale region localization (MSRL) module is discussed to automatically identify disease-related discriminative regions in full-volume FDG-PET images in an unsupervised manner, upon which a confidence score is designed to evaluate the prioritization of regions according to the density distribution of anomalies. Then, the proposed multi-scale region classification (MSRC) module adaptively fuses multi-scale region representations and makes decision fusion, which not only reduces useless information but also offers complementary information. Most of previous methods concentrate on discriminating AD from cognitively normal (CN), while mild cognitive impairment (MCI), a transitional state, facilitates early diagnosis. Therefore, our method is further applied to multiple AD-related diagnosis tasks, not limited to AD vs. CN. MAIN RESULTS Experimental results on the ADNI dataset show that the proposed method achieves superior performance over state-of-the-art FDG-PET-based approaches. Besides, some cerebral cortices highlighted by extracted regions cohere with medical research, further demonstrating the superiority. SIGNIFICANCE This work offers an effective method to achieve AD diagnosis and detect disease-affected regions in FDG-PET imaging. Our results could be beneficial for providing an additional opinion on the clinical diagnosis.
Collapse
Affiliation(s)
- Jin Zhang
- Sichuan University, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, China, Chengdu, Sichuan, 610065, CHINA
| | - Xiaohai He
- Sichuan University, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, China, Chengdu, Sichuan, 610065, CHINA
| | - Linbo Qing
- Sichuan University, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, China, Chengdu, Sichuan, 610065, CHINA
| | - Yining Xu
- Sichuan University, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, China, Chengdu, Sichuan, 610065, CHINA
| | - Yan Liu
- Chengdu Third People's Hospital, Department of Neurology, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China, Chengdu, Sichuan, 610014, CHINA
| | - Honggang Chen
- Sichuan University, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, China, Chengdu, Sichuan, 610065, CHINA
| |
Collapse
|
33
|
Perovnik M, Tomše P, Jamšek J, Tang C, Eidelberg D, Trošt M. Metabolic brain pattern in dementia with Lewy bodies: Relationship to Alzheimer's disease topography. Neuroimage Clin 2022; 35:103080. [PMID: 35709556 PMCID: PMC9207351 DOI: 10.1016/j.nicl.2022.103080] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 10/28/2022]
Abstract
PURPOSE Dementia with Lewy bodies (DLB) is the second most common neurodegenerative dementia, that shares clinical and metabolic similarities with both Alzheimer's and Parkinson's disease. In this study we aimed to identify a DLB-related pattern (DLBRP), study its relationship with other metabolic brain patterns and explore its diagnostic and prognostic value. METHODS A cohort of 79 participants with DLB, 63 with dementia due to Alzheimer's disease (AD) and 41 normal controls (NCs) and their 2-[18F]FDG PET scans were analysed for identification and validation of DLBRP. Voxel-wise correlation and multiple linear regression were used to study the relation between DLBRP and Alzheimer's disease-related pattern (ADRP), Parkinson's disease-related pattern (PDRP) and PD-related cognitive pattern (PDCP). Diagnostic and prognostic value of DLBRP and of modified DLBRP after accounting for ADRP overlap (DLBRP ⊥ ADRP), were explored. RESULTS The newly identified DLBRP shared topographic similarities with ADRP (R2 = 24%) and PDRP (R2 = 37%), but not with PDCP. We could accurately discriminate between DLB and NC (AUC = 0.99) based on DLBRP expression, and between DLB and AD (AUC = 0.87) based on DLBRP ⊥ ADRP expression. DLBRP expression correlated with cognitive impairment, but the correlation was lost after accounting for ADRP overlap. DLBRP and DLBRP ⊥ ADRP correlated with patients' survival time. CONCLUSION DLBRP has proven to be a specific metabolic brain biomarker of DLB, sharing similarities with ADRP and PDRP, but not PDCP. We observed a similar metabolic mechanism underlying cognitive impairment in DLB and AD. DLB-specific metabolic changes were more detrimental for overall survival.
Collapse
Affiliation(s)
- Matej Perovnik
- Department of Neurology, University Medical Center Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia.
| | - Petra Tomše
- Department of Nuclear Medicine, University Medical Center Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Jan Jamšek
- Department of Nuclear Medicine, University Medical Center Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| | - Chris Tang
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - David Eidelberg
- Center for Neurosciences, The Feinstein Institutes for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Maja Trošt
- Department of Neurology, University Medical Center Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia; Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; Department of Nuclear Medicine, University Medical Center Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
34
|
Spatial normalization and quantification approaches of PET imaging for neurological disorders. Eur J Nucl Med Mol Imaging 2022; 49:3809-3829. [PMID: 35624219 DOI: 10.1007/s00259-022-05809-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 12/17/2022]
Abstract
Quantification approaches of positron emission tomography (PET) imaging provide user-independent evaluation of pathophysiological processes in living brains, which have been strongly recommended in clinical diagnosis of neurological disorders. Most PET quantification approaches depend on spatial normalization of PET images to brain template; however, the spatial normalization and quantification approaches have not been comprehensively reviewed. In this review, we introduced and compared PET template-based and magnetic resonance imaging (MRI)-aided spatial normalization approaches. Tracer-specific and age-specific PET brain templates were surveyed between 1999 and 2021 for 18F-FDG, 11C-PIB, 18F-Florbetapir, 18F-THK5317, and etc., as well as adaptive PET template methods. Spatial normalization-based PET quantification approaches were reviewed, including region-of-interest (ROI)-based and voxel-wise quantitative methods. Spatial normalization-based ROI segmentation approaches were introduced, including manual delineation on template, atlas-based segmentation, and multi-atlas approach. Voxel-wise quantification approaches were reviewed, including voxel-wise statistics and principal component analysis. Certain concerns and representative examples of clinical applications were provided for both ROI-based and voxel-wise quantification approaches. At last, a recipe for PET spatial normalization and quantification approaches was concluded to improve diagnosis accuracy of neurological disorders in clinical practice.
Collapse
|
35
|
Minoshima S, Cross D. Application of artificial intelligence in brain molecular imaging. Ann Nucl Med 2022; 36:103-110. [PMID: 35028878 DOI: 10.1007/s12149-021-01697-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022]
Abstract
Initial development of artificial Intelligence (AI) and machine learning (ML) dates back to the mid-twentieth century. A growing awareness of the potential for AI, as well as increases in computational resources, research, and investment are rapidly advancing AI applications to medical imaging and, specifically, brain molecular imaging. AI/ML can improve imaging operations and decision making, and potentially perform tasks that are not readily possible by physicians, such as predicting disease prognosis, and identifying latent relationships from multi-modal clinical information. The number of applications of image-based AI algorithms, such as convolutional neural network (CNN), is increasing rapidly. The applications for brain molecular imaging (MI) include image denoising, PET and PET/MRI attenuation correction, image segmentation and lesion detection, parametric image formation, and the detection/diagnosis of Alzheimer's disease and other brain disorders. When effectively used, AI will likely improve the quality of patient care, instead of replacing radiologists. A regulatory framework is being developed to facilitate AI adaptation for medical imaging.
Collapse
Affiliation(s)
- Satoshi Minoshima
- Department of Radiology and Imaging Sciences, University of Utah, 30 North 1900 East #1A071, Salt Lake City, UT, 84132, USA.
| | - Donna Cross
- Department of Radiology and Imaging Sciences, University of Utah, 30 North 1900 East #1A071, Salt Lake City, UT, 84132, USA
| |
Collapse
|
36
|
Pang N, Liu Z, Lin Z, Chen X, Liu X, Pan M, Shi K, Xiao Y, Xu L. Fast identification and quantification of c-Fos protein using you-only-look-once-v5. Front Psychiatry 2022; 13:1011296. [PMID: 36213931 PMCID: PMC9537349 DOI: 10.3389/fpsyt.2022.1011296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
In neuroscience, protein activity characterizes neuronal excitability in response to a diverse array of external stimuli and represents the cell state throughout the development of brain diseases. Importantly, it is necessary to characterize the proteins involved in disease progression, nuclear function determination, stimulation method effect, and other aspects. Therefore, the quantification of protein activity is indispensable in neuroscience. Currently, ImageJ software and manual counting are two of the most commonly used methods to quantify proteins. To improve the efficiency of quantitative protein statistics, the you-only-look-once-v5 (YOLOv5) model was proposed. In this study, c-Fos immunofluorescence images data set as an example to verify the efficacy of the system using protein quantitative statistics. The results indicate that YOLOv5 was less time-consuming or obtained higher accuracy than other methods (time: ImageJ software: 80.12 ± 1.67 s, manual counting: 3.41 ± 0.25 s, YOLOv5: 0.0251 ± 0.0003 s, p < 0.0001, n = 83; simple linear regression equation: ImageJ software: Y = 1.013 × X + 0.776, R 2 = 0.837; manual counting: Y = 1.0*X + 0, R 2 = 1; YOLOv5: Y = 0.9730*X + 0.3821, R 2 = 0.933, n = 130). The findings suggest that the YOLOv5 algorithm provides feasible methods for quantitative statistical analysis of proteins and has good potential for application in detecting target proteins in neuroscience.
Collapse
Affiliation(s)
- Na Pang
- The College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zihao Liu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhengrong Lin
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaoyan Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiufang Liu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Min Pan
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Keke Shi
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Xiao
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Lisheng Xu
- The College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China.,Key Laboratory of Medical Image Computing, Ministry of Education, Shenyang, China
| |
Collapse
|
37
|
Added value of semiquantitative analysis of brain FDG-PET for the differentiation between MCI-Lewy bodies and MCI due to Alzheimer's disease. Eur J Nucl Med Mol Imaging 2021; 49:1263-1274. [PMID: 34651219 DOI: 10.1007/s00259-021-05568-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/17/2021] [Indexed: 01/13/2023]
Abstract
PURPOSE FDG-PET is an established supportive biomarker in dementia with Lewy bodies (DLB), but its diagnostic accuracy is unknown at the mild cognitive impairment (MCI-LB) stage when the typical metabolic pattern may be difficultly recognized at the individual level. Semiquantitative analysis of scans could enhance accuracy especially in less skilled readers, but its added role with respect to visual assessment in MCI-LB is still unknown. METHODS We assessed the diagnostic accuracy of visual assessment of FDG-PET by six expert readers, blind to diagnosis, in discriminating two matched groups of patients (40 with prodromal AD (MCI-AD) and 39 with MCI-LB), both confirmed by in vivo biomarkers. Readers were provided in a stepwise fashion with (i) maps obtained by the univariate single-subject voxel-based analysis (VBA) with respect to a control group of 40 age- and sex-matched healthy subjects, and (ii) individual odds ratio (OR) plots obtained by the volumetric regions of interest (VROI) semiquantitative analysis of the two main hypometabolic clusters deriving from the comparison of MCI-AD and MCI-LB groups in the two directions, respectively. RESULTS Mean diagnostic accuracy of visual assessment was 76.8 ± 5.0% and did not significantly benefit from adding the univariate VBA map reading (77.4 ± 8.3%) whereas VROI-derived OR plot reading significantly increased both accuracy (89.7 ± 2.3%) and inter-rater reliability (ICC 0.97 [0.96-0.98]), regardless of the readers' expertise. CONCLUSION Conventional visual reading of FDG-PET is moderately accurate in distinguishing between MCI-LB and MCI-AD, and is not significantly improved by univariate single-subject VBA but by a VROI analysis built on macro-regions, allowing for high accuracy independent of reader skills.
Collapse
|