1
|
Qi M, Zhou P, Huang S, Su M, Peng X, Huang R. Head-to-Head Comparison of 68 Ga-DOTATATE and 18 F-FDG PET in EBV-Positive Nonkeratinizing Nasopharyngeal Carcinoma. Clin Nucl Med 2025; 50:156-164. [PMID: 39668493 DOI: 10.1097/rlu.0000000000005623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
PURPOSE The aim of this study was to compare the clinical application value of 68 Ga-DOTATATE and 18 F-FDG PET/CT in Epstein-Barr virus (EBV)-positive nonkeratinizing nasopharyngeal carcinoma. PATIENTS AND METHODS Patients underwent 18 F-FDG and 68 Ga-DOTATATE PET scans. The lesion numbers, tracer parameters, and primary tumor volume derived from contrast-enhanced MRI, 18 F-FDG, and 68 Ga-DOTATATE PET were compared. The correlation between clinical characteristics and PET parameters as well as the predictive value of PET parameters were analyzed. RESULTS The median maximum standard uptake values (SUV max ) of 18 F-FDG and 68 Ga-DOTATATE in all 26 primary tumors was 15.00 and 9.73, respectively ( P = 0.001). 68 Ga-DOTATATE PET was superior to 18 F-FDG PET in detecting intracranial and skull base involvement. The primary tumor volume of 68 Ga-DOTATATE with 35% SUV max as the threshold had the highest consistency with that of contrast-enhanced MRI. 68 Ga-DOTATATE and 18 F-FDG PET/CT detected 103/108 (95.4%) and 101/108 (93.5%) regional lymph nodes metastases ( P = 0.552), and the median SUV max was 6.05 and 10.81, respectively ( P < 0.001). Furthermore, 68 Ga-DOTATATE PET/CT detected more distant metastases than 18 F-FDG (89/92 [96.7%] vs 54/92 [58.7%], respectively, P < 0.001). The plasma EBV DNA was positively correlated with the total metabolic tumor volume, lesion glycolysis, somatostatin receptor-expressing tumor volume, and lesion somatostatin receptor expression (all P values <0.05). The PET parameters in the non-objective response rate group were higher than those in the objective response rate group (all P values >0.05). CONCLUSIONS 68 Ga-DOTATATE PET/CT is a promising imaging modality for detecting primary and metastatic EBV-positive nonkeratinizing nasopharyngeal carcinoma and delineating primary tumor boundary.
Collapse
Affiliation(s)
- Mengfang Qi
- From the Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ping Zhou
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuhui Huang
- From the Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Minggang Su
- From the Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Huang
- From the Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Edamadaka Y, Sonavane SN, Basu S. Metachronous Second Primary in the Form of Nasopharyngeal Carcinoma Following Treatment of Small Cell Neuroendocrine Carcinoma of the Head and Neck: Dual Tracer PET/CT Findings Highlighting SSTR2 Expression and Its Theranostic Implications. World J Nucl Med 2024; 23:317-320. [PMID: 39677340 PMCID: PMC11637650 DOI: 10.1055/s-0044-1790599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Patients of head and neck squamous cell carcinoma (HNSCC) experience increased risk of developing second primary cancer (SPC) necessitating active surveillance during their disease course. SPCs are associated with poor prognosis and are the leading cause of long-term morbidity and mortality impacting survival of patients with HNSCC. Small cell neuroendocrine carcinoma (SmNEC) is a rare but aggressive neoplasm with poor prognosis and high risk of local recurrence and distant metastasis. We report an exceedingly rare case of nasopharyngeal carcinoma (NPC) presenting as a recurrence in the form of metachronous second primary to primary SmNEC 9 years after chemotherapy. The dual tracer positron emission tomography and computed tomography (PET/CT) imaging approach ([ 68 Ga]Ga-DOTATATE-PET/CT with 18 F-FDG-PET/CT) was explored in such metachronous NPCs, and the findings are illustrated with its potential for theranostic applications. NPC is a rare malignancy with significant geographical variations in incidence rates. Somatostatin receptor 2 (SSTR2) expression in NPC is well documented and can serve as a potential theragnostic marker in advanced NPC where the successful outcome is minimal with currently available treatment modalities.
Collapse
Affiliation(s)
- Yeshwanth Edamadaka
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Jerbai Wadia Road, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sunita Nitin Sonavane
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Jerbai Wadia Road, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Hospital Annexe, Jerbai Wadia Road, Parel, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
3
|
Chen J, Pang Y, Liao X, Zhou Y, Luo Q, Wu H, Zuo C, Zhang J, Lin Q, Chen X, Zhao L, Chen H. Development of [ 177Lu]Lu-LNC1010 for peptide receptor radionuclide therapy of nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging 2024; 52:247-259. [PMID: 39145784 DOI: 10.1007/s00259-024-06874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Somatostatin Receptor 2 (SSTR2)-targeted radiopharmaceutical [68Ga]Ga-DOTATATE has potential advantages in the diagnosis of nasopharyngeal carcinoma (NPC). This study introduces a novel long-lasting SSTR2 analogue, LNC1010, based on DOTATATE, a truncated Evans blue-binding moiety, and a polyethylene-glycol linker. We hypothesised that peptide receptor radionuclide therapy (PRRT) is more effective with [177Lu]Lu-LNC1010 than with [177Lu]Lu-DOTATATE in treating metastatic NPC. METHODS We assessed binding characteristics of LNC1010 in vitro using C666-1 NPC cells and in-vivo pharmacokinetics of [68Ga]Ga/[177Lu]Lu-LNC1010 in C666-1 NPC xenografts via PET and SPECT imaging, biodistribution studies, and PRRT, and compared them with [68Ga]Ga/[177Lu] Lu-labelled DOTATATE. Furthermore, a proof-of-concept approach for imaging and therapy was conducted in a patient with metastatic NPC. RESULTS LNC1010 exhibited strong uptake and specific affinity for SSTR2 in C666-1 NPC cells. PET and SPECT imaging demonstrated higher uptake and longer tumour retention of [68Ga]Ga/[177Lu]Lu-LNC1010 than [68Ga]Ga/[177Lu]Lu-DOTATATE in C666-1 NPC xenografts, indicating its suitability for PRRT applications in NPCs. Biodistribution studies confirmed the higher uptake and prolonged retention of [177Lu]Lu-LNC1010 than [177Lu]Lu-DOTATATE. In preclinical PRRT studies, [177Lu]Lu-LNC1010 showed greater inhibition of tumour growth in C666-1 NPC xenografts than [177Lu]Lu-DOTATATE. In a subsequent pilot clinical study, PRRT with [177Lu]Lu-LNC1010 achieved favourable therapeutic and negligible side effects in a patient with metastatic NPC. CONCLUSION [177Lu]Lu-LNC1010 demonstrated increased tumour uptake and prolonged retention in SSTR2-positive NPCs, with superior anti-tumour efficacy to that of [177Lu]Lu-DOTATATE in preclinical studies. These findings suggest that PRRT with [177Lu]Lu-LNC1010 is a promising treatment for advanced NPC, extending the clinical scope of PRRT beyond neuroendocrine tumours.
Collapse
Affiliation(s)
- Jianhao Chen
- Department of Nuclear Medicine and Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Xiyi Liao
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yangfan Zhou
- Department of Nuclear Medicine and Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Qicong Luo
- Laboratory of Xiamen Cancer Hospital, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine and Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Changjing Zuo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Military Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Jingjing Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Department of Radiation Oncology, Xiamen Cancer Center, Xiamen Key Laboratory of Radiation Oncology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
4
|
Chen H, Zhao L, Pang Y, Shi J, Gao H, Sun Y, Chen J, Fu H, Cai J, Yu L, Zeng R, Sun L, Wu H, Wang Z, Wang F. 68Ga-MY6349 PET/CT imaging to assess Trop2 expression in multiple types of cancer. J Clin Invest 2024; 135:e185408. [PMID: 39509246 DOI: 10.1172/jci185408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUNDConsidering that trophoblast cell-surface antigen 2 (Trop2) is overexpressed in a wide range of human epithelial cancers, it presents an attractive target for diagnosis and treatment of multiple types of cancer. Herein, we have developed a Trop2-specific radiotracer, 68Ga-MY6349, and present a prospective, investigator-initiated trial to explore the clinical value of 68Ga-MY6349 PET/CT.METHODSIn this translational study, 90 patients with 15 types of cancer who underwent 68Ga-MY6349 PET/CT were enrolled prospectively. Among them, 78 patients underwent paired 68Ga-MY6349 and 18F-FDG PET/CT, and 12 patients with prostate cancer underwent paired 68Ga-MY6349 and 68Ga-PSMA-11 PET/CT.RESULTSAmong the 90 patients across 15 types of cancer, 68Ga-MY6349 uptake in tumors was generally high but heterogeneous, varying among lesions, patients, and cancer types. Trop2 expression level determined by immunohistochemistry was highly correlated with 68Ga-MY6349 uptake at primary and metastatic tumor sites. 68Ga-MY6349 PET/CT showed higher tumor uptake (quantified by maximum standardized uptake value) than 18F-FDG PET/CT in certain types of cancer, including breast (7.2 vs. 5.4, P < 0.001), prostate (9.2 vs. 3.0, P < 0.001), and thyroid cancers (8.5 vs. 3.7, P < 0.001). Compared with 68Ga-PSMA-11, 68Ga-MY6349 PET/CT exhibited comparable lesion uptake (12.2 vs. 12.5, P = 0.223) but a better tumor-to-background contrast (15.8 vs. 12.2, P < 0.001) for primary and metastatic prostate cancer, allowing visualization of more metastatic lesions.CONCLUSION68Ga-MY6349 PET/CT is a noninvasive method for comprehensively assessing Trop2 expression in tumors, which can improve diagnosis and staging for cancer patients and aid in decision making for Trop2-targeted therapies and advancing of personalized treatment.TRIAL REGISTRATIONClinicalTrials.gov NCT06188468.FUNDINGNational Natural Science Foundation of China, National Key R&D Program of China, Nuclear Energy R&D project, Fujian Research and Training Grants for Young and Middle-aged Leaders in Healthcare, Key Scientific Research Program for Young Scholars in Fujian, and Fujian Natural Science Foundation for Distinguished Young Scholars.
Collapse
Affiliation(s)
- Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
| | - Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jiyun Shi
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hannan Gao
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yining Sun
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianhao Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hao Fu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiayu Cai
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingyu Yu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ru Zeng
- Department of Medical Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Fan Wang
- Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Medical Isotopes Research Center and Department of Radiation Medicine, School of Basic Medical Sciences, International Cancer Institute, Peking University, Beijing, China
- Guangzhou National Laboratory, Guangzhou, China
| |
Collapse
|
5
|
Nazar AK, Basu S. Radiolabeled Somatostatin Analogs for Cancer Imaging. Semin Nucl Med 2024; 54:914-940. [PMID: 39122608 DOI: 10.1053/j.semnuclmed.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024]
Abstract
Somatostatin receptors (SSTR) are expressed by many tumours especially those related to neuro-endocrine origin and molecular functional imaging of SSTR expression using radiolabelled somatostatin analogs have revolutionized imaging of patients with these group of malignancies. Coming a long way from the first radiolabelled somatostatin analog 123I-Tyr-3-octreotide, there has been significant developments in terms of radionuclides used, the ligands and somatostatin derivatives. 111In-Pentetreotide extensively employed for imaging NETs at the beginning has now been replaced by 68Ga-SSA based PET-CT. SSA-PET/CT performs superior to conventional imaging modalities and has evolved in the mainframe for NET imaging. The advantages were multiple: (i) superior spatial resolution of PET versus SPECT, (ii) quantitative capabilities of PET aiding in disease activity and treatment response monitoring with better precision, (iii) shorter scan time and (iv) less patient exposure to radiation. The modality is indicated for staging, detecting the primary in CUP-NETs, restaging, treatment planning (along with FDG: the concept of dual-tracer PET-CT) as well as treatment response evaluation and follow-up of NETs. SSA PET/CT has also been incorporated in the guidelines for imaging of Pheochromocytoma-Paraganglioma, Medullary carcinoma thyroid, Meningioma and Tumor induced osteomalacia. At present, there is rising interest on (a) 18F-labelled SSA, (b) 64Cu-labelled SSA, and (c) somatostatin antagonists. 18F offers excellent imaging properties, 64Cu makes delayed imaging feasible which has implications in dosimetry and SSTR antagonists bind with the SST receptors with high affinity and specificity, providing high contrast images with less background, which can be translated to theranostics effectively. SSTR have been demonstrated in non-neuroendocrine tumours as well in the peer-reviewed literature, with studies demonstrating the potential of SSA PET/CT in Neuroblastoma, Nasopharyngeal carcinoma, carcinoma prostate (neuroendocrine differentiation) and lymphoma. This review will focus on the currently available SSAs and their history, different SPECT/PET agents, SSTR antagonists, comparison between the various imaging tracers, and their utility in both neuroendocrine and non-neuroendocrine tumors.
Collapse
Affiliation(s)
- Aamir K Nazar
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai; Homi Bhabha National Institute, Mumbai
| | - Sandip Basu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Tata Memorial Centre Annexe, Mumbai; Homi Bhabha National Institute, Mumbai.
| |
Collapse
|
6
|
Zheng J, Wang G, Ru Q, Yang Y, Su L, Lv W, Ke C, Wang P, Liu X, Zhang L, Liu F, Miao W. A head-to-head comparison of [ 68Ga]Ga-DOTATATE and [ 68Ga]Ga-FAPI PET/CT in patients with nasopharyngeal carcinoma: a single-center, prospective study. Eur J Nucl Med Mol Imaging 2024; 51:3386-3399. [PMID: 38724654 DOI: 10.1007/s00259-024-06744-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/28/2024] [Indexed: 06/05/2024]
Abstract
PURPOSE We aimed to compare the staging efficiency of [68Ga]Ga-DOTATATE and [68Ga]Ga-FAPI PET/CT in nasopharyngeal carcinoma (NPC) patients. METHODS Thirty-nine patients with pathologically confirmed NPC were enrolled in this prospective study. Each patient underwent paired [68Ga]Ga-DOTATATE and [68Ga]Ga-FAPI PET/CT on 2 successive days. The accuracy of two PET/CT for assessing T, N, and M stages was compared by using head-and-neck MRI, histopathologic diagnosis and follow-up results as reference standards. The radiotracer uptake derived from two PETs was also compared. RESULTS For treatment-naïve patients, [68Ga]Ga-DOTATATE PET/CT showed identical sensitivity for the primary tumours but clearer tumor delineation induced by higher tumour-to-background (TBR) ratio (19.1 ± 8.7 vs. 12.4 ± 7.7, P = 0.003), compared with [68Ga]Ga-FAPI PET/CT. Regarding cervical lymph node (CLN) metastases, [68Ga]Ga-DOTATATE PET had significantly better sensitivity and accuracy based on neck sides (98% vs. 82%, P < 0.001; 99% vs. 88% P = 0.008), neck levels (98% vs. 78%, 99% vs. 97%; both P < 0.001) and individual nodes (89% vs. 56%, 91% vs. 76%; both P < 0.001), and higher TBR (8.1 ± 4.1 vs. 6.3 ± 3.7, P < 0.001). Additionally, [68Ga]Ga-DOTATATE PET/CT revealed higher sensitivity and accuracy for distant metastases (96% vs. 53%, 95% vs. 52%; both P < 0.001), particularly in bone metastases (99% vs. 49%, 97% vs. 49%; both P < 0.001). For post-treatment patients, [68Ga]Ga-DOTATATE PET/CT identified one more true-negative case than [68Ga]Ga-FAPI PET/CT. CONCLUSION [68Ga]Ga-DOTATATE PET/CT performed better than [68Ga]Ga-FAPI PET/CT in visualizing the primary tumours, detecting the metastatic lesions and identifying the local recurrence, suggesting [68Ga]Ga-DOTATATE PET/CT may be superior to [68Ga]Ga-FAPI PET/CT for NPC staging.
Collapse
Affiliation(s)
- Jieling Zheng
- Department of Nuclear Medicine, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China
- Department of Nuclear Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Changle District, No. 999 Huashan Road, Fuzhou, 350212, China
| | - Guochang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China
- Department of Nuclear Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Changle District, No. 999 Huashan Road, Fuzhou, 350212, China
| | - Qian Ru
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Yun Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China
- Department of Nuclear Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Changle District, No. 999 Huashan Road, Fuzhou, 350212, China
| | - Li Su
- Department of Radiotherapy, the First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China
| | - Wenlong Lv
- Department of Radiotherapy, the First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China
| | - Chunlin Ke
- Department of Radiotherapy, the First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China
| | - Peirong Wang
- Department of Radiotherapy, the First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China
| | - Xiaohui Liu
- Department of Radiotherapy, the First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China
| | - Li Zhang
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Feng Liu
- Department of Radiotherapy, the First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China.
| | - Weibing Miao
- Department of Nuclear Medicine, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian Province, China.
- Department of Nuclear Medicine, Binhai Campus of the First Affiliated Hospital, National Regional Medical Center, Fujian Medical University, Changle District, No. 999 Huashan Road, Fuzhou, 350212, China.
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian Province, China.
- Department of Nuclear Medicine, Provincial Clinical Key Specialty of Fujian, Fuzhou, 350005, Fujian Province, China.
| |
Collapse
|
7
|
Zheng J, Zhu H, Shao Z, Miao W. 68 Ga-DOTATATE PET/CT Detected Bone Metastasis Earlier Than 68 Ga-FAPI PET/CT and 99m Tc-MDP Bone Scintigraphy in a Patient With Nasopharyngeal Carcinoma. Clin Nucl Med 2024; 49:790-792. [PMID: 38768089 DOI: 10.1097/rlu.0000000000005289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
ABSTRACT A 53-year-old man with newly diagnosed nasopharyngeal carcinoma (NPC) underwent 99m Tc-MDP bone scintigraphy for the potential bone metastases, and paired 68 Ga-DOTATATE and 68 Ga-FAPI PET/CT for initial staging. 68 Ga-DOTATATE PET/CT identified 2 abnormal foci with increased tracer uptake in the cervical vertebra and the ilium, whereas 68 Ga-FAPI PET/CT and bone scan detected only the ilium lesion. A subsequent biopsy confirmed NPC metastasis in the ilium. Furthermore, baseline and follow-up bone scintigraphy revealed that the positive lesion in the cervical vertebra, as indicated in 68 Ga-DOTATATE PET/CT, was also a bone metastasis. This case highlighted the potential superiority of 68 Ga-DOTATATE in NPC.
Collapse
Affiliation(s)
| | - Hongxu Zhu
- Department of Nuclear Medicine, the Ningde Municipal Hospital of Ningde Normal University, Ningde
| | | | | |
Collapse
|
8
|
Chang Q, Huang K, Zou L, Li A, Ye Z, Lin Q, Gu Y. Synthesis and Evaluation of a Novel c-Met-Targeting Cyclic Peptide as a Potential Diagnostic Agent for Colorectal Cancer. Mol Pharm 2024; 21:3613-3622. [PMID: 38853512 DOI: 10.1021/acs.molpharmaceut.4c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The mesenchymal-epithelial transition factor (c-Met) is a receptor tyrosine kinase linked to the proliferation, survival, invasion, and metastasis of several types of cancers, including colorectal cancer (CRC), particularly when aberrantly activated. Our study strategically designs peptides derived from interactions between c-Met and the antibody Onartuzumab. By utilizing a cyclic strategy, we achieved significantly enhanced peptide stability and affinity. Our in vitro assessments confirmed that the cyclic peptide HYNIC-cycOn exhibited a higher affinity (KD = 83.5 nM) and greater specificity compared with its linear counterpart. Through in vivo experiments, [99mTc]Tc-HYNIC-cycOn displayed exceptional tumor-targeting capabilities and minimal absorption in nontumor cells, as confirmed by single-photon emission computed tomography. Notably, the ratios of tumor to muscle and tumor to intestine, 1 h postinjection, were 4.78 ± 0.86 and 3.24 ± 0.47, respectively. Comparable ratios were observed in orthotopic CRC models, recording 4.94 ± 0.32 and 3.88 ± 0.41, respectively. In summary, [99mTc]Tc-HYNIC-cycOn shows substantial promise as a candidate for clinical applications. We show that [99mTc]Tc-HYNIC-cycOn can effectively target and visualize c-Met-expressing tumors in vivo, providing a promising approach for enhancing diagnostic accuracy when detecting c-Met in CRC.
Collapse
Affiliation(s)
- Qi Chang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Keshuai Huang
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Lenan Zou
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Ao Li
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Zhuoyi Ye
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Qiao Lin
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
9
|
Baum RP, Novruzov E, Zhao T, Greifenstein L, Jakobsson V, Perrone E, Mishra A, Eismant A, Ghai K, Klein O, Jaeschke B, Benz-Zils D, Cardinale J, Mori Y, Giesel FL, Zhang J. Radiomolecular Theranostics With Fibroblast-Activation-Protein Inhibitors and Peptides. Semin Nucl Med 2024; 54:537-556. [PMID: 39019653 DOI: 10.1053/j.semnuclmed.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 05/30/2024] [Indexed: 07/19/2024]
Abstract
The advancement of theranostics, which combines therapeutic and diagnostic capabilities in oncology, has significantly impacted cancer management. This review explores fibroblast activation protein (FAP) expression in the tumor microenvironment (TME) and its association with various malignancies, highlighting its potential as a theranostic marker for PET/CT imaging using FAP-targeted tracers and for FAP-targeted radiopharmaceutical therapy. We examine the development and clinical applications of FAP inhibitors (FAPIs) and peptides, providing insights into their diagnostic accuracy, initial therapeutic efficacy, and clinical impact across diverse cancer types, as well as the synthesis of novel FAP-targeted ligands. This review aims to showcase the promising outcomes and challenges in integrating FAP-targeted approaches into cancer management.
Collapse
Affiliation(s)
- Richard P Baum
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Department of Nuclear Medicine, DKD HELIOS Klinik, Wiesbaden, Germany.
| | - Emil Novruzov
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lukas Greifenstein
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Department of Nuclear Medicine, DKD HELIOS Klinik, Wiesbaden, Germany
| | - Vivianne Jakobsson
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elisabetta Perrone
- Institute of Nuclear Medicine, Department of Radiological and Hematological Sciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Aditi Mishra
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Department of Nuclear Medicine, DKD HELIOS Klinik, Wiesbaden, Germany
| | - Aleksandr Eismant
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Department of Nuclear Medicine, DKD HELIOS Klinik, Wiesbaden, Germany
| | - Kriti Ghai
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Department of Nuclear Medicine, DKD HELIOS Klinik, Wiesbaden, Germany
| | - Ortwin Klein
- Department of Oncology (MVZ), Helios DKD Klinik, Wiesbaden, Germany
| | - Bastian Jaeschke
- Department of Oncology (MVZ), Helios DKD Klinik, Wiesbaden, Germany
| | - Daniel Benz-Zils
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Department of Nuclear Medicine, DKD HELIOS Klinik, Wiesbaden, Germany
| | - Jens Cardinale
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Yuriko Mori
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, Medical Faculty, Heinrich-Heine-University, University Hospital Düsseldorf, Düsseldorf, Germany; Institute for Radiation Sciences, Osaka University, Osaka, Japan
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Zhao L, Pang Y, Fang J, Chen J, Zhou Y, Sun L, Wu H, Guo Z, Lin Q, Chen H. Design, Preclinical Evaluation, and Clinical Translation of 68Ga-FAPI-LM3, a Heterobivalent Molecule for PET Imaging of Nasopharyngeal Carcinoma. J Nucl Med 2024; 65:394-401. [PMID: 38176714 PMCID: PMC10924156 DOI: 10.2967/jnumed.123.266183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 01/06/2024] Open
Abstract
Extensive research has been conducted on radiolabeled fibroblast activation protein (FAP) inhibitors (FAPIs) and p-Cl-Phe-cyclo(d-Cys-Tyr-d-4-amino-Phe(carbamoyl)-Lys-Thr-Cys)d-Tyr-NH2 (LM3) peptides for imaging of FAP and somatostatin receptor 2 (SSTR2)-positive tumors. In this study, we designed and synthesized a FAPI-LM3 heterobivalent molecule radiolabeled with 68Ga and evaluated its effectiveness in both tumor xenografts and patients with nasopharyngeal carcinoma (NPC). Methods: The synthesis of FAPI-LM3 was based on the structures of FAPI-46 and LM3. After radiolabeling with 68Ga, its dual-receptor-binding affinity was evaluated in vitro and in vivo. Preclinical studies, including small-animal PET and biodistribution evaluation, were conducted on HT-1080-FAP and HT-1080-SSTR2 tumor xenografts. The feasibility of 68Ga-FAPI-LM3 PET/CT in a clinical setting was evaluated in patients with NPC, and the results were compared with those of 18F-FDG. Results: 68Ga-FAPI-LM3 showed high affinity for both FAP and SSTR2. The tumor uptake of 68Ga-FAPI-LM3 was significantly higher than that of 68Ga-FAPI-46 and 68Ga-DOTA-LM3 in HT-1080-FAP-plus-HT-1080-SSTR2 tumor xenografts. In a clinical study involving 6 NPC patients, 68Ga-FAPI-LM3 PET/CT showed significantly higher uptake than did 18F-FDG in primary and metastatic lesions, leading to enhanced lesion detectability and tumor delineation. Conclusion: 68Ga-FAPI-LM3 exhibited FAPI and SSTR2 dual-receptor-targeting properties both in vitro and in vivo, resulting in improved tumor uptake and retention compared with that observed with monomeric 68Ga-FAPI and 68Ga-DOTA-LM3. This study highlights the clinical feasibility of 68Ga-FAPI-LM3 PET/CT for NPC imaging.
Collapse
Affiliation(s)
- Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Xiamen Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Xiamen Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jianyang Fang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China; and
| | - Jianhao Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Xiamen Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yangfan Zhou
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
- Xiamen Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Hua Wu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China; and
| | - Qin Lin
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China;
- Xiamen Key Laboratory of Radiation Oncology, Department of Radiation Oncology, Xiamen Cancer Center, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China;
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
11
|
Fan S, Zheng H, Zhan Y, Luo J, Zang H, Wang H, Wang W, Xu Y. Somatostatin receptor2 (SSTR2) expression, prognostic implications, modifications and potential therapeutic strategies associates with head and neck squamous cell carcinomas. Crit Rev Oncol Hematol 2024; 193:104223. [PMID: 38036157 DOI: 10.1016/j.critrevonc.2023.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) constitute a heterogeneous cluster of tumors celebrated for their predisposition to metastasize and exhibit local recurrence. Recent explorations have illuminated the intricate involvement of Somatostatin Receptor 2 (SSTR2), a growth-regulatory receptor traditionally classified as a tumor suppressor, yet concurrently implicated in bolstering specific tumor phenotypes. Advances in the realm of SSTR2 investigation within HNSCC, with a specific spotlight on laryngeal squamous cell carcinomas (LSCC), tongue squamous cell carcinomas (TSCC), and nasopharyngeal carcinomas (NPC), have been established. This study aims to provide a comprehensive overview of SSTR2 expression patterns, prognostic implications, distinctive signaling pathways, epigenetic modifications, and potential therapeutic strategies associated with SSTR2 in HNSCC.
Collapse
Affiliation(s)
- Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Huilin Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Weiyuan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Xu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China.
| |
Collapse
|
12
|
Low HC, Loke KSH, Wang FQ, Han S, Nei WL. 68 Ga-DOTATATE PET/CT of Metastatic Lymphoepithelial Carcinoma of Parotid Gland. Clin Nucl Med 2023; 48:1056-1058. [PMID: 37844551 DOI: 10.1097/rlu.0000000000004899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
ABSTRACT We present a case of a 59-year-old woman with lymphoepithelial carcinoma of left parotid gland. She was treated with radical radiotherapy, but her plasma Epstein-Barr virus DNA load continued to increase despite good locoregional response. As her primary tumor was positive for somatostatin receptor type 2, we performed 68 Ga-DOTATATE PET/CT, which revealed multiple DOTATATE-avid distant metastases.
Collapse
Affiliation(s)
- Han Chung Low
- From the Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
| | - Kelvin Siu Hoong Loke
- From the Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital
| | | | - Shuting Han
- Medical Oncology, National Cancer Centre Singapore, Singapore
| | | |
Collapse
|
13
|
Qi M, Liu Y, Su M, Huang R. Primary Hepatocellular Carcinoma Revealed on 68Ga-DOTATATE in a Patient With Nasopharyngeal Carcinoma. Clin Nucl Med 2023:00003072-990000000-00642. [PMID: 37486702 DOI: 10.1097/rlu.0000000000004774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
ABSTRACT A 56-year-old man underwent a prospective study (ChiCTR2300070081), which is a head-to-head comparison of 18F-FDG and 68Ga-DOTATATE PET/MR in EB-positive nonkeratinizing nasopharyngeal carcinoma after chemotherapy. Bilateral cervical abnormal lymph nodes were both detected by 18F-FDG and 68Ga-DOTATATE PET/MRI, whereas 2 hepatic lesions only were shown on 68Ga-DOTATATE, which subsequent pathologically proved to be primary hepatocellular carcinoma.
Collapse
Affiliation(s)
- Mengfang Qi
- From the Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | |
Collapse
|
14
|
Li D, Li X, Zhao J, Tan F. Advances in nuclear medicine-based molecular imaging in head and neck squamous cell carcinoma. J Transl Med 2022; 20:358. [PMID: 35962347 PMCID: PMC9373390 DOI: 10.1186/s12967-022-03559-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are often aggressive, making advanced disease very difficult to treat using contemporary modalities, such as surgery, radiation therapy, and chemotherapy. However, targeted therapy, e.g., cetuximab, an epidermal growth factor receptor inhibitor, has demonstrated survival benefit in HNSCC patients with locoregional failure or distant metastasis. Molecular imaging aims at various biomarkers used in targeted therapy, and nuclear medicine-based molecular imaging is a real-time and non-invasive modality with the potential to identify tumor in an earlier and more treatable stage, before anatomic-based imaging reveals diseases. The objective of this comprehensive review is to summarize recent advances in nuclear medicine-based molecular imaging for HNSCC focusing on several commonly radiolabeled biomarkers. The preclinical and clinical applications of these candidate imaging strategies are divided into three categories: those targeting tumor cells, tumor microenvironment, and tumor angiogenesis. This review endeavors to expand the knowledge of molecular biology of HNSCC and help realizing diagnostic potential of molecular imaging in clinical nuclear medicine.
Collapse
Affiliation(s)
- Danni Li
- Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Xuran Li
- Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fei Tan
- Shanghai Fourth People's Hospital, and School of Medicine, Tongji University, Shanghai, China. .,The Royal College of Surgeons in Ireland, Dublin, Ireland. .,The Royal College of Surgeons of England, London, UK.
| |
Collapse
|
15
|
Lan X, Huo L, Li S, Wang J, Cai W. State-of-the-art of nuclear medicine and molecular imaging in China: after the first 66 years (1956-2022). Eur J Nucl Med Mol Imaging 2022; 49:2455-2461. [PMID: 35665836 PMCID: PMC9167647 DOI: 10.1007/s00259-022-05856-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
| | - Li Huo
- Department of Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
- Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College Hospital, Beijing, China
| | - Shuren Li
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin Madison, Madison, WI, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
16
|
Brada MD, Rushing EJ, Bächinger D, Zoller L, Burger IA, Hüllner MW, Moch H, Huber A, Eckhard AH, Rupp NJ. Immunohistochemical Expression Pattern of Theragnostic Targets SSTR2 and PSMA in Endolymphatic Sac Tumors: A Single Institution Case Series. Head Neck Pathol 2022; 16:1012-1018. [PMID: 35546652 PMCID: PMC9729512 DOI: 10.1007/s12105-022-01456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/16/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND Endolymphatic sac tumors are rare neoplasia characterized by slow growth. However, their clinical impact should not be underestimated, considering their potential for local aggressive behavior and strong association with von Hippel-Lindau syndrome. Therefore, early detection with emerging theragnostic examinations such as 68Ga-DOTATATE-PET/CT might improve patient management and reduce morbidity. METHODS We report the clinicopathological features of seven endolymphatic sac tumors. In this cohort, we performed immunohistochemical analysis of somatostatin receptor 2A (SSTR2A) and prostate specific membrane antigen (PSMA) protein expression patterns; two targets providing rationale for novel imaging modalities such as PSMA- or SSTR-targeted PET. RESULTS The tumor cells of all cases were negative for prostate specific membrane antigen and somatostatin receptor 2A, however immunolabeling was consistently detected in intratumoral endothelial cells of endolymphatic sac tumors for PSMA (7/7 cases, 100%), and for SSTR2A (5/7 cases, 71%). CONCLUSIONS Our results show a high rate of PSMA and SSTR2A expression in the tumor vasculature of endolymphatic sac tumors. PSMA and SSTR2A can be targeted with appropriate radioligands for diagnostic and therapeutic purposes. This finding provides a rationale for prospective clinical studies to test this approach as a sensitive screening tool for patients with suspected endolymphatic sac tumors including an improved management of von Hippel-Lindau syndrome.
Collapse
Affiliation(s)
- Muriel D. Brada
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Elisabeth J. Rushing
- Department of Neuropathology, University Hospital Zurich, Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - David Bächinger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Loris Zoller
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Irene A. Burger
- Department of Nuclear Medicine, Baden Cantonal Hospital, Baden, Switzerland ,Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Martin W. Hüllner
- Department of Nuclear Medicine, University Hospital Zurich, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Alexander Huber
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Andreas H. Eckhard
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Niels J. Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, 8091 Zurich, Switzerland ,Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|