1
|
Silindir-Gunay M, Ozolmez N. Adverse reactions to therapeutic radiopharmaceuticals. Appl Radiat Isot 2024; 214:111527. [PMID: 39332267 DOI: 10.1016/j.apradiso.2024.111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Radiopharmaceuticals are drugs used in treatment or diagnosis that contain a radioactive part, usually a pharmaceutical part in their structure. Adverse drug reactions are harmful and unexpected responses that occur when administered at normal doses. Although radiopharmaceuticals are regarded as safe medical products, adverse reactions should not be ignored. More serious adverse reactions such as myelosuppression, pleural effusion, and death may develop in therapeutic radiopharmaceuticals due to their use at higher doses than those used in diagnosis. Therefore, monitoring adverse reactions and reporting them to health authorities is important. This review aims to provide information about adverse reactions that may be related to radiopharmaceuticals used in treatment.
Collapse
Affiliation(s)
- Mine Silindir-Gunay
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| | - Nur Ozolmez
- Department of Radiopharmacy, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
2
|
Jha A, Patel M, Ling A, Shah R, Chen CC, Millo C, Nazari MA, Sinaii N, Charles K, Kuo MJM, Prodanov T, Saboury B, Talvacchio S, Derkyi A, Del Rivero J, O'Sullivan Coyne G, Chen AP, Nilubol N, Herscovitch P, Lin FI, Taieb D, Civelek AC, Carrasquillo JA, Pacak K. Diagnostic performance of [ 68Ga]DOTATATE PET/CT, [ 18F]FDG PET/CT, MRI of the spine, and whole-body diagnostic CT and MRI in the detection of spinal bone metastases associated with pheochromocytoma and paraganglioma. Eur Radiol 2024; 34:6488-6498. [PMID: 38625612 PMCID: PMC11399174 DOI: 10.1007/s00330-024-10652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/07/2024] [Accepted: 01/19/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVE To compare the diagnostic performance of [68Ga]DOTATATE PET/CT, [18F]FDG PET/CT, MRI of the spine, and whole-body CT and MRI for the detection of pheochromocytoma/paraganglioma (PPGL)-related spinal bone metastases. MATERIALS AND METHODS Between 2014 and 2020, PPGL participants with spinal bone metastases prospectively underwent [68Ga]DOTATATE PET/CT, [18F]FDG PET/CT, MRI of the cervical-thoracolumbar spine (MRIspine), contrast-enhanced MRI of the neck and thoraco-abdominopelvic regions (MRIWB), and contrast-enhanced CT of the neck and thoraco-abdominopelvic regions (CTWB). Per-patient and per-lesion detection rates were calculated. Counting of spinal bone metastases was limited to a maximum of one lesion per vertebrae. A composite of all functional and anatomic imaging served as an imaging comparator. The McNemar test compared detection rates between the scans. Two-sided p values were reported. RESULTS Forty-three consecutive participants (mean age, 41.7 ± 15.7 years; females, 22) with MRIspine were included who also underwent [68Ga]DOTATATE PET/CT (n = 43), [18F]FDG PET/CT (n = 43), MRIWB (n = 24), and CTWB (n = 33). Forty-one of 43 participants were positive for spinal bone metastases, with 382 lesions on the imaging comparator. [68Ga]DOTATATE PET/CT demonstrated a per-lesion detection rate of 377/382 (98.7%) which was superior compared to [18F]FDG (72.0%, 275/382, p < 0.001), MRIspine (80.6%, 308/382, p < 0.001), MRIWB (55.3%, 136/246, p < 0.001), and CTWB (44.8%, 132/295, p < 0.001). The per-patient detection rate of [68Ga]DOTATATE PET/CT was 41/41 (100%) which was higher compared to [18F]FDG PET/CT (90.2%, 37/41, p = 0.13), MRIspine (97.6%, 40/41, p = 1.00), MRIWB (95.7%, 22/23, p = 1.00), and CTWB (81.8%, 27/33, p = 0.03). CONCLUSIONS [68Ga]DOTATATE PET/CT should be the modality of choice in PPGL-related spinal bone metastases due to its superior detection rate. CLINICAL RELEVANCE STATEMENT In a prospective study of 43 pheochromocytoma/paraganglioma participants with spinal bone metastases, [68Ga]DOTATATE PET/CT had a superior per-lesion detection rate of 98.7% (377/382), compared to [18F]FDG PET/CT (p < 0.001), MRI of the spine (p < 0.001), whole-body CT (p < 0.001), and whole-body MRI (p < 0.001). KEY POINTS • Data regarding head-to-head comparison between functional and anatomic imaging modalities to detect spinal bone metastases in pheochromocytoma/paraganglioma are limited. • [68Ga]DOTATATE PET/CT had a superior per-lesion detection rate of 98.7% in the detection of spinal bone metastases associated with pheochromocytoma/paraganglioma compared to other imaging modalities: [18]F-FDG PET/CT, MRI of the spine, whole-body CT, and whole-body MRI. • [68Ga]DOTATATE PET/CT should be the modality of choice in the evaluation of spinal bone metastases associated with pheochromocytoma/paraganglioma.
Collapse
Affiliation(s)
- Abhishek Jha
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
| | - Mayank Patel
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
| | - Alexander Ling
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Ritu Shah
- Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Clara C Chen
- Nuclear Medicine Division, Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Corina Millo
- Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Matthew A Nazari
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
| | - Ninet Sinaii
- Biostatistics and Clinical Epidemiology Service, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Kailah Charles
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
| | - Mickey J M Kuo
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Tamara Prodanov
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
| | - Babak Saboury
- Nuclear Medicine Division, Radiology and Imaging Sciences, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Sara Talvacchio
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
| | - Alberta Derkyi
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Room 13C434, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Geraldine O'Sullivan Coyne
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Room 8D53, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Alice P Chen
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Room 8D53, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Naris Nilubol
- Surgical Oncology Program, Center for Cancer Research, National Cancer Institute, Room 4-5952, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Peter Herscovitch
- Positron Emission Tomography Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Frank I Lin
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Room 13C442, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - A Cahid Civelek
- Nuclear Medicine, Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD, USA
| | - Jorge A Carrasquillo
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Room 13C442, Bldg. 10, 10 Center Dr., Bethesda, MD, 20892, USA
| | - Karel Pacak
- Section On Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Room 1E-3140, CRC, Bldg. 10, 10 Center Dr. MSC-1109, Bethesda, MD, 20892-1109, USA.
| |
Collapse
|
3
|
Sedlack AJH, Varghese DG, Naimian A, Yazdian Anari P, Bodei L, Hallet J, Riechelmann RP, Halfdanarson T, Capdevilla J, Del Rivero J. Update in the management of gastroenteropancreatic neuroendocrine tumors. Cancer 2024; 130:3090-3105. [PMID: 39012928 DOI: 10.1002/cncr.35463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
Neuroendocrine neoplasms are a diverse group of neoplasms that can occur in various areas throughout the body. Well-differentiated neuroendocrine tumors (NETs) most often arise in the gastrointestinal tract, termed gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Although GEP-NETs are still uncommon, their incidence and prevalence have been steadily increasing over the past decades. The primary treatment for GEP-NETs is surgery, which offers the best chance for a cure. However, because GEP-NETs are often slow-growing and do not cause symptoms until they have spread widely, curative surgery is not always an option. Significant advances have been made in systemic and locoregional treatment options in recent years, including peptide-receptor radionuclide therapy with α and β emitters, somatostatin analogs, chemotherapy, and targeted molecular therapies.
Collapse
Affiliation(s)
- Andrew J H Sedlack
- Medical Scientist Training Program, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Diana Grace Varghese
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Amirkia Naimian
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Pouria Yazdian Anari
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Lisa Bodei
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Julie Hallet
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, East York, Ontario, Canada
| | | | | | | | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Ekmekcioglu O, Hughes S, Fendler WP, Verzijlbergen F, Kong G, Hofman MS. May the Nuclear Medicine be with you! Neuroendocrine tumours and the return of nuclear medicine. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06877-6. [PMID: 39158585 DOI: 10.1007/s00259-024-06877-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Affiliation(s)
- Ozgul Ekmekcioglu
- Department of Nuclear Medicine, University of Health Sciences, Sisli Hamidiye Etfal Education and Research Hospital, Istanbul, Turkey.
| | - Simon Hughes
- Department of Nuclear Medicine, Queen Elizabeth Hospital, University Hospital Birmingham NHS Trust, Birmingham, UK
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Fred Verzijlbergen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Grace Kong
- Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Centre Melbourne, and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael S Hofman
- Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Centre Melbourne, and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Pacak K, Taieb D, Lin FI, Jha A. Approach to the Patient: Concept and Application of Targeted Radiotherapy in the Paraganglioma Patient. J Clin Endocrinol Metab 2024; 109:2366-2388. [PMID: 38652045 PMCID: PMC11319006 DOI: 10.1210/clinem/dgae252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Paragangliomas can metastasize, posing potential challenges both in symptomatic management and disease control. Systemic targeted radiotherapies using 131I-MIBG and 177Lu-DOTATATE are a mainstay in the treatment of metastatic paragangliomas. This clinical scenario and discussion aim to enhance physicians' knowledge of the stepwise approach to treat these patients with paraganglioma-targeted radiotherapies. It comprehensively discusses current approaches to selecting paraganglioma patients for targeted radiotherapies and how to choose between the two radiotherapies based on specific patient and tumor characteristics, when either therapy is feasible, or one is superior to another. The safety, efficacy, toxicity profiles, and optimization of these radiotherapies are also discussed, along with other therapeutic options including radiotherapies, available for patients besides these two therapies. Perspectives in radiotherapies of paraganglioma patients are outlined since they hold promising approaches in the near future that can improve patient outcomes.
Collapse
Affiliation(s)
- Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-1109, USA
| | - David Taieb
- Department of Nuclear Medicine, Aix-Marseille University, La Timone University Hospital, 13385 Marseille, France
| | - Frank I Lin
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Abhishek Jha
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892-1109, USA
| |
Collapse
|
6
|
Song H, Sgouros G. Alpha and Beta Radiation for Theragnostics. PET Clin 2024; 19:307-323. [PMID: 38688775 DOI: 10.1016/j.cpet.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Targeted radionuclide therapy (TRT) has significantly evolved from its beginnings with iodine-131 to employing carrier molecules with beta emitting isotopes like lutetium-177. With the success of Lu-177-DOTATATE for neuroendocrine tumors and Lu-177-PSMA-617 for prostate cancer, several other beta emitting radioisotopes, such as Cu-67 and Tb-161, are being explored for TRT. The field has also expanded into targeted alpha therapy (TAT) with agents like radium-223 for bone metastases in prostate cancer, and several other alpha emitter radioisotopes with carrier molecules, such as Ac-225, and Pb-212 under clinical trials. Despite these advancements, the scope of TRT in treating diverse solid tumors and integration with other therapies like immunotherapy remains under investigation. The success of antibody-drug conjugates further complements treatments with TRT, though challenges in treatment optimization continue.
Collapse
Affiliation(s)
- Hong Song
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - George Sgouros
- Division of Radiological Physics, Department of Radiology and Radiological Sciences, The Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
7
|
Bhimaniya S, Shah H, Jacene HA. Alpha-emitter Peptide Receptor Radionuclide Therapy in Neuroendocrine Tumors. PET Clin 2024; 19:341-349. [PMID: 38658229 DOI: 10.1016/j.cpet.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Peptide receptor radionuclide therapy (PRRT) has become mainstream therapy of metastatic neuroendocrine tumors not controlled by somatostatin analog therapy. Currently, beta particle-emitting radiopharmaceuticals are the mainstay of PRRT. Alpha particle-emitting radiopharmaceuticals have a theoretic advantage over beta emitters in terms of improved therapeutic efficacy due to higher cancer cell death and lower nontarget tissue radiation-induced adverse events due to shorter path length of alpha particles. We discuss the available evidence for and the role of alpha particle PRRT.
Collapse
Affiliation(s)
- Sudhir Bhimaniya
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | - Hina Shah
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Heather A Jacene
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
8
|
Prado Wohlwend S, Bello Arques P. Radio theranostics in paragangliomas and pheochromocytomas. Rev Esp Med Nucl Imagen Mol 2024; 43:500017. [PMID: 38735639 DOI: 10.1016/j.remnie.2024.500017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024]
Abstract
This continuing education aims to present in a clear and easy-to-understand manner the biology of paragangliomas and pheochromocytomas (PPGLs), the functional imaging studies available for their diagnosis and therapeutic planning, the requirements necessary to administer radioligand therapy (RLT) and the characteristics of these treatments (inclusion criteria, administration protocols, adverse effects and future perspectives). In this pathology we have two RLT options: [131I]MIBG and [177Lu]Lu-DOTA-TATE. The indication for treatment is determined by the expression of its therapeutic target in functional imaging studies, allowing precision and personalized medicine. Although most of the results we have for both treatments have as origin small retrospective series, RLT is presented as a safe and well-tolerated therapeutic option in PPGLs with slow-moderate progression or with uncontrollable symptoms, obtaining high disease control rates.
Collapse
Affiliation(s)
- Stefan Prado Wohlwend
- Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Clinical Center of Excellence Pheo Para Alliance.
| | - Pilar Bello Arques
- Servicio de Medicina Nuclear, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Clinical Center of Excellence Pheo Para Alliance
| |
Collapse
|
9
|
Santo G, Di Santo G, Virgolini I. Peptide Receptor Radionuclide Therapy of Neuroendocrine Tumors: Agonist, Antagonist and Alternatives. Semin Nucl Med 2024; 54:557-569. [PMID: 38490913 DOI: 10.1053/j.semnuclmed.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Peptide receptor radionuclide therapy (PRRT) today is a well-established treatment strategy for patients with neuroendocrine tumors (NET). First performed already more than 30 years ago, PRRT was incorporated only in recent years into the major oncology guidelines, based on its proven efficacy and safety in clinical trials. Following the phase 3 NETTER-1 trial, which led to the final registration of the radiopharmaceutical Luthatera® for G1/G2 NET patients in 2017, the long-term results of the phase 3 NETTER-2 trial may pave the way for a new treatment option also for advanced G2/G3 patients as first-line therapy. The growing knowledge about the synergistic effect of combined therapies could also allow alternative (re)treatment options for NET patients, in order to create a tailored treatment strategy. The evolving thera(g)nostic concept could be applied for the identification of patients who might benefit from different image-guided treatment strategies. In this scenario, the use of dual tracer PET/CT in NET patients, using both [18F]F-FDG/[68Ga]Ga-DOTA-somatostatin analog (SSA) for diagnosis and follow-up, is under discussion and could also result in a powerful prognostic tool. In addition, alternative strategies based on different metabolic pathways, radioisotopes, or combinations of different medical approaches could be applied. A number of different promising "doors" could thus open in the near future for the treatment of NET patients - and the "key" will be thera(g)nostic!
Collapse
Affiliation(s)
- Giulia Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria; Department of Experimental and Clinical Medicine, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
| | - Gianpaolo Di Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
10
|
Timmers HJLM, Taïeb D, Pacak K, Lenders JWM. Imaging of Pheochromocytomas and Paragangliomas. Endocr Rev 2024; 45:414-434. [PMID: 38206185 PMCID: PMC11074798 DOI: 10.1210/endrev/bnae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 12/11/2023] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Pheochromocytomas/paragangliomas are unique in their highly variable molecular landscape driven by genetic alterations, either germline or somatic. These mutations translate into different clusters with distinct tumor locations, biochemical/metabolomic features, tumor cell characteristics (eg, receptors, transporters), and disease course. Such tumor heterogeneity calls for different imaging strategies in order to provide proper diagnosis and follow-up. This also warrants selection of the most appropriate and locally available imaging modalities tailored to an individual patient based on consideration of many relevant factors including age, (anticipated) tumor location(s), size, and multifocality, underlying genotype, biochemical phenotype, chance of metastases, as well as the patient's personal preference and treatment goals. Anatomical imaging using computed tomography and magnetic resonance imaging and functional imaging using positron emission tomography and single photon emission computed tomography are currently a cornerstone in the evaluation of patients with pheochromocytomas/paragangliomas. In modern nuclear medicine practice, a multitude of radionuclides with relevance to diagnostic work-up and treatment planning (theranostics) is available, including radiolabeled metaiodobenzylguanidine, fluorodeoxyglucose, fluorodihydroxyphenylalanine, and somatostatin analogues. This review amalgamates up-to-date imaging guidelines, expert opinions, and recent discoveries. Based on the rich toolbox for anatomical and functional imaging that is currently available, we aim to define a customized approach in patients with (suspected) pheochromocytomas/paragangliomas from a practical clinical perspective. We provide imaging algorithms for different starting points for initial diagnostic work-up and course of the disease, including adrenal incidentaloma, established biochemical diagnosis, postsurgical follow-up, tumor screening in pathogenic variant carriers, staging and restaging of metastatic disease, theranostics, and response monitoring.
Collapse
Affiliation(s)
- Henri J L M Timmers
- Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| | - David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, Aix-Marseille University, Marseille, France and European Center for Research in Medical Imaging, Aix-Marseille University, 13005 Marseille, France
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1583, USA
| | - Jacques W M Lenders
- Department of Internal Medicine, Radboud University Medical Centre, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
11
|
Rubino M, Di Stasio GD, Bodei L, Papi S, Rocca PA, Ferrari ME, Fodor CI, Bagnardi V, Frassoni S, Mei R, Fazio N, Ceci F, Grana CM. Peptide receptor radionuclide therapy with 177Lu- or 90Y-SSTR peptides in malignant pheochromocytomas (PCCs) and paragangliomas (PGLs): results from a single institutional retrospective analysis. Endocrine 2024; 84:704-710. [PMID: 38324106 DOI: 10.1007/s12020-024-03707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Malignant pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare tumors and available systemic therapies are limited. AIM To explore the role of peptide receptor radionuclide therapy (PRRT) with Yttrium-90 (90Y) and Lutetium-177 (177Lu) peptides in pheochromocytomas (PCCs) and paragangliomas (PGLs). METHODS We retrospectively analyzed more than 1500 patients with histologically proven neuroendocrine tumors treated with 177Lu- or 90Y-DOTA-TATE or -TOC between 1999 to 2017 at our Institute. Overall, 30 patients with confirmed malignant PCCs and PGLs matched inclusion/exclusion criteria and were considered eligible for this analysis. RESULTS Thirty (n = 30) patients were treated: 22 with PGLs and 8 with PCCs (12 M and 18 F, median age 47 [IQR: 35-60 years]). Eighteen patients (n = 18) had head and neck PGLs, 3 patients thoracic PGLs and 1 patient abdominal PGL. Sixteen patients (53%) had locally advanced and fourteen (47%) had metastatic disease. Twenty-seven (90%) patients had disease progression at baseline. Four (13%) patients were treated with 90Y, sixteen (53%) with 177Lu and ten (33%) with 90Y + 177Lu respectively. The median total cumulative activity from treatment with 90Y- alone was 9.45 GBq (range 5.11-14.02 GBq), from 177Lu- alone was 21.9 GBq (7.55-32.12 GBq) and from the combination treatment was 4.94 GBq from 90Y- and 6.83 GBq from 177Lu- (ranges 1.04-10.1 and 2.66-20.13 GBq, respectively). Seven out of 30 (23%) patients had partial response and 19 (63%) stable disease. Median follow up was 8.9 years (IQR: 2.9-12). The 5-y and 10-y PFS was 68% (95% CI: 48-82) and 53% (95% CI: 33-69), respectively, whereas 5-y and 10-y OS was 75% (95% CI: 54-87) and 59% (95% CI: 38-75), respectively. Grade 3 or 4 acute hematological toxicity occurred in three patients, two with leucopenia and one with thrombocytopenia, respectively. CONCLUSION PRRT with 177Lu- or 90Y-DOTA-TATE or -TOC is feasible and well tolerated in advanced PGLs and PCCs.
Collapse
Affiliation(s)
- Manila Rubino
- Onco-Endocrinology Unit, IEO European Institute of Oncology IRCCS, Milano, Italy
| | | | - Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stefano Papi
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - Paola Anna Rocca
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milano, Italy
| | | | - Cristiana Iuliana Fodor
- Division of Radiotherapy, Data Management, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milano, Italy
| | - Samuele Frassoni
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milano, Italy
| | - Riccardo Mei
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milano, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumours, IEO European Institute of Oncology, IRCCS, Milano, Italy
| | - Francesco Ceci
- Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milano, Italy
| | - Chiara Maria Grana
- Radiometabolic Therapy Unit, Division of Nuclear Medicine, IEO European Institute of Oncology IRCCS, Milano, Italy.
| |
Collapse
|
12
|
Lalvani S, Brown RM. Neurofibromatosis Type 1: Optimizing Management with a Multidisciplinary Approach. J Multidiscip Healthc 2024; 17:1803-1817. [PMID: 38680880 PMCID: PMC11055545 DOI: 10.2147/jmdh.s362791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
Neurofibromatosis Type I (NF1) is a complex genetic condition that affects multiple organ systems and presents a unique set of challenges for clinicians in its management. NF1 is a tumor predisposition syndrome that primarily affect the peripheral and central nervous systems via the impact of haploinsufficiency upon neural crest lineage cells including Schwann cells, melanocytes, fibroblasts, etc. NF1 can further lead to pathology of the skin, bones, visual system, and cardiovascular system, all of which can drastically reduce a patient's quality of life (QOL). This review provides a comprehensive examination of the many specialties required for the care of patients with Neurofibromatosis Type 1 (NF1). We delve into the pathogenesis and clinical presentation of NF1, highlighting its diverse manifestations and the challenges they pose in management. The review underscores the importance of a multidisciplinary approach to NF1, emphasizing how such an approach can significantly improve patient outcomes and overall QOL. Central to this approach is the role of the NF expert, who guides a multidisciplinary team (MDT) comprising healthcare professionals from many areas of expertise. The MDT collaboratively addresses the multifaceted needs of NF1 patients, ensuring comprehensive and personalized care. This review highlights the need for further investigation to optimize the workflow for NF1 patients in an MDT setting, and to improve implementation and efficacy.
Collapse
Affiliation(s)
- Shaan Lalvani
- Department of Neurology, The Mount Sinai Hospital, New York, NY, USA
| | - Rebecca M Brown
- Department of Neurology, The Mount Sinai Hospital, New York, NY, USA
| |
Collapse
|
13
|
Kiess AP, O'Donoghue J, Uribe C, Bodei L, Hobbs RF, Hesterman J, Kesner AL, Sgouros G. How Can Radiopharmaceutical Therapies Reach Their Full Potential? Improving Dose Reporting and Phase I Clinical Trial Design. J Clin Oncol 2024:JCO2301241. [PMID: 38484205 DOI: 10.1200/jco.23.01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/02/2023] [Accepted: 12/12/2023] [Indexed: 03/22/2024] Open
Affiliation(s)
- Ana P Kiess
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joseph O'Donoghue
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Carlos Uribe
- Functional Imaging, BC Cancer, Vancouver, BC, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Lisa Bodei
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Robert F Hobbs
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Adam L Kesner
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - George Sgouros
- Department of Radiology, Johns Hopkins Medical Institutes, Baltimore, MD
| |
Collapse
|
14
|
Gape PMD, Schultz MK, Stasiuk GJ, Terry SYA. Towards Effective Targeted Alpha Therapy for Neuroendocrine Tumours: A Review. Pharmaceuticals (Basel) 2024; 17:334. [PMID: 38543120 PMCID: PMC10974115 DOI: 10.3390/ph17030334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
This review article explores the evolving landscape of Molecular Radiotherapy (MRT), emphasizing Peptide Receptor Radionuclide Therapy (PRRT) for neuroendocrine tumours (NETs). The primary focus is on the transition from β-emitting radiopharmaceuticals to α-emitting agents in PRRT, offering a critical analysis of the radiobiological basis, clinical applications, and ongoing developments in Targeted Alpha Therapy (TAT). Through an extensive literature review, the article delves into the mechanisms and effectiveness of PRRT in targeting somatostatin subtype 2 receptors, highlighting both its successes and limitations. The discussion extends to the emerging paradigm of TAT, underlining its higher potency and specificity with α-particle emissions, which promise enhanced therapeutic efficacy and reduced toxicity. The review critically evaluates preclinical and clinical data, emphasizing the need for standardised dosimetry and a deeper understanding of the dose-response relationship in TAT. The review concludes by underscoring the significant potential of TAT in treating SSTR2-overexpressing cancers, especially in patients refractory to β-PRRT, while also acknowledging the current challenges and the necessity for further research to optimize treatment protocols.
Collapse
Affiliation(s)
- Paul M. D. Gape
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| | - Michael K. Schultz
- Departments of Radiology, Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA 52242, USA;
- Perspective Therapeutics, Coralville, IA 52241, USA
| | - Graeme J. Stasiuk
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| | - Samantha Y. A. Terry
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London SE1 7EP, UK; (G.J.S.); (S.Y.A.T.)
| |
Collapse
|
15
|
Lee D, Li M, Liu D, Baumhover NJ, Sagastume EA, Marks BM, Rastogi P, Pigge FC, Menda Y, Johnson FL, Schultz MK. Structural modifications toward improved lead-203/lead-212 peptide-based image-guided alpha-particle radiopharmaceutical therapies for neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2024; 51:1147-1162. [PMID: 37955792 PMCID: PMC10881741 DOI: 10.1007/s00259-023-06494-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
PURPOSE The lead-203 (203Pb)/lead-212 (212Pb) elementally identical radionuclide pair has gained significant interest in the field of image-guided targeted alpha-particle therapy for cancer. Emerging evidence suggests that 212Pb-labeled peptide-based radiopharmaceuticals targeting somatostatin receptor subtype 2 (SSTR2) may provide improved effectiveness compared to beta-particle-based therapies for neuroendocrine tumors (NETs). This study aims to improve the performance of SSTR2-targeted radionuclide imaging and therapy through structural modifications to Tyr3-octreotide (TOC)-based radiopharmaceuticals. METHODS New SSTR2-targeted peptides were designed and synthesized with the goal of optimizing the incorporation of Pb isotopes through the use of a modified cyclization technique; the introduction of a Pb-specific chelator (PSC); and the insertion of polyethylene glycol (PEG) linkers. The binding affinity of the peptides and the cellular uptake of 203Pb-labeled peptides were evaluated using pancreatic AR42J (SSTR2+) tumor cells and the biodistribution and imaging of the 203Pb-labeled peptides were assessed in an AR42J tumor xenograft mouse model. A lead peptide was identified (i.e., PSC-PEG2-TOC), which was then further evaluated for efficacy in 212Pb therapy studies. RESULTS The lead radiopeptide drug conjugate (RPDC) - [203Pb]Pb-PSC-PEG2-TOC - significantly improved the tumor-targeting properties, including receptor binding and tumor accumulation and retention as compared to [203Pb]Pb-DOTA0-Tyr3-octreotide (DOTATOC). Additionally, the modified RPDC exhibited faster renal clearance than the DOTATOC counterpart. These advantageous characteristics of [212Pb]Pb-PSC-PEG2-TOC resulted in a dose-dependent therapeutic effect with minimal signs of toxicity in the AR42J xenograft model. Fractionated administrations of 3.7 MBq [212Pb]Pb-PSC-PEG2-TOC over three doses further improved anti-tumor effectiveness, resulting in 80% survival (70% complete response) over 120 days in the mouse model. CONCLUSION Structural modifications to chelator and linker compositions improved tumor targeting and pharmacokinetics (PK) of 203/212Pb peptide-based radiopharmaceuticals for NET theranostics. These findings suggest that PSC-PEG2-TOC is a promising candidate for Pb-based targeted radionuclide therapy for NETs and other types of cancers that express SSTR2.
Collapse
Affiliation(s)
- Dongyoul Lee
- Department of Physics and Chemistry, Korea Military Academy, Seoul, Republic of Korea
| | - Mengshi Li
- Perspective Therapeutics, Inc., Coralville, IA, USA
| | - Dijie Liu
- Perspective Therapeutics, Inc., Coralville, IA, USA
| | | | | | | | - Prerna Rastogi
- Department of Pathology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - F Christopher Pigge
- Department of Chemistry, The University of Iowa, ML B180 FRRBP, 500 Newton Road, Iowa City, IA, 52240, USA
| | - Yusuf Menda
- Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | | | - Michael K Schultz
- Perspective Therapeutics, Inc., Coralville, IA, USA.
- Department of Chemistry, The University of Iowa, ML B180 FRRBP, 500 Newton Road, Iowa City, IA, 52240, USA.
- Department of Radiology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
- Department of Radiation Oncology, The University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
16
|
Miederer M, Benešová-Schäfer M, Mamat C, Kästner D, Pretze M, Michler E, Brogsitter C, Kotzerke J, Kopka K, Scheinberg DA, McDevitt MR. Alpha-Emitting Radionuclides: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2024; 17:76. [PMID: 38256909 PMCID: PMC10821197 DOI: 10.3390/ph17010076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
The use of radionuclides for targeted endoradiotherapy is a rapidly growing field in oncology. In particular, the focus on the biological effects of different radiation qualities is an important factor in understanding and implementing new therapies. Together with the combined approach of imaging and therapy, therapeutic nuclear medicine has recently made great progress. A particular area of research is the use of alpha-emitting radionuclides, which have unique physical properties associated with outstanding advantages, e.g., for single tumor cell targeting. Here, recent results and open questions regarding the production of alpha-emitting isotopes as well as their chemical combination with carrier molecules and clinical experience from compassionate use reports and clinical trials are discussed.
Collapse
Affiliation(s)
- Matthias Miederer
- Department of Translational Imaging in Oncology, National Center for Tumor Diseases (NCT/UCC), 01307 Dresden, Germany
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Martina Benešová-Schäfer
- Research Group Molecular Biology of Systemic Radiotherapy, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Constantin Mamat
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - David Kästner
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Marc Pretze
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Enrico Michler
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Claudia Brogsitter
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Jörg Kotzerke
- Medizinische Fakultät and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Nuclear Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.K.); (C.B.)
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstr, 400, 01328 Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - David A. Scheinberg
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY 10065, USA;
| | - Michael R. McDevitt
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
17
|
di Santo G, Santo G, Sviridenko A, Virgolini I. Peptide receptor radionuclide therapy combinations for neuroendocrine tumours in ongoing clinical trials: status 2023. Theranostics 2024; 14:940-953. [PMID: 38250038 PMCID: PMC10797289 DOI: 10.7150/thno.91268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
A growing body of literature reports on the combined use of peptide receptor radionuclide therapy (PRRT) with other anti-tumuor therapies in order to anticipate synergistic effects with perhaps increased safety issues. Combination treatments to enhance PRRT outcome are based on improved tumour perfusion, upregulation of somatostatin receptors (SSTR), radiosensitization with DNA damaging agents or targeted therapies. Several Phase 1 or 2 trials are currently recruiting patients in combined regimens. The combination of PRRT with cytotoxic chemotherapy, capecitabine and temozolomide (CAPTEM), seems to become clinically useful especially in pancreatic neuroendocrine tumours (pNETs) with acceptable safety profile. Neoadjuvant PRRT prior to surgery, PRRT combinations of intravenous and intraarterial routes of application, combinations of PRRT with differently radiolabelled (alpha, beta, Auger) SSTR-targeting agonists and antagonists, inhibitors of immune checkpoints (ICIs), poly (ADP-ribose) polymerase-1 (PARP1i), tyrosine kinase (TKI), DNA-dependent protein kinase, ribonucleotide reductase or DNA methyltransferase (DMNT) are tested in currently ongoing clinical trials. The combination with [131I]I-MIBG in rare NETs (such as paraganglioma, pheochromocytoma) and new non-SSTR-targeting radioligands are used in the personalization process of treatment. The present review will provide an overview of the current status of ongoing PRRT combination treatments.
Collapse
Affiliation(s)
- Gianpaolo di Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Giulia Santo
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
- Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, Catanzaro, Italy
| | - Anna Sviridenko
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Yadav MP, Raju S, Ballal S, Bal C. Complete Response to 177 Lu-DOTATATE PRRT in a 9-Year-Old Child With Metastatic Carotid Body Paraganglioma. Clin Nucl Med 2024; 49:e33-e34. [PMID: 37976428 DOI: 10.1097/rlu.0000000000004929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
ABSTRACT We present a case involving a 9-year-old boy diagnosed with metastatic carotid body paraganglioma. The metastases were detected in cervical lymph nodes and lungs using 68 Ga-DOTANOC PET/CT imaging. The patient received peptide receptor radionuclide therapy with 177 Lu-DOTATATE. Following 3 treatment cycles, a significant improvement was observed in the metastatic lesions. After 4 cycles, the patient achieved a complete response, with a cumulative administered activity of 16.65 GBq during the therapy. This case underscores the effectiveness of using 177 Lu-DOTATATE in managing metastatic carotid body paraganglioma, offering promising results in terms of tumor regression and overall therapeutic response.
Collapse
Affiliation(s)
- Madhav Prasad Yadav
- From the Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|
19
|
Jalloul W, Ghizdovat V, Stolniceanu CR, Ionescu T, Grierosu IC, Pavaleanu I, Moscalu M, Stefanescu C. Targeted Alpha Therapy: All We Need to Know about 225Ac's Physical Characteristics and Production as a Potential Theranostic Radionuclide. Pharmaceuticals (Basel) 2023; 16:1679. [PMID: 38139806 PMCID: PMC10747780 DOI: 10.3390/ph16121679] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
The high energy of α emitters, and the strong linear energy transfer that goes along with it, lead to very efficient cell killing through DNA damage. Moreover, the degree of oxygenation and the cell cycle state have no impact on these effects. Therefore, α radioisotopes can offer a treatment choice to individuals who are not responding to β- or gamma-radiation therapy or chemotherapy drugs. Only a few α-particle emitters are suitable for targeted alpha therapy (TAT) and clinical applications. The majority of available clinical research involves 225Ac and its daughter nuclide 213Bi. Additionally, the 225Ac disintegration cascade generates γ decays that can be used in single-photon emission computed tomography (SPECT) imaging, expanding the potential theranostic applications in nuclear medicine. Despite the growing interest in applying 225Ac, the restricted global accessibility of this radioisotope makes it difficult to conduct extensive clinical trials for many radiopharmaceutical candidates. To boost the availability of 225Ac, along with its clinical and potential theranostic applications, this review attempts to highlight the fundamental physical properties of this α-particle-emitting isotope, as well as its existing and possible production methods.
Collapse
Affiliation(s)
- Wael Jalloul
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| | - Teodor Ionescu
- Department of Morpho-Functional Sciences (Pathophysiology), “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Irena Cristina Grierosu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ioana Pavaleanu
- Department of Mother and Child, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Cipriana Stefanescu
- Department of Biophysics and Medical Physics-Nuclear Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- North East Regional Innovative Cluster for Structural and Molecular Imaging (Imago-Mol), 700115 Iasi, Romania
| |
Collapse
|
20
|
Tang CYL, Chua WM, Huang HL, Lam WWC, Loh LM, Tai D, Ong SYK, Yan SX, Loke KSH, Ng DCE, Tham WY. Safety and efficacy of peptide receptor radionuclide therapy in patients with advanced pheochromocytoma and paraganglioma: A single-institution experience and review of the literature. J Neuroendocrinol 2023; 35:e13349. [PMID: 37937484 DOI: 10.1111/jne.13349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Despite advances in diagnosis and management, patients with advanced pheochromocytomas and paragangliomas (PPGL) face limited treatment options. This study aims to evaluate the safety and efficacy of peptide receptor radionuclide therapy (PRRT) in patients with advanced PPGL, based on a single-institution experience and provide a comprehensive review of the literature. METHODS A retrospective analysis was conducted on patients with advanced pheochromocytoma and paraganglioma who received PRRT at a single institution from April 2012 to March 2022. Clinical characteristics, treatment response, adverse events, and survival outcomes were assessed. A systematic literature review was also performed. RESULTS A total of 15 patients with advanced PPGL were included, the majority of whom had both metastatic and functional disease. Most patients received four infusions of 177Lu-DOTATATE (73%). The median therapeutic 177Lu-DOTATATE radioactivity for each infusion was 7.4 GBq. Only one patient was treated with one infusion of 90Y-DOTATATE (4.2 GBq) in addition to three infusions of Lu-177 DOTATATE. Overall, PRRT suggests a promising efficacy with disease control rate of 63.6% by RECIST v1.1. The median overall survival (OS) was not reached and the median progression free survival (PFS) was 25.9 months. In terms of safety, PRRT was well tolerated. Review of the literature revealed consistent findings, supporting the efficacy and safety of PRRT in PPGL. CONCLUSION This study suggests that PRRT is a safe and effective therapeutic option for patients with PPGL. Our findings align with the existing literature, providing additional evidence to support the use of PRRT in this challenging patient population.
Collapse
Affiliation(s)
- Charlene Yu Lin Tang
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Wei Ming Chua
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Department of Neuroradiology, Singapore General Hospital, Singapore, Singapore
| | - Hian Liang Huang
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Winnie Wing-Chuen Lam
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Lih Ming Loh
- Department of Endocrinology, Singapore General Hospital, Singapore, Singapore
| | - David Tai
- Duke-NUS Medical School, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Simon Yew Kuang Ong
- Duke-NUS Medical School, Singapore, Singapore
- Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Sean Xuexian Yan
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Kelvin S H Loke
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - David Chee-Eng Ng
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Wei Ying Tham
- Department of Nuclear Medicine and Molecular Imaging, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
21
|
Sudo H, Tsuji AB, Sugyo A, Harada Y, Nagayama S, Katagiri T, Nakamura Y, Higashi T. Head-to-head comparison of three chelates reveals DOTAGA promising for 225 Ac labeling of anti-FZD10 antibody OTSA101. Cancer Sci 2023; 114:4677-4690. [PMID: 37781962 PMCID: PMC10728013 DOI: 10.1111/cas.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
To select the most suitable chelate for 225 Ac radiolabeling of the anti-FZD10 antibody OTSA101, we directly compared three chelates: S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA), 2,2',2″-(10-(1-carboxy-4-((4-isothiocyanatobenzyl)amino)-4-oxobutyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (p-SCN-Bn-DOTAGA), and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-N-hydroxysuccinimide ester (DO3A-NHS-ester). We evaluated the binding affinity of the chelate-conjugated OTSA101 antibodies, as well as the labeling efficiency and stability in murine serum of 225 Ac-labeled OTSA101 as in vitro properties. The biodistribution, intratumoral distribution, absorbed doses, and therapeutic effects of the chelate-conjugated OTSA101 antibodies were assessed in the synovial sarcoma mouse model SYO-1. Of the three conjugates, DOTAGA conjugation had the smallest impact on the binding affinity (p < 0.01). The labeling efficiencies of DOTAGA-OTSA101 and DO3A-OTSA101 were 1.8-fold higher than that of DOTA-OTSA101 (p < 0.01). The stabilities were similar between 225 Ac-labeled DOTA-OTSA101, DOTAGA-OTSA101, and DO3A-OTSA101in serum at 37 and 4°C. The dosimetric analysis based on the biodistribution revealed significantly higher tumor-absorbed doses by 225 Ac-labeled DOTA-OTSA101 and DOTAGA-OTSA101 compared with 225 Ac-DO3A-OTSA101 (p < 0.05). 225 Ac-DOTAGA-OTSA101 exhibited the highest tumor-to-bone marrow ratio, with bone marrow being the dose-limiting tissue. The therapeutic and adverse effects were not significantly different between the three conjugates. Our findings indicate that among the three evaluated chelates, DOTAGA appears to be the most promising chelate to produce 225 Ac-labeled OTSA101 with high binding affinity and high radiochemical yields while providing high absorbed doses to tumors and limited absorbed doses to bone marrow.
Collapse
Affiliation(s)
- Hitomi Sudo
- Department of Molecular Imaging and TheranosticsNational Institutes for Quantum Science and Technology (QST)ChibaJapan
| | - Atsushi B. Tsuji
- Department of Molecular Imaging and TheranosticsNational Institutes for Quantum Science and Technology (QST)ChibaJapan
| | - Aya Sugyo
- Department of Molecular Imaging and TheranosticsNational Institutes for Quantum Science and Technology (QST)ChibaJapan
| | | | | | - Toyomasa Katagiri
- Division of Genome MedicineInstitute of Advanced Medical Sciences, Tokushima UniversityTokushimaJapan
- National Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Yusuke Nakamura
- National Institutes of Biomedical Innovation, Health and NutritionIbarakiJapan
| | - Tatsuya Higashi
- Department of Molecular Imaging and TheranosticsNational Institutes for Quantum Science and Technology (QST)ChibaJapan
| |
Collapse
|
22
|
Nelson BJB, Wilson J, Andersson JD, Wuest F. Theranostic Imaging Surrogates for Targeted Alpha Therapy: Progress in Production, Purification, and Applications. Pharmaceuticals (Basel) 2023; 16:1622. [PMID: 38004486 PMCID: PMC10674391 DOI: 10.3390/ph16111622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
This article highlights recent developments of SPECT and PET diagnostic imaging surrogates for targeted alpha particle therapy (TAT) radiopharmaceuticals. It outlines the rationale for using imaging surrogates to improve diagnostic-scan accuracy and facilitate research, and the properties an imaging-surrogate candidate should possess. It evaluates the strengths and limitations of each potential imaging surrogate. Thirteen surrogates for TAT are explored: 133La, 132La, 134Ce/134La, and 226Ac for 225Ac TAT; 203Pb for 212Pb TAT; 131Ba for 223Ra and 224Ra TAT; 123I, 124I, 131I and 209At for 211At TAT; 134Ce/134La for 227Th TAT; and 155Tb and 152Tb for 149Tb TAT.
Collapse
Affiliation(s)
- Bryce J. B. Nelson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
| | - John Wilson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
| | - Jan D. Andersson
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
- Edmonton Radiopharmaceutical Center, Alberta Health Services, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada
| | - Frank Wuest
- Department of Oncology, University of Alberta, 11560 University Ave., Edmonton, AB T6G 1Z2, Canada; (B.J.B.N.); (J.W.); (J.D.A.)
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
23
|
DaSilva J, Decristoforo C, Mach RH, Bormans G, Carlucci G, Al-Qahtani M, Duatti A, Gee AD, Szymanski W, Rubow S, Hendrikx J, Yang X, Jia H, Zhang J, Caravan P, Yang H, Zeevaart JR, Rodriquez MA, Oliveira RS, Zubillaga M, Sakr T, Spreckelmeyer S. Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharm Chem 2023; 8:35. [PMID: 37889361 PMCID: PMC10611660 DOI: 10.1186/s41181-023-00218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY This selection of highlights provides commentary on 21 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field in many aspects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xing Yang
- Peking University First Hospital, Beijing, China
| | | | | | - Peter Caravan
- Massuchusetts General Hospital, Harvard University, Boston, USA
| | | | | | | | - Ralph Santos Oliveira
- Brazilian Association of Radiopharmacy Brazil, Brazilian Nuclear Energy Commission - Nuclear Engineering Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Tamer Sakr
- Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Sarah Spreckelmeyer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
24
|
Morgan KA, Rudd SE, Noor A, Donnelly PS. Theranostic Nuclear Medicine with Gallium-68, Lutetium-177, Copper-64/67, Actinium-225, and Lead-212/203 Radionuclides. Chem Rev 2023; 123:12004-12035. [PMID: 37796539 DOI: 10.1021/acs.chemrev.3c00456] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Molecular changes in malignant tissue can lead to an increase in the expression levels of various proteins or receptors that can be used to target the disease. In oncology, diagnostic imaging and radiotherapy of tumors is possible by attaching an appropriate radionuclide to molecules that selectively bind to these target proteins. The term "theranostics" describes the use of a diagnostic tool to predict the efficacy of a therapeutic option. Molecules radiolabeled with γ-emitting or β+-emitting radionuclides can be used for diagnostic imaging using single photon emission computed tomography or positron emission tomography. Radionuclide therapy of disease sites is possible with either α-, β-, or Auger-emitting radionuclides that induce irreversible damage to DNA. This Focus Review centers on the chemistry of theranostic approaches using metal radionuclides for imaging and therapy. The use of tracers that contain β+-emitting gallium-68 and β-emitting lutetium-177 will be discussed in the context of agents in clinical use for the diagnostic imaging and therapy of neuroendocrine tumors and prostate cancer. A particular emphasis is then placed on the chemistry involved in the development of theranostic approaches that use copper-64 for imaging and copper-67 for therapy with functionalized sarcophagine cage amine ligands. Targeted therapy with radionuclides that emit α particles has potential to be of particular use in late-stage disease where there are limited options, and the role of actinium-225 and lead-212 in this area is also discussed. Finally, we highlight the challenges that impede further adoption of radiotheranostic concepts while highlighting exciting opportunities and prospects.
Collapse
Affiliation(s)
- Katherine A Morgan
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Stacey E Rudd
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Asif Noor
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| | - Paul S Donnelly
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Melbourne 3010, Australia
| |
Collapse
|
25
|
Josefsson A, Cortez AG, Rajkumar H, Latoche JD, Jaswal AP, Day KE, Zarisfi M, Rigatti LH, Huang Z, Nedrow JR. Evaluation of the pharmacokinetics, dosimetry, and therapeutic efficacy for the α-particle-emitting transarterial radioembolization (αTARE) agent [ 225Ac]Ac-DOTA-TDA-Lipiodol ® against hepatic tumors. EJNMMI Radiopharm Chem 2023; 8:19. [PMID: 37578558 PMCID: PMC10425307 DOI: 10.1186/s41181-023-00205-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023] Open
Abstract
BACKGROUND The liver is a common site for metastatic disease for a variety of cancers, including colorectal cancer. Both primary and secondary liver tumors are supplied through the hepatic artery while the healthy liver is supplied by the portal vein. Transarterial radioembolization (TARE) using yttrium-90 glass or resin microspheres have shown promising results with reduced side-effects but have similar survival benefits as chemoembolization in patients with hepatocellular carcinoma (HCC). This highlights the need for new novel agents against HCC. Targeted alpha therapy (TAT) is highly potent treatment due to the short range (sparing adjacent normal tissue), and densely ionizing track (high linear energy transfer) of the emitted α-particles. The incorporation of α-particle-emitting radioisotopes into treatment of HCC has been extremely limited, with our recent publication pioneering the field of α-particle-emitting TARE (αTARE). This study focuses on an in-depth evaluation of the αTARE-agent [225Ac]Ac-DOTA-TDA-Lipiodol® as an effective therapeutic agent against HCC regarding pharmacokinetics, dosimetry, stability, and therapeutic efficacy. RESULTS [225Ac]Ac-DOTA-TDA was shown to be a highly stable with bench-top stability at ≥ 95% radiochemical purity (RCP) over a 3-day period and serum stability was ≥ 90% RCP over 5-days. The pharmacokinetic data showed retention in the tumor of [225Ac]Ac-DOTA-TDA-Lipiodol® and clearance through the normal organs. In addition, the tumor and liver acted as suppliers of the free daughters, which accumulated in the kidneys supplied via the blood. The dose limiting organ was the liver, and the estimated maximum tolerable activity based on the rodents whole-body weight: 728-3641 Bq/g (male rat), 396-1982 Bq/g (male mouse), and 453-2263 Bq/g (female mouse), depending on an RBE-value (range 1-5). Furthermore, [225Ac]Ac-DOTA-TDA-Lipiodol® showed significant improvement in survival for both the male and female mice (median survival 47-days) compared with controls (26-days untreated, and 33-35-days Lipiodol® alone). CONCLUSIONS This study shows that [225Ac]Ac-DOTA-TDA-Lipiodol® is a stable compound allowing for centralized manufacturing and distribution world-wide. Furthermore, the result of this study support the continue development of evaluation of the αTARE-agent [225Ac]Ac-DOTA-TDA-Lipiodol® as a potential treatment option for treating hepatic tumors.
Collapse
Affiliation(s)
- Anders Josefsson
- Department of Radiology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Suite G. 17B, Pittsburgh, PA, USA
| | - Angel G Cortez
- Department of Radiology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Suite G. 17B, Pittsburgh, PA, USA
- Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Harikrishnan Rajkumar
- Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joseph D Latoche
- Department of Radiology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Suite G. 17B, Pittsburgh, PA, USA
- Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ambika P Jaswal
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kathryn E Day
- Department of Radiology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Suite G. 17B, Pittsburgh, PA, USA
- Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohammadreza Zarisfi
- Department of Radiology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Suite G. 17B, Pittsburgh, PA, USA
| | - Lora H Rigatti
- Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Laboratory Animal Resources, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ziyu Huang
- Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jessie R Nedrow
- Department of Radiology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Suite G. 17B, Pittsburgh, PA, USA.
- Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Su D, Yang H, Qiu C, Chen Y. Peptide receptor radionuclide therapy in advanced Pheochromocytomas and Paragangliomas: a systematic review and meta-analysis. Front Oncol 2023; 13:1141648. [PMID: 37483516 PMCID: PMC10358840 DOI: 10.3389/fonc.2023.1141648] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Objective Peptide receptor radionuclide therapy (PRRT) for advanced pheochromocytomas and paragangliomas (PPGLs) has received increasing attention. The purpose of this article is to evaluate the efficacy and safety of PRRT in patients with metastatic or inoperable PPGLs by meta-analysis. Methods A literature search was conducted in PubMed, Embase, Scopus, and Cochrane Library databases up to November 2022. All articles on PRRT for PPGLs were searched, and appropriate data were included for analysis. The measures evaluated included objective response rate (ORR), disease control rate (DCR), clinical response rate, biochemical response rate, progression-free survival (PFS), overall survival (OS), and adverse events. Statistical analysis was performed using Stata 16.0 and the R programming language, data were combined using a random-effects model, and the results were presented using forest plots. Results A total of 20 studies with 330 patients were included in the analysis. The results showed that ORR and DCR were 20.0% (95% CI: 12.0%-28.0%) and 90.0% (95% CI: 85.0%-95.0%), respectively. Clinical and biochemical responses were 74.9% (95% CI: 56.3%-90.2%) and 69.5% (95%CI: 40.2%-92.9%). Median PFS and median OS were 31.79 (95% CI:21.25-42.33) months and 74.30 (95% CI: 0.75-147.84) months, respectively. Any grade of hematotoxicity and nephrotoxicity occurred in 22.3% (95% CI:12.5%-33.5%) and 4.3% (95% CI:0.2%-11.4%) patients. Grade 3-4 hemotoxicity occurred in 4.3% (95% CI:0.2%-11.4%) and grade 3-4 nephrotoxicity in 4/212 patients. Additionally, Treatment was discontinued in 9.0% (95% CI: 0.5%-23.3%) patients and one patient died as a result of a toxicity. Conclusion Patients with metastatic or inoperable PPGLs can be effectively treated with PRRT, and it has a favorable safety profile. Systematic review registration https://www.crd.york.ac.uk/PROSPERO, identifier CRD42022359232.
Collapse
Affiliation(s)
- Dan Su
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Hongyu Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Chen Qiu
- Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
- Academician (expert) Workstation of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
27
|
Zhang X, Wakabayashi H, Hiromasa T, Kayano D, Kinuya S. Recent Advances in Radiopharmaceutical Theranostics of Pheochromocytoma and Paraganglioma. Semin Nucl Med 2023; 53:503-516. [PMID: 36641337 DOI: 10.1053/j.semnuclmed.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
As a rare kind of non-epithelial neuroendocrine neoplasms, paragangliomas (PGLs) exhibit various clinical characteristics with excessive catecholamine secretion and have been a research focus in recent years. Although several modalities are available nowadays, radiopharmaceuticals play an integral role in the management of PGLs. Theranostics utilises radiopharmaceuticals for diagnostic and therapeutic intentions by aiming at a specific target in tumour and has been considered a possible means in diagnosis, staging, monitoring and treatment planning. Numerous radiopharmaceuticals have been developed over the past decades. 123/131-Metaiodobenzylguanidine (123/131I-MIBG), the theranostics pair target on norepinephrine transporter system, has remained a fantastic protocol for patients with PGLs because of disease control with limited toxicity. The high-specific-activity 131I-MIBG was authorised by the Food and Drug Administration as a systemic treatment method for metastatic PGLs in 2018. Afterward, peptide receptor radionuclide therapy, which uses radiolabelled somatostatin (SST) analogues, has been exploited as a superior substitute. 68Ga-somatostatin analogue (SSA) PET showed significant performance in diagnosing PGLs than MIBG scintigraphy, especially in patients with head and neck PGLs or SDHx mutation. 90Y/177Lu-DOTA-SSA is highly successful and has preserved favourable safety with mounting evidence regarding objective response, disease stabilisation, symptomatic and hormonal management and quality of life preservation. Besides the ordinary beta emitters, alpha-emitters such as 211At-MABG and 225Ac-DOTATATE have been investigated intensively in recent years. However, many studies are still in the pre-clinical stage, and more research is necessary. This review summarises the developments and recent advances in radiopharmaceutical theranostics of PGLs.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan.
| | - Tomo Hiromasa
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Daiki Kayano
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| | - Seigo Kinuya
- Department of Nuclear Medicine, Kanazawa University Hospital, Kanazawa, Ishikawa, Japan
| |
Collapse
|
28
|
Bravo MG, Egorova BV, Vasiliev AN, Lapshina EV, Ermolaev SV, Durymanov MO. DTPA(DOTA)-Nimotuzumab Radiolabeling with Generator-produced Thorium for Radioimmunotherapy of EGFR-overexpressing Carcinomas. Curr Radiopharm 2023; 16:233-242. [PMID: 36809934 DOI: 10.2174/1874471016666230221102518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 02/24/2023]
Abstract
INTRODUCTION The feasibility of preparing the "in-house" generators and the Th- DTPA(DOTA)-Nimotuzumab radioimmunoconjugate was evaluated. 226Th is perspective for TAT, however, due to short half-life it is preferable to apply this radionuclide for readily available epithelial malignancies. Nimotuzumab being specific for EGFR expressing cells as a targeting moiety is considered to be suitable for thorium delivery. METHODS TEVA extraction chromatographic resin and anion exchange resin AG 1x8 were used as sorbents for 226Th generator. In order to determine features of labeling by Th4+ we applied 234Th as a longer-lived analog of short-lived 226Th and the immunoconjugates DTPA(DOTA)-Nimotuzumab were used for radiolabeling. RESULTS The generator on the base of TEVA resin has shown higher volume activity of the product compared to the AG 1x8. The 226Th volume concentration was up to 80%/mL. The radiolabeling of BFCA by thorium radioisotopes reached 95% at the MR(Th:p-SCN-Bn-DTPA) = 1:100 and 86% for MR(Th:p-SCN-Bn-DOTA) = 1:5000 at 90°C. The procedure of Nimotuzumab labeling with Th4+ for radiotherapy of EGFR-overexpressing carcinomas was established. The overall labeling yield in both radioimmunoconjugates - DTPA and DOTA functionalized - was in the range of 45-50%. The immunoconjugate Nimotuzumab-p-SCN-Bn-DTPA was obtained with a molar ratio 1:25 (Nimotuzumab: BFCA), within 1 hour of conjugation at 25°C and labelled via postconjugation approach. Whereas Nimotuzumab-p-SCN-Bn-DOTA was obtained at the same conditions, but radiolabeled by the method of pre-conjugation. CONCLUSION Thorium-234 incorporation into both radioimmunoconjugates reached 45-50%. It has been shown that Th-DTPA-Nimotuzumab radioimmunoconjugate specifically bound with EGFR overexpressing epidermoid carcinoma A431 cells.
Collapse
Affiliation(s)
- Magdiel G Bravo
- Department of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
- The Center of Isotopes (CENTIS), Ave. Monumental y Carretera La Rada, Km 3 1/2, CP 32700, San Jose de las Lajas, Mayabeque, Republic of Cuba
| | - Bayirta V Egorova
- Department of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
| | - Aleksandr N Vasiliev
- Department of Chemistry, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991, Russia
- Institute for Nuclear Research of Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, Moscow, 117312, Russia
| | - Elena V Lapshina
- Institute for Nuclear Research of Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, Moscow, 117312, Russia
| | - Stanislav V Ermolaev
- Institute for Nuclear Research of Russian Academy of Sciences, 60th October Anniversary Prospect, 7a, Moscow, 117312, Russia
| | - Mikhail O Durymanov
- Department of Biophysics Moscow Institute of Physics and Technology, 9 Institutsky per., Dolgoprudny, Moscow Region, 141700, Russia
| |
Collapse
|
29
|
Marcus C, Subramaniam RM. Paragangliomas and Pheochromocytomas: Positron Emission Tomography/Computed Tomography Diagnosis and Therapy. PET Clin 2023; 18:233-242. [PMID: 36585340 DOI: 10.1016/j.cpet.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Molecular imaging evaluation of pheochromocytomas and paragangliomas depends on multiple factors, such as localized versus metastatic disease, the genetic, and biochemical profile of tumors. Positron emission tomography/computed tomography (PET/CT) imaging of these tumors outperforms Meta-Iodo-Benzyl-Guanidine (MIBG) scintigraphy in most cases. A few PET radiotracers have been studied in evaluating these patients with somatostatin receptor PET imaging and have shown superior performance compared with other agents in most of these patients. 18F-fluorodeoxyglucose PET/CT imaging is useful in select patients, such as those with succinate dehydrogenase complex subunit B-associated disease. Treatment strategy depends on multiple factors and necessitates a multidisciplinary approach.
Collapse
Affiliation(s)
- Charles Marcus
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology and Radiological Sciences, Emory University School of Medicine, 1364 Clifton Road Northeast, 1st Floor #E163, Atlanta, GA 30322, USA.
| | - Rathan M Subramaniam
- Department of Medicine, Otago Medical School, University of Otago, 1st Floor, Dunedin Hospital, 201 Great King Street, Dunedin 9016, New Zealand; Duke University Medical Center, Department of Radiology, 2301 Erwin Road, Box 3808, Durham, NC 27710, USA
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW A vagal paraganglioma is a rare head and neck tumor arising from the paraganglionic tissue within the perineurium of the vagus nerve, anywhere along the course of the nerve. Due to its proximity to the internal carotid artery, the internal jugular vein and the lower cranial nerves, this disorder poses significant diagnostic and therapeutic challenges. The diagnostic workup and management keep on evolving. RECENT FINDINGS This article gives a concise update of the clinical spectrum and the current state-of-the-art diagnostic workup and management of vagal paraganglioma. SUMMARY Every patient with suspected vagal paraganglioma needs to be evaluated by a multidisciplinary team. The management strategy is selected depending on the growth rate of the tumor, the age and fitness of the patient, the number of affected cranial nerves, the metabolic activity of the paraganglioma, and the eventual multicentricity. An algorithm guiding the clinician through the different treatment options is presented.
Collapse
|
31
|
Wharton L, McNeil SW, Merkens H, Yuan Z, Van de Voorde M, Engudar G, Ingham A, Koniar H, Rodríguez-Rodríguez C, Radchenko V, Ooms M, Kunz P, Bénard F, Schaffer P, Yang H. Preclinical Evaluation of [155/161Tb]Tb-Crown-TATE—A Novel SPECT Imaging Theranostic Agent Targeting Neuroendocrine Tumours. Molecules 2023; 28:molecules28073155. [PMID: 37049918 PMCID: PMC10095901 DOI: 10.3390/molecules28073155] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Terbium radioisotopes (149Tb, 152Tb, 155Tb, 161Tb) offer a unique class of radionuclides which encompass all four medicinally relevant nuclear decay modalities (α, β+, γ, β−/e−), and show high potential for the development of element-matched theranostic radiopharmaceuticals. The goal of this study was to design, synthesise, and evaluate the suitability of crown-TATE as a new peptide-conjugate for radiolabelling of [155Tb]Tb3+ and [161Tb]Tb3+, and to assess the imaging and pharmacokinetic properties of each radiotracer in tumour-bearing mice. [155Tb]Tb-crown-TATE and [161Tb]Tb-crown-TATE were prepared efficiently under mild conditions, and exhibited excellent stability in human serum (>99.5% RCP over 7 days). Longitudinal SPECT/CT images were acquired for 155Tb- and 161Tb- labelled crown-TATE in male NRG mice bearing AR42J tumours. The radiotracers, [155Tb]Tb-crown-TATE and [161Tb]Tb-crown-TATE, showed high tumour targeting (32.6 and 30.0 %ID/g, respectively) and minimal retention in non-target organs at 2.5 h post-administration. Biodistribution studies confirmed the SPECT/CT results, showing high tumour uptake (38.7 ± 8.0 %ID/g and 38.5 ± 3.5 %ID/g, respectively) and favourable tumour-to-background ratios. Blocking studies further confirmed SSTR2-specific tumour accumulation. Overall, these findings suggest that crown-TATE has great potential for element-matched molecular imaging and radionuclide therapy using 155Tb and 161Tb.
Collapse
Affiliation(s)
- Luke Wharton
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Scott W. McNeil
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Zheliang Yuan
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Michiel Van de Voorde
- Nuclear Medicine Applications, Belgium Nuclear Research Center (SCK CEN), Boeretang, 200, 2400 Mol, Belgium
| | - Gokce Engudar
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Aidan Ingham
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
| | - Helena Koniar
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Physics and Astronomy, University of British Columbia, 6224 Agronomy Road, Vancouver, BC V6T 1Z1, Canada
| | - Cristina Rodríguez-Rodríguez
- Department of Physics and Astronomy, University of British Columbia, 6224 Agronomy Road, Vancouver, BC V6T 1Z1, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2405 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Maarten Ooms
- Nuclear Medicine Applications, Belgium Nuclear Research Center (SCK CEN), Boeretang, 200, 2400 Mol, Belgium
| | - Peter Kunz
- Accelerator Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Paul Schaffer
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Hua Yang
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
32
|
Rubira L, Deshayes E, Santoro L, Kotzki PO, Fersing C. 225Ac-Labeled Somatostatin Analogs in the Management of Neuroendocrine Tumors: From Radiochemistry to Clinic. Pharmaceutics 2023; 15:1051. [PMID: 37111537 PMCID: PMC10146019 DOI: 10.3390/pharmaceutics15041051] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The widespread use of peptide receptor radionuclide therapy (PRRT) represents a major therapeutic breakthrough in nuclear medicine, particularly since the introduction of 177Lu-radiolabeled somatostatin analogs. These radiopharmaceuticals have especially improved progression-free survival and quality of life in patients with inoperable metastatic gastroenteropancreatic neuroendocrine tumors expressing somatostatin receptors. In the case of aggressive or resistant disease, the use of somatostatin derivatives radiolabeled with an alpha-emitter could provide a promising alternative. Among the currently available alpha-emitting radioelements, actinium-225 has emerged as the most suitable candidate, especially regarding its physical and radiochemical properties. Nevertheless, preclinical and clinical studies on these radiopharmaceuticals are still few and heterogeneous, despite the growing momentum for their future use on a larger scale. In this context, this report provides a comprehensive and extensive overview of the development of 225Ac-labeled somatostatin analogs; particular emphasis is placed on the challenges associated with the production of 225Ac, its physical and radiochemical properties, as well as the place of 225Ac-DOTATOC and 225Ac-DOTATATE in the management of patients with advanced metastatic neuroendocrine tumors.
Collapse
Affiliation(s)
- Léa Rubira
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
| | - Emmanuel Deshayes
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Lore Santoro
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Pierre Olivier Kotzki
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, University Montpellier, Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France
| | - Cyril Fersing
- Nuclear Medicine Department, Institut Régional du Cancer de Montpellier (ICM), University Montpellier, 34090 Montpellier, France
- IBMM, University Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| |
Collapse
|
33
|
Te Beek ET, Burggraaf J, Teunissen JJM, Vriens D. Clinical Pharmacology of Radiotheranostics in Oncology. Clin Pharmacol Ther 2023; 113:260-274. [PMID: 35373336 DOI: 10.1002/cpt.2598] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023]
Abstract
The combined use of diagnostic and therapeutic radioligands with the same molecular target, also known as theranostics, enables accurate patient selection, targeted therapy, and prediction of treatment response. Radioiodine, bone-seeking radioligands and norepinephrine analogs have been used for many years for diagnostic imaging and radioligand therapy of thyroid carcinoma, bone metastases, pheochromocytoma, paraganglioma, and neuroblastoma, respectively. In recent years, radiolabeled somatostatin analogs and prostate-specific membrane antigen ligands have shown clinical efficacy in the treatment of neuroendocrine tumors and prostate cancer, respectively. Several candidate compounds are targeting novel theranostic targets such as fibroblast activation protein, C-X-C chemokine receptor 4, and gastrin-releasing peptide receptor. In addition, several strategies to improve efficacy of radioligand therapy are being evaluated, including dosimetry-based dose optimization, multireceptor targeting, upregulation of target receptors, radiosensitization, pharmacogenomics, and radiation genomics. Design and evaluation of novel radioligands and optimization of dose and dose schedules, within the complex context of individualized multimodal cancer treatment, requires a multidisciplinary approach that includes clinical pharmacology. Significant increases in the use of these radiopharmaceuticals in routine oncological practice can be expected, which will have major impact on patient care as well as (radio)pharmacy utilization.
Collapse
Affiliation(s)
- Erik T Te Beek
- Department of Nuclear Medicine, Reinier de Graaf Hospital, Delft, The Netherlands
| | | | - Jaap J M Teunissen
- Department of Nuclear Medicine, Reinier de Graaf Hospital, Delft, The Netherlands
| | - Dennis Vriens
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
34
|
Kim SB, Song IH, Kim SY, Ko HY, Kil HS, Chi DY, Giesel FL, Kopka K, Hoepping A, Chun JH, Park HS, Yun M, Kim SE. Preclinical Evaluation of a Companion Diagnostic Radiopharmaceutical, [ 18F]PSMA-1007, in a Subcutaneous Prostate Cancer Xenograft Mouse Model. Mol Pharm 2022; 20:1050-1060. [PMID: 36583623 PMCID: PMC9906735 DOI: 10.1021/acs.molpharmaceut.2c00788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Several radiolabeled prostate-specific membrane antigen (PSMA)-targeted agents have been developed for detecting prostate cancer, using positron emission tomography imaging and targeted radionuclide therapy. Among them, [18F]PSMA-1007 has several advantages, including a comparatively long half-life, delayed renal excretion, and compatible structure with α-/β-particle emitter-labeled therapeutics. This study aimed to characterize the preclinical pharmacokinetics and internal radiation dosimetry of [18F]PSMA-1007, as well as its repeatability and specificity for target binding using prostate tumor-bearing mice. In PSMA-positive tumor-bearing mice, the kidney showed the greatest accumulation of [18F]PSMA-1007. The distribution in the tumor attained its peak concentration of 2.8%ID/g at 112 min after intravenous injection. The absorbed doses in the tumor and salivary glands were 0.079 ± 0.010 Gy/MBq and 0.036 ± 0.006 Gy/MBq, respectively. The variance of the net influx (Ki) of [18F]PSMA-1007 to the tumor was minimal between scans performed in the same animals (within-subject coefficient of variation = 7.57%). [18F]PSMA-1007 uptake in the tumor was specifically decreased by 32% in Ki after treatment with a PSMA inhibitor 2-(phosphonomethyl)-pentanedioic acid (2-PMPA). In the present study, we investigated the in vivo preclinical characteristics of [18F]PSMA-1007. Our data from [18F]PSMA-1007 PET/computed tomography (CT) studies in a subcutaneous prostate cancer xenograft mouse model supports clinical therapeutic strategies that use paired therapeutic radiopharmaceuticals (such as [177Lu]Lu-PSMA-617), especially strategies with a quantitative radiation dose estimate for target lesions while minimizing radiation-induced toxicity to off-target tissues.
Collapse
Affiliation(s)
- Su Bin Kim
- Department
of Applied Bioengineering, Graduate School of Convergence Science
and Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Korea,Department
of Nuclear Medicine, Seoul National University
College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173
Beon-gil, Bundang-gu, Seongnam13620, Korea
| | - In Ho Song
- Department
of Nuclear Medicine, Seoul National University
College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173
Beon-gil, Bundang-gu, Seongnam13620, Korea
| | - Seon Yoo Kim
- Department
of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul03722, Korea
| | - Hae Young Ko
- Department
of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul03722, Korea
| | - Hee Seup Kil
- Research
Institute of Radiopharmaceuticals, FutureChem
Co. Ltd, Seoul04793, Korea
| | - Dae Yoon Chi
- Research
Institute of Radiopharmaceuticals, FutureChem
Co. Ltd, Seoul04793, Korea
| | - Frederik L. Giesel
- Department
of Nuclear Medicine, Heinreich-Heine-University,
University Hospital Duesseldorf, Duesseldorf40225, Germany
| | - Klaus Kopka
- Institute
of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) e.v., Bautzner Landstrasse 400, Dresden01328, Germany,Technische
Universität Dresden, Faculty of Chemistry and Food Chemistry,
School of Science, Dresden01069, Germany,National
Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Fetscherstraße 74, Dresden01307, Germany,German
Cancer Consortium (DKTK), Partner Site Dresden, Dresden01307, Germany
| | - Alexander Hoepping
- Department
of Medicinal Chemistry, ABX Advanced Biochemical
Compounds GmbH, Radeberg1454, Germany
| | - Joong-Hyun Chun
- Department
of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul03722, Korea
| | - Hyun Soo Park
- Department
of Nuclear Medicine, Seoul National University
College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173
Beon-gil, Bundang-gu, Seongnam13620, Korea,Department
of Molecular Medicine and Biopharmaceutical Sciences, Graduate School
of Convergence Science and Technology, Seoul
National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Korea,. Tel: +82-31-787-2936. Fax: +82-31-787-4018
| | - Mijin Yun
- Department
of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul03722, Korea,. Tel: +82-2-2228-6068. Fax: +82-2-2227-8354
| | - Sang Eun Kim
- Department
of Nuclear Medicine, Seoul National University
College of Medicine, Seoul National University Bundang Hospital, 82 Gumi-ro, 173
Beon-gil, Bundang-gu, Seongnam13620, Korea,Department
of Molecular Medicine and Biopharmaceutical Sciences, Graduate School
of Convergence Science and Technology, Seoul
National University, 1 Gwanak-ro, Gwanak-gu, Seoul08826, Korea,Advanced
Institutes of Convergence Technology, 145 Gwanggyo-ro, Yeongtong-gu, Suwon16229, Korea,BIK Therapeutics Inc., 172 Dolma-ro, Bundang-gu, Seongnam13605, Korea,. Tel: +82-31-787-7671. Fax: +82-31-787-4018
| |
Collapse
|
35
|
Pacak K. New Biology of Pheochromocytoma and Paraganglioma. Endocr Pract 2022; 28:1253-1269. [PMID: 36150627 PMCID: PMC9982632 DOI: 10.1016/j.eprac.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022]
Abstract
Pheochromocytomas and paragangliomas continue to be defined by significant morbidity and mortality despite their several recent advances in diagnosis, localization, and management. These adverse outcomes are largely related to mass effect as well as catecholamine-induced hypertension, tachyarrhythmias and consequent target organ damage, acute coronary syndromes, and strokes (ischemic and hemorrhagic stroke). Thus, a proper understanding of the physiology and pathophysiology of these tumors and recent advances are essential to affording optimal care. These major developments largely include a redefinition of metastatic behavior, a novel clinical categorization of these tumors into 3 genetic clusters, and an enhanced understanding of catecholamine metabolism and consequent specific biochemical phenotypes. Current advances in imaging of these tumors are shifting the paradigm from poorly specific anatomical modalities to more precise characterization of these tumors using the advent and development of functional imaging modalities. Furthermore, recent advances have revealed new molecular events in these tumors that are linked to their genetic landscape and, therefore, provide new therapeutic platforms. A few of these prospective therapies translated into new clinical trials, especially for patients with metastatic or inoperable tumors. Finally, outcomes are ever-improving as patients are cared for at centers with cumulative experience and well-established multidisciplinary tumor boards. In parallel, these centers have supported national and international collaborative efforts and worldwide clinical trials. These concerted efforts have led to improved guidelines collaboratively developed by healthcare professionals with a growing expertise in these tumors and consequently improving detection, prevention, and identification of genetic susceptibility genes in these patients.
Collapse
Affiliation(s)
- Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
36
|
Kong G, Hicks RJ. PRRT for higher-grade neuroendocrine neoplasms: What is still acceptable? Curr Opin Pharmacol 2022; 67:102293. [PMID: 36195008 DOI: 10.1016/j.coph.2022.102293] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/25/2022] [Accepted: 09/01/2022] [Indexed: 01/25/2023]
Abstract
Peptide receptor radionuclide therapy (PRRT) is a widely accepted treatment for progressive grade 1 and 2 (G1-2) gastroenteropancreatic neuroendocrine tumors (NET). There is increasing evidence that PRRT is effective for selected patients with well-differentiated (WD) G3 NET, which are now separated from neuroendocrine carcinoma (NEC). These preliminary data have led to prospective PRRT trials currently in progress. This article provides an update of the current role of PRRT for patients with WD-G3 NET, highlighting the importance of patient selection based on molecular imaging phenotype, as well as outlining some potential future directions in this field. Upcoming prospective trials will help define the role, sequencing, and optimization of PRRT to improve outcomes of patients with WD-G3 NET.
Collapse
Affiliation(s)
- Grace Kong
- Department of Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Victoria, Australia; The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, Australia
| | - Rodney J Hicks
- The University of Melbourne Department of Medicine, St Vincent's Hospital, Melbourne, Australia.
| |
Collapse
|
37
|
Lau J, Lee H, Rousseau J, Bénard F, Lin KS. Application of Cleavable Linkers to Improve Therapeutic Index of Radioligand Therapies. Molecules 2022; 27:molecules27154959. [PMID: 35956909 PMCID: PMC9370263 DOI: 10.3390/molecules27154959] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/11/2023] Open
Abstract
Radioligand therapy (RLT) is an emergent drug class for cancer treatment. The dose administered to cancer patients is constrained by the radiation exposure to normal tissues to maintain an appropriate therapeutic index. When a radiopharmaceutical or its radiometabolite is retained in the kidneys, radiation dose deposition in the kidneys can become a dose-limiting factor. A good exemplar is [177Lu]Lu-DOTATATE, where patients receive a co-infusion of basic amino acids for nephroprotection. Besides peptides, there are other classes of targeting vectors like antibody fragments, antibody mimetics, peptidomimetics, and small molecules that clear through the renal pathway. In this review, we will review established and emerging strategies that can be used to mitigate radiation-induced nephrotoxicity, with a focus on the development and incorporation of cleavable linkers for radiopharmaceutical designs. Finally, we offer our perspectives on cleavable linkers for RLT, highlighting future areas of research that will help advance the technology.
Collapse
Affiliation(s)
- Joseph Lau
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Hwan Lee
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Julie Rousseau
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - François Bénard
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Kuo-Shyan Lin
- Department of Molecular Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
- Department of Radiology, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
- Correspondence: ; Tel.: +1-604-675-8208
| |
Collapse
|
38
|
Peng D, Liu H, Huang L, Cao J, Chen Y. 225Ac-DOTATATE therapy in a case of metastatic pheochromocytoma. Eur J Nucl Med Mol Imaging 2022; 49:3596-3597. [PMID: 35522323 DOI: 10.1007/s00259-022-05826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/26/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Dengsai Peng
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St., Jiangyang DistrictSichuan, Luzhou, 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China
| | - Hanxiang Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St., Jiangyang DistrictSichuan, Luzhou, 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China
| | - Ling Huang
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Sichuan, Luzhou, 646000, People's Republic of China
| | - Jianpeng Cao
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St., Jiangyang DistrictSichuan, Luzhou, 646000, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China.,Academician (Expert) Workstation of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping St., Jiangyang DistrictSichuan, Luzhou, 646000, People's Republic of China. .,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China. .,Academician (Expert) Workstation of Sichuan Province, Sichuan, Luzhou, 646000, People's Republic of China.
| |
Collapse
|