1
|
Nakamoto Y, Inui Y, Hotta M, Wakabayashi H, Hanaoka H. Recent advancements in new tracers from first-in-human studies. Ann Nucl Med 2024; 38:877-883. [PMID: 39325320 PMCID: PMC11489164 DOI: 10.1007/s12149-024-01979-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
Recent advancements in the development of positron emission tomography (PET) tracers have significantly enhanced our ability to image neuroinflammatory processes and neurotransmitter systems, which are vital for understanding and treating neurodegenerative and psychiatric disorders. Similarly, innovative tracers in oncology provide detailed images of the metabolic and molecular characteristics of tumors, which are crucial for tailoring targeted therapies and monitoring responses, including radiotherapy. Notable advancements include programmed death ligand 1 (PD-L1)-targeting agents for lung cancer, prostate-specific membrane antigen-based tracers for prostate cancer, chemokine receptor-targeting agents for hematological malignancies, human epidermal growth factor receptor 2 (HER2)-targeting tracers for various cancers, Claudin 18 based tracers for epithelial tumors, glutamine tracers for colorectal cancer, and ascorbic acid analogs for assessing cancer metabolism and therapy efficacy. Additionally, novel tracers have been developed for non-neurological and non-oncological applications, including adrenal imaging, amyloidosis, and human immunodeficiency virus (HIV) infection. This overview focuses on the newly developed tracers, particularly those used in neurology and oncology.
Collapse
Affiliation(s)
- Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Yoshitaka Inui
- Department of Radiology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-Cho, Toyoake, Aichi, 470-1192, Japan
| | - Masatoshi Hotta
- Department of Radiology and Nuclear Medicine, National Center for Global Health and Medicine, 1-21-1 Toyama Shinjuku-Ku, Tokyo, 162-8655, Japan
| | - Hiroshi Wakabayashi
- Department of Nuclear Medicine, Kanazawa University Hospital, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hirofumi Hanaoka
- Division of Fundamental Technology Development, Near InfraRed Photo-ImmunoTherapy Research Institute at Kansai Medical University, 2-5-1, Shin-Machi, Hirakata, 573-1010, Japan
| |
Collapse
|
2
|
Comi G, Dalla Costa G, Stankoff B, Hartung HP, Soelberg Sørensen P, Vermersch P, Leocani L. Assessing disease progression and treatment response in progressive multiple sclerosis. Nat Rev Neurol 2024; 20:573-586. [PMID: 39251843 DOI: 10.1038/s41582-024-01006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/11/2024]
Abstract
Progressive multiple sclerosis poses a considerable challenge in the evaluation of disease progression and treatment response owing to its multifaceted pathophysiology. Traditional clinical measures such as the Expanded Disability Status Scale are limited in capturing the full scope of disease and treatment effects. Advanced imaging techniques, including MRI and PET scans, have emerged as valuable tools for the assessment of neurodegenerative processes, including the respective role of adaptive and innate immunity, detailed insights into brain and spinal cord atrophy, lesion dynamics and grey matter damage. The potential of cerebrospinal fluid and blood biomarkers is increasingly recognized, with neurofilament light chain levels being a notable indicator of neuro-axonal damage. Moreover, patient-reported outcomes are crucial for reflecting the subjective experience of disease progression and treatment efficacy, covering aspects such as fatigue, cognitive function and overall quality of life. The future incorporation of digital technologies and wearable devices in research and clinical practice promises to enhance our understanding of functional impairments and disease progression. This Review offers a comprehensive examination of these diverse evaluation tools, highlighting their combined use in accurately assessing disease progression and treatment efficacy in progressive multiple sclerosis, thereby guiding more effective therapeutic strategies.
Collapse
Affiliation(s)
- Giancarlo Comi
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| | | | - Bruno Stankoff
- Sorbonne Université, Paris Brain Institute, Institut du Cerveau et de la Moelle Épinière, Centre National de la Recherche Scientifique, Inserm, Paris, France
| | - Hans-Peter Hartung
- Brain and Mind Center, University of Sydney, Sydney, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Per Soelberg Sørensen
- Department of Neurology, Danish Multiple Sclerosis Center, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Patrick Vermersch
- University of Lille, Inserm U1172, Lille Neuroscience & Cognition, Centre Hospitalier Universitaire de Lille, Fédération Hospitalo-Universitaire Precision Medicine in Psychiatry, Lille, France
| | - Letizia Leocani
- Vita-Salute San Raffaele University, Milan, Italy
- Multiple Sclerosis Center, Casa di Cura Igea, Milan, Italy
| |
Collapse
|
3
|
Franklin RJM, Bodini B, Goldman SA. Remyelination in the Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041371. [PMID: 38316552 PMCID: PMC10910446 DOI: 10.1101/cshperspect.a041371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs Cambridge Institute of Science, Cambridge CB21 6GH, United Kingdom
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, CNRS, INSERM, Paris 75013, France
- Saint-Antoine Hospital, APHP, Paris 75012, France
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA
- University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
4
|
Goldman SA, Franklin RJM, Osorio J. Stem and progenitor cell-based therapy of myelin disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:283-295. [PMID: 39341659 DOI: 10.1016/b978-0-323-90120-8.00015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Much of clinical neurology is concerned with diseases of-or involving-the brain's subcortical white matter. Common to these disorders is the loss of myelin, reflecting the elimination or dysfunction of oligodendrocytes and fibrous astrocytes. As such, the introduction of glial progenitor cells, which can give rise to new oligodendrocytes and astrocytes alike, may be a feasible strategy for treating a broad variety of conditions in which white matter loss is causally involved. This review first covers the sourcing and production of human glial progenitor cells, and the preclinical evidence for their efficacy in achieving myelin restoration in vivo. It then discusses both pediatric and adult disease targets for which transplanted glial progenitors may prove of therapeutic value, those challenges that remain in the clinical application of a glial cell replacement strategy, and the clinical endpoints by which the efficacy of this approach may be assessed.
Collapse
Affiliation(s)
- Steven A Goldman
- Sana Biotechnology, Cambridge, MA, United States; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, United States; University of Copenhagen Faculty of Medicine, Copenhagen, Denmark.
| | | | - Joana Osorio
- Sana Biotechnology, Cambridge, MA, United States; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
5
|
Brier MR, Taha F. Measuring Pathology in Patients with Multiple Sclerosis Using Positron Emission Tomography. Curr Neurol Neurosci Rep 2023; 23:479-488. [PMID: 37418219 DOI: 10.1007/s11910-023-01285-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE OF REVIEW Multiple sclerosis is characterized by a diverse and complex pathology. Clinical relapses, the hallmark of the disease, are accompanied by focal white matter lesions with intense inflammatory and demyelinating activity. Prevention of these relapses has been the major focus of pharmaceutical development, and it is now possible to dramatically reduce this inflammatory activity. Unfortunately, disability accumulation persists for many people living with multiple sclerosis owing to ongoing damage within existing lesions, pathology outside of discrete lesions, and other yet unknown factors. Understanding this complex pathological cascade will be critical to stopping progressive multiple sclerosis. Positron emission tomography uses biochemically specific radioligands to quantitatively measure pathological processes with molecular specificity. This review examines recent advances in the understanding of multiple sclerosis facilitated by positron emission tomography and identifies future avenues to expand understanding and treatment options. RECENT FINDINGS An increasing number of radiotracers allow for the quantitative measurement of inflammatory abnormalities, de- and re-myelination, and metabolic disruption associated with multiple sclerosis. The studies have identified contributions of ongoing, smoldering inflammation to accumulating tissue injury and clinical worsening. Myelin studies have quantified the dynamics of myelin loss and recovery. Lastly, metabolic changes have been found to contribute to symptom worsening. The molecular specificity facilitated by positron emission tomography in people living with multiple sclerosis will critically inform efforts to modulate the pathology leading to progressive disability accumulation. Existing studies show the power of this approach applied to multiple sclerosis. This armamentarium of radioligands allows for new understanding of how the brain and spinal cord of people is impacted by multiple sclerosis.
Collapse
Affiliation(s)
- Matthew R Brier
- Department of Neurology, John L Trotter MS Center, Washington University in St. Louis, St. Louis, USA.
| | - Farris Taha
- Department of Neurology, Medical University of South Carolina, Charleston, USA
| |
Collapse
|
6
|
Pees A, Chassé M, Lindberg A, Vasdev N. Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies. Molecules 2023; 28:931. [PMID: 36770596 PMCID: PMC9920299 DOI: 10.3390/molecules28030931] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Positron emission tomography (PET) is a molecular imaging technique that makes use of radiolabelled molecules for in vivo evaluation. Carbon-11 is a frequently used radionuclide for the labelling of small molecule PET tracers and can be incorporated into organic molecules without changing their physicochemical properties. While the short half-life of carbon-11 (11C; t½ = 20.4 min) offers other advantages for imaging including multiple PET scans in the same subject on the same day, its use is limited to facilities that have an on-site cyclotron, and the radiochemical transformations are consequently more restrictive. Many researchers have embraced this challenge by discovering novel carbon-11 radiolabelling methodologies to broaden the synthetic versatility of this radionuclide. This review presents new carbon-11 building blocks and radiochemical transformations as well as PET tracers that have advanced to first-in-human studies over the past five years.
Collapse
Affiliation(s)
- Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Melissa Chassé
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|