1
|
Blythe JA, Ng TSC. Ethical principles for practice building in the era of targeted radioligand therapy. Clin Imaging 2024; 116:110334. [PMID: 39488932 DOI: 10.1016/j.clinimag.2024.110334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/28/2024] [Accepted: 10/12/2024] [Indexed: 11/05/2024]
Abstract
Theranostics is emerging as a critical pillar of oncologic management, as exemplified by the success of Lu-177-PSMA-617 for the treatment of castration-resistant prostate cancer. The emergence of such theranostic agents represents an opportunity to reconsider facets of nuclear medicine practice that will enable its engagement in high-volume radioligand delivery. In this article, we aim to explore simple ethical principles that can guide the development of theranostics programs as radiopharmaceutical agents proliferate and the typical nuclear medicine physician transitions from a primarily diagnostic role to a mixed diagnostic and therapeutic role. Such a mixed role will demand all the attendant competencies of direct patient care. We argue that restructuring nuclear medicine practice to meet this challenge involves developing processes for promoting the principle of fairness in patient selection for theranostic agents and for promoting the principle of responsibility during the administration of theranostic agents. We further specify that this responsibility extends to the patient receiving the therapy, the local community of the patient, and the general community exposed to the population of patients receiving theranostic agents. PRéCIS: The expansion of radioligand therapy requires promoting the ethical principle of fairness in patient selection and the ethical principle of responsibility in the delivery of radioligand therapy.
Collapse
Affiliation(s)
- Jacob A Blythe
- Integrated Inteverntional/Diagnostic Radiology Residency Program, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| | - Thomas S C Ng
- Harvard Medical School, Boston, MA, United States of America; Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States of America; Center for Systems Biology, Massachusetts General Hospital, Boston, MA, United States of America; Joint Program in Nuclear Medicine, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
2
|
Abdel-Wahab M, Giammarile F, Carrara M, Paez D, Hricak H, Ayati N, Li JJ, Mueller M, Aggarwal A, Al-Ibraheem A, Alkhatib S, Atun R, Bello A, Berger D, Delgado Bolton RC, Buatti JM, Burt G, Bjelac OC, Cordero-Mendez L, Dosanjh M, Eichler T, Fidarova E, Gondhowiardjo S, Gospodarowicz M, Grover S, Hande V, Harsdorf-Enderndorf E, Herrmann K, Hofman MS, Holmberg O, Jaffray D, Knoll P, Kunikowska J, Lewis JS, Lievens Y, Mikhail-Lette M, Ostwald D, Palta JR, Peristeris P, Rosa AA, Salem SA, Dos Santos MA, Sathekge MM, Shrivastava SK, Titovich E, Urbain JL, Vanderpuye V, Wahl RL, Yu JS, Zaghloul MS, Zhu H, Scott AM. Radiotherapy and theranostics: a Lancet Oncology Commission. Lancet Oncol 2024; 25:e545-e580. [PMID: 39362232 DOI: 10.1016/s1470-2045(24)00407-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 10/05/2024]
Abstract
Following on from the 2015 Lancet Oncology Commission on expanding global access to radiotherapy, Radiotherapy and theranostics: a Lancet Oncology Commission was created to assess the access and availability of radiotherapy to date and to address the important issue of access to the promising field of theranostics at a global level. A marked disparity in the availability of radiotherapy machines between high-income countries and low-income and middle-income countries (LMICs) has been identified previously and remains a major problem. The availability of a suitably trained and credentialled workforce has also been highlighted as a major limiting factor to effective implementation of radiotherapy, particularly in LMICs. We investigated initiatives that could mitigate these issues in radiotherapy, such as extended treatment hours, hypofractionation protocols, and new technologies. The broad implementation of hypofractionation techniques compared with conventional radiotherapy in prostate cancer and breast cancer was projected to provide radiotherapy for an additional 2·2 million patients (0·8 million patients with prostate cancer and 1·4 million patients with breast cancer) with existing resources, highlighting the importance of implementing new technologies in LMICs. A global survey undertaken for this Commission revealed that use of radiopharmaceutical therapy-other than 131I-was highly variable in high-income countries and LMICs, with supply chains, workforces, and regulatory issues affecting access and availability. The capacity for radioisotope production was highlighted as a key issue, and training and credentialling of health professionals involved in theranostics is required to ensure equitable access and availability for patient treatment. New initiatives-such as the International Atomic Energy Agency's Rays of Hope programme-and interest by international development banks in investing in radiotherapy should be supported by health-care systems and governments, and extended to accelerate the momentum generated by recognising global disparities in access to radiotherapy. In this Commission, we propose actions and investments that could enhance access to radiotherapy and theranostics worldwide, particularly in LMICs, to realise health and economic benefits and reduce the burden of cancer by accessing these treatments.
Collapse
Affiliation(s)
- May Abdel-Wahab
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria.
| | - Francesco Giammarile
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Mauro Carrara
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Diana Paez
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Hedvig Hricak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA; Department of Radiology, Weill Cornell Medical College, New York, NY, USA; Gerstner Sloan Kettering Graduate School of Biomedical Sciences, New York, NY, USA
| | - Nayyereh Ayati
- Centre for Health Economics, Monash Business School, Monash University, Melbourne, VIC, Australia
| | - Jing Jing Li
- Centre for Health Economics, Monash Business School, Monash University, Melbourne, VIC, Australia
| | | | - Ajay Aggarwal
- Faculty of Public Health and Policy, London School of Hygiene and Tropical Medicine, London, UK
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center, Amman, Jordan; Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University of Jordan, Amman, Jordan
| | - Sondos Alkhatib
- Department of Radiation Oncology, Henry Ford Health, Detroit, MI, USA
| | - Rifat Atun
- Department of Global Health and Population, Harvard T H Chan School of Public Health, Boston, MA, USA; Department of Health Policy and Management, Harvard T H Chan School of Public Health, Boston, MA, USA; Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA, USA
| | - Abubakar Bello
- National Hospital, Abuja and Federal University of Health Sciences, Azare, Nigeria
| | - Daniel Berger
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja, Logroño, Spain; Servicio Cántabro de Salud, Santander, Spain
| | - John M Buatti
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | - Olivera Ciraj Bjelac
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Lisbeth Cordero-Mendez
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Manjit Dosanjh
- University of Oxford, Oxford, UK; European Organization for Nuclear Research, Geneva, Switzerland
| | - Thomas Eichler
- Department of Radiation Oncology, Massey Cancer Center Virginia Commonwealth University, Richmond, VA, USA
| | - Elena Fidarova
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | | | - Mary Gospodarowicz
- Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Surbhi Grover
- Botswana-University of Pennsylvania Partnership, Gaborone, Botswana; Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Varsha Hande
- Department of Global Health, Medicine and Welfare, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Ekaterina Harsdorf-Enderndorf
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg, Essen, Germany; German Cancer Consortium, University Hospital Essen, Essen, Germany
| | - Michael S Hofman
- Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Ola Holmberg
- Division of Radiation, Transport and Waste Safety, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - David Jaffray
- Department of Radiation Physics and Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Peter Knoll
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA; Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Yolande Lievens
- Department of Radiation Oncology, Ghent University Hospital and Ghent University, Ghent, Belgium
| | - Miriam Mikhail-Lette
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Dennis Ostwald
- WifOR Institute, Darmstadt, Germany; Steinbeis School of International Business and Entrepreneurship, Herrenberg, Germany
| | - Jatinder R Palta
- Department of Radiation Oncology, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Arthur A Rosa
- Radiation Oncology, Grupo Oncoclinicas, Salvador, Brazil
| | - Soha Ahmed Salem
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | | | - Mike M Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa; Steve Biko Academic Hospital, Pretoria, South Africa; Nuclear Medicine Research Infrastructure, Pretoria, South Africa
| | | | - Egor Titovich
- Division of Human Health, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Jean-Luc Urbain
- Department of Radiology, Division of Nuclear Medicine, Branford General Hospital, Ontario, Canada
| | - Verna Vanderpuye
- National Center for Radiotherapy Oncology and Nuclear Medicine Department of the Korlebu Teaching Hospital, Accra, Ghana
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Department of Radiology, and Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Jennifer S Yu
- Department of Radiation Oncology and Department of Cancer Biology, Cleveland Clinic, Cleveland, OH USA
| | - Mohamed Saad Zaghloul
- Radiation Oncology Department, National Cancer Institute, Cairo University & Children's Cancer Hospital, Cairo, Egypt
| | - Hongcheng Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia; Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia; Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Calais J, Morris MJ, Kendi AT, Kalebasty AR, Tutrone R, Anderson MJ, Sartor O. Best Patient Care Practices for Administering PSMA-Targeted Radiopharmaceutical Therapy. J Nucl Med 2024; 65:1666-1671. [PMID: 39362764 PMCID: PMC11533911 DOI: 10.2967/jnumed.124.268363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Optimal patient management protocols for metastatic castration-resistant prostate cancer (mCRPC) are poorly defined and even further complexified with new therapy approvals, such as radiopharmaceuticals. The prostate-specific membrane antigen (PSMA)-targeted agent 177Lu vipivotide tetraxetan ([177Lu]Lu-PSMA-617), approved after the phase III VISION study, presents physicians with additional aspects of patient management, including specific adverse event (AE) monitoring and management, as well as radiation safety. Drawing on our experience as VISION study investigators, here we provide guidance on best practices for delivering PSMA-targeted radiopharmaceutical therapy (RPT) to patients with mCRPC. After a comprehensive review of published evidence and guidelines on RPT management in prostate cancer, we identified educational gaps in managing the radiation safety and AEs associated with [177Lu]Lu-PSMA-617. Our results showed that providing sufficient education on AEs (e.g., fatigue and dry mouth) and radiation safety principles is key to effective delivery and management of patient expectations. Patient counseling by health care professionals, across disciplines, is a cornerstone of optimal patient management during PSMA-targeted RPT. Multidisciplinary collaboration is crucial, and physicians must adhere to radiation safety protocols and counsel patients on radiation safety considerations. Treatment with [177Lu]Lu-PSMA-617 is generally well tolerated; however, additional interventions may be required, such as dosing modification, medications, or transfusions. Urinary incontinence can be challenging in the context of radiation safety. Multidisciplinary collaboration between medical oncologists and nuclear medicine teams ensures that patients are monitored and managed safely and efficiently. In clinical practice, the benefit-to-risk ratio should always be evaluated on a case-by-case basis.
Collapse
Affiliation(s)
- Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Michael J Morris
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Ronald Tutrone
- Chesapeake Urology Research Associates, Towson, Maryland
| | - Michael J Anderson
- Department of Radiation Oncology, Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada; and
| | - Oliver Sartor
- Departments of Urology and Oncology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
4
|
Juweid ME, Al-Qasem S, Haidar M, Ghawi NE, Al-Bulushi N, Zein M, Fayad H, Al-Ruwaishedi Q, Elahmadawy MA, Mouaden A, Kaseem A, Albalooshi B, Marafi F, Salman K, Al-Ibraheem A. Theranostics and molecular imaging training in the arab world: present and prospects. Eur J Nucl Med Mol Imaging 2024; 51:3491-3495. [PMID: 39008064 DOI: 10.1007/s00259-024-06845-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Affiliation(s)
- Malik Eid Juweid
- Department of Radiology and Nuclear Medicine, School of Medicine, University of Jordan, Queen Rania Street, Al Jubeiha, Amman, 11942, Jordan.
| | - Soud Al-Qasem
- Department of Radiology and Nuclear Medicine, School of Medicine, University of Jordan, Queen Rania Street, Al Jubeiha, Amman, 11942, Jordan
| | - Mohamad Haidar
- Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Nour El Ghawi
- Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut, Lebanon
| | | | - Majdi Zein
- Nuclear Medicine Division, Al-Assad University Hospital, Damascus, Syria
| | - Hadi Fayad
- Occupational Health & Safety Department, PET/CT Center, Hamad Medical Corporation, Doha, Qatar
| | - Qabas Al-Ruwaishedi
- Baghdad Center for Radiotherapy and Nuclear Medicine, Medical City, Baghdad, Iraq
| | - Mai A Elahmadawy
- Nuclear Medicine Unit, National Cancer Institute, Cairo University, Giza, Egypt
| | - Ayat Mouaden
- Department of Nuclear Medicine, Ibn Sina Hospital Center, Mohammed V University, Rabat, Morocco
| | - Amin Kaseem
- Nuclear Medicine Centre, Al-Sadaqa General Teaching Hospital, Aden, Yemen
| | - Batool Albalooshi
- Dubai Nuclear Medicine and Molecular Imaging Center, Dubai Hospital, Dubai, UAE
| | - Fahad Marafi
- Jaber Al-Ahmad Centre for Molecular Imaging, Shuwaikh, Kuwait
| | - Khalid Salman
- Makkah Healthcare Cluster, King Abdulla Medical City, Makkah, Saudi Arabia
| | - Akram Al-Ibraheem
- Department of Radiology and Nuclear Medicine, School of Medicine, University of Jordan, Queen Rania Street, Al Jubeiha, Amman, 11942, Jordan
- Department of Nuclear Medicine, King Hussein Cancer Center, Amman, Jordan
| |
Collapse
|
5
|
Voltin CA, Spreckelmeyer S, Essler M, Holzgreve A. Toward the future of nuclear medicine: How young professionals are getting involved and what plans they have. Nuklearmedizin 2024; 63:284-286. [PMID: 39357531 DOI: 10.1055/a-2383-2645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Affiliation(s)
- Conrad-Amadeus Voltin
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sarah Spreckelmeyer
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, Ludwig Maximilian University Munich, Munich, Germany
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
6
|
Fernández Calvo O, Muñoz Iglesias J, Abou Jokh Casas E, Molina-Díaz A, Anido Herranz U, Casas Nebra J, García-Bernardo L, Martínez-Breijo S, Lázaro-Quintela M, Muñiz-García G, Vázquez-Estevez S. Recommendations from the Galician Oncological Society and the Galician Society of Nuclear Medicine for the use of 177Lu-PSMA-617 radioligand-therapy in prostate cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03662-7. [PMID: 39266875 DOI: 10.1007/s12094-024-03662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/07/2024] [Indexed: 09/14/2024]
Abstract
Theragnostic is a type of precision medicine that uses molecules linked to radioactive isotopes for the diagnosis and treatment of diseases. In recent years, it has gained significant importance to treat neuroendocrine tumors and is currently being used in prostate cancer. Various radiopharmaceuticals have emerged for diagnosing and detecting lesions showing prostate-specific membrane antigen (PSMA) positivity on the Positron emission tomography/computed tomography scan, being the most widely used labeled with [68Ga] and [18F]. Its use as therapy in prostate cancer (PC) has been assessed in the VISION, TheraP, and PSMAfore clinical trials conducted with the radioligand [177Lu]Lu-PSMA-617, demonstrating significant antitumor activity. The aim of this article is to present practical recommendations, based on current available scientific evidence and on a multidisciplinary consensus, for the diagnosis and treatment with [177Lu]Lu-PSMA-617 in patients with PC.
Collapse
Affiliation(s)
- Ovidio Fernández Calvo
- Department of Medical Oncology, Complexo Hospitalario Universitario de Ourense, Ourense, Spain.
| | - José Muñoz Iglesias
- Department of Nuclear Medicine (SERGAS), University Hospital of Vigo, Meixoeiro Hospital, Vigo, Spain
| | | | - Aura Molina-Díaz
- Department of Medical Oncology, Complexo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | - Urbano Anido Herranz
- Department of Medical Oncology, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Casas Nebra
- Uro-Oncology Unit, Complexo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | - Lucía García-Bernardo
- Department of Nuclear Medicine, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sara Martínez-Breijo
- Department of Urology, Complexo Hospitalario Universitario de A Coruña, A Coruña, Spain
| | - Martín Lázaro-Quintela
- Department of Medical Oncology, University Hospital of Vigo, Meixoeiro Hospital, Vigo, Spain
| | - Gloria Muñiz-García
- Department of Nuclear Medicine, Complexo Hospitalario Universitario de Ourense, Ourense, Spain
| | - Sergio Vázquez-Estevez
- Department of Medical Oncology, Hospital Universitario Lucus Augusti de Lugo, Lugo, Spain
| |
Collapse
|
7
|
Kuo PH, Covington MF, Lee DJ, Wong TZ, Pandit-Taskar N. Survey of Clinical Protocols for the Use of 177Lu-PSMA-617 in the United States. J Nucl Med Technol 2024; 52:208-211. [PMID: 39237335 DOI: 10.2967/jnmt.123.266769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/05/2024] [Indexed: 09/07/2024] Open
Abstract
Although guidelines for the use of 177Lu-PSMA-617 published by various organizations are important, they do not include all the essential, practical points necessary for a complete institutional protocol. Therefore, a brief survey was performed to assess key components of the 177Lu-PSMA-617 protocol before, during, and after delivery of therapy. This survey demonstrated the wide variability in many aspects of institutional protocols regarding determination of eligibility for and administration of 177Lu-PSMA-617 therapy. The real-world protocol details provided here from a variety of institutions may help new and established theranostic programs.
Collapse
Affiliation(s)
- Phillip H Kuo
- Department of Medical Imaging, University of Arizona, Tucson, Arizona;
| | - Matthew F Covington
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Daniel J Lee
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Terence Z Wong
- Departments of Radiology (Nuclear Medicine and Radiotheranostics) and Medicine (Medical Oncology), Duke Health, Durham, North Carolina
| | - Neeta Pandit-Taskar
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York; and
- Department of Radiology, Weil Cornell Medical Center, New York, New York
| |
Collapse
|
8
|
Albert NL, Le Rhun E, Minniti G, Mair MJ, Galldiks N, Tolboom N, Jakola AS, Niyazi M, Smits M, Verger A, Cicone F, Weller M, Preusser M. Translating the theranostic concept to neuro-oncology: disrupting barriers. Lancet Oncol 2024; 25:e441-e451. [PMID: 39214115 DOI: 10.1016/s1470-2045(24)00145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/23/2024] [Accepted: 03/08/2024] [Indexed: 09/04/2024]
Abstract
Theranostics integrate molecular imaging and targeted radionuclide therapy for personalised cancer therapy. Theranostic treatments have shown meaningful efficacy in randomised clinical trials and are approved for clinical use in prostate cancer and neuroendocrine tumours. Brain tumours represent an unmet clinical need and theranostics might offer effective treatment options, although specific issues need to be considered for clinical development. In this Policy Review, we discuss opportunities and challenges of developing targeted radionuclide therapies for the treatment of brain tumours including glioma, meningioma, and brain metastasis. The rational choice of molecular treatment targets is highlighted, including the potential relevance of different types of targeted radionuclide therapeutics, and the role of the blood-brain barrier and blood-tumour barrier. Furthermore, we discuss considerations for effective clinical trial design and conduct, as well as logistical and regulatory challenges for implementation of radionuclide therapies into neuro-oncological practice. Rational development will foster successful translation of the theranostic concept to brain tumours.
Collapse
Affiliation(s)
- Nathalie L Albert
- Department of Nuclear Medicine, Ludwig Maximilians University Hospital, Ludwig Maximilians University Munich, Munich, Germany
| | - Emilie Le Rhun
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland; Department of Neurosurgery, University Hospital and University of Zurich, Zurich, Switzerland
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University, Rome, Italy
| | - Maximilian J Mair
- Department of Nuclear Medicine, Ludwig Maximilians University Hospital, Ludwig Maximilians University Munich, Munich, Germany; Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Juelich, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Germany
| | - Nelleke Tolboom
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Asgeir S Jakola
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, Gothenburg, Sweden; Department of Neurosurgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands; Medical Delta, Delft, The Netherlands
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Imaging Platform, CHRU-Nancy, IADI, INSERM, UMR 1254, Université de Lorraine, Nancy, France
| | - Francesco Cicone
- Nuclear Medicine Unit, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Naik M, Khan SR, Lewington V, Challapalli A, Eccles A, Barwick TD. Imaging and therapy in prostate cancer using prostate specific membrane antigen radioligands. Br J Radiol 2024; 97:1391-1404. [PMID: 38733571 PMCID: PMC11256943 DOI: 10.1093/bjr/tqae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024] Open
Abstract
Prostate specific membrane antigen (PSMA) directed PET imaging has rapidly transformed prostate cancer workup over the past decade and paved the way for a theranostic approach using 177Lu-labelled PSMA radioligand therapy (RLT). This review gives an overview of the underlying principles behind PSMA as a target; the current use of PSMA PET in prostate cancer imaging and benefits compared to conventional imaging; and therapeutic applications including optimisation of patient selection. It also explores the evidence base of PSMA PET for other indications not in routine clinical use and the future of PSMA-directed RLT.
Collapse
Affiliation(s)
- Mitesh Naik
- Imaging Department, Imperial College Healthcare NHS Trust, London W6 8RF, United Kingdom
| | - Sairah R Khan
- Imaging Department, Imperial College Healthcare NHS Trust, London W6 8RF, United Kingdom
| | - Valerie Lewington
- Division of Biomedical Engineering and Imaging Sciences, Kings College London, London WC2R 2LS, United Kingdom
| | - Amarnath Challapalli
- Department of Clinical Oncology, Bristol Cancer Institute, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol BS2 8ED, United Kingdom
| | - Amy Eccles
- Imaging Department, Imperial College Healthcare NHS Trust, London W6 8RF, United Kingdom
| | - Tara D Barwick
- Imaging Department, Imperial College Healthcare NHS Trust, London W6 8RF, United Kingdom
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London W12 0HS, United Kingdom
| |
Collapse
|
10
|
Pascual TNB, Paez D, Iagaru A, Gnanasegaran G, Lee ST, Sathekge M, Buatti JM, Giammarile F, Al-Ibraheem A, Pardo MA, Baum RP, De Bari B, Ben-Haim S, Blay JY, Brink A, Estrada-Lobato E, Fanti S, Golubic AT, Hatazawa J, Israel O, Kiess A, Knoll P, Louw L, Mariani G, Mirzaei S, Orellana P, Prior JO, Urbain JL, Vichare S, Vinjamuri S, Virgolini I, Scott AM. Guiding principles on the education and practice of theranostics. Eur J Nucl Med Mol Imaging 2024; 51:2320-2331. [PMID: 38453729 PMCID: PMC11178594 DOI: 10.1007/s00259-024-06657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/13/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE The recent development and approval of new diagnostic imaging and therapy approaches in the field of theranostics have revolutionised nuclear medicine practice. To ensure the provision of these new imaging and therapy approaches in a safe and high-quality manner, training of nuclear medicine physicians and qualified specialists is paramount. This is required for trainees who are learning theranostics practice, and for ensuring minimum standards for knowledge and competency in existing practising specialists. METHODS To address the need for a training curriculum in theranostics that would be utilised at a global level, a Consultancy Meeting was held at the IAEA in May 2023, with participation by experts in radiopharmaceutical therapy and theranostics including representatives of major international organisations relevant to theranostics practice. RESULTS Through extensive discussions and review of existing curriculum and guidelines, a harmonised training program for theranostics was developed, which aims to ensure safe and high quality theranostics practice in all countries. CONCLUSION The guiding principles for theranostics training outlined in this paper have immediate relevance for the safe and effective practice of theranostics.
Collapse
Affiliation(s)
| | - Diana Paez
- Division of Human Health, Department of Nuclear Science and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Stanford University Medical Center, Stanford, CA, USA
| | - Gopi Gnanasegaran
- Department of Nuclear Medicine, Royal Free London NHS Foundation Trust, London, UK
| | - Sze Ting Lee
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- School of Health and Biomedicine, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia
- Department of Surgery, University of Melbourne, Melbourne, Australia
| | - Mike Sathekge
- Steve Biko Academic Hospital, Pretoria, South Africa
- University of Pretoria, Pretoria, South Africa
| | - John M Buatti
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Francesco Giammarile
- Division of Human Health, Department of Nuclear Science and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, Jordan
- School of Medicine, University of Jordan, Amman, Jordan
| | - Manuela Arevalo Pardo
- Division of Human Health, Department of Nuclear Science and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Richard P Baum
- Center for Advanced Radiomolecular Precision Oncology, Curanosticum Wiesbaden, FrankfurtWiesbaden, Germany
| | - Berardino De Bari
- Radiation Oncology Department, Réseau Hospitalier Neuchâtelois, La Chaux-de-Fonds, Switzerland
| | - Simona Ben-Haim
- Department of Biophysics and Nuclear Medicine, Hadassah University Hospital, Jerusalem, Israel
- Faculty of Medicine, Hebrew University, Jerusalem, Israel
- University College London, London, UK
| | - Jean-Yves Blay
- Department of Medicine, Centre Leon Berard, Lyon, France
- University Claude Bernard Lyon, Lyon, France
| | - Anita Brink
- Division of Human Health, Department of Nuclear Science and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Enrique Estrada-Lobato
- Division of Human Health, Department of Nuclear Science and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Stefano Fanti
- Nuclear Medicine Division, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Policlinico S.Orsola, Bologna, Italy
| | - Anja Tea Golubic
- Department of Nuclear Medicine and Radiation Protection, University Hospital Centre Zagreb, Kispaticeva 12, 10000, Zagreb, Croatia
| | - Jun Hatazawa
- Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ora Israel
- B. Rappaport School of Medicine, Israel Institute of Technology-Technion, Haifa, Israel
| | - Ana Kiess
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter Knoll
- Division of Human Health, Department of Nuclear Science and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Lizette Louw
- Center of Molecular Imaging and Theranostics, Johannesburg, South Africa
- University of the Witwatersrand, Johannesburg, South Africa
| | - Giuliano Mariani
- Regional Center of Nuclear Medicine, Department of Translational Research and Advanced Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Siroos Mirzaei
- Department of Nuclear Medicine With PET-Centre, Clinic Ottakring, Vienna, Austria
| | | | - John O Prior
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Shrikant Vichare
- Division of Human Health, Department of Nuclear Science and Applications, International Atomic Energy Agency, Vienna, Austria
| | - Sobhan Vinjamuri
- Nuclear Medicine Department, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia.
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne, Australia.
- Faculty of Medicine, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
11
|
Al-Ibraheem A, Zimmermann R, Abdlkadir AS, Herrmann K. Radiotheranostics Global Market and Future Developments. Semin Nucl Med 2024; 54:622-633. [PMID: 38485583 DOI: 10.1053/j.semnuclmed.2024.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 08/05/2024]
Abstract
Radiotheranostics, a combination of diagnostic and therapeutic approaches, was first utilized in cancer management using radiopharmaceuticals to both image and selectively treat specific cancer subtypes nearly a century ago. Radiotheranostic strategies rooted in nuclear medicine have revolutionized the treatment landscape for individuals diagnosed with prostate cancer and neuroendocrine tumors in the past 10 years. In specific contexts, these approaches have emerged as the prevailing standard, yielding numerous positive results. The field of radiotheranostics shows great potential for future clinical applications. This article aims to examine the key factors that will contribute to the success of radiotheranostics in the future, as well as the current challenges and potential strategies to overcome them, with insight into the global radiotheranostic market.
Collapse
Affiliation(s)
- Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, 11942, Jordan; Division of Nuclear Medicine/Department of Radiology and Nuclear Medicine, University of Jordan, Amman, 11942, Jordan.
| | - Richard Zimmermann
- Chrysalium Consulting, Lalaye, France; MEDraysintell, Louvain-la-Neuve, Oncidium Foundation, Mont-Saint-Guibert, Belgium; Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, 11942, Jordan
| | - Ahmed S Abdlkadir
- Department of Nuclear Medicine, King Hussein Cancer Center (KHCC), Amman, 11942, Jordan
| | - Ken Herrmann
- Department of Nuclear Medicine, West German Cancer Center (WTZ), University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany; National Center for Tumor Diseases (NCT), NCT West, Germany
| |
Collapse
|
12
|
Tseng JR, Hsu CL, Hsieh HH, Ho KC, Chung YH, Wu CY. The synergy of 177Lu-FAPI-46 with tyrosine kinase inhibitor in a sarcoma patient-derived xenograft mouse model. Biomed J 2024; 47:100744. [PMID: 38729609 PMCID: PMC11255100 DOI: 10.1016/j.bj.2024.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/09/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Given the heterogeneity and high mortality associated with metastatic soft tissue sarcoma, this study aims to evaluate the therapeutic efficacy of combining 177Lu-FAPI-46 with Pazopanib against this malignancy. METHODS Patient-derived xenograft (PDX)-bearing mice were randomly divided into three groups: the control group, the 177Lu-FAPI-46 monotherapy group, and the 177Lu-FAPI-46 combined with Pazopanib therapy group. Therapeutic efficacy was regularly monitored. RESULTS The microPET imaging showed a 0.84-fold decrease in the T/M ratio of 68Ga-FAPI-46 on day 7/8 post combination therapy, while the control group exhibited a 1.23-fold increase. Combination therapy significantly inhibited tumor proliferation, as evidenced by reduced Ki-67 and increased caspase 3 expressions. Notably, there was no significant body weight loss observed in any group. CONCLUSION This study successfully demonstrated the reduction in FAP expression and suppression of tumor volume in sarcoma PDX following the combination therapy of 177Lu-FAPI-46 with Pazopanib.
Collapse
Affiliation(s)
- Jing-Ren Tseng
- Department of Nuclear Medicine, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Lung Hsu
- Department of Hematology-Oncology, Chang Gung Memorial Hospital, Medical College of Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hua Hsieh
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kung-Chu Ho
- Department of Nuclear Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Yi-Hsiu Chung
- Department of Medical Research and Development, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
13
|
Giammarile F, Paez D, Zimmermann R, Cutler CS, Jalilian A, Korde A, Knoll P, Ayati N, Lewis JS, Lapi SE, Delgado Bolton RC, Kunikowska J, Estrada Lobato E, Urbain JL, Holmberg O, Abdel-Wahab M, Scott AM. Production and regulatory issues for theranostics. Lancet Oncol 2024; 25:e260-e269. [PMID: 38821100 PMCID: PMC11325260 DOI: 10.1016/s1470-2045(24)00041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 06/02/2024]
Abstract
Theranostics has become a major area of innovation and progress in cancer care over the last decade. In view of the introduction of approved therapeutics in neuroendocrine tumours and prostate cancer in the last 10 years, the ability to provide access to these treatments has emerged as a key factor in ensuring global benefits from this cancer therapy approach. In this Series paper we explore the issues that affect access to and availability of theranostic radiopharmaceuticals, including supply and regulatory issues that might affect the availability of theranostic treatments for patients with cancer.
Collapse
Affiliation(s)
- Francesco Giammarile
- Division of Human Health, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Diana Paez
- Division of Human Health, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Richard Zimmermann
- Chrysalium Consulting, Lalaye, France; MEDraysintell, Louvain la Neuve, Belgium; Oncidium Foundation, Auderghem, Belgium
| | - Cathy S Cutler
- Isotope Research and Production Department, Brookhaven National Laboratory Upton, New York City, NY, USA
| | - Amirreza Jalilian
- Division of Physical and Chemical Sciences, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Aruna Korde
- Division of Physical and Chemical Sciences, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Peter Knoll
- Division of Physical and Chemical Sciences, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Nayyereh Ayati
- Centre for Health Economics, Monash Business School, Monash University, Melbourne, VIC, Australia
| | - Jason S Lewis
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, Upton, NY, USA; Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York City, NY, USA
| | - Suzanne E Lapi
- Departments of Radiology and Chemistry, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja, Logroño, Spain; Servico Cántabro de Salud, Santander, Spain
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Enrique Estrada Lobato
- Division of Human Health, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | | | - Ola Holmberg
- Department of Nuclear Science and Applications, and Division of Radiation, Transport and Waste Safety, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - May Abdel-Wahab
- Division of Human Health, Department of Nuclear Safety and Security, International Atomic Energy Agency, Vienna, Austria
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC, Australia; Department of Molecular Imaging and Therapy, Olivia Newton-John Cancer Research Institute, Melbourne, VIC, Australia; School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia; Faculty of Medicine, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
14
|
Giammarile F, Knoll P, Kunikowska J, Paez D, Estrada Lobato E, Mikhail-Lette M, Wahl R, Holmberg O, Abdel-Wahab M, Scott AM, Delgado Bolton RC. Guardians of precision: advancing radiation protection, safety, and quality systems in nuclear medicine. Eur J Nucl Med Mol Imaging 2024; 51:1498-1505. [PMID: 38319322 PMCID: PMC11043166 DOI: 10.1007/s00259-024-06633-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND In the rapidly evolving field of nuclear medicine, the paramount importance of radiation protection, safety, and quality systems cannot be overstated. This document provides a comprehensive analysis of the intricate regulatory frameworks and guidelines, meticulously crafted and updated by national and international regulatory bodies to ensure the utmost safety and efficiency in the practice of nuclear medicine. METHODS We explore the dynamic nature of these regulations, emphasizing their adaptability in accommodating technological advancements and the integration of nuclear medicine with other medical and scientific disciplines. RESULTS Audits, both internal and external, are spotlighted for their pivotal role in assessing and ensuring compliance with established standards, promoting a culture of continuous improvement and excellence. We delve into the significant contributions of entities like the International Atomic Energy Agency (IAEA) and relevant professional societies in offering universally applicable guidelines that amalgamate the latest in scientific research, ethical considerations, and practical applicability. CONCLUSIONS The document underscores the essence of international collaborations in pooling expertise, resources, and insights, fostering a global community of practice where knowledge and innovations are shared. Readers will gain an in-depth understanding of the practical applications, challenges, and opportunities presented by these regulatory frameworks and audit processes. The ultimate goal is to inspire and inform ongoing efforts to enhance safety, quality, and effectiveness in nuclear medicine globally.
Collapse
Affiliation(s)
- Francesco Giammarile
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria.
| | - Peter Knoll
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, Warsaw, Poland
| | - Diana Paez
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Enrique Estrada Lobato
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Miriam Mikhail-Lette
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Richard Wahl
- Washington University in St Louis School of Medicine, St. Louis, USA
- The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ola Holmberg
- Department of Nuclear Safety and Security, Radiation Safety and Monitoring Section, International Atomic Energy Agency, Vienna, Austria
| | - May Abdel-Wahab
- Department of Nuclear Science and Applications, Nuclear Medicine and Diagnostic Imaging Section, International Atomic Energy Agency, Vienna, Austria
| | - Andrew M Scott
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, Australia
- Faculty of Medicine, University of Melbourne, Melbourne, Australia
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), La Rioja, Logroño, Spain
- Servicio Cántabro de Salud, Santander, Spain
| |
Collapse
|
15
|
Kunos CA, Martin ME, Georgiou MF, Kuker RA, Chauhan A. Leveraging Programmatic Collaboration for a Radiopharmaceutical Clinic. Cancers (Basel) 2024; 16:1396. [PMID: 38611074 PMCID: PMC11011188 DOI: 10.3390/cancers16071396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Radiation oncologists, radiopharmacists, nuclear medicine physicians, and medical oncologists have seen a renewed clinical interest in radiopharmaceuticals for the curative or the palliative treatment of cancer. To allow for the discovery and the clinical advancement of targeted radiopharmaceuticals, these stakeholders have reformed their trial efforts and remodeled their facilities to accommodate the obligations of a program centered upon radioactive investigational drug products. Now considered informally as drugs and not beam radiotherapy, radiopharmaceuticals can be more easily studied in the traditional clinical trial enterprise ranging from phase 0-I to phase III studies. Resources and physical facilities allocated to radiopharmaceuticals have brought forth new logistics and patient experience for safe and satisfactory drug delivery. The clinical use of theranostic agents-that is, diagnostic and therapeutic radionuclide pairs-has accelerated radiopharmaceutical development.
Collapse
Affiliation(s)
- Charles A. Kunos
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, 1475 NW 12th Avenue, Suite 1500, Miami, FL 33136, USA
| | - Molly E. Martin
- Department of Radiology, Division of Nuclear Medicine, University of Iowa Health Care, Iowa City, IA 52242, USA;
| | - Michalis F. Georgiou
- Department of Radiology, Division of Nuclear Medicine, University of Miami, Miami, FL 33136, USA
| | - Russ A. Kuker
- Department of Radiology, Division of Nuclear Medicine, University of Miami, Miami, FL 33136, USA
| | - Aman Chauhan
- Department of Medicine, Division of Medical Oncology, University of Miami, Miami, FL 33136, USA;
| |
Collapse
|
16
|
Farolfi A, Armstrong WR, Djaileb L, Gafita A, Hotta M, Allen-Auerbach M, Unterrainer LM, Fendler WP, Rettig M, Eiber M, Hofman MS, Hadaschik B, Herrmann K, Czernin J, Calais J, Benz MR. Differences and Common Ground in 177Lu-PSMA Radioligand Therapy Practice Patterns: International Survey of 95 Theranostic Centers. J Nucl Med 2024; 65:438-445. [PMID: 38238041 DOI: 10.2967/jnumed.123.266391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/18/2023] [Indexed: 03/03/2024] Open
Abstract
177Lu-labeled prostate-specific membrane antigen (PSMA) radioligand therapy effectively treats metastatic castration-resistant prostate cancer. Patients requiring treatment, and consequently the number of theranostic centers, are expected to increase significantly after Food and Drug Administration and European Medicines Agency approval. This requires standardization or harmonization among theranostic centers. The aim of this study was to assess operational differences and similarities among 177Lu-PSMA treatment centers. Methods: A questionnaire comprising 62 items, designed by a core team of 5 physicians and externally reviewed by international experts, was developed. Study participants were asked to provide answers about their center, patient selection, radiopharmaceuticals, clinical assessment before and after 177Lu-PSMA treatments, laboratory values, treatment discontinuation, posttreatment imaging, and general information. An invitation e-mail to participate in the study was sent in June 2022. Duplicates were removed to allow for only one valid response per center. Results: Ninety-five of 211 (45%) contacted centers completed the questionnaire. Most participating centers were in Europe (51%), followed by America (22%) and Asia (22%). During the 12 mo before this study, a total of 5,906 patients received 177Lu-PSMA therapy at the 95 participating centers. Most of these patients were treated in Europe (2,840/5,906; 48%), followed by Asia (1,313/5,906; 22%) and Oceania (1,225/5,906; 21%). PSMA PET eligibility for 177Lu-PSMA was determined most frequently using 68Ga-PSMA-11 (77%). Additional pretherapy imaging included 18F-FDG PET/CT, CT, renal scintigraphy, and bone scintigraphy at 41 (49%), 27 (32%), 25 (30%), and 13 (15%), respectively, of the 84 centers for clinical standard of care, compassionate care, or local research protocols and 11 (26%), 25 (60%), 9 (21%), and 28 (67%), respectively, of the 42 centers for industry-sponsored trials. PSMA PET eligibility criteria included subjective qualitative assessment of PSMA positivity at 33% of centers, VISION criteria at 23%, and TheraP criteria at 13%. The mean standard injected activity per cycle was 7.3 GBq (range, 5.5-11.1 GBq). Sixty-two (65%) centers applied standardized response assessment criteria, and PSMA PET Progression Criteria were the most applied (37%). Conclusion: Results from this international survey revealed interinstitutional differences in several aspects of 177Lu-PSMA radionuclide therapy, including patient selection, administered activity, and the response assessment strategy. Standardization or harmonization of protocols and dedicated training are desirable in anticipation of increasing numbers of patients and theranostic centers.
Collapse
Affiliation(s)
- Andrea Farolfi
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
- Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Wesley R Armstrong
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Loic Djaileb
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
- LRB, Nuclear Medicine Department, CHU Grenoble Alpes, University of Grenoble Alpes, INSERM, Grenoble, France
| | - Andrei Gafita
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
- Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Masatoshi Hotta
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Martin Allen-Auerbach
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Lena M Unterrainer
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
- Department of Nuclear Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Matthew Rettig
- Department of Medicine and Urology, UCLA, Los Angeles, California
- Department of Medicine, VA Greater Los Angeles, Los Angeles, California
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Cancer Imaging, Peter MacCallum Cancer Centre, and Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Boris Hadaschik
- Department of Urology, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany; and
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
| | - Johannes Czernin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Matthias R Benz
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California;
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium-University Hospital Essen, Essen, Germany
- Department of Radiological Sciences, UCLA, Los Angeles, California
| |
Collapse
|
17
|
Grawe F, Blom F, Winkelmann M, Burgard C, Schmid-Tannwald C, Unterrainer LM, Sheikh GT, Pfitzinger PL, Kazmierczak P, Cyran CC, Ricke J, Stief CG, Bartenstein P, Ruebenthaler J, Fabritius MP, Geyer T. Reliability and practicability of PSMA-RADS 1.0 for structured reporting of PSMA-PET/CT scans in prostate cancer patients. Eur Radiol 2024; 34:1157-1166. [PMID: 37624414 PMCID: PMC10853294 DOI: 10.1007/s00330-023-10083-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/03/2023] [Accepted: 07/12/2023] [Indexed: 08/26/2023]
Abstract
OBJECTIVES As structured reporting is increasingly used in the evaluation of prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA-PET/CT) for prostate cancer, there is a need to assess the reliability of these frameworks. This study aimed to evaluate the intra- and interreader agreement among readers with varying levels of experience using PSMA-RADS 1.0 for interpreting PSMA-PET/CT scans, even when blinded to clinical data, and therefore to determine the feasibility of implementing this reporting system in clinical practice. METHODS PSMA-PET/CT scans of 103 patients were independently evaluated by 4 readers with different levels of experience according to the reporting and data system (RADS) for PSMA-PET/CT imaging PSMA-RADS 1.0 at 2 time points within 6 weeks. For each scan, a maximum of five target lesions were freely chosen and stratified according to PSMA-RADS 1.0. Overall scan score and compartment-based scores were assessed. Intra- and interreader agreement was determined using the intraclass correlation coefficient (ICC). RESULTS PSMA-RADS 1.0 demonstrated excellent interreader agreement for both overall scan scores (ICC ≥ 0.91) and compartment-based scores (ICC ≥ 0.93) across all four readers. The framework showed excellent intrareader agreement for overall scan scores (ICC ≥ 0.86) and compartment-based scores (ICC ≥ 0.95), even among readers with varying levels of experience. CONCLUSIONS PSMA-RADS 1.0 is a reliable method for assessing PSMA-PET/CT with strong consistency and agreement among readers. It shows great potential for establishing a standard approach to diagnosing and planning treatment for prostate cancer patients, and can be used confidently even by readers with less experience. CLINICAL RELEVANCE STATEMENT This study underlines that PSMA-RADS 1.0 is a valuable and highly reliable scoring system for PSMA-PET/CT scans of prostate cancer patients and can be used confidently by radiologists with different levels of experience in routine clinical practice. KEY POINTS PSMA-RADS version 1.0 is a scoring system for PSMA-PET/CT scans. Its reproducibility needs to be analyzed in order to make it applicable to clinical practice. Excellent interreader and intrareader agreement for overall scan scores and compartment-based scores using PSMA-RADS 1.0 were seen in readers with varying levels of experience. PSMA-RADS 1.0 is a reliable tool for accurately diagnosing and planning treatment for prostate cancer patients, and can be used confidently in clinical routine.
Collapse
Affiliation(s)
- Freba Grawe
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Franziska Blom
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Michael Winkelmann
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Caroline Burgard
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
- Department of Nuclear Medicine, Saarland University Hospital, Kirrberger Str., Geb. 50, 66421, Homburg, Germany
| | - Christine Schmid-Tannwald
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Lena M Unterrainer
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Gabriel T Sheikh
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Paulo L Pfitzinger
- Department of Nuclear Medicine, Saarland University Hospital, Kirrberger Str., Geb. 50, 66421, Homburg, Germany
| | - Philipp Kazmierczak
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Clemens C Cyran
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christian G Stief
- Department of Urology, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377, Munich, Germany
| | - Johannes Ruebenthaler
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Matthias P Fabritius
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Thomas Geyer
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
18
|
Mittra ES, Wong RKS, Winters C, Brown A, Murley S, Kennecke H. Establishing a robust radioligand therapy program: A practical approach for North American centers. Cancer Med 2024; 13:e6780. [PMID: 38214130 PMCID: PMC10905220 DOI: 10.1002/cam4.6780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 11/08/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
Radioligand therapy (RLT) is a targeted approach to treating cancer that has been shown to be safe and effective in a variety of disease states, including gastroenteropancreatic neuroendocrine tumors, lymphoma, and most recently, advanced prostate cancer. In the United States, patient access to this therapy is currently variable. Implementation of new RLT programs and expansion of existing programs are needed to broaden patient access to and standardize the delivery of RLT, especially as new therapies are introduced into clinical practice. Drawing from experience in establishing RLT programs in different settings, we have developed practical recommendations for building and implementing a robust RLT program. In this review, we present our recommendations for minimal requirements and optimal requirements, as well as system considerations, and special issues associated with implementing an RLT program in North American centers.
Collapse
Affiliation(s)
- Erik S. Mittra
- Department of Diagnostic RadiologyOregon Health & Science UniversityPortlandOregonUSA
| | - Rebecca K. S. Wong
- Department of Radiation Oncology, Princess Margaret Cancer CentreUniversity of TorontoTorontoOntarioCanada
| | - Celeste Winters
- Department of Diagnostic RadiologyOregon Health & Science UniversityPortlandOregonUSA
| | - Adam Brown
- Department of Diagnostic RadiologyOregon Health & Science UniversityPortlandOregonUSA
| | - Shondra Murley
- Department of Nuclear MedicineWest Tennessee HealthcareJacksonTennesseeUSA
| | | |
Collapse
|
19
|
Bautista-Peñalosa PA, M. Estrada FG, Barrenechea EA, San Luis, Jr TO. Formulating a national position statement and guide on modern theranostics in the Philippines. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2024; 12:69-72. [PMID: 38164239 PMCID: PMC10757056 DOI: 10.22038/aojnmb.2023.72838.1508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/03/2023] [Accepted: 10/25/2023] [Indexed: 01/03/2024]
Abstract
Barriers to the establishment of advanced technologies in developing countries were overcome when modern theranostics pertaining to the use of Ga-68 and Lu-177 PSMA and DOTATATE were first offered to patients in the Philippines in early 2018. However, significant growth was not experienced at St. Luke's Medical Center for five years and lutetium was not yet distributed to other institutions by a radiopharmaceutical supplier. Due to the relative novelty and rapid expansion of theranostics worldwide, position statements were released by the Australasian Association of Nuclear Medicine Specialists, European Association of Nuclear Medicine, Society of Nuclear Medicine and Molecular Imaging, and International Atomic Energy Agency primarily to uphold patient safety and ensure a level of standard among its practitioners. Subsequently in the latter half of 2022, these were adopted and modified according to what is feasible and applicable locally within the Philippine Society of Nuclear Medicine, considering the current status and future possibilities. Different representatives were involved, and several groups were mobilized for successful implementation. A liability clause was incorporated to discourage unprofessional acts.
Collapse
|
20
|
Gear J, Stokke C, Terwinghe C, Gnesin S, Sandström M, Tran-Gia J, Cremonesi M, Cicone F, Verburg F, Hustinx R, Giovanella L, Herrmann K, Gabiña PM. EANM enabling guide: how to improve the accessibility of clinical dosimetry. Eur J Nucl Med Mol Imaging 2023; 50:1861-1868. [PMID: 37086275 PMCID: PMC10287783 DOI: 10.1007/s00259-023-06226-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
Dosimetry can be a useful tool for personalization of molecular radiotherapy (MRT) procedures, enabling the continuous development of theranostic concepts. However, the additional resource requirements are often seen as a barrier to implementation. This guide discusses the requirements for dosimetry and demonstrates how a dosimetry regimen can be tailored to the available facilities of a centre. The aim is to help centres wishing to initiate a dosimetry service but may not have the experience or resources of some of the more established therapy and dosimetry centres. The multidisciplinary approach and different personnel requirements are discussed and key equipment reviewed example protocols demonstrating these factors are given in the supplementary material for the main therapies carried out in nuclear medicine, including [131I]-NaI for benign thyroid disorders, [177Lu]-DOTATATE and 131I-mIBG for neuroendocrine tumours and [90Y]-microspheres for unresectable hepatic carcinoma.
Collapse
Affiliation(s)
- Jonathan Gear
- Joint Department of Physics, Royal Marsden NHSFT & Institute of Cancer Research, Sutton, UK.
| | - Caroline Stokke
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| | - Christelle Terwinghe
- Department of Nuclear Medicine, Universitair Ziekenhuis Leuven, Louvain, Belgium
| | - Silvano Gnesin
- Institute of Radiation Physics, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Mattias Sandström
- Section of Nuclear Medicine and PET, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Sweden & Section of Medical Physics, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85, Uppsala, Sweden
| | - Johannes Tran-Gia
- Department of Nuclear Medicine, University Hospital Würzburg, Oberdürrbacher Str. 6, 97080, Würzburg, Germany
| | - Marta Cremonesi
- Radiation Research Unit, Department of Medical Imaging and Radiation Sciences, Istituto Europeo Di Oncologia, IRCCS, Milan, Italy
| | - Francesco Cicone
- Department of Experimental and Clinical Medicine, Neuroscience Research Centre, PET/RM Unit, "Magna Graecia" University of Catanzaro, Catanzaro, Italy
- Nuclear Medicine Unit, University Hospital "Mater Domini, Catanzaro, Italy
| | - Fredrik Verburg
- Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium
- GIGA-CRC in Vivo Imaging, University of Liège, Liège, Belgium
| | - Luca Giovanella
- Clinic for Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, Duisburg, Germany
- German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Pablo Minguez Gabiña
- Department of Medical Physics and Radiation Protection, Gurutzeta-Cruces University Hospital/Biocruces Health Research Institute, Barakaldo, Spain
- Department of Applied Physics, Faculty of Engineering, UPV/EHU, Bilbao, Spain
| |
Collapse
|
21
|
Ladrière T, Faudemer J, Levigoureux E, Peyronnet D, Desmonts C, Vigne J. Safety and Therapeutic Optimization of Lutetium-177 Based Radiopharmaceuticals. Pharmaceutics 2023; 15:pharmaceutics15041240. [PMID: 37111725 PMCID: PMC10145759 DOI: 10.3390/pharmaceutics15041240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/24/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Peptide receptor radionuclide therapy (PRRT) using Lutetium-177 (177Lu) based radiopharmaceuticals has emerged as a therapeutic area in the field of nuclear medicine and oncology, allowing for personalized medicine. Since the first market authorization in 2018 of [¹⁷⁷Lu]Lu-DOTATATE (Lutathera®) targeting somatostatin receptor type 2 in the treatment of gastroenteropancreatic neuroendocrine tumors, intensive research has led to transfer innovative 177Lu containing pharmaceuticals to the clinic. Recently, a second market authorization in the field was obtained for [¹⁷⁷Lu]Lu-PSMA-617 (Pluvicto®) in the treatment of prostate cancer. The efficacy of 177Lu radiopharmaceuticals are now quite well-reported and data on the safety and management of patients are needed. This review will focus on several clinically tested and reported tailored approaches to enhance the risk-benefit trade-off of radioligand therapy. The aim is to help clinicians and nuclear medicine staff set up safe and optimized procedures using the approved 177Lu based radiopharmaceuticals.
Collapse
Affiliation(s)
- Typhanie Ladrière
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Julie Faudemer
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Elise Levigoureux
- Hospices Civils de Lyon, Groupement Hospitalier Est, 69677 Bron, France
- Lyon Neuroscience Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, 69677 Bron, France
| | - Damien Peyronnet
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
| | - Cédric Desmonts
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- INSERM U1086, ANTICIPE, Normandy University, UNICAEN, 14000 Caen, France
| | - Jonathan Vigne
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- Department of Pharmacy, CHU de Caen Normandie, Normandie Université, UNICAEN, 14000 Caen, France
- PhIND, Centre Cyceron, Institut Blood and Brain @ Caen-Normandie, INSERM U1237, Normandie Université, UNICAEN, 14000 Caen, France
| |
Collapse
|
22
|
Pomykala KL, Würker M, Herrmann K. Tackling the Last Mile: A Major Component to Successfully Establish Radioligand Therapy. J Nucl Med 2023; 64:347-348. [PMID: 36549917 PMCID: PMC10071808 DOI: 10.2967/jnumed.122.264900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Kelsey L Pomykala
- Institute for Artificial Intelligence in Medicine, University Hospital Essen, Essen, Germany;
| | | | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium-University Hospital Essen, Essen, Germany
| |
Collapse
|
23
|
Cunha L, Baete K, Leijen C, Jamar F. Main challenges in radiation protection with emerging radionuclide therapies. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2023; 67:14-28. [PMID: 36598760 DOI: 10.23736/s1824-4785.22.03502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The recent development of radionuclide therapy and radioligand therapy has raised a call for achieving the highest quality standards, for either radiopharmacy or radiation protection. Novel radionuclides are now being used, either under the form of in-house production radiopharmaceuticals or available from companies. Over the last 20 years, they include radiolabeled microspheres for selective internal radiotherapy (SIRT), the introduction of the first commercially available alpha emitter radiopharmaceutical, 223Ra, and the radiosynoviorthesis which is highly variable across Europe. More important is the development of radioligand therapy, often called theranostics. In this concept, a diagnostic radiopharmaceutical can determine the chance of success of a therapeutic one. Typically, diagnostic radiopharmaceuticals for positron emission tomography, are labeled with 18F or 68Ga, such as the PSMA ligands or somatostatin analogs, and the therapeutic radiopharmaceutical is labeled with 177Lu. This has revolutionized the world of Nuclear Medicine, but also all concepts that shall be applied to properly apply quality assurance and radiation protection in the field. This article will follow the example of 131I as the main used radionuclide for therapy during the last 80 years. Proposals can be general, and in parallel expert's articles will give specific guidance on issues with particular radionuclides, i.e., alpha emitters and 177Lu. This article will also give insight in the radiation protection issues related to the use of microspheres radiolabeled with either 90Y or 166Ho.
Collapse
Affiliation(s)
- Lidia Cunha
- Department of Nuclear Medicine and Molecular Imaging, IsoPor-Azores, Azores, Portugal
| | - Kristof Baete
- Department of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - Carolien Leijen
- Department of Radiation Protection, University Medical Center Utrecht, Utrecht, the Netherlands
| | - François Jamar
- Department of Nuclear Medicine, Saint-Luc University Clinic and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium -
| |
Collapse
|
24
|
Jamar F, Cunha L. Radiation protection issues with novel radionuclide therapies: a real challenge. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2023; 67:1-3. [PMID: 36630082 DOI: 10.23736/s1824-4785.22.03505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- François Jamar
- Department of Nuclear Medicine, Saint-Luc University Hospital and Institute of Clinical and Experimental Research (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium -
| | - Lidia Cunha
- Department of Nuclear Medicine and Molecular Imaging, IsoPor-Azores, Azores, Portugal
| |
Collapse
|
25
|
Turner JH. Philosophy of Cancer Theranostics. Cancer Biother Radiopharm 2023; 38:1-7. [PMID: 36493375 DOI: 10.1089/cbr.2022.0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Imagine a theranostic nuclear physician oncologist engaged in a Socratic philosophic dialogue. Questions that may be posed include the status of our current knowledge base of radiomolecular tumor biology, the meaning of precision in personalized dosimetry, the nature of responsibility for direct patient care, and the moral and ethical dimensions of individual quality of life (QOL) when survival is prolonged. This review invites reflective enquiry into one's personal practice of theranostics in cancer care, with the objective of optimizing clinical outcomes, not only in terms of prolonged survival but also individual QOL, in respect of its meaning for each patient, both physically and emotionally.
Collapse
Affiliation(s)
- J Harvey Turner
- Department of Nuclear Medicine, The University of Western Australia, Fiona Stanley Fremantle Hospitals Group, Murdoch, Australia
| |
Collapse
|
26
|
Pouget JP, Konijnenberg M, Eberlein U, Glatting G, Gabina PM, Herrmann K, Holm S, Strigari L, van Leeuwen FWB, Lassmann M. An EANM position paper on advancing radiobiology for shaping the future of nuclear medicine. Eur J Nucl Med Mol Imaging 2023; 50:242-246. [PMID: 36066665 PMCID: PMC9816280 DOI: 10.1007/s00259-022-05934-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jean-Pierre Pouget
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier (ICM), 208 Rue des Apothicaires, 34298, Montpellier, France.
| | - Mark Konijnenberg
- Radiology & Nuclear Medicine Department, Erasmus MC, Rotterdam, The Netherlands
| | - Uta Eberlein
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| | | | - Pablo Minguez Gabina
- Department of Medical Physics and Radiation Protection, Gurutzeta-Cruces University Hospital/Biocruces Health Research Institute, Barakaldo, Spain
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Søren Holm
- Department of Nuclear Medicine, Rigshospitalet, University Hospital Copenhagen, Copenhagen, Denmark
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Michael Lassmann
- Department of Nuclear Medicine, University of Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Salerno KE, Roy S, Ribaudo C, Fisher T, Patel RB, Mena E, Escorcia FE. A Primer on Radiopharmaceutical Therapy. Int J Radiat Oncol Biol Phys 2023; 115:48-59. [PMID: 35970373 PMCID: PMC9772089 DOI: 10.1016/j.ijrobp.2022.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022]
Abstract
The goal of this article is to serve as a primer for the United States-based radiation oncologist who may be interested in learning more about radiopharmaceutical therapy (RPT). Specifically, we define RPT, review the data behind its current and anticipated indications, and discuss important regulatory considerations for incorporating it into clinical practice. RPT represents an opportunity for radiation oncologists to leverage 2 key areas of expertise, namely therapeutic radiation therapy and oncology, and apply them in a distinct context in collaboration with nuclear medicine and medical oncology colleagues. Although not every radiation oncologist will incorporate RPT into their day-to-day practice, it is important to understand the role for this modality and how it can be appropriately used in select patients.
Collapse
Affiliation(s)
- Kilian E Salerno
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Soumyajit Roy
- Radiation Oncology Department, Rush Medical Center, Chicago, Illinois
| | - Cathy Ribaudo
- Division of Radiation Safety, National Institutes of Health, Bethesda, Maryland
| | - Teresa Fisher
- Division of Radiation Safety, National Institutes of Health, Bethesda, Maryland
| | - Ravi B Patel
- Radiation Oncology Department, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Esther Mena
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Freddy E Escorcia
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
28
|
Dierckx R, Herrmann K, Hustinx R, Lassmann M, Wadsak W, Kunikowska J. European Association of Nuclear Medicine (EANM) response to the proposed ASTRO's framework for radiopharmaceutical therapy curriculum development for trainees. Eur J Nucl Med Mol Imaging 2022; 50:1-3. [PMID: 36251026 DOI: 10.1007/s00259-022-06011-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Rudi Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Belgium and GIGA-CRC In Vivo Imaging, University of Liège, Liège, Belgium
| | - Michael Lassmann
- Department of Nuclear Medicine, University Würzburg, Würzburg, Germany
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed GmbH), Graz, Austria
| | - Jolanta Kunikowska
- Nuclear Medicine Department, Medical University of Warsaw, ul. Banacha 1 a, 02-097, Warsaw, Poland.
| |
Collapse
|
29
|
Quo Vadis, Teragnosis? Rev Esp Med Nucl Imagen Mol 2022; 41:341-344. [DOI: 10.1016/j.remnie.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022]
|
30
|
Vercher-Conejero JL. Quo Vadis, Teragnosis? Rev Esp Med Nucl Imagen Mol 2022. [DOI: 10.1016/j.remn.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Albumin-Mediated Size Exclusion Chromatography: The Apparent Molecular Weight of PSMA Radioligands as Novel Parameter to Estimate Their Blood Clearance Kinetics. Pharmaceuticals (Basel) 2022; 15:ph15091161. [PMID: 36145382 PMCID: PMC9500755 DOI: 10.3390/ph15091161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
A meticulously adjusted pharmacokinetic profile and especially fine-tuned blood clearance kinetics are key characteristics of therapeutic radiopharmaceuticals. We, therefore, aimed to develop a method that allowed the estimation of blood clearance kinetics in vitro. For this purpose, 177Lu-labeled PSMA radioligands were subjected to a SEC column with human serum albumin (HSA) dissolved in a mobile phase. The HSA-mediated retention time of each PSMA ligand generated by this novel 'albumin-mediated size exclusion chromatography' (AMSEC) was converted to a ligand-specific apparent molecular weight (MWapp), and a normalization accounting for unspecific interactions between individual radioligands and the SEC column matrix was applied. The resulting normalized MWapp,norm. could serve to estimate the blood clearance of renally excreted radioligands by means of their influence on the highly size-selective process of glomerular filtration (GF). Based on the correlation between MW and the glomerular sieving coefficients (GSCs) of a set of plasma proteins, GSCcalc values were calculated to assess the relative differences in the expected GF/blood clearance kinetics in vivo and to select lead candidates among the evaluated radioligands. Significant differences in the MWapp,norm. and GSCcalc values, even for stereoisomers, were found, indicating that AMSEC might be a valuable and high-resolution tool for the preclinical selection of therapeutic lead compounds for clinical translation.
Collapse
|
32
|
Present and future of target therapies and theranostics: refining traditions and exploring new frontiers—highlights from annals of Nuclear Medicine 2021. Eur J Nucl Med Mol Imaging 2022; 49:3613-3621. [DOI: 10.1007/s00259-022-05921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|