1
|
Yang T, Zhang N, Liu Y, Yang R, Wei Z, Liu F, Song D, Wang L, Wei J, Li Y, Shen D, Liang G. Nanoplatelets modified with RVG for targeted delivery of miR-375 and temozolomide to enhance gliomas therapy. J Nanobiotechnology 2024; 22:623. [PMID: 39402578 PMCID: PMC11476726 DOI: 10.1186/s12951-024-02895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Gliomas are one of the most frequent primary brain tumors and pose a serious threat to people's lives and health. Platelets, a crucial component of blood, have been applied as drug delivery carriers for disease diagnosis and treatment. In this study, we designed engineered nanoplatelets for targeted delivery of therapeutic miR-375 and temozolomide (TMZ, a first-line glioma treatment agent) to enhance glioma therapy. Nanoplatelets were prepared through mild ultrasound, TMZ and miR-375 were co-loaded through ultrasound and electrostatic interactions, respectively, to combine chemotherapy with gene therapy against glioma. To improve the blood brain barrier (BBB) crossing efficiency and glioma targeting ability, the nanoplatelets were modified with central nervous system-specific rabies viral glycoprotein peptide (RVG) through thiol-maleimide click reaction. The RVG modified nanoplatelets co-loaded TMZ and miR-375 (NR/TMZ/miR-375) not only inherited the good stability and remarkable biocompatibility of platelets, but also promoted the cellular uptake and penetration of glioma tissues, and effectively induced cell apoptosis to enhance the therapeutic effect of drugs. In vivo studies showed that NR/TMZ/miR-375 significantly increased the circulation time of TMZ, and exhibited superior combined antitumor effects. In summary, this multifunctional 'natural' nanodrug delivery system provides a potent, scalable, and safety approach for platelet-based combined cancer chemotherapy and gene therapy.
Collapse
Affiliation(s)
- Tingting Yang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
- Zhumadian Cental Hospital, Zhumadian, 463000, China
| | - Nan Zhang
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Yuanyuan Liu
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Ruyue Yang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Zhaoyi Wei
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Futai Liu
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Dan Song
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Longwei Wang
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Jiangyan Wei
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Yuanpei Li
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Deliang Shen
- Key Laboratory of Cardiac Injury and Repair of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China.
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
2
|
Cologni R, Holschbach M, Schneider D, Bier D, Schulze A, Stegmayr C, Endepols H, Ermert J, Neumaier F, Neumaier B. Preparation and Preclinical Evaluation of 18F-Labeled Olutasidenib Derivatives for Non-Invasive Detection of Mutated Isocitrate Dehydrogenase 1 (mIDH1). Molecules 2024; 29:3939. [PMID: 39203017 PMCID: PMC11356819 DOI: 10.3390/molecules29163939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Mutations of isocitrate dehydrogenase 1 (IDH1) are key biomarkers for glioma classification, but current methods for detection of mutated IDH1 (mIDH1) require invasive tissue sampling and cannot be used for longitudinal studies. Positron emission tomography (PET) imaging with mIDH1-selective radioligands is a promising alternative approach that could enable non-invasive assessment of the IDH status. In the present work, we developed efficient protocols for the preparation of four 18F-labeled derivatives of the mIDH1-selective inhibitor olutasidenib. All four probes were characterized by cellular uptake studies with U87 glioma cells harboring a heterozygous IDH1 mutation (U87-mIDH) and the corresponding wildtype cells (U87-WT). In addition, the most promising probe was evaluated by PET imaging in healthy mice and mice bearing subcutaneous U87-mIDH and U87-WT tumors. Although all four probes inhibited mIDH1 with variable potencies, only one of them ([18F]mIDH-138) showed significantly higher in vitro uptake into U87-mIDH compared to U87-WT cells. In addition, PET imaging with [18F]mIDH-138 in mice demonstrated good in vivo stability and low non-specific uptake of the probe, but also revealed significantly higher uptake into U87-WT compared to U87-mIDH tumors. Finally, application of a two-tissue compartment model (2TCM) to the PET data indicated that preferential tracer uptake into U87-WT tumors results from higher specific binding rather than from differences in tracer perfusion. In conclusion, these results corroborate recent findings that mIDH1-selective inhibition may not directly correlate with mIDH1-selective target engagement and indicate that in vivo engagement of wildtype and mutated IDH1 may be governed by factors that are not faithfully reproduced by in vitro assays, both of which could complicate development of PET probes.
Collapse
Affiliation(s)
- Roberta Cologni
- Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (R.C.); (M.H.); (D.S.); (D.B.); (A.S.); (H.E.); (J.E.); (F.N.)
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Marcus Holschbach
- Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (R.C.); (M.H.); (D.S.); (D.B.); (A.S.); (H.E.); (J.E.); (F.N.)
| | - Daniela Schneider
- Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (R.C.); (M.H.); (D.S.); (D.B.); (A.S.); (H.E.); (J.E.); (F.N.)
| | - Dirk Bier
- Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (R.C.); (M.H.); (D.S.); (D.B.); (A.S.); (H.E.); (J.E.); (F.N.)
| | - Annette Schulze
- Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (R.C.); (M.H.); (D.S.); (D.B.); (A.S.); (H.E.); (J.E.); (F.N.)
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine, Medical Imaging Physics (INM-4), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany;
| | - Heike Endepols
- Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (R.C.); (M.H.); (D.S.); (D.B.); (A.S.); (H.E.); (J.E.); (F.N.)
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Johannes Ermert
- Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (R.C.); (M.H.); (D.S.); (D.B.); (A.S.); (H.E.); (J.E.); (F.N.)
| | - Felix Neumaier
- Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (R.C.); (M.H.); (D.S.); (D.B.); (A.S.); (H.E.); (J.E.); (F.N.)
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428 Jülich, Germany; (R.C.); (M.H.); (D.S.); (D.B.); (A.S.); (H.E.); (J.E.); (F.N.)
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| |
Collapse
|
3
|
Nadporojskii MA, Orlovskaya VV, Fedorova OS, Sysoev DS, Krasikova RN. Automation of Copper-Mediated 18F-Fluorination of Aryl Pinacol Boronates Using 4-Dimethylaminopyridinium Triflate. Molecules 2024; 29:3342. [PMID: 39064920 PMCID: PMC11279627 DOI: 10.3390/molecules29143342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Currently, the copper-mediated radiofluorination of aryl pinacol boronates (arylBPin) using the commercially available, air-stable Cu(OTf)2Py4 catalyst is one of the most efficient synthesis approaches, greatly facilitating access to a range of radiotracers, including drug-like molecules with nonactivated aryl scaffolds. Further adjustment of this methodology, in particular, the [18F]fluoride recovery step for the routine preparation of radiotracers, has been the focus of recent research. In our recent study, an organic solution of 4-dimethylaminopyridinium trifluoromethanesulfonate (DMAPOTf) was found to be an efficient PTC for eluting radionuclides retained on the weak anion exchange cartridge, Oasis WAX 1cc, employing the inverse sorption-elution protocol. Notably, the following Cu-mediated radiofluorination of arylBPin precursors in the presence of the Cu(OTf)2(Py)4 catalyst can be performed with high efficiency in the same solvent, bypassing not only the conventional azeotropic drying procedure but any solvent replacement. In the current study, we aimed to translate this methodology, originally developed for remote-controlled operation with manual interventions, into the automated synthesis module on the TRACERlab automation platform. The adjustment of the reagent amounts and solvents allowed for high efficiency in the radiofluorination of a series of model arylBPin substrates on the TRACERlab FXFE Pro synthesis module, which was adapted for nucleophilic radiofluorinations. The practical applicability of the developed radiofluorination approach with DMAPOTf elution was demonstrated in the automated synthesis of 6-L-[18F]FDOPA. The radiotracer was obtained with an activity yield (AY; isolated, not decay-corrected) of 5.2 ± 0.5% (n = 3), with a synthesis time of ca. 70 min on the TRACERlab FX N Pro automation platform. The obtained AY was comparable with one reported by others (6 ± 1%) using the same boronate precursor, while a slightly higher AY of 6-L-[18F]FDOPA (14.5 ± 0.5%) was achieved in our previous work using commercially available Bu4NOTf as the PTC.
Collapse
Affiliation(s)
- Mikhail A. Nadporojskii
- Granov Russian Research Center of Radiology and Surgical Technologies, 197758 St. Petersburg, Russia; (M.A.N.); (D.S.S.)
| | - Viktoriya V. Orlovskaya
- N.P. Bechtereva Institute of the Human Brain, 197022 St. Petersburg, Russia; (V.V.O.); (O.S.F.)
| | - Olga S. Fedorova
- N.P. Bechtereva Institute of the Human Brain, 197022 St. Petersburg, Russia; (V.V.O.); (O.S.F.)
| | - Dmitry S. Sysoev
- Granov Russian Research Center of Radiology and Surgical Technologies, 197758 St. Petersburg, Russia; (M.A.N.); (D.S.S.)
| | - Raisa N. Krasikova
- N.P. Bechtereva Institute of the Human Brain, 197022 St. Petersburg, Russia; (V.V.O.); (O.S.F.)
| |
Collapse
|
4
|
Galldiks N, Lohmann P, Friedrich M, Werner JM, Stetter I, Wollring MM, Ceccon G, Stegmayr C, Krause S, Fink GR, Law I, Langen KJ, Tonn JC. PET imaging of gliomas: Status quo and quo vadis? Neuro Oncol 2024:noae078. [PMID: 38970818 DOI: 10.1093/neuonc/noae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
PET imaging, particularly using amino acid tracers, has become a valuable adjunct to anatomical MRI in the clinical management of patients with glioma. Collaborative international efforts have led to the development of clinical and technical guidelines for PET imaging in gliomas. The increasing readiness of statutory health insurance agencies, especially in European countries, to reimburse amino acid PET underscores its growing importance in clinical practice. Integrating artificial intelligence and radiomics in PET imaging of patients with glioma may significantly improve tumor detection, segmentation, and response assessment. Efforts are ongoing to facilitate the clinical translation of these techniques. Considerable progress in computer technology developments (eg quantum computers) may be helpful to accelerate these efforts. Next-generation PET scanners, such as long-axial field-of-view PET/CT scanners, have improved image quality and body coverage and therefore expanded the spectrum of indications for PET imaging in Neuro-Oncology (eg PET imaging of the whole spine). Encouraging results of clinical trials in patients with glioma have prompted the development of PET tracers directing therapeutically relevant targets (eg the mutant isocitrate dehydrogenase) for novel anticancer agents in gliomas to improve response assessment. In addition, the success of theranostics for the treatment of extracranial neoplasms such as neuroendocrine tumors and prostate cancer has currently prompted efforts to translate this approach to patients with glioma. These advancements highlight the evolving role of PET imaging in Neuro-Oncology, offering insights into tumor biology and treatment response, thereby informing personalized patient care. Nevertheless, these innovations warrant further validation in the near future.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Michel Friedrich
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Jan-Michael Werner
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Isabelle Stetter
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Michael M Wollring
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Sandra Krause
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
5
|
Ninatti G, Moresco RM, Sollini M. Molecular imaging of IDH-mutant gliomas in the new era of IDH inhibitors: preparing for future challenges. Eur J Nucl Med Mol Imaging 2024; 51:1421-1422. [PMID: 38191815 DOI: 10.1007/s00259-024-06591-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Affiliation(s)
- Gaia Ninatti
- University of Milano-Bicocca, Monza, Italy.
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Rosa Maria Moresco
- University of Milano-Bicocca, Monza, Italy
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Sollini
- Nuclear Medicine Department, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|