1
|
Kohan A, Hanneman K, Mirshahvalad SA, Afaq A, Mallak N, Metser U, Veit-Haibach P. Current Applications of PET/MR: Part II: Clinical Applications II. Can Assoc Radiol J 2024; 75:826-837. [PMID: 38836428 DOI: 10.1177/08465371241255904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Due to the major improvements in the hardware and image reconstruction algorithms, positron emission tomography/magnetic resonance imaging (PET/MR) is now a reliable state-of-the-art hybrid modality in medical practice. Currently, it can provide a broad range of advantages in preclinical and clinical imaging compared to single-modality imaging. In the second part of this review, we discussed the further clinical applications of PET/MR. In the chest, PET/MR has particular potential in the oncology setting, especially when utilizing ultrashort/zero echo time MR sequences. Furthermore, cardiac PET/MR can provide reliable information in evaluating myocardial inflammation, cardiac amyloidosis, myocardial perfusion, myocardial viability, atherosclerotic plaque, and cardiac masses. In gastrointestinal and hepato-pancreato-biliary malignancies, PET/MR is able to precisely detect metastases to the liver, being superior over the other imaging modalities. In genitourinary and gynaecology applications, PET/MR is a comprehensive diagnostic method, especially in prostate, endometrial, and cervical cancers. Its simultaneous acquisition has been shown to outperform other imaging techniques for the detection of pelvic nodal metastases and is also a reliable modality in radiation planning. Lastly, in haematologic malignancies, PET/MR can significantly enhance lymphoma diagnosis, particularly in detecting extra-nodal involvement. It can also comprehensively assess treatment-induced changes. Furthermore, PET/MR may soon become a routine in multiple myeloma management, being a one-stop shop for evaluating bone, bone marrow, and soft tissues.
Collapse
Affiliation(s)
- Andres Kohan
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Kate Hanneman
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Seyed Ali Mirshahvalad
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Asim Afaq
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nadine Mallak
- Department of Diagnostic Radiology, Oregon Health and Science University, Portland, OR, USA
| | - Ur Metser
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Patrick Veit-Haibach
- University Medical Imaging Toronto, Toronto Joint Department Medical Imaging, University Health Network, Sinai Health System, Women's College Hospital, University of Toronto, Toronto, ON, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Morakote W, Baratto L, Ramasamy SK, Adams LC, Liang T, Sarrami AH, Daldrup-Link HE. Comparison of diffusion-weighted MRI and [ 18F]FDG PET/MRI for treatment monitoring in pediatric Hodgkin and non-Hodgkin lymphoma. Eur Radiol 2024; 34:643-653. [PMID: 37542653 PMCID: PMC10993778 DOI: 10.1007/s00330-023-10015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/16/2023] [Accepted: 07/16/2023] [Indexed: 08/07/2023]
Abstract
OBJECTIVE To compare tumor therapy response assessments with whole-body diffusion-weighted imaging (WB-DWI) and 18F-fluorodeoxyglucose ([18F]FDG) PET/MRI in pediatric patients with Hodgkin lymphoma and non-Hodgkin lymphoma. MATERIALS AND METHODS In a retrospective, non-randomized single-center study, we reviewed serial simultaneous WB-DWI and [18F]FDG PET/MRI scans of 45 children and young adults (27 males; mean age, 13 years ± 5 [standard deviation]; age range, 1-21 years) with Hodgkin lymphoma (n = 20) and non-Hodgkin lymphoma (n = 25) between February 2018 and October 2022. We measured minimum tumor apparent diffusion coefficient (ADCmin) and maximum standardized uptake value (SUVmax) of up to six target lesions and assessed therapy response according to Lugano criteria and modified criteria for WB-DWI. We evaluated the agreement between WB-DWI- and [18F]FDG PET/MRI-based response classifications with Gwet's agreement coefficient (AC). RESULTS After induction chemotherapy, 95% (19 of 20) of patients with Hodgkin lymphoma and 72% (18 of 25) of patients with non-Hodgkin lymphoma showed concordant response in tumor metabolism and proton diffusion. We found a high agreement between treatment response assessments on WB-DWI and [18F]FDG PET/MRI (Gwet's AC = 0.94; 95% confidence interval [CI]: 0.82, 1.00) in patients with Hodgkin lymphoma, and a lower agreement for patients with non-Hodgkin lymphoma (Gwet's AC = 0.66; 95% CI: 0.43, 0.90). After completion of therapy, there was an excellent agreement between WB-DWI and [18F]FDG PET/MRI response assessments (Gwet's AC = 0.97; 95% CI: 0.91, 1). CONCLUSION Therapy response of Hodgkin lymphoma can be evaluated with either [18F]FDG PET or WB-DWI, whereas patients with non-Hodgkin lymphoma may benefit from a combined approach. CLINICAL RELEVANCE STATEMENT Hodgkin lymphoma and non-Hodgkin lymphoma exhibit different patterns of tumor response to induction chemotherapy on diffusion-weighted MRI and PET/MRI. KEY POINTS • Diffusion-weighted imaging has been proposed as an alternative imaging to assess tumor response without ionizing radiation. • After induction therapy, whole-body diffusion-weighted imaging and PET/MRI revealed a higher agreement in patients with Hodgkin lymphoma than in those with non-Hodgkin lymphoma. • At the end of therapy, whole-body diffusion-weighted imaging and PET/MRI revealed an excellent agreement for overall tumor therapy responses for all lymphoma types.
Collapse
Affiliation(s)
- Wipawee Morakote
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Palo Alto, CA, 94304, USA
- Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Lucia Baratto
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Palo Alto, CA, 94304, USA
| | - Shakthi K Ramasamy
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Palo Alto, CA, 94304, USA
| | - Lisa C Adams
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Palo Alto, CA, 94304, USA
| | - Tie Liang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Palo Alto, CA, 94304, USA
| | - Amir H Sarrami
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Palo Alto, CA, 94304, USA
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, 725 Welch Rd, Palo Alto, CA, 94304, USA.
| |
Collapse
|
3
|
Romero ÁB, Furtado FS, Sertic M, Goiffon RJ, Mahmood U, Catalano OA. Abdominal Positron Emission Tomography/Magnetic Resonance Imaging. Magn Reson Imaging Clin N Am 2023; 31:579-589. [PMID: 37741642 DOI: 10.1016/j.mric.2023.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI) is highly suited for abdominal pathologies. A precise co-registration of anatomic and metabolic data is possible thanks to the simultaneous acquisition, leading to accurate imaging. The literature shows that PET/MRI is at least as good as PET/CT and even superior for some indications, such as primary hepatic tumors, distant metastasis evaluation, and inflammatory bowel disease. PET/MRI allows whole-body staging in a single session, improving health care efficiency and patient comfort.
Collapse
Affiliation(s)
- Álvaro Badenes Romero
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA; Department of Nuclear Medicine, Joan XXIII Hospital, Tarragona, Spain
| | - Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Madaleine Sertic
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reece J Goiffon
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
4
|
Borhani A, Afyouni S, Attari MMA, Mohseni A, Catalano O, Kamel IR. PET/MR enterography in inflammatory bowel disease: A review of applications and technical considerations. Eur J Radiol 2023; 163:110846. [PMID: 37121100 DOI: 10.1016/j.ejrad.2023.110846] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Positron emission tomography (PET) magnetic resonance (MR) enterography is a novel hybrid imaging technique that is gaining popularity in the study of complex inflammatory disorders of the gastrointestinal system, such as inflammatory bowel disease (IBD). This imaging technique combines the metabolic information of PET imaging with the spatial resolution and soft tissue contrast of MR imaging. Several studies have suggested potential roles for PET/MR imaging in determining the activity status of IBD, evaluating treatment response, stratifying risk, and predicting long-term clinical outcomes. However, there are challenges in generalizing findings due to limited studies, technical aspects of hybrid MR/PET imaging, and clinical indications of this imaging modality. This review aims to further elucidate the possible role of PET/MR in IBD, highlight important technical aspects of imaging, and address potential pitfalls and prospects of this modality in IBDs.
Collapse
Affiliation(s)
- Ali Borhani
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Shadi Afyouni
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Mohammad Mirza Aghazadeh Attari
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Alireza Mohseni
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States
| | - Onofrio Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States; Harvard Medical School, 25 Shattuck St, Boston, MA 02115, United States
| | - Ihab R Kamel
- Russell H. Morgan Department of Radiology and Radiological Sciences, John's Hopkins Medicine, John's Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
5
|
Furtado FS, Mercaldo ND, Vahle T, Benkert T, Bradley WR, Ratanaprasatporn L, Seethamraju RT, Harisinghani MG, Lee S, Suarez-Weiss K, Umutlu L, Catana C, Pomykala KL, Domachevsky L, Bernstine H, Groshar D, Rosen BR, Catalano OA. Simultaneous multislice diffusion-weighted imaging versus standard diffusion-weighted imaging in whole-body PET/MRI. Eur Radiol 2023; 33:2536-2547. [PMID: 36460925 DOI: 10.1007/s00330-022-09275-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/20/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVE To compare standard (STD-DWI) single-shot echo-planar imaging DWI and simultaneous multislice (SMS) DWI during whole-body positron emission tomography (PET)/MRI regarding acquisition time, image quality, and lesion detection. METHODS Eighty-three adults (47 females, 57%), median age of 64 years (IQR 52-71), were prospectively enrolled from August 2018 to March 2020. Inclusion criteria were (a) abdominal or pelvic tumors and (b) PET/MRI referral from a clinician. Patients were excluded if whole-body acquisition of STD-DWI and SMS-DWI sequences was not completed. The evaluated sequences were axial STD-DWI at b-values 50-400-800 s/mm2 and the apparent diffusion coefficient (ADC), and axial SMS-DWI at b-values 50-300-800 s/mm2 and ADC, acquired with a 3-T PET/MRI scanner. Three radiologists rated each sequence's quality on a five-point scale. Lesion detection was quantified using the anatomic MRI sequences and PET as the reference standard. Regression models were constructed to quantify the association between all imaging outcomes/scores and sequence type. RESULTS The median whole-body STD-DWI acquisition time was 14.8 min (IQR 14.1-16.0) versus 7.0 min (IQR 6.7-7.2) for whole-body SMS-DWI, p < 0.001. SMS-DWI image quality scores were higher than STD-DWI in the abdomen (OR 5.31, 95% CI 2.76-10.22, p < 0.001), but lower in the cervicothoracic junction (OR 0.21, 95% CI 0.10-0.43, p < 0.001). There was no significant difference in the chest, mediastinum, pelvis, and rectum. STD-DWI detected 276/352 (78%) lesions while SMS-DWI located 296/352 (84%, OR 1.46, 95% CI 1.02-2.07, p = 0.038). CONCLUSIONS In cancer staging and restaging, SMS-DWI abbreviates acquisition while maintaining or improving the diagnostic yield in most anatomic regions. KEY POINTS • Simultaneous multislice diffusion-weighted imaging enables faster whole-body image acquisition. • Simultaneous multislice diffusion-weighted imaging maintains or improves image quality when compared to single-shot echo-planar diffusion-weighted imaging in most anatomical regions. • Simultaneous multislice diffusion-weighted imaging leads to superior lesion detection.
Collapse
Affiliation(s)
- Felipe S Furtado
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | - Nathaniel D Mercaldo
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Thomas Vahle
- MR Application Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052, Erlangen, Germany
| | - Thomas Benkert
- MR Application Predevelopment, Siemens Healthcare GmbH, Allee am Roethelheimpark 2, 91052, Erlangen, Germany
| | - William R Bradley
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Lisa Ratanaprasatporn
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA
| | - Ravi Teja Seethamraju
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
- MR Collaborations, Siemens Medical Solutions USA, Inc., 30 Jonathan Ln, Malden, MA, 02148, USA
| | - Mukesh G Harisinghani
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Susanna Lee
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Krista Suarez-Weiss
- Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA, 02115, USA
| | - Lale Umutlu
- Universitätsmedizin Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Ciprian Catana
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | | | - Liran Domachevsky
- Sheba Medical Center, Derech Sheba 2, Ramat Gan, Israel
- Tel Aviv University, 6997801, Tel Aviv-Yafo, Israel
| | - Hanna Bernstine
- Tel Aviv University, 6997801, Tel Aviv-Yafo, Israel
- Assuta Medical Center, HaBarzel 20 St, Ramat Hahayal, Tel Aviv, Israel
| | - David Groshar
- Tel Aviv University, 6997801, Tel Aviv-Yafo, Israel
- Assuta Medical Center, HaBarzel 20 St, Ramat Hahayal, Tel Aviv, Israel
| | - Bruse R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA
| | - Onofrio Antonio Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, 149 13th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
6
|
Mistry V, Scott JR, Wang TY, Mollee P, Miles KA, Law WP, Hapgood G. Diagnostic performance of prospective same-day 18F-FDG PET/MRI and 18F-FDG PET/CT in the staging and response assessment of lymphoma. Cancer Imaging 2023; 23:11. [PMID: 36694244 PMCID: PMC9872391 DOI: 10.1186/s40644-023-00520-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Accurate staging and response assessment are essential for prognosis and to guide treatment in patients with lymphoma. The aim of this study was to compare the diagnostic performance of FDG PET/MRI versus FDG PET/CT in adult patients with newly diagnosed Hodgkin and Non- Hodgkin lymphoma. METHODS In this single centre study, 50 patients were prospectively recruited. FDG PET/MRI was performed after staging FDG PET/CT using a single injection of 18F-FDG. Patients were invited to complete same-day FDG PET/MRI with FDG PET/CT at interim and end of treatment response assessments. Performance was assessed using PET/CT as the reference standard for disease site identification, staging, response assessment with Deauville score and concordance in metabolic activity. RESULTS Staging assessment showed perfect agreement (κ = 1.0, P = 0) between PET/MRI and PET/CT using Ann Arbor staging. There was excellent intermodality correlation with disease site identification at staging (κ = 0.976, P < 0.001) with FDG PET/MRI sensitivity of 96% (95% CI, 94-98%) and specificity of 100% (95% CI, 99-100%). There was good correlation of disease site identification at interim assessment (κ = 0.819, P < 0.001) and excellent correlation at end-of-treatment assessment (κ = 1.0, P < 0.001). Intermodality agreement for Deauville scores was good at interim assessment (κ = 0.808, P < 0.001) and excellent at end-of-treatment assessment (κ = 1.0, P = 0). There was good-excellent concordance in SUV max and mean between modalities across timepoints. Minimum calculated radiation patient effective dose saving was 54% between the two modalities per scan. CONCLUSION With high concordance in disease site identification, staging and response assessment, PET/MR is a potentially viable alternative to PET/CT in lymphoma that minimises radiation exposure.
Collapse
Affiliation(s)
- Vijay Mistry
- grid.412744.00000 0004 0380 2017Department of Medical Imaging, Princess Alexandra Hospital, Brisbane, Australia
| | - Justin R. Scott
- grid.1003.20000 0000 9320 7537QCIF Bioinformatics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Tzu-Yang Wang
- grid.412744.00000 0004 0380 2017Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia
| | - Peter Mollee
- grid.412744.00000 0004 0380 2017Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia ,grid.412744.00000 0004 0380 2017Translational Research Institute, Princess Alexandra Hospital, Brisbane, Australia
| | - Kenneth A. Miles
- grid.412744.00000 0004 0380 2017Department of Medical Imaging, Princess Alexandra Hospital, Brisbane, Australia ,grid.83440.3b0000000121901201Institute of Nuclear Medicine, University College London, University College Hospital, London, UK
| | - W. Phillip Law
- grid.412744.00000 0004 0380 2017Department of Medical Imaging, Princess Alexandra Hospital, Brisbane, Australia ,grid.412744.00000 0004 0380 2017Translational Research Institute, Princess Alexandra Hospital, Brisbane, Australia ,grid.1003.20000 0000 9320 7537School of Medicine, University of Queensland, Brisbane, Australia
| | - Greg Hapgood
- grid.412744.00000 0004 0380 2017Department of Haematology, Princess Alexandra Hospital, Brisbane, Australia ,grid.412744.00000 0004 0380 2017Translational Research Institute, Princess Alexandra Hospital, Brisbane, Australia
| |
Collapse
|
7
|
Sjöholm T, Korenyushkin A, Gammelgård G, Sarén T, Lövgren T, Loskog A, Essand M, Kullberg J, Enblad G, Ahlström H. Whole body FDG PET/MR for progression free and overall survival prediction in patients with relapsed/refractory large B-cell lymphomas undergoing CAR T-cell therapy. Cancer Imaging 2022; 22:76. [PMID: 36575477 PMCID: PMC9793670 DOI: 10.1186/s40644-022-00513-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND To find semi-quantitative and quantitative Positron Emission Tomography/Magnetic Resonance (PET/MR) imaging metrics of both tumor and non-malignant lymphoid tissue (bone marrow and spleen) for Progression Free Survival (PFS) and Overall Survival (OS) prediction in patients with relapsed/refractory (r/r) large B-cell lymphoma (LBCL) undergoing Chimeric Antigen Receptor (CAR) T-cell therapy. METHODS A single-center prospective study of 16 r/r LBCL patients undergoing CD19-targeted CAR T-cell therapy. Whole body 18F-fluorodeoxyglucose (FDG) PET/MR imaging pre-therapy and 3 weeks post-therapy were followed by manual segmentation of tumors and lymphoid tissues. Semi-quantitative and quantitative metrics were extracted, and the metric-wise rate of change (Δ) between post-therapy and pre-therapy calculated. Tumor metrics included maximum Standardized Uptake Value (SUVmax), mean SUV (SUVmean), Metabolic Tumor Volume (MTV), Tumor Lesion Glycolysis (TLG), structural volume (V), total structural tumor burden (Vtotal) and mean Apparent Diffusion Coefficient (ADCmean). For lymphoid tissues, metrics extracted were SUVmean, mean Fat Fraction (FFmean) and ADCmean for bone marrow, and SUVmean, V and ADCmean for spleen. Univariate Cox regression analysis tested the relationship between extracted metrics and PFS and OS. Survival curves were produced using Kaplan-Meier analysis and compared using the log-rank test, with the median used for dichotomization. Uncorrected p-values < 0.05 were considered statistically significant. Correction for multiple comparisons was performed, with a False Discovery Rate (FDR) < 0.05 considered statistically significant. RESULTS Pre-therapy (p < 0.05, FDR < 0.05) and Δ (p < 0.05, FDR > 0.05) total tumor burden structural and metabolic metrics were associated with PFS and/or OS. According to Kaplan-Meier analysis, a longer PFS was reached for patients with pre-therapy MTV ≤ 39.5 ml, ΔMTV≤1.35 and ΔTLG≤1.35. ΔSUVmax was associated with PFS (p < 0.05, FDR > 0.05), while ΔADCmean was associated with both PFS and OS (p < 0.05, FDR > 0.05). ΔADCmean > 0.92 gave longer PFS and OS in the Kaplan-Meier analysis. Pre-therapy bone marrow SUVmean was associated with PFS (p < 0.05, FDR < 0.05) and OS (p < 0.05, FDR > 0.05). For bone marrow FDG uptake, patient stratification was possible pre-therapy (SUVmean ≤ 1.8). CONCLUSIONS MTV, tumor ADCmean and FDG uptake in bone marrow unaffected by tumor infiltration are possible PET/MR parameters for prediction of PFS and OS in r/r LBCL treated with CAR T-cells. TRIAL REGISTRATION EudraCT 2016-004043-36.
Collapse
Affiliation(s)
- Therese Sjöholm
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Gustav Gammelgård
- grid.8993.b0000 0004 1936 9457Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tina Sarén
- grid.8993.b0000 0004 1936 9457Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Tanja Lövgren
- grid.8993.b0000 0004 1936 9457Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Angelica Loskog
- grid.8993.b0000 0004 1936 9457Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Magnus Essand
- grid.8993.b0000 0004 1936 9457Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Joel Kullberg
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.511796.dAntaros Medical AB, Mölndal, Sweden
| | - Gunilla Enblad
- grid.8993.b0000 0004 1936 9457Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- grid.8993.b0000 0004 1936 9457Department of Surgical Sciences, Uppsala University, Uppsala, Sweden ,grid.511796.dAntaros Medical AB, Mölndal, Sweden
| |
Collapse
|
8
|
Husby T, Johansen H, Bogsrud TV, Hustad KV, Evensen BV, Boellaard R, Giskeødegård GF, Fagerli UM, Eikenes L. Prognostic value of combined MTV and ADC derived from baseline FDG PET/MRI in aggressive non-Hodgkins lymphoma. BMC Cancer 2022; 22:1117. [PMID: 36319985 PMCID: PMC9623965 DOI: 10.1186/s12885-022-10194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
PURPOSE The aim of this prospective study was to investigate the prognostic value of metabolic tumor volume (MTV) and apparent diffusion coefficient (ADC) from baseline FDG PET/MRI compared to established clinical risk factors in terms of progression free survival (PFS) at 2 years in a cohort of diffuse large B-cell Lymphoma (DLBCL) and high-grade-B-cell lymphoma (HGBCL). METHODS Thirty-three patients and their baseline PET/MRI examinations were included. Images were read by two pairs of nuclear medicine physicians and radiologists for defining lymphoma lesions. MTV was computed on PET, and up to six lymphoma target lesions with restricted diffusion was defined for each PET/MRI examination. Minimum ADC (ADCmin) and the corresponding mean ADC (ADCmean) from the target lesion with the lowest ADCmin were included in the analyses. For the combined PET/MRI parameters, the ratio between MTV and the target lesion with the lowest ADCmin (MTV/ADCmin) and the corresponding ADCmean (MTV/ADCmean) was calculated for each patient. Clinical, histological, and PET/MRI parameters were compared between the treatment failure and treatment response group, while survival analyses for each variable was performed by using univariate Cox regression. In case of significant variables in the Cox regression analyses, Kaplan-Meier survival analyses with log-rank test was used to study the effect of the variables on PFS. RESULTS ECOC PS scale ≥2 (p = 0.05) and ADCmean (p = 0.05) were significantly different between the treatment failure group (n = 6) and those with treatment response (n = 27). Survival analyses showed that ADCmean was associated with PFS (p = 0.02, [HR 2.3 for 1 SD increase]), while combining MTV and ADC did not predict outcome. In addition, ECOG PS ≥2 (p = 0.01, [HR 13.3]) and histology of HGBCL (p = 0.02 [HR 7.6]) was significantly associated with PFS. CONCLUSIONS ADCmean derived from baseline MRI could be a prognostic imaging biomarker for DLBCL and HGBCL. Baseline staging with PET/MRI could therefore give supplementary prognostic information compared to today's standard PET/CT.
Collapse
Affiliation(s)
- Trine Husby
- grid.5947.f0000 0001 1516 2393Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks, 8905 Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Oncology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Håkon Johansen
- grid.52522.320000 0004 0627 3560Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Trond Velde Bogsrud
- grid.412244.50000 0004 4689 5540PET-Centre, University Hospital of North Norway, Tromsø, Norway ,grid.154185.c0000 0004 0512 597XPET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Kari Vekseth Hustad
- grid.52522.320000 0004 0627 3560Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Birte Veslemøy Evensen
- grid.52522.320000 0004 0627 3560Department of Radiology and Nuclear Medicine, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ronald Boellaard
- grid.4494.d0000 0000 9558 4598Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands ,grid.16872.3a0000 0004 0435 165XDepartment of Radiology and Nuclear Medicine, Cancer Center Amsterdam, University Medical Centers Amsterdam, VUMC, Amsterdam, The Netherlands
| | - Guro F. Giskeødegård
- grid.5947.f0000 0001 1516 2393Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Unn-Merete Fagerli
- grid.52522.320000 0004 0627 3560Department of Oncology, St. Olavs hospital, Trondheim University Hospital, Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- grid.5947.f0000 0001 1516 2393Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks, 8905 Trondheim, Norway
| |
Collapse
|
9
|
Zhang X, Jiang H, Wu S, Wang J, Zhou R, He X, Qian S, Zhao S, Zhang H, Civelek AC, Tian M. Positron Emission Tomography Molecular Imaging for Phenotyping and Management of Lymphoma. PHENOMICS (CHAM, SWITZERLAND) 2022; 2:102-118. [PMID: 36939797 PMCID: PMC9590515 DOI: 10.1007/s43657-021-00042-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 10/19/2022]
Abstract
Positron emission tomography (PET) represents molecular imaging for non-invasive phenotyping of physiological and biochemical processes in various oncological diseases. PET imaging with 18F-fluorodeoxyglucose (18F-FDG) for glucose metabolism evaluation is the standard imaging modality for the clinical management of lymphoma. One of the 18F-FDG PET applications is the detection and pre-treatment staging of lymphoma, which is highly sensitive. 18F-FDG PET is also applied during treatment to evaluate the individual chemo-sensitivity and accordingly guide the response-adapted therapy. At the end of the therapy regiment, a negative PET scan is indicative of a good prognosis in patients with advanced Hodgkin's lymphoma and diffuse large B-cell lymphoma. Thus, adjuvant radiotherapy may be alleviated. Future PET studies using non-18F-FDG radiotracers, such as 68Ga-labeled pentixafor (a cyclic pentapeptide that enables sensitive and high-contrast imaging of C-X-C motif chemokine receptor 4), 68Ga-labeled fibroblast activation protein inhibitor (FAPI) that reflects the tumor microenvironment, and 89Zr-labeled atezolizumab that targets the programmed cell death-ligand 1 (PD-L1), may complement 18F-FDG and offer essential tools to decode lymphoma phenotypes further and identify the mechanisms of lymphoma therapy.
Collapse
Affiliation(s)
- Xiaohui Zhang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Han Jiang
- grid.411176.40000 0004 1758 0478PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, 350001 Fujian China
| | - Shuang Wu
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Jing Wang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Rui Zhou
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Xuexin He
- grid.412465.0Department of Medical Oncology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
| | - Shufang Qian
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Shuilin Zhao
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China
| | - Hong Zhang
- grid.412465.0Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009 Zhejiang China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XInstitute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 310009 Zhejiang China
- grid.13402.340000 0004 1759 700XKey Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310027 Zhejiang China
- grid.13402.340000 0004 1759 700XCollege of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027 Zhejiang China
| | - Ali Cahid Civelek
- grid.469474.c0000 0000 8617 4175Department of Radiology and Radiological Science, Johns Hopkins Medicine, Baltimore, MD 21287 USA
| | - Mei Tian
- grid.8547.e0000 0001 0125 2443Human Phenome Institute, Fudan University, Shanghai, 201203 China
| |
Collapse
|
10
|
Husby T, Johansen H, Bogsrud T, Hustad KV, Evensen BV, Boellard R, Giskeødegård GF, Fagerli UM, Eikenes L. A comparison of FDG PET/MR and PET/CT for staging, response assessment, and prognostic imaging biomarkers in lymphoma. Ann Hematol 2022; 101:1077-1088. [PMID: 35174405 PMCID: PMC8993743 DOI: 10.1007/s00277-022-04789-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022]
Abstract
The aim of the current study was to investigate the diagnostic performance of FDG PET/MR compared to PET/CT in a patient cohort including Hodgkins lymphoma, diffuse large B-cell lymphoma, and high-grade B-cell lymphoma at baseline and response assessment. Sixty-one patients were examined with FDG PET/CT directly followed by PET/MR. Images were read by two pairs of nuclear medicine physicians and radiologists. Concordance for lymphoma involvement between PET/MR and the reference standard PET/CT was assessed at baseline and response assessment. Correlation of prognostic biomarkers Deauville score, criteria of response, SUVmax, SUVpeak, and MTV was performed between PET/MR and PET/CT. Baseline FDG PET/MR showed a sensitivity of 92.5% and a specificity 97.9% compared to the reference standard PET/CT (κ 0.91) for nodal sites. For extranodal sites, a sensitivity of 80.4% and a specificity of 99.5% were found (κ 0.84). Concordance in Ann Arbor was found in 57 of 61 patients (κ 0.92). Discrepancies were due to misclassification of region and not lesion detection. In response assessment, a sensitivity of 100% and a specificity 99.9% for all sites combined were found (κ 0.92). There was a perfect agreement on Deauville scores 4 and 5 and criteria of response between the two modalities. Intraclass correlation coefficient (ICC) for SUVmax, SUVpeak, and MTV values showed excellent reliability (ICC > 0.9). FDG PET/MR is a reliable alternative to PET/CT in this patient population, both in terms of lesion detection at baseline staging and response assessment, and for quantitative prognostic imaging biomarkers.
Collapse
Affiliation(s)
- Trine Husby
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim, Norway.,Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Trond Bogsrud
- PET-Centre, University Hospital of North Norway, Tromsø, Norway.,Aarhus University Hosipital, Aarhus, Denmark
| | - Kari Vekseth Hustad
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Birte Veslemøy Evensen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Ronald Boellard
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands.,Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, University Medical Centers Amsterdam, VUMC, Amsterdam, The Netherlands
| | - Guro F Giskeødegård
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Unn-Merete Fagerli
- Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Postboks 8905, Trondheim, Norway.
| |
Collapse
|
11
|
Furtado FS, Johnson MK, Catalano OA. PET imaging of hematological neoplasia. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00119-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
12
|
Queiroz MA, Ortega CD, Ferreira FR, Capareli FC, Nahas SC, Cerri GG, Buchpiguel CA. Value of Primary Rectal Tumor PET/MRI in the Prediction of Synchronic Metastatic Disease. Mol Imaging Biol 2021; 24:453-463. [PMID: 34755248 DOI: 10.1007/s11307-021-01674-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE To analyze the associations between positron emission tomography (PET)/magnetic resonance imaging (MRI) features for primary rectal tumors and metastases. PROCEDURES Between November 2016 and April 2018, 101 patients with rectal adenocarcinoma were included in this prospective study (NCT02537340) for whole-body PET/MRI for baseline staging. Two readers analyzed the PET/MRI; they assessed the semiquantitative PET features of the primary tumor and the N- and M-stages. Another reader analyzed the MRI features for locoregional staging. The reference standard for confirming metastatic disease was biopsy or imaging follow-up. Non-parametric tests were used to compare the PET/MRI features of the participants with or without metastatic disease. Binary logistic regression was used to evaluate the associations between the primary tumor PET/MRI features and metastatic disease. RESULTS A total of 101 consecutive participants (median age 62 years; range: 33-87 years) were included. Metastases were detected in 35.6% (36 of 101) of the participants. Among the PET/MRI features, higher tumor lesion glycolysis (352.95 vs 242.70; P = .46) and metabolic tumor volume (36.15 vs 26.20; P = .03) were more frequent in patients with than in those without metastases. Additionally, patients with metastases had a higher incidence of PET-positive (64% vs 32%; P = .009) and MRI-positive (56% vs 32%; P = .03) mesorectal lymph nodes, extramural vascular invasion (86% vs 49%; P > .001), and involvement of mesorectal fascia (64% vs 42%; P = .04); there were also differences between the mrT stages of these two groups (P = .008). No differences in the maximum standardized uptake values for the primary tumors in patients with and without metastases were observed (18.9 vs 19.1; P = .56). Multivariable logistic regression showed that extramural vascular invasion on MRI was the only significant predictor (adjusted odds ratio, 3.8 [95% CI: 1.1, 13.9]; P = .001). CONCLUSION PET/MRI facilitated the identification of participants with a high risk of metastatic disease, though these findings were based mainly on MRI features.
Collapse
Affiliation(s)
- Marcelo A Queiroz
- Nuclear Medicine Division, Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovidio Pires de Campos, 872, Sao Paulo, SP, 05403-010, Brazil.
| | - Cinthia D Ortega
- Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Felipe R Ferreira
- Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Fernanda C Capareli
- Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sergio C Nahas
- Department of Surgery, Division of Colorectal Surgery, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Giovanni G Cerri
- Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Carlos A Buchpiguel
- Nuclear Medicine Division, Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovidio Pires de Campos, 872, Sao Paulo, SP, 05403-010, Brazil
| |
Collapse
|
13
|
Esfahani SA, Torrado-Carvajal A, Amorim BJ, Groshar D, Domachevsky L, Bernstine H, Stein D, Gervais D, Catalano OA. PET/MRI and PET/CT Radiomics in Primary Cervical Cancer: A Pilot Study on the Correlation of Pelvic PET, MRI, and CT Derived Image Features. Mol Imaging Biol 2021; 24:60-69. [PMID: 34622425 DOI: 10.1007/s11307-021-01658-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE To evaluate the correlation of radiomic features in pelvic [2-deoxy-2-18F]fluoro-D-glucose positron emission tomography/magnetic resonance imaging and computed tomography ([18F]FDG PET/MRI and [18F]FDG PET/CT) in patients with primary cervical cancer (CCa). PROCEDURES Nineteen patients with histologically confirmed primary squamous cell carcinoma of the cervix underwent same-day [18F]FDG PET/MRI and PET/CT. Two nuclear medicine physicians performed a consensus reading in random order. Free-hand regions of interest covering the primary cervical tumors were drawn on PET, contrast-enhanced pelvic CT, and pelvic MR (T2 weighted and ADC) images. Several basic imaging features, standard uptake values (SUVmean, SUVmax, and SUVpeak), total lesion glycolysis (TLG), metabolic tumor volume (MTV), and more advanced texture analysis features were calculated. Pearson's correlation test was used to assess the correlation between each pair of features. Features were compared between local and metastatic tumors, and their role in predicting metastasis was evaluated by receiver operating characteristic curves. RESULTS For a total of 101 extracted features, 1104/5050 pairs of features showed a significant correlation (ρ ≥ 0.70, p < 0.05). There was a strong correlation between 190/484 PET pairs of features from PET/MRI and PET/CT, 91/418 pairs of CT and PET from PET/CT, 79/418 pairs of T2 and PET from PET/MRI, and 50/418 pairs of ADC and PET from PET/MRI. Significant difference was seen between eight features in local and metastatic tumors including MTV, TLG, and entropy on PET from PET/CT; MTV and TLG on PET from PET/MRI; compactness and entropy on T2; and entropy on ADC images. CONCLUSIONS We demonstrated strong correlation of many extracted radiomic features between PET/MRI and PET/CT. Eight radiomic features calculated on PET/CT and PET/MRI were significantly different between local and metastatic CCa. This study paves the way for future studies to evaluate the diagnostic and predictive potential of radiomics that could guide clinicians toward personalized patients care.
Collapse
Affiliation(s)
- Shadi A Esfahani
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA, USA
| | - Angel Torrado-Carvajal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA, USA.,Medical Image Analysis and Biometry Lab, Universidad Rey Juan Carlos, Madrid, Spain
| | - Barbara Juarez Amorim
- Division of Nuclear Medicine, State University of Campinas (UNICAMP), Campinas, Brazil
| | - David Groshar
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Nuclear Medicine and Radiology, Assuta Medical Centers, Tel-Aviv, Israel
| | - Liran Domachevsky
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Nuclear Medicine and Radiology, Assuta Medical Centers, Tel-Aviv, Israel
| | - Hanna Bernstine
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Nuclear Medicine and Radiology, Assuta Medical Centers, Tel-Aviv, Israel
| | - Dan Stein
- Department of Nuclear Medicine and Radiology, Assuta Medical Centers, Tel-Aviv, Israel
| | - Debra Gervais
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Division of Abdominal Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA. .,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital Boston and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Gallamini A, Kurlapski M, Zaucha JM. FDG-PET/CT for the Management of Post-Chemotherapy Residual Mass in Hodgkin lymphoma. Cancers (Basel) 2021; 13:cancers13163952. [PMID: 34439108 PMCID: PMC8391562 DOI: 10.3390/cancers13163952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary In the present review the authors report the predictive value of FDG/PET-CT (PET) on treatment outcome of Hodgkin lymphoma patients showing a post-chemotherapy residual mass, based on the published reports of PET-guided consolidation radiotherapy after different-intensity chemotherapy regimens such as ABVD or BEACOPPescalated. A special focus will be dedicated to the role of PET for assessing patients with a residual mass during and after immunotherapy with immune checkpoint inhibitors. Finally, the interpretation criteria of PET will be also reviewed, and the role of alternative imaging techniques discussed. Abstract In the present review, the authors report the published evidence on the use of functional imaging with FDG-PET/CT in assessing the final response to treatment in Hodgkin lymphoma. Despite a very high overall Negative Predictive Value of post-chemotherapy PET on treatment outcome ranging from 94% to 86%, according to different treatment intensity, the Positive Predicting Value proved much lower (40–25%). In the present review the Authors discuss the role of PET to guide consolidation RT over a RM after different chemotherapy regimens, both in early and in advanced-stage disease. A particular emphasis is dedicated to the peculiar issue of the qualitative versus semi-quantitative methods for End-of Therapy PET scan interpretation. A short hint will be given on the role of FDG-PET to assess the treatment outcome after immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Andrea Gallamini
- Research and Clinical Innovation Department, Antoine Lacassagne Cancer Centre, 06189 Nice, France
- Correspondence:
| | - Michał Kurlapski
- Haematology and Bone Marrow Transplantation Department, Medical University of Gdansk, 80-214 Gdansk, Poland; (M.K.); (J.M.Z.)
| | - Jan Maciej Zaucha
- Haematology and Bone Marrow Transplantation Department, Medical University of Gdansk, 80-214 Gdansk, Poland; (M.K.); (J.M.Z.)
| |
Collapse
|
15
|
Furtado FS, Suarez-Weiss KE, Vangel M, Clark JW, Cusack JC, Hong T, Blaszkowsky L, Wo J, Striar R, Umutlu L, Daldrup-Link HE, Groshar D, Rocco R, Bordeianou L, Anderson MA, Mojtahed A, Qadan M, Ferrone C, Catalano OA. Clinical impact of PET/MRI in oligometastatic colorectal cancer. Br J Cancer 2021; 125:975-982. [PMID: 34282295 DOI: 10.1038/s41416-021-01494-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Oligometastatic colorectal cancer (CRC) is potentially curable and demands individualised strategies. METHODS This single-centre retrospective study investigated if positron emission tomography (PET)/magnetic resonance imaging (MR) had a clinical impact on oligometastatic CRC relative to the standard of care imaging (SCI). Adult patients with oligometastatic CRC on SCI who also underwent PET/MR between 3/2016 and 3/2019 were included. The exclusion criterion was lack of confirmatory standard of reference, either surgical pathology, intraoperative gross confirmation or imaging follow-up. SCI consisted of contrast-enhanced (CE) computed tomography (CT) of the chest/abdomen/pelvis, abdominal/pelvic CE-MR, and/or CE whole-body PET/CT with diagnostic quality (i.e. standard radiation dose) CT. Follow-up was evaluated until 3/2020. RESULTS Thirty-one patients constituted the cohort, 16 (52%) male, median patient age was 53 years (interquartile range: 49-65 years). PET/MR and SCI results were divergent in 19% (95% CI 9-37%) of the cases, with PET/MR leading to management changes in all of them. The diagnostic accuracy of PET/MR was 90 ± 5%, versus 71 ± 8% for SCI. In a pairwise analysis, PET/MR outperformed SCI when compared to the reference standard (p = 0.0412). CONCLUSIONS These findings suggest the potential usefulness of PET/MR in the management of oligometastatic CRC.
Collapse
Affiliation(s)
- Felipe S Furtado
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
| | | | - Mark Vangel
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA.,Biostatistics Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey W Clark
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James C Cusack
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theodore Hong
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lawrence Blaszkowsky
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Newton-Wellesley Hospital, Newton, MA, USA
| | - Jennifer Wo
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Robin Striar
- Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA
| | | | | | - David Groshar
- Assuta Medical Centers, Tel Aviv, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ricciardi Rocco
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Mark A Anderson
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Motaz Qadan
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cristina Ferrone
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Onofrio A Catalano
- Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA. .,Martinos Center for Biomedical Imaging, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Advances in radiological staging of colorectal cancer. Clin Radiol 2021; 76:879-888. [PMID: 34243943 DOI: 10.1016/j.crad.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
The role of imaging in clinically staging colorectal cancer has grown substantially in the 21st century with more widespread availability of multi-row detector computed tomography (CT), high-resolution magnetic resonance imaging (MRI) with diffusion weighted imaging (DWI), and integrated positron-emission tomography (PET)/CT. In contrast to staging many other cancers, increasing colorectal cancer stage does not highly correlate with survival. As has been the case previously, clinical practice incorporates advances in staging and it is used to guide therapy before adoption into international staging guidelines. Emerging imaging techniques show promise to become part of future staging standards.
Collapse
|
17
|
Picardi M, Cavaliere C, Della Pepa R, Nicolai E, Soricelli A, Giordano C, Pugliese N, Rascato MG, Cappuccio I, Campagna G, Cerchione C, Vigliar E, Troncone G, Mascolo M, Franzese M, Castaldo R, Salvatore M, Pane F. PET/MRI for staging patients with Hodgkin lymphoma: equivalent results with PET/CT in a prospective trial. Ann Hematol 2021; 100:1525-1535. [PMID: 33909101 PMCID: PMC8116299 DOI: 10.1007/s00277-021-04537-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/16/2021] [Indexed: 01/07/2023]
Abstract
To compare FDG-PET/unenhanced MRI and FDG-PET/diagnostic CT in detecting infiltration in patients with newly diagnosed Hodgkin lymphoma (HL). The endpoint was equivalence between PET/MRI and PET/CT in correctly defining the revised Ann Arbor staging system. Seventy consecutive patients with classical-HL were prospectively investigated for nodal and extra-nodal involvement during pretreatment staging with same-day PET/CT and PET/MRI. Findings indicative of malignancy with the imaging procedures were regarded as lymphoma infiltration; in case of discrepancy, positive-biopsy and/or response to treatment were evidenced as lymphoma. Sixty of the 70 (86%) patients were evaluable having completed the staging program. Disease staging based on either PET/MRI or PET/CT was correct for 54 of the 60 patients (90% vs. 90%), with difference between proportions of 0.0 (95% CI, -9 to 9%; P=0.034 for the equivalence test). As compared with reference standard, invasion of lymph nodes was identified with PET/MRI in 100% and with PET/CT in 100%, of the spleen with PET/MRI in 66% and PET/CT in 55%, of the lung with PET/MRI in 60% and PET/CT in 100%, of the liver with PET/MRI in 67% and PET/CT in 100%, and of the bone with PET/MRI in 100% and PET/CT in 50%. The only statistically significant difference between PET/MRI and PET/CT was observed in bony infiltration detection rates. For PET/CT, iodinate contrast medium infusions' average was 86 mL, and exposure to ionizing radiation was estimated to be 4-fold higher than PET/MRI. PET/MRI is a promising safe new alternative in the care of patients with HL.
Collapse
Affiliation(s)
- M Picardi
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - C Cavaliere
- Department of Nuclear Medicine and Radiology, IRCCS SDN, Via Emanuele Gianturco 113, 80143, Naples, Italy
| | - R Della Pepa
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Via Sergio Pansini, 5, 80131, Naples, Italy.
| | - E Nicolai
- Department of Nuclear Medicine and Radiology, IRCCS SDN, Via Emanuele Gianturco 113, 80143, Naples, Italy
| | - A Soricelli
- Department of Radiology, University of Naples Parthenope -IRCCS SDN, Via Ferdinando Acton 38, 80143, Naples, Italy
| | - C Giordano
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - N Pugliese
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - M G Rascato
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - I Cappuccio
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - G Campagna
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - C Cerchione
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - E Vigliar
- Department of Public Health, Federico II University Medical School Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - G Troncone
- Department of Public Health, Federico II University Medical School Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - M Mascolo
- Department of Advanced Biomedical Sciences, Federico II University Medical School Naples, Via Sergio Pansini, 5, 80131, Naples, Italy
| | - M Franzese
- Department of Nuclear Medicine and Radiology, IRCCS SDN, Via Emanuele Gianturco 113, 80143, Naples, Italy
| | - R Castaldo
- Department of Nuclear Medicine and Radiology, IRCCS SDN, Via Emanuele Gianturco 113, 80143, Naples, Italy
| | - M Salvatore
- Department of Nuclear Medicine and Radiology, IRCCS SDN, Via Emanuele Gianturco 113, 80143, Naples, Italy
| | - F Pane
- Department of Clinical Medicine and Surgery, Federico II University Medical School, Via Sergio Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
18
|
Ke Q, Liao CC, Tan XH, Guo BP, Cen H, Li LQ. Diagnostic accuracy of pelvic magnetic resonance imaging for the assessment of bone marrow involvement in diffuse large B-cell lymphoma. PLoS One 2021; 16:e0252226. [PMID: 34043683 PMCID: PMC8158887 DOI: 10.1371/journal.pone.0252226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/12/2021] [Indexed: 12/03/2022] Open
Abstract
Purpose We investigated the efficacy of pelvic magnetic resonance imaging (MRI) in the diagnosis of bone marrow involvement (BMinv) in diffuse large B-cell lymphoma (DLBCL) patients. Patients and methods This was a retrospective study of data from a previous study (NCT02733887). We included 171 patients who underwent bone marrow biopsy (BMB) and bone marrow smear (BMS), pelvic MRI, and whole-body positron emission tomography-computed tomography (PET/CT) from January 2016 to December 2019 at a single center. BMB/BMS and whole-body PET/CT results were used as reference standards against which we calculated the diagnostic value of pelvic MRI for BMinv in DLBCL patients. A chi-square test was used to compare detection rates, and a receiver operating characteristic curve was used to evaluate diagnostic value of pelvic MRI. Propensity-score matching was performed according to clinical information, and Kaplan-Meier curves were constructed to compare progression-free survival (PFS) and overall survival (OS) of patients. Results The BMinv detection rate of pelvic MRI (42/171) was higher (P = 0.029) than that of BMB/BMS (25/171), and similar to that of PET/CT (44/171; P = 0.901). The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of pelvic MRI were 83.33%, 98.37%, 94.15%, 95.24%, and 93.80%, respectively. Median PFS values were as follows: BMB/BMS-positive, 17.8 months vs. BMB/BMS-negative, 26.9 months (P = 0.092); PET/CT-positive, 24.8 months vs. PET/CT-negative, 33.0 months (P = 0.086); pelvic MRI-positive, 24.9 months vs. pelvic MRI-negative, 33.1 months (P<0.001). Median OS values were as follows: BMB/BMS-positive, 22.3 months vs. BMB/BMS-negative, 29.8 months (P = 0.240); PET/CT-positive, 27.9 months vs. PET/CT-negative, 33.9 months (P = 0.365); pelvic MRI-positive, 27.3 months vs. pelvic MRI-negative, 35.8 months (P = 0.062). Conclusion Pelvic MRI is effective for detecting BMinv in DLBCL patients, providing a more accurate indication of PFS than BMB/BMS and PET/CT do. It may ultimately be used to improve the accuracy of clinical staging, guide patient treatment, and evaluate prognosis.
Collapse
Affiliation(s)
- Qing Ke
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Cheng-Cheng Liao
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiao-Hong Tan
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bao-Ping Guo
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hong Cen
- Department of Hematology/Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
- * E-mail: (HC); (LQL)
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- * E-mail: (HC); (LQL)
| |
Collapse
|
19
|
Husseini JS, Amorim BJ, Torrado-Carvajal A, Prabhu V, Groshar D, Umutlu L, Herrmann K, Cañamaque LG, Garzón JRG, Palmer WE, Heidari P, Shih TTF, Sosna J, Matushita C, Cerci J, Queiroz M, Muglia VF, Nogueira-Barbosa MH, Borra RJH, Kwee TC, Glaudemans AWJM, Evangelista L, Salvatore M, Cuocolo A, Soricelli A, Herold C, Laghi A, Mayerhoefer M, Mahmood U, Catana C, Daldrup-Link HE, Rosen B, Catalano OA. An international expert opinion statement on the utility of PET/MR for imaging of skeletal metastases. Eur J Nucl Med Mol Imaging 2021; 48:1522-1537. [PMID: 33619599 PMCID: PMC8240455 DOI: 10.1007/s00259-021-05198-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/10/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND MR is an important imaging modality for evaluating musculoskeletal malignancies owing to its high soft tissue contrast and its ability to acquire multiparametric information. PET provides quantitative molecular and physiologic information and is a critical tool in the diagnosis and staging of several malignancies. PET/MR, which can take advantage of its constituent modalities, is uniquely suited for evaluating skeletal metastases. We reviewed the current evidence of PET/MR in assessing for skeletal metastases and provided recommendations for its use. METHODS We searched for the peer reviewed literature related to the usage of PET/MR in the settings of osseous metastases. In addition, expert opinions, practices, and protocols of major research institutions performing research on PET/MR of skeletal metastases were considered. RESULTS Peer-reviewed published literature was included. Nuclear medicine and radiology experts, including those from 13 major PET/MR centers, shared the gained expertise on PET/MR use for evaluating skeletal metastases and contributed to a consensus expert opinion statement. [18F]-FDG and non [18F]-FDG PET/MR may provide key advantages over PET/CT in the evaluation for osseous metastases in several primary malignancies. CONCLUSION PET/MR should be considered for staging of malignancies where there is a high likelihood of osseous metastatic disease based on the characteristics of the primary malignancy, hight clinical suspicious and in case, where the presence of osseous metastases will have an impact on patient management. Appropriate choice of tumor-specific radiopharmaceuticals, as well as stringent adherence to PET and MR protocols, should be employed.
Collapse
Affiliation(s)
- Jad S Husseini
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Bárbara Juarez Amorim
- Division of Nuclear Medicine, Department of Radiology, School of Medical Sciences,, State University of Campinas, Campinas, Brazil
| | - Angel Torrado-Carvajal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Medical Image Analysis and Biometry Laboratory, Universidad Rey Juan Carlos, Madrid, Spain
| | - Vinay Prabhu
- Department of Radiology, NYU Langone Health, New York, NY, USA
| | - David Groshar
- Department of Nuclear Medicine, Assuta Medical Center, Tel Aviv, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Lina García Cañamaque
- Department of Nuclear Medicine, Hospital Universitario Madrid Sanchinarro, Madrid, Spain
| | | | - William E Palmer
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Pedram Heidari
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Tiffany Ting-Fang Shih
- Department of Radiology and Medical Imaging, National Taiwan University College of Medicine and Hospital, Taipei City, Taiwan
| | - Jacob Sosna
- Department of Radiology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Cristina Matushita
- Department of Nuclear Medicine, Hospital São Lucas of Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Juliano Cerci
- Department of Nuclear Medicine, Quanta Diagnóstico Nuclear, Curitiba, Brazil
| | - Marcelo Queiroz
- Department of Radiology and Oncology, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Valdair Francisco Muglia
- Department of Medical Images, Radiation Therapy and Oncohematology, Ribeirao Preto Medical School, Hospital Clinicas, University of São Paulo, Ribeirão Prêto, Brazil
| | - Marcello H Nogueira-Barbosa
- Department of Medical Imaging, Hematology and Clinical Oncology, Ribeirão Preto Medical School. University of São Paulo (USP), Ribeirão Prêto, Brazil
| | - Ronald J H Borra
- Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Thomas C Kwee
- Medical Imaging Center, University Medical Center Groningen, Groningen, The Netherlands
| | - Andor W J M Glaudemans
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura Evangelista
- Department of Clinical and Experimental Medicine, University of Padova, Padua, Italy
| | - Marco Salvatore
- Department of Radiology and Nuclear Medicine, Università Suor Orsola Benincasa di Napoli, Naples, Italy
- Department of Radiology and Nuclear Medicine, Institute for Hospitalization and Healthcare (IRCCS) SDN, Istituto di Ricerca, Naples, Italy
| | - Alberto Cuocolo
- Department of Radiology and Nuclear Medicine, Institute for Hospitalization and Healthcare (IRCCS) SDN, Istituto di Ricerca, Naples, Italy
- Department of Advanced Biomedical Science, University of Naples Federico II, Naples, Italy
| | - Andrea Soricelli
- Department of Radiology and Nuclear Medicine, Institute for Hospitalization and Healthcare (IRCCS) SDN, Istituto di Ricerca, Naples, Italy
- Department of Movement and Wellness Sciences, Parthenope University of Naples, Naples, Italy
| | - Christian Herold
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Andrea Laghi
- Department of Radiology, University of Rome "La Sapienza", Rome, Italy
| | - Marius Mayerhoefer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Bruce Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
20
|
Suarez-Weiss KE, Herold A, Gervais D, Palmer E, Amorim B, King JD, Weier L, Shahein T, Bernstine H, Domachevsk L, Cañamaque LG, Herrmann K, Umutlu L, Groshar D, Catalano OA. Hybrid imaging of the abdomen and pelvis. Radiologe 2021; 60:80-89. [PMID: 32424463 DOI: 10.1007/s00117-020-00661-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Accurate imaging is crucial for lesion detection in abdominal organs, for the noninvasive characterization of focal and diffuse abnormalities, and for surgical planning. To accomplish these tasks, several imaging modalities such as multidetector computer tomography (MDCT), magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) are used for abdominal imaging, providing important morphological, functional or metabolic information. More recently, PET/MRI has been gaining attention due to the possibility of combining high-resolution imaging with metabolic imaging. PET/MRI is a novel hybrid imaging technology that in the near future might play a pivotal role in the clinical management of oncologic and inflammatory abdominopelvic diseases. Despite the still limited number of published clinical studies, PET/MRI has been proven to be at least equivalent to PET/CT and to standalone MRI in a variety of oncologic disease. Moreover, in selected and focused clinical studies, it has been proven to outperform current standard of care imaging, for example, in evaluating cholangiocarcinomas, liver metastases, untreated and treated rectal cancer. This has also had an impact on therapeuticmanagement in some studies. Therefore in some institutions, including those of the authors, PET/MRI is becoming the new standard imaging modality in staging treatment-naïve intrahepatic massforming cholangiocarcinomas and prior to complicated hepatic surgery.
Collapse
Affiliation(s)
| | | | - Debra Gervais
- Division of Abdominal Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Edwin Palmer
- Division of Abdominal Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Joseph D King
- Division of Abdominal Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Li Weier
- Division of Abdominal Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Tajmir Shahein
- Division of Abdominal Radiology, Massachusetts General Hospital, Boston, MA, USA
| | | | | | | | | | | | | | - Onofrio A Catalano
- Division of Abdominal Radiology, Massachusetts General Hospital, Boston, MA, USA.
- University of Naples Parthenope, Naples, Italy.
- Harvard Medical School, Massachusetts General Hospital, 55 Fruits St, Boston, MA, USA.
| |
Collapse
|
21
|
Abstract
Attenuation correction has been one of the main methodological challenges in the integrated positron emission tomography and magnetic resonance imaging (PET/MRI) field. As standard transmission or computed tomography approaches are not available in integrated PET/MRI scanners, MR-based attenuation correction approaches had to be developed. Aspects that have to be considered for implementing accurate methods include the need to account for attenuation in bone tissue, normal and pathological lung and the MR hardware present in the PET field-of-view, to reduce the impact of subject motion, to minimize truncation and susceptibility artifacts, and to address issues related to the data acquisition and processing both on the PET and MRI sides. The standard MR-based attenuation correction techniques implemented by the PET/MRI equipment manufacturers and their impact on clinical and research PET data interpretation and quantification are first discussed. Next, the more advanced methods, including the latest generation deep learning-based approaches that have been proposed for further minimizing the attenuation correction related bias are described. Finally, a future perspective focused on the needed developments in the field is given.
Collapse
Affiliation(s)
- Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States of America
| |
Collapse
|
22
|
Guo R, Xu P, Cheng S, Lin M, Zhong H, Li W, Huang H, Ouyang B, Yi H, Chen J, Lin X, Shi K, Zhao W, Li B. Comparison of Nasopharyngeal MR, 18 F-FDG PET/CT, and 18 F-FDG PET/MR for Local Detection of Natural Killer/T-Cell Lymphoma, Nasal Type. Front Oncol 2020; 10:576409. [PMID: 33178609 PMCID: PMC7591820 DOI: 10.3389/fonc.2020.576409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Objectives The present study aims to compare the diagnostic efficacy of MR, 18F-FDG PET/CT, and 18F-FDG PET/MR for the local detection of early-stage extranodal natural killer/T-cell lymphoma, nasal type (ENKTL). Patients and Methods Thirty-six patients with histologically proven early-stage ENKTL were enrolled from a phase 2 study (Cohort A). Eight nasopharyngeal anatomical regions from each patient were imaged using 18F-FDG PET/CT and MR. A further nine patients were prospectively enrolled from a multicenter, phase 3 study; these patients underwent 18F-FDG PET/CT and PET/MR after a single 18F-FDG injection (Cohort B). Region-based sensitivity and specificity were calculated. The standardized uptake values (SUV) obtained from PET/CT and PET/MR were compared, and the relationship between the SUV and apparent diffusion coefficients (ADC) of PET/MR were analyzed. Results In Cohort A, of the 288 anatomic regions, 86 demonstrated lymphoma involvement. All lesions were detected by 18F-FDG PET/CT, while only 70 were detected by MR. 18F-FDG PET/CT exhibited a higher sensitivity than MR (100% vs. 81.4%, χ2 = 17.641, P < 0.001) for local detection of malignancies. The specificity of 18F-FDG PET/CT and MR were 98.5 and 97.5%, respectively (χ2 = 0.510, P = 0.475). The accuracy of 18F-FDG PET/CT was 99.0% and the accuracy of MR was 92.7% (χ2 = 14.087, P < 0.001). In Cohort B, 72 anatomical regions were analyzed. PET/CT and PET/MR have a sensitivity of 100% and a specificity of 92.5%. The two methods were consistent (κ = 0.833, P < 0.001). There was a significant correlation between PET/MR SUVmax and PET/CT SUVmax (r = 0.711, P < 0.001), and SUVmean (r = 0.685, P < 0.001). No correlation was observed between the SUV and the ADC. Conclusion In early-stage ENKTL, nasopharyngeal MR showed a lower sensitivity and a similar specificity when compared with 18F-FDG PET/CT. PET/MR showed similar performance compared with PET/CT.
Collapse
Affiliation(s)
- Rui Guo
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengpeng Xu
- State Key Laboratory of Medical Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shu Cheng
- State Key Laboratory of Medical Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mu Lin
- Siemens Healthcare, Beijing, China
| | - Huijuan Zhong
- State Key Laboratory of Medical Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weixia Li
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hengye Huang
- School of Public Health, Shanghai Jiao Tong University, Shanghai, China
| | - Bingsheng Ouyang
- Department of Pathology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongmei Yi
- Department of Pathology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayi Chen
- Department of Radiation, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaozhu Lin
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, University Hospital Bern, Bern, Switzerland.,Faculty of Informatics, Technical University of Munich, Munich, Germany
| | - Weili Zhao
- State Key Laboratory of Medical Genomics, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
23
|
Hancin EC, Borja AJ, Nikpanah M, Raynor WY, Haldar D, Werner TJ, Morris MA, Saboury B, Alavi A, Gholamrezanezhad A. PET/MR Imaging in Musculoskeletal Precision Imaging - Third wave after X-Ray and MR. PET Clin 2020; 15:521-534. [DOI: 10.1016/j.cpet.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Abstract
Hybrid imaging using the tracer [18F]FDG (2‑deoxy-2-fluoro-D-glucose) is regarded as the backbone of the diagnostic workup of lymphomas. All international guidelines, and especially the Lugano and RECIL (Response Evaluation Criteria in Lymphoma) guidelines, currently recommend [18F]FDG-PET/CT (positron emission tomography/computed tomography) for staging and treatment response assessment. With the exception of pediatric lymphomas, neither PET/MRI (magnetic resonance imaging) nor whole-body MRI are currently endorsed by international guidelines, despite the fact that both techniques have clear advantages over [18F]FDG-PET/CT in the assessment of lymphomas with variable FDG avidity. Of the new, more specific PET tracers that are being evaluated for the use in lymphomas, the CXCR4 (CXC motif chemokine receptor 4) tracer [68Ga]Pentixafor is of particular interest, as initial studies have shown that it may be used to visualize frequently non-FDG-avid lymphomas such as small-cell lymphocytic lymphoma, mucosa-associated lymphoid tissue (MALT) lymphoma and lymphomplasmacytic lymphoma.
Collapse
Affiliation(s)
- Marius E Mayerhöfer
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, 10065, New York, USA.
- Univ.-Klinik für Radiologie und Nuklearmedizin, Abteilung für Allgemeine und Kinderradiologie, Medizinische Universität Wien, Währinger Gürtel 18-20, Wien, 1090, Österreich.
| | - Alexander Haug
- Univ.-Klinik für Radiologie und Nuklearmedizin, Abteilung für Nuklearmedizin, Medizinische Universität Wien, Währinger Gürtel 18-20, Wien, 1090, Österreich
| |
Collapse
|
25
|
Suarez-Weiss KE, Herold A, Gervais D, Palmer E, Amorim B, King JD, Weier L, Shahein T, Bernstine H, Domachevsk L, Cañamaque LG, Umutlu L, Herrmann K, Groshar D, Catalano OA. [Hybrid imaging of the abdomen and pelvis. German version]. Radiologe 2020; 60:394-404. [PMID: 32232543 DOI: 10.1007/s00117-020-00660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Accurate imaging is crucial for lesion detection in abdominal organs, for the noninvasive characterization of focal and diffuse abnormalities, and for surgical planning. To accomplish these tasks, several imaging modalities such as multidetector computer tomography (MDCT), magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) are used for abdominal imaging, providing important morphological, functional or metabolic information. More recently, PET/MRI has been gaining attention due to the possibility of combining high-resolution imaging with metabolic imaging. PET/MRI is a novel hybrid imaging technology that in the near future might play a pivotal role in the clinical management of oncologic and inflammatory abdominopelvic diseases. Despite the still limited number of published clinical studies, PET/MRI has been proven to be at least equivalent to PET/CT and to stand-alone MRI in a variety of oncologic disease. Moreover, in selected and focused clinical studies, it has been proven to outperform current standard of care imaging, for example, in evaluating cholangiocarcinomas, liver metastases, untreated and treated rectal cancer. This has also had an impact on therapeutic management in some studies. Therefore in some institutions, including those of the authors, PET/MRI is becoming the new standard imaging modality in staging treatment-naïve intrahepatic mass-forming cholangiocarcinomas and prior to complicated hepatic surgery.
Collapse
Affiliation(s)
- Krista Elise Suarez-Weiss
- Division of Abdominal Radiology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit St, 02114, Boston MA, USA
| | | | - Debra Gervais
- Division of Abdominal Radiology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit St, 02114, Boston MA, USA
| | - Edwin Palmer
- Division of Abdominal Radiology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit St, 02114, Boston MA, USA
| | | | - Joseph D King
- Division of Abdominal Radiology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit St, 02114, Boston MA, USA
| | - Li Weier
- Division of Abdominal Radiology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit St, 02114, Boston MA, USA
| | - Tajmir Shahein
- Division of Abdominal Radiology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit St, 02114, Boston MA, USA
| | | | | | | | | | | | | | - Onofrio A Catalano
- Division of Abdominal Radiology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit St, 02114, Boston MA, USA. .,University of Naples Parthenope, Neapel, Italien.
| |
Collapse
|
26
|
Mayerhoefer ME, Archibald SJ, Messiou C, Staudenherz A, Berzaczy D, Schöder H. MRI and PET/MRI in hematologic malignancies. J Magn Reson Imaging 2019; 51:1325-1335. [PMID: 31260155 PMCID: PMC7217155 DOI: 10.1002/jmri.26848] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
The role of MRI differs considerably between the three main groups of hematological malignancies: lymphoma, leukemia, and myeloma. In myeloma, whole‐body MRI (WB‐MRI) is recognized as a highly sensitive test for the assessment of myeloma, and is also endorsed by clinical guidelines, especially for detection and staging. In lymphoma, WB‐MRI is presently not recommended, and merely serves as an alternative technique to the current standard imaging test, [18F]FDG‐PET/CT, especially in pediatric patients. Even for lymphomas with variable FDG avidity, such as extranodal mucosa‐associated lymphoid tissue lymphoma (MALT), contrast‐enhanced computed tomography (CT), but not WB‐MRI, is presently recommended, despite the high sensitivity of diffusion‐weighted MRI and its ability to capture treatment response that has been reported in the literature. In leukemia, neither MRI nor any other cross‐sectional imaging test (including positron emission tomography [PET]) is currently recommended outside of clinical trials. This review article discusses current clinical applications as well as the main research topics for MRI, as well as PET/MRI, in the field of hematological malignancies, with a focus on functional MRI techniques such as diffusion‐weighted imaging and dynamic contrast‐enhanced MRI, on the one hand, and novel, non‐FDG PET imaging probes such as the CXCR4 radiotracer [68Ga]Ga‐Pentixafor and the amino acid radiotracer [11C]methionine, on the other hand. Level of Evidence: 5 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2020;51:1325–1335.
Collapse
Affiliation(s)
- Marius E Mayerhoefer
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Austria.,Department of Radiology, Memorial Sloan Kettering Cancer Center New York, New York, USA
| | | | - Christina Messiou
- Department of Radiology, Royal Marsden Hospital and Institute of Cancer Research, Sutton, UK
| | - Anton Staudenherz
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Dominik Berzaczy
- Department of Biomedical Imaging and Image-guided Therapy, Division of General and Pediatric Radiology, Medical University of Vienna, Austria
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center New York, New York, USA
| |
Collapse
|
27
|
Oldan JD, Khandani AH, Fielding JR, Jones EL, Gehrig PA, Sills TM, Roy P, Lin W. Quantitative accuracy of positron emission tomography/magnetic resonance and positron emission tomography/computed tomography for cervical cancer. World J Nucl Med 2018; 17:213-218. [PMID: 30505216 PMCID: PMC6216731 DOI: 10.4103/wjnm.wjnm_56_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
With the spread of positron emission tomography/magnetic resonance (PET/MR), the question of comparability of studies becomes important. We aim to determine whether PET/MR and PET/computed tomography (PET/CT) are comparable for the case of cervical cancer. Fifteen cervical cancer patients identified by either a radiation oncologist or an oncologic surgeon had both PET/MR and PET/CT performed for initial staging within 3 weeks. We then compared the results both quantitatively (measuring standardized uptake values [SUVs] on visible lesions) as well as qualitatively (having radiologists and nuclear medicine physicians interprets the results). While interpretations between PET/MR and PET/CT varied in many cases, SUVs of primary lesions were similar to within 25% in all but one case, and correlation coefficient was 0.92. Maximum SUV ranged between 4.9 and 25.2 for PET-MR and between 5.8 and 30.4 for PET-CT for primary tumors and between 1.5 and 18.8 for PET-MR and between 1.8 and 20.8 for PET-CT for nodes. However, clinical reads often varied significantly between PET/MR and PET/CT. This suggests that SUV is similar on PET/MR and PET/CT although the differing anatomic modalities available for correlation may make the difference in terms of qualitative interpretation.
Collapse
Affiliation(s)
- Jorge Daniel Oldan
- Department of Radiology, Division of Nuclear Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Amir Hossein Khandani
- Department of Radiology, Division of Nuclear Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Julia R Fielding
- Department of Radiology, Division of Abdominal Radiology, University of Texas-Southwestern, Dallas, Texas, USA
| | - Ellen Louise Jones
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA
| | - Paola Alvarez Gehrig
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Pinakpani Roy
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Weili Lin
- Biomedical Research Imaging Center, Chapel Hill, NC, USA
| |
Collapse
|
28
|
Catalano O, Kilcoyne A, Signore A, Mahmood U, Rosen B. Lower Gastrointestinal Tract Applications of PET/Computed Tomography and PET/MR Imaging. Radiol Clin North Am 2018; 56:821-834. [PMID: 30119776 DOI: 10.1016/j.rcl.2018.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This article discusses the role of PET/CT and PET/MR imaging in the evaluation of inflammatory and malignant disorders of the lower gastrointestinal tract. This includes a review of the current literature and a discussion of new and emerging research.
Collapse
|
29
|
Bernstine H, Domachevsky L, Nidam M, Goldberg N, Abadi-Korek I, Shpilberg O, Groshar D. 18F-FDG PET/MR imaging of lymphoma nodal target lesions: Comparison of PET standardized uptake value (SUV) with MR apparent diffusion coefficient (ADC). Medicine (Baltimore) 2018; 97:e0490. [PMID: 29668631 PMCID: PMC5916693 DOI: 10.1097/md.0000000000010490] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
To compare positron emission tomography (PET) standardized uptake value (SUV) with magnetic resonance (MR) apparent diffusion coefficient (ADC) of nodal target lesions in patients with F-fluoro-2-deoxyglucose (FDG)-avid lymphomas by simultaneous PET/MR.Patients with histologically proven Hodgkin and non-Hodgkin lymphoma underwent PET/MR limited field of view of FDG-avid target nodal lesions. For PET images, a region of interest (ROI) was drawn around the target nodal lesion and the SUVmax and SUVmean was measured. For MR ADC measurements a ROI was placed over the target nodal lesion on diffusion-weighted imaging (DWI) and ADCmin and ADCmean (mean ADC) values within the ROI were recorded.Thirty-nine patients (19 women, 20 men; 13 patients with Hodgkin lymphoma and 26 with non-Hodgkin lymphoma) were included in the analysis. Sixty-six nodal lesions detected by PET/CT (19 PET-negative and 47 PET-positive) were analyzed by PET/MR. PET/MR quantitative assessments showed that ADCmin and ADCmean were accurate for discriminating positive from negative nodal lymphoma, with an AUC of 0.927 and 0.947, respectively. The ROC curve analysis of ADCmean versus SUVmax and SUVmean was not statistically significant (difference=0.044, P = .08 and difference = 0.045, P = .07; respectively). A substantial inverse association was observed between ADCmean with SUVmean and SUVmax (rho = -0.611; -0.607; P < .0001, respectively). A moderate inverse association was found between ADCmin with SUVmean and SUVmax (rho = -0.529, -0.520; P < .0001, respectively). Interobserver variability of quantitative assessment showed very good agreement for all variables (ICC>0.87).A significant correlation between ADCs and SUVs is found in FDG avid lymphomas. ADCmean is not inferior to PET SUV in discriminating positive and negative nodal lymphomas. Further larger studies are warranted to validate quantitative PET/MR for lymphoma patient management.
Collapse
Affiliation(s)
- Hanna Bernstine
- Department of Nuclear Medicine
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | - David Groshar
- Department of Nuclear Medicine
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
30
|
Bailey DL, Pichler BJ, Gückel B, Antoch G, Barthel H, Bhujwalla ZM, Biskup S, Biswal S, Bitzer M, Boellaard R, Braren RF, Brendle C, Brindle K, Chiti A, la Fougère C, Gillies R, Goh V, Goyen M, Hacker M, Heukamp L, Knudsen GM, Krackhardt AM, Law I, Morris JC, Nikolaou K, Nuyts J, Ordonez AA, Pantel K, Quick HH, Riklund K, Sabri O, Sattler B, Troost EGC, Zaiss M, Zender L, Beyer T. Combined PET/MRI: Global Warming-Summary Report of the 6th International Workshop on PET/MRI, March 27-29, 2017, Tübingen, Germany. Mol Imaging Biol 2018; 20:4-20. [PMID: 28971346 PMCID: PMC5775351 DOI: 10.1007/s11307-017-1123-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The 6th annual meeting to address key issues in positron emission tomography (PET)/magnetic resonance imaging (MRI) was held again in Tübingen, Germany, from March 27 to 29, 2017. Over three days of invited plenary lectures, round table discussions and dialogue board deliberations, participants critically assessed the current state of PET/MRI, both clinically and as a research tool, and attempted to chart future directions. The meeting addressed the use of PET/MRI and workflows in oncology, neurosciences, infection, inflammation and chronic pain syndromes, as well as deeper discussions about how best to characterise the tumour microenvironment, optimise the complementary information available from PET and MRI, and how advanced data mining and bioinformatics, as well as information from liquid biomarkers (circulating tumour cells and nucleic acids) and pathology, can be integrated to give a more complete characterisation of disease phenotype. Some issues that have dominated previous meetings, such as the accuracy of MR-based attenuation correction (AC) of the PET scan, were finally put to rest as having been adequately addressed for the majority of clinical situations. Likewise, the ability to standardise PET systems for use in multicentre trials was confirmed, thus removing a perceived barrier to larger clinical imaging trials. The meeting openly questioned whether PET/MRI should, in all cases, be used as a whole-body imaging modality or whether in many circumstances it would best be employed to give an in-depth study of previously identified disease in a single organ or region. The meeting concluded that there is still much work to be done in the integration of data from different fields and in developing a common language for all stakeholders involved. In addition, the participants advocated joint training and education for individuals who engage in routine PET/MRI. It was agreed that PET/MRI can enhance our understanding of normal and disrupted biology, and we are in a position to describe the in vivo nature of disease processes, metabolism, evolution of cancer and the monitoring of response to pharmacological interventions and therapies. As such, PET/MRI is a key to advancing medicine and patient care.
Collapse
Affiliation(s)
- D L Bailey
- Department of Nuclear Medicine, Royal North Shore Hospital, and Faculty of Health Sciences, University of Sydney, Sydney, Australia
| | - B J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard-Karls-Universität, Tübingen, Germany
| | - B Gückel
- Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - G Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, 40225, Dusseldorf, Germany
| | - H Barthel
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - Z M Bhujwalla
- Division of Cancer Imaging Research, Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - S Biskup
- Praxis für Humangenetik Tübingen, Paul-Ehrlich-Str. 23, 72076, Tübingen, Germany
| | - S Biswal
- Molecular Imaging Program at Stanford (MIPS) and Bio-X, Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA
| | - M Bitzer
- Department of Internal Medicine I, Eberhard-Karls University, Tübingen, Germany
| | - R Boellaard
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - R F Braren
- Institute of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - C Brendle
- Diagnostic and Interventional Neuroradiology, Department of Radiology, Eberhard Karls University, Hoppe-Seyler-Straße 3, 72076, Tübingen, Germany
| | - K Brindle
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| | - A Chiti
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Department of Nuclear Medicine, Humanitas Research Hospital, Milan, Italy
| | - C la Fougère
- Department of Radiology, Nuclear Medicine and Clinical Molecular Imaging, Eberhard-Karls-Universität, Tübingen, Germany
| | - R Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33621, USA
| | - V Goh
- Cancer Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Radiology, Guy's & St Thomas' Hospitals London, London, UK
| | - M Goyen
- GE Healthcare GmbH, Beethovenstrasse 239, Solingen, Germany
| | - M Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | | | - G M Knudsen
- Neurobiology Research Unit, Rigshospitalet and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - A M Krackhardt
- III. Medical Department, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - I Law
- Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - J C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO, USA
| | - K Nikolaou
- Department of Diagnostic and Interventional Radiology, University of Tübingen, Tübingen, Germany
| | - J Nuyts
- Nuclear Medicine & Molecular Imaging, KU Leuven, Leuven, Belgium
| | - A A Ordonez
- Department of Pediatrics, Center for Infection and Inflammation Imaging Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - K Pantel
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - H H Quick
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - K Riklund
- Department of Radiation Sciences, Umea University, Umea, Sweden
| | - O Sabri
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - B Sattler
- Department of Nuclear Medicine, University Hospital Leipzig, Leipzig, Germany
| | - E G C Troost
- OncoRay-National Center for Radiation Research in Oncology, Dresden, Germany
- Institute of Radiooncology-OncoRay, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Department of Radiotherapy, University Hospital Carl Gustav Carus and Medical Faculty of Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - M Zaiss
- High Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - L Zender
- Department of Internal Medicine VIII, University Hospital Tübingen, Tübingen, Germany
| | - Thomas Beyer
- QIMP Group, Center for Medical Physics and Biomedical Engineering General Hospital Vienna, Medical University Vienna, 4L, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
31
|
Ehman EC, Johnson GB, Villanueva-Meyer JE, Cha S, Leynes AP, Larson PEZ, Hope TA. PET/MRI: Where might it replace PET/CT? J Magn Reson Imaging 2017; 46:1247-1262. [PMID: 28370695 PMCID: PMC5623147 DOI: 10.1002/jmri.25711] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/06/2017] [Indexed: 12/13/2022] Open
Abstract
Simultaneous positron emission tomography and MRI (PET/MRI) is a technology that combines the anatomic and quantitative strengths of MR imaging with physiologic information obtained from PET. PET and computed tomography (PET/CT) performed in a single scanning session is an established technology already in widespread and accepted use worldwide. Given the higher cost and complexity of operating and interpreting the studies obtained on a PET/MRI system, there has been question as to which patients would benefit most from imaging with PET/MRI versus PET/CT. In this article, we compare PET/MRI with PET/CT, detail the applications for which PET/MRI has shown promise and discuss impediments to future adoption. It is our hope that future work will prove the benefit of PET/MRI to specific groups of patients, initially those in which PET/CT and MRI are already performed, leveraging simultaneity and allowing for greater degrees of multiparametric evaluation. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2017;46:1247-1262.
Collapse
Affiliation(s)
- Eric C. Ehman
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Soonmee Cha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Andrew Palmera Leynes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Peder Eric Zufall Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| | - Thomas A. Hope
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
| |
Collapse
|
32
|
Hybrid imaging with PET/MRI: ready for clinical routine? Eur J Radiol 2017; 94:A1-A2. [DOI: 10.1016/j.ejrad.2017.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/30/2017] [Accepted: 05/03/2017] [Indexed: 02/02/2023]
|
33
|
Catalano OA, Daye D, Signore A, Iannace C, Vangel M, Luongo A, Catalano M, Filomena M, Mansi L, Soricelli A, Salvatore M, Fuin N, Catana C, Mahmood U, Rosen BR. Staging performance of whole-body DWI, PET/CT and PET/MRI in invasive ductal carcinoma of the breast. Int J Oncol 2017; 51:281-288. [PMID: 28535000 DOI: 10.3892/ijo.2017.4012] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/11/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of the present study was to evaluate the performance of whole-body diffusion-weighted imaging (WB-DWI), whole-body positron emission tomography with computed tomography (WB-PET/CT), and whole-body positron emission tomography with magnetic resonance imaging (WB-PET/MRI) in staging patients with untreated invasive ductal carcinoma of the breast. Fifty-one women with newly diagnosed invasive ductal carcinoma of the breast underwent WB-DWI, WB-PET/CT and WB-PET/MRI before treatment. A radiologist and a nuclear medicine physician reviewed in consensus the images from the three modalities and searched for occurrence, number and location of metastases. Final staging, according to each technique, was compared. Pathology and imaging follow-up were used as the reference. WB-DWI, WB-PET/CT and WB-PET/MRI correctly and concordantly staged 33/51 patients: stage IIA in 7 patients, stage IIB in 8 patients, stage IIIC in 4 patients and stage IV in 14 patients. WB-DWI, WB-PET/CT and WB-PET/MRI incorrectly and concordantly staged 1/51 patient as stage IV instead of IIIA. Discordant staging was reported in 17/51 patients. WB-PET/MRI resulted in improved staging when compared to WB-PET/CT (50 correctly staged on WB-PET/MRI vs. 38 correctly staged on WB-PET/CT; McNemar's test; p<0.01). Comparing the performance of WB-PET/MRI and WB-DWI (43 correct) did not reveal a statistically significant difference (McNemar test, p=0.14). WB-PET/MRI is more accurate in the initial staging of breast cancer than WB-DWI and WB-PET/CT, however, the discrepancies between WB-PET/MRI and WB-DWI were not statistically significant. When available, WB-PET/MRI should be considered for staging patient with invasive ductal breast carcinoma.
Collapse
Affiliation(s)
- Onofrio Antonio Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dania Daye
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alberto Signore
- Department of Nuclear Medicine, University of Roma 'La Sapienza', Rome, RM 00161, Italy
| | - Carlo Iannace
- Breast Unit, Ospedale Moscati, Contrada Amoretta, Avellino, AV 83010, Italy
| | - Mark Vangel
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Angelo Luongo
- Department of Radiology, Gammacord, Benevento, BN 82100, Italy
| | - Marco Catalano
- Department of Radiology, University of Naples 'Federico II', Napoli, NA 80131, Italy
| | - Mazzeo Filomena
- Department of Biology and Pathology, University of Naples 'Parthenope', Naples, NA 80131, Italy
| | - Luigi Mansi
- Department of Nuclear Medicine, Second University of Naples, Napoli, NA 80130, Italy
| | - Andrea Soricelli
- Department of Diagnostic Imaging, University of Naples 'Parthenope', Napoli, NA 80131, Italy
| | | | - Niccolo Fuin
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ciprian Catana
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Umar Mahmood
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Bruce Robert Rosen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
34
|
Catalano OA, Horn GL, Signore A, Iannace C, Lepore M, Vangel M, Luongo A, Catalano M, Lehman C, Salvatore M, Soricelli A, Catana C, Mahmood U, Rosen BR. PET/MR in invasive ductal breast cancer: correlation between imaging markers and histological phenotype. Br J Cancer 2017; 116:893-902. [PMID: 28208155 PMCID: PMC5379139 DOI: 10.1038/bjc.2017.26] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 01/13/2017] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Differences in genetics and receptor expression (phenotypes) of invasive ductal breast cancer (IDC) impact on prognosis and treatment response. Immunohistochemistry (IHC), the most used technique for IDC phenotyping, has some limitations including its invasiveness. We explored the possibility of contrast-enhanced positron emission tomography magnetic resonance (CE-FDG PET/MR) to discriminate IDC phenotypes. METHODS 21 IDC patients with IHC assessment of oestrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor-2 (HER2), and antigen Ki-67 (Ki67) underwent CE-FDG PET/MR. Magnetic resonance-perfusion biomarkers, apparent diffusion coefficient (ADC), and standard uptake value (SUV) were compared with IHC markers and phenotypes, using a Student's t-test and one-way ANOVA. RESULTS ER/PR- tumours demonstrated higher Kepmean and SUVmax than ER or PR+ tumours. HER2- tumours displayed higher ADCmean, Kepmean, and SUVmax than HER2+tumours. Only ADCmean discriminated Ki67⩽14% tumours (lower ADCmean) from Ki67>14% tumours. PET/MR biomarkers correlated with IHC phenotype in 13 out of 21 patients (62%; P=0.001). CONCLUSIONS Positron emission tomography magnetic resonance might non-invasively help discriminate IDC phenotypes, helping to optimise individual therapy options.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/diagnostic imaging
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Diffusion Magnetic Resonance Imaging/methods
- Female
- Fluorodeoxyglucose F18/metabolism
- Follow-Up Studies
- Humans
- Ki-67 Antigen/metabolism
- Middle Aged
- Multimodal Imaging/methods
- Neoplasm Staging
- Phenotype
- Positron-Emission Tomography/methods
- Prognosis
- Radiopharmaceuticals/metabolism
- Receptor, ErbB-2/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Retrospective Studies
- Young Adult
Collapse
Affiliation(s)
- Onofrio Antonio Catalano
- Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
- Abdominal Imaging, Harvard Medical School, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Gary Lloyd Horn
- Department of Radiology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Alberto Signore
- Nuclear Medicine Unit, University of Rome ‘La Sapienza', Viale del Policlinico 5, Rome 00161, Italy
| | - Carlo Iannace
- Breast Unit, Ospedale Moscati, Avellino 83010, Italy
| | - Maria Lepore
- Department of Pathology, Ospedale Moscati, Avellino 83010, Italy
| | - Mark Vangel
- Department of Biostatistics, Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - Angelo Luongo
- Department of Radiology, Gamma Cord, Benevento 82100, Italy
| | - Marco Catalano
- Department of Radiology, University of Naples ‘Federico II', Napoli 80131, Italy
| | - Constance Lehman
- Breast Imaging, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Marco Salvatore
- Diagnostic Imaging, SDN, Via Gianturco 113, Napoli 80131, Italy
| | - Andrea Soricelli
- Diagnostic Imaging, University of Naples ‘Parthenope', Napoli 80131, Italy
| | - Ciprian Catana
- Department of Radiology, Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - Umar Mahmood
- Precision Medicine and Radiology, Harvard Medical School, Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - Bruce Robert Rosen
- Department of Radiology, Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
35
|
18F-FDG PET/MRI in patients suffering from lymphoma: how much MRI information is really needed? Eur J Nucl Med Mol Imaging 2017; 44:1005-1013. [DOI: 10.1007/s00259-017-3635-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/16/2017] [Indexed: 12/31/2022]
|
36
|
Catalano OA, Masch WR, Catana C, Mahmood U, Sahani DV, Gee MS, Menezes L, Soricelli A, Salvatore M, Gervais D, Rosen BR. An overview of PET/MR, focused on clinical applications. Abdom Radiol (NY) 2017; 42:631-644. [PMID: 27624499 DOI: 10.1007/s00261-016-0894-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hybrid PET/MR scanners are innovative imaging devices that simultaneously or sequentially acquire and fuse anatomical and functional data from magnetic resonance (MR) with metabolic information from positron emission tomography (PET) (Delso et al. in J Nucl Med 52:1914-1922, 2011; Zaidi et al. in Phys Med Biol 56:3091-3106, 2011). Hybrid PET/MR scanners have the potential to greatly impact not only on medical research but also, and more importantly, on patient management. Although their clinical applications are still under investigation, the increased worldwide availability of PET/MR scanners, and the growing published literature are important determinants in their rising utilization for primarily clinical applications. In this manuscript, we provide a summary of the physical features of PET/MR, including its limitations, which are most relevant to clinical PET/MR implementation and to interpretation. Thereafter, we discuss the most important current and emergent clinical applications of such hybrid technology in the abdomen and pelvis, both in the field of oncologic and non-oncologic imaging, and we provide, when possible, a comparison with clinically consolidated imaging techniques, like for example PET/CT.
Collapse
Affiliation(s)
- Onofrio Antonio Catalano
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 49 13th St, Charlestown, MA, 02129, USA.
- Abdominal Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA.
| | - William Roger Masch
- Department of Radiology, Abdominal Imaging, University of Michigan Health System, 1550E Medical Center Dr, SPC5030, Ann Arbor, MI, 48109, USA
| | - Ciprian Catana
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 49 13th St, Charlestown, MA, 02129, USA
| | - Umar Mahmood
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 49 13th St, Charlestown, MA, 02129, USA
- Institute of Precision Medicine, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - Dushyant Vasudeo Sahani
- Abdominal Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - Michael Stanley Gee
- Abdominal Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
- Martinos Center for Pediatric Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - Leon Menezes
- Institute of Nuclear Medicine, University College Hospital, 235 Euston Rd, Fitzrovia, London, NW1 2BU, UK
| | - Andrea Soricelli
- University of Naples "Parthenope", Via Medina 40, 80133, Naples, Italy
| | - Marco Salvatore
- Medicina Nucleare, Fondazione SDN, Via Gianturco 113, Naples, 80113, Italy
| | - Debra Gervais
- Abdominal Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit St, Boston, MA, 02114, USA
| | - Bruce Robert Rosen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, 49 13th St, Charlestown, MA, 02129, USA
| |
Collapse
|
37
|
Ferdová E, Ferda J, Baxa J. 18F-FDG-PET/MRI in lymphoma patients. Eur J Radiol 2017; 94:A52-A63. [PMID: 28132716 DOI: 10.1016/j.ejrad.2017.01.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 01/21/2017] [Indexed: 12/23/2022]
Abstract
The introduction of hybrid PET/MRI imaging using integrated systems into clinical practice has opened up the possibility of reducing the radiation dose from hybrid imaging by eliminating the contribution from computed tomography. Studies comparing the possibilities of PET/CT and PET/MRI imaging demonstrated it is possible to use the advantages of the high contrast resolution of magnetic resonance for soft tissue and bone marrow along with PET records in a quality comparable to PET/CT imaging. The significant feature for PET imaging in Hodgkińs lymphoma is that it is a tissue with high levels of radiopharmaceutical accumulation, which decreases proportionally after successful therapeutic effect, the effect of therapy is assessed using Deauville score system on interim examinations. While the efficacy of prognosis determined using the Deauville scale in HL is widely accepted, it turns out that in DLBCL, the prognostic value of PET imaging is bound to the evaluation of subtypes. PET/MRI scanning can be used to evaluate a relapse if follicular lymphoma has already been treated, or to confirm transformation into more aggressive forms. In children and adults with Burkitt's lymphoma, negative findings after induction therapy have a high negative predictive value for relapse prognosis.
Collapse
Affiliation(s)
- Eva Ferdová
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czechia.
| | - Jiří Ferda
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czechia.
| | - Jan Baxa
- Clinic of the Imaging Methods, University Hospital Plzen, Alej Svobody 80, 304 60 Plzeň, Czechia.
| |
Collapse
|