1
|
Chen L, Ren Y, Yuan Y, Xu J, Wen B, Xie S, Zhu J, Li W, Gong X, Shen W. Multi-parametric MRI-based machine learning model for prediction of pathological grade of renal injury in a rat kidney cold ischemia-reperfusion injury model. BMC Med Imaging 2024; 24:188. [PMID: 39060984 PMCID: PMC11282691 DOI: 10.1186/s12880-024-01320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Renal cold ischemia-reperfusion injury (CIRI), a pathological process during kidney transplantation, may result in delayed graft function and negatively impact graft survival and function. There is a lack of an accurate and non-invasive tool for evaluating the degree of CIRI. Multi-parametric MRI has been widely used to detect and evaluate kidney injury. The machine learning algorithms introduced the opportunity to combine biomarkers from different MRI metrics into a single classifier. OBJECTIVE To evaluate the performance of multi-parametric magnetic resonance imaging for grading renal injury in a rat model of renal cold ischemia-reperfusion injury using a machine learning approach. METHODS Eighty male SD rats were selected to establish a renal cold ischemia -reperfusion model, and all performed multiparametric MRI scans (DWI, IVIM, DKI, BOLD, T1mapping and ASL), followed by pathological analysis. A total of 25 parameters of renal cortex and medulla were analyzed as features. The pathology scores were divided into 3 groups using K-means clustering method. Lasso regression was applied for the initial selecting of features. The optimal features and the best techniques for pathological grading were obtained. Multiple classifiers were used to construct models to evaluate the predictive value for pathology grading. RESULTS All rats were categorized into mild, moderate, and severe injury group according the pathologic scores. The 8 features that correlated better with the pathologic classification were medullary and cortical Dp, cortical T2*, cortical Fp, medullary T2*, ∆T1, cortical RBF, medullary T1. The accuracy(0.83, 0.850, 0.81, respectively) and AUC (0.95, 0.93, 0.90, respectively) for pathologic classification of the logistic regression, SVM, and RF are significantly higher than other classifiers. For the logistic model and combining logistic, RF and SVM model of different techniques for pathology grading, the stable and perform are both well. Based on logistic regression, IVIM has the highest AUC (0.93) for pathological grading, followed by BOLD(0.90). CONCLUSION The multi-parametric MRI-based machine learning model could be valuable for noninvasive assessment of the degree of renal injury.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China
| | - Yan Ren
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China
| | - Yizhong Yuan
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jipan Xu
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China
| | - Baole Wen
- College of Medicine, Nankai University, Tianjin, 300350, China
| | - Shuangshuang Xie
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China
| | - Jinxia Zhu
- MR Collaborations, Siemens Healthcare China, Beijing, 100102, China
| | - Wenshuo Li
- College of Computer Science, Nankai University, Tianjin, 300350, China
| | - Xiaoli Gong
- College of Computer Science, Nankai University, Tianjin, 300350, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China.
| |
Collapse
|
2
|
Liu J, Wang R, Qiu J, Su T. Investigation of renal perfusion and pathological changes in patients with acute kidney disease and tubulointerstitial nephritis using intravoxel incoherent motion and arterial spin labelling MRI: a prospective, observational study protocol. BMJ Open 2024; 14:e076488. [PMID: 38531564 DOI: 10.1136/bmjopen-2023-076488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a critical condition with a complex aetiology and different outcomes, where haemodynamic dysfunction, renal hypoperfusion and inflammation serve as key contributors to its development and progression. Early and accurate diagnosis is vital for initiating targeted treatments like fluid resuscitation, vasoactive agents or steroid therapy, which are essential for improving patient outcomes. Intravoxel incoherent motion (IVIM) MRI assesses both capillary perfusion and tissue water diffusion, while arterial spin labelling (ASL) MRI measures renal blood flow without the need for contrast. Research on combined use of IVIM and ASL MRI in patients with AKI is rare. This study aims to investigate the MRI characteristics of IVIM and ASL in patients with tubulointerstitial nephritis (TIN) and to explore their relationship with pathological findings and renal recovery. METHODS AND ANALYSIS Single-centre, prospective, observational cohort study of 30 patients with biopsy-proven TIN. Participants will undergo renal IVIM and ASL MRI within 7 days post-biopsy. The pathological assessments of active and chronic tubulointerstitial injuries will be semiscored using modified Banff criteria. The estimated glomerular filtration rate (eGFR) during follow-up and prevalence of chronic kidney disease at 3 and 6 months will be reported. An eGFR below 45 mL/min is considered a poor renal outcome. ETHICS AND DISSEMINATION The study has been reviewed and approved by the Ethics Committee of Peking University First Hospital and written informed consent will be obtained from all participants (2022Y503). The study results will be disseminated through publication in a relevant peer-reviewed journal and presentation at academic meetings to increase awareness and share findings with the scientific community.
Collapse
Affiliation(s)
- Jiajia Liu
- Peking University First Hospital, Beijing, China
- Department of Nephrology, Peking University First Hospital, Beijing, China
| | - Rui Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Jianxing Qiu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Tao Su
- Peking University First Hospital, Beijing, China
- Department of Nephrology, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Cheng ZY, Gong SA, Chen PK, Yu ZC, Qiu C, Lin JX, Mo JB, Qian L, Feng YZ, Cai XR. Using intravoxel incoherent motion imaging to evaluate uric acid-induced renal injury and efficacy after treatment. Br J Radiol 2024; 97:274-282. [PMID: 38263841 PMCID: PMC11027338 DOI: 10.1093/bjr/tqad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 01/25/2024] Open
Abstract
OBJECTIVES To validate the feasibility of intravoxel incoherent motion imaging (IVIM) for monitoring renal injury and uric acid-lowering efficacy in a rat model of hyperuricaemia. METHODS A total of 92 rats were analysed and categorized into 4 groups: control (CON), hyperuricaemia (HUA), allopurinol intervention (ALL), and combined intervention (COM). Eight rats were randomly selected from each group and underwent IVIM scanning on days 0, 1, 3, 5, 7, and 9. Quantitative magnetic resonance values (D, D*, and f values) measured from the different renal anatomical regions. Quantitative histopathological analysis was performed to assess renal tubular injury using neutrophil gelatinase-associated lipocalin (NGAL), and renal fibrosis using alpha-smooth-muscle-actin (α-SMA). Pearson's correlation analysis was used to determine the correlation between IVIM-derived parameters and the expression of NGAL and α-SMA. RESULTS The D values of the HUA, ALL, and COM groups generally showed a downward trend over time, and this fluctuation was most significant in the HUA group. The D values showed significant intergroup differences at each point, whereas only a few discrepancies were found in the D* and f values. In addition, the renal D value was negatively correlated with the positive staining rates for NGAL and α-SMA (P < .05), except for the lack of correlation between Dos and α-SMA (P > .05). CONCLUSION IVIM could be a noninvasive and potential assessment modality for the evaluation of renal injury induced by hyperuricaemia and its prognostic efficacy. ADVANCES IN KNOWLEDGE IVIM could be a surrogate manner in monitoring renal damage induced by hyperuricaemia and its treatment evaluation.
Collapse
Affiliation(s)
- Zhong-Yuan Cheng
- Medical Imaging Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Shang-Ao Gong
- Medical Imaging Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Ping-Kang Chen
- Medical Imaging Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Zong-Chao Yu
- Nephrology Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Chen Qiu
- New Medicine Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Ji-Xin Lin
- Traditional Chinese Medicine Department, Lecong Hospital of Shunde, Foshan 528315, China
| | - Jia-Bin Mo
- Department of Radiology, The Affiliated Shunde Hospital of Jinan University, Foshan, Guangdong Province 528306, China
| | - Long Qian
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100091, China
| | - You-Zhen Feng
- Medical Imaging Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| | - Xiang-Ran Cai
- Medical Imaging Department, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China
| |
Collapse
|
4
|
Li X, Li Z, Liu L, Pu Y, Ji Y, Tang W, Chen T, Liang Q, Zhang X. Early assessment of acute kidney injury in severe acute pancreatitis with multimodal DWI: an animal model. Eur Radiol 2023; 33:7744-7755. [PMID: 37368106 DOI: 10.1007/s00330-023-09782-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 06/28/2023]
Abstract
OBJECTIVES To evaluate the feasibility of multimodal diffusion-weighted imaging (DWI) for detecting the occurrence and severity of acute kidney injury (AKI) caused by severe acute pancreatitis (SAP) in rats. METHODS SAP was induced in thirty rats by the retrograde injection of 5.0% sodium taurocholate through the biliopancreatic duct. Six rats underwent MRI of the kidneys 24 h before and 2, 4, 6, and 8 h after this AKI model was generated. Conventional and functional MRI sequences were used, including intravoxel incoherent motion imaging (IVIM), diffusion tensor imaging (DTI), and diffusion kurtosis imaging (DTI). The main DWI parameters and histological results were analyzed. RESULTS The fast apparent diffusion coefficient (ADC) of the renal cortex was significantly reduced at 2 h, as was the fractional anisotropy (FA) value of the renal cortex on DTI. The mean kurtosis (MK) values for the renal cortex and medulla gradually increased after model generation. The renal histopathological score was negatively correlated with the medullary slow ADC, fast ADC, and perfusion scores for both the renal cortex and medulla, as were the ADC and FA values of the renal medulla in DTI, whereas the MK values of the cortex and medulla were positively correlated (r = 0.733, 0.812). Thus, the cortical fast ADC, medullary MK, FADTI, and slow ADC were optimal parameters for diagnosing AKI. Of these parameters, cortical fast ADC had the highest diagnostic efficacy (AUC = 0.950). CONCLUSIONS The fast ADC of the renal cortex is the core indicator of early AKI, and the medullary MK value might serve as a sensitive biomarker for grading renal injury in SAP rats. CLINICAL RELEVANCE STATEMENT The multimodal parameters of renal IVIM, DTI, and DKI are potential beneficial for the early diagnosis and severity grading of renal injury in SAP patients. KEY POINTS • The multimodal parameters of renal DWI, including IVIM, DTI, and DKI, may be valuable for the noninvasive detection of early AKI and the severity grading of renal injury in SAP rats. • Cortical fast ADC, medullary MK, FA, and slow ADC are optimal parameters for early diagnosis of AKI, and cortical fast ADC has the highest diagnostic efficacy. • Medullary fast ADC, MK, and FA as well as cortical MK are useful for predicting the severity grade of AKI, and the renal medullary MK value exhibits the strongest correlation with pathological scores.
Collapse
Affiliation(s)
- Xinghui Li
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China
| | - Zenghui Li
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China
| | - Lu Liu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China
| | - Yu Pu
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China
| | - Yifan Ji
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China
| | - Wei Tang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China
| | - Tianwu Chen
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China
| | - Qi Liang
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, Sichuan Province, China.
| | - Xiaoming Zhang
- Medical Imaging Key Laboratory of Sichuan Province, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 1 South Maoyuan Street, Nanchong, 637001, China.
| |
Collapse
|
5
|
Ren Y, Chen L, Yuan Y, Xu J, Xia F, Zhu J, Shen W. Evaluation of renal cold ischemia-reperfusion injury with intravoxel incoherent motion diffusion-weighted imaging and blood oxygenation level-dependent MRI in a rat model. Front Physiol 2023; 14:1159741. [PMID: 37284547 PMCID: PMC10240072 DOI: 10.3389/fphys.2023.1159741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
Purpose: Cold ischemia-reperfusion injury (CIRI) is one of the most serious complications following renal transplantation. The current study investigated the feasibility of Intravoxel Incoherent Motion (IVIM) imaging and blood oxygenation level-dependent (BOLD) in the evaluation of different degrees of renal cold ischemia-reperfusion injury in a rat model. Methods: Seventy five rats were randomly divided into three groups (N = 25 for each group): T0: sham-operated group, T2/T4: CIRI groups with different cold ischemia hours (2, 4 h, respectively). The rat model of CIRI group was established by left kidney cold ischemia with right nephrectomy. All the rats received a baseline MRI before the surgery. Five rats in each group were randomly selected to undergo an MRI examination at 1 h, day 1, day 2 and day 5 after CIRI. The IVIM and BOLD parameters were studied in the renal cortex (CO), the outer stripe of the outer medulla (OSOM), and the inner stripe of the outer medulla (ISOM) followed by histological analysis to examine Paller scores, peritubular capillary (PTC) density, apoptosis rate and biochemical indicators to obtain the contents of serum creatinine (Scr), blood urea nitrogen (BUN), superoxide dismutase (SOD) and malondialdehyde (MDA). Results: The D, D*, PF and T2* values in the CIRI groups were lower than those in the sham-operated group at all timepoints (all p < 0.05). The prolonged cold ischemia times resulted in gradually lower D, D*, PF and T2* values (all p < 0.05). The D and T2* values of cortex and OSOM in Group T0 and T2 returned to the baseline level (all p > 0.05) except Group T4. The D* and PF values of cortex, OSOM and ISOM in Group T2 and T4 still remained below the normal levels (all p < 0.05) except Group T0. D, D*, PF and T2* values were strongly correlated with histopathological (Paller scores, PTC density and apoptosis rate) and the biochemistry indicators (SOD and MDA) (|r|>0.6, p < 0.001). D*, PF and T2* values were moderately to poorly correlated with some biochemistry indicators (Scr and BUN) (|r|<0.5, p < 0.05). Conclusion: IVIM and BOLD can serve as noninvasive radiologic markers for monitoring different degrees of renal impairment and recovery after renal CIRI.
Collapse
Affiliation(s)
- Yan Ren
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Lihua Chen
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| | - Yizhong Yuan
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jipan Xu
- Department of Radiology, Tianjin Institute of Imaging Medicine, Tianjin Medical University First Central Hospital, Tianjin, China
| | - Fangjie Xia
- Department of Radiology, Tianjin Institute of Imaging Medicine, Tianjin Medical University First Central Hospital, Tianjin, China
| | - Jinxia Zhu
- MR Collaborations, Siemens Healthcare Ltd., Beijing, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, Tianjin, China
| |
Collapse
|
6
|
Dai H, Zhao C, Xiong Y, He Q, Su W, Li J, Yang Y, Lin R, Xiang S, Shao J. Evaluation of contrast-induced acute kidney injury using IVIM and DKI MRI in a rat model of diabetic nephropathy. Insights Imaging 2022; 13:110. [PMID: 35767196 PMCID: PMC9243200 DOI: 10.1186/s13244-022-01249-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To assess the potential of intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) in monitoring renal changes in a diabetic nephropathy (DN) rat model with acute kidney injury (CI-AKI) induced by iso-osmotic contrast media (IOCM) and low-osmotic contrast media (LOCM). Methods A diabetic nephropathy rat model was established, and the animals were randomly split into the LOCM group and IOCM group (n = 13 per group), with iopamidol and iodixanol injection, respectively (4 g iodine/kg). MRI including IVIM and DKI was performed 24 h before contrast medium injections (baseline) and 1, 24, 48, and 72 h after injections. Changes in pure molecular diffusion (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), mean diffusion (MD), mean kurtosis (MK), serum creatinine (SCr) and urea nitrogen (BUN), histopathology alterations, and α-smooth muscle actin (α-SMA) expression were assessed. Inter-observer agreement was evaluated using the intraclass correlation coefficient (ICC). Results Compared against baseline levels, significant decreases in D, D*, and f were observed in all anatomical kidney compartments after contrast injection (p < 0.05). MD in the cortex (CO) and outer medullary (OM) gradually decreased, and MK in OM gradually increased 24–72 h after injection. D, D*, f, and MD were negatively correlated with the histopathologic findings and α-smooth muscle actin (α-SMA) expression in all anatomical kidney compartments. Inter-observer reproducibility was generally good (ICCs ranging from 0.776 to 0.979). Conclusions IVIM and DKI provided noninvasive imaging parameters, which might offer effective detection of CI-AKI in DN.
Collapse
Affiliation(s)
- Hongyan Dai
- Department of Radiology, The Affiliated Hospital of Yunnan University, NO.176 Qingnian Road, Kunming, 650021, Yunnan, China
| | - Chun Zhao
- Department of Radiology, The Affiliated Hospital of Yunnan University, NO.176 Qingnian Road, Kunming, 650021, Yunnan, China
| | - Yuxin Xiong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Qian He
- Department of Radiology, The Affiliated Hospital of Yunnan University, NO.176 Qingnian Road, Kunming, 650021, Yunnan, China
| | - Wei Su
- Department of Radiology, The Affiliated Hospital of Yunnan University, NO.176 Qingnian Road, Kunming, 650021, Yunnan, China
| | - Jianbo Li
- Department of Radiology, The Affiliated Hospital of Yunnan University, NO.176 Qingnian Road, Kunming, 650021, Yunnan, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Ruyun Lin
- Department of Hospital Quality Control, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Shutian Xiang
- Department of Radiology, The Affiliated Hospital of Yunnan University, NO.176 Qingnian Road, Kunming, 650021, Yunnan, China.
| | - Juwei Shao
- Department of Radiology, The Affiliated Hospital of Yunnan University, NO.176 Qingnian Road, Kunming, 650021, Yunnan, China.
| |
Collapse
|
7
|
Katagiri D, Wang F, Gore JC, Harris RC, Takahashi T. Clinical and experimental approaches for imaging of acute kidney injury. Clin Exp Nephrol 2021; 25:685-699. [PMID: 33835326 PMCID: PMC8154759 DOI: 10.1007/s10157-021-02055-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022]
Abstract
Complex molecular cell dynamics in acute kidney injury and its heterogeneous etiologies in patient populations in clinical settings have revealed the potential advantages and disadvantages of emerging novel damage biomarkers. Imaging techniques have been developed over the past decade to further our understanding about diseased organs, including the kidneys. Understanding the compositional, structural, and functional changes in damaged kidneys via several imaging modalities would enable a more comprehensive analysis of acute kidney injury, including its risks, diagnosis, and prognosis. This review summarizes recent imaging studies for acute kidney injury and discusses their potential utility in clinical settings.
Collapse
Affiliation(s)
- Daisuke Katagiri
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA.
- Department of Nephrology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA.
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
8
|
Li Y, Shi D, Zhang H, Yao X, Wang S, Wang R, Ren K. The Application of Functional Magnetic Resonance Imaging in Type 2 Diabetes Rats With Contrast-Induced Acute Kidney Injury and the Associated Innate Immune Response. Front Physiol 2021; 12:669581. [PMID: 34267672 PMCID: PMC8276794 DOI: 10.3389/fphys.2021.669581] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS Contrast-induced acute kidney injury (CI-AKI) is the third most common in-hospital acquired AKI, and its mechanism is not fully clear. Its morbidity increases among populations with chronic kidney disease (CKD), older age, diabetes mellitus (DM), and so on. Immediate and effective noninvasive diagnostic methods are lacking, so CI-AKI often prolongs hospital stays and increases extra medical costs. This study aims to explore the possibility of diagnosing CI-AKI with functional magnetic resonance imaging (fMRI) based on type 2 DM rats. Moreover, we attempt to reveal the immune response in CI-AKI and to clarify why DM is a predisposing factor for CI-AKI. METHODS A type 2 DM rat model was established by feeding a high-fat and high-sugar diet combined with streptozotocin (STZ) injection. Iodixanol-320 was the contrast medium (CM) administered to rats. Images were obtained with a SIEMENS Skyra 3.0-T magnetic resonance imager. Renal histopathology was evaluated using H&E staining and immunohistochemistry (IHC). The innate immune response was revealed through western blotting and flow cytometry. RESULTS Blood oxygenation level-dependent (BOLD) imaging and intravoxel incoherent motion (IVIM) imaging can be used to predict and diagnose CI-AKI effectively. The R 2 ∗ value (r > 0.6, P < 0.0001) and D value (| r| > 0.5, P < 0.0001) are strongly correlated with histopathological scores. The NOD-like receptor pyrin 3 (NLRP3) inflammasome participates in CI-AKI and exacerbates CI-AKI in DM rats. Moreover, the percentages of neutrophils and M1 macrophages increase dramatically in rat kidneys after CM injection (neutrophils range from 56.3 to 56.6% and M1 macrophages from 48 to 54.1% in normal rats, whereas neutrophils range from 85.5 to 92.4% and M1 macrophages from 82.1 to 89.8% in DM rats). CONCLUSIONS/INTERPRETATION BOLD and IVIM-D can be effective noninvasive tools in predicting CI-AKI. The innate immune response is activated during the progression of CI-AKI and DM will exacerbate this progression.
Collapse
Affiliation(s)
- Yanfei Li
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Dafa Shi
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Haoran Zhang
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Xiang Yao
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Siyuan Wang
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Rui Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Ke Ren
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Kidney physiology and susceptibility to acute kidney injury: implications for renoprotection. Nat Rev Nephrol 2021; 17:335-349. [PMID: 33547418 DOI: 10.1038/s41581-021-00394-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 01/30/2023]
Abstract
Kidney damage varies according to the primary insult. Different aetiologies of acute kidney injury (AKI), including kidney ischaemia, exposure to nephrotoxins, dehydration or sepsis, are associated with characteristic patterns of damage and changes in gene expression, which can provide insight into the mechanisms that lead to persistent structural and functional damage. Early morphological alterations are driven by a delicate balance between energy demand and oxygen supply, which varies considerably in different regions of the kidney. The functional heterogeneity of the various nephron segments is reflected in their use of different metabolic pathways. AKI is often linked to defects in kidney oxygen supply, and some nephron segments might not be able to shift to anaerobic metabolism under low oxygen conditions or might have remarkably low basal oxygen levels, which enhances their vulnerability to damage. Here, we discuss why specific kidney regions are at particular risk of injury and how this information might help to delineate novel routes for mitigating injury and avoiding permanent damage. We suggest that the physiological heterogeneity of the kidney should be taken into account when exploring novel renoprotective strategies, such as improvement of kidney tissue oxygenation, stimulation of hypoxia signalling pathways and modulation of cellular energy metabolism.
Collapse
|
10
|
Acetylbritannilactone attenuates contrast-induced acute kidney injury through its anti-pyroptosis effects. Biosci Rep 2021; 40:221974. [PMID: 31998952 PMCID: PMC7029155 DOI: 10.1042/bsr20193253] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 02/07/2023] Open
Abstract
Contrast-induced acute kidney injury (CI-AKI) is a severe complication caused by intravascular applied radial contrast media (CM). Pyroptosis is a lytic type of cell death inherently associated with inflammation response and the secretion of pro-inflammatory cytokines following caspase-1 activation. The aim of the present study was to investigate the protective effects of acetylbritannilactone (ABL) on iopromide (IOP)-induced acute renal failure and reveal the underlying mechanism. In vivo and in vitro, IOP treatment caused renal damage and elevated the caspase-1 (+) propidium iodide (PI) (+) cell count, interleukin (IL)-1β and IL-18 levels, lactate dehydrogenase (LDH) release, and the relative expression of nucleotide-binding domain, leucine-rich repeat containing protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), and gasdermin D (GSDMD), suggesting that IOP induces AKI via the activation of pyroptosis. Furthermore, the pretreatment of ABL partly mitigated the CI-AKI, development of pyroptosis, and subsequent kidney inflammation. These data revealed that ABL partially prevents renal dysfunction and reduces pyroptosis in CI-AKI, which may provide a therapeutic target for the treatment of CM-induced AKI.
Collapse
|
11
|
Seo N, Oh H, Oh HJ, Chung YE. Quantitative Analysis of Microperfusion in Contrast-Induced Nephropathy Using Contrast-Enhanced Ultrasound: An Animal Study. Korean J Radiol 2021; 22:801-810. [PMID: 33660455 PMCID: PMC8076825 DOI: 10.3348/kjr.2020.0577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate imaging biomarkers of microperfusion in contrast-induced nephropathy (CIN) using contrast-enhanced ultrasound (CEUS). MATERIALS AND METHODS The CIN model was fabricated by administering indomethacin (10 mg/kg), L-NAME (15 mg/kg), and iopamidol (10 mL/kg) to Sprague-Dawley rats. After 24 hours, CEUS was performed on CIN (n = 6) and control (n = 6) rats with sulphur hexafluoride microbubbles (SonoVue). From time-intensity curves obtained from the kidney arriving time (AT), acceleration time (AC), time to peak (TTP), and peak enhancement (PE) were measured and compared between the groups. After CEUS, the rats were sacrificed, and cell apoptosis markers were evaluated to confirm the development of CIN. RESULTS Among CEUS parameters, AT (7.8 ± 1.6 vs. 4.2 ± 0.5 s, p = 0.002), AC (4.7 ± 1.4 vs. 2.0 ± 0.4 s, p = 0.002), and TTP (12.5 ± 2.9 vs. 6.2 ± 0.6 s, p = 0.002) were significantly prolonged in the CIN group compared to controls. PE was significantly higher in the control group than in the CIN group (17.1 ± 1.9 vs. 12.2 ± 2.0 dB, p = 0.004). In kidney tissue, mRNA and protein levels of the apoptotic makers were significantly higher in the CIN group than in the control group (p = 0.003 and p = 0.002). CONCLUSION CEUS parameters can be used as imaging biomarkers for microperfusion in CIN. In rats with CIN, AT, AC, and TTP were significantly prolonged, while PE was significantly lower compared to controls.
Collapse
Affiliation(s)
- Nieun Seo
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyewon Oh
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Jung Oh
- Department of Nephrology, Sheikh Khalifa Specialty Hospital, Ras AlKhaimah, UAE
| | - Yong Eun Chung
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
|
13
|
Diffusion-weighted Renal MRI at 9.4 Tesla Using RARE to Improve Anatomical Integrity. Sci Rep 2019; 9:19723. [PMID: 31873155 PMCID: PMC6928203 DOI: 10.1038/s41598-019-56184-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive imaging technique sensitive to tissue water movement. By enabling a discrimination between tissue properties without the need of contrast agent administration, DWI is invaluable for probing tissue microstructure in kidney diseases. DWI studies commonly make use of single-shot Echo-Planar Imaging (ss-EPI) techniques that are prone to suffering from geometric distortion. The goal of the present study was to develop a robust DWI technique tailored for preclinical magnetic resonance imaging (MRI) studies that is free of distortion and sensitive to detect microstructural changes. Since fast spin-echo imaging techniques are less susceptible to B0 inhomogeneity related image distortions, we introduced a diffusion sensitization to a split-echo Rapid Acquisition with Relaxation Enhancement (RARE) technique for high field preclinical DWI at 9.4 T. Validation studies in standard liquids provided diffusion coefficients consistent with reported values from the literature. Split-echo RARE outperformed conventional ss-EPI, with ss-EPI showing a 3.5-times larger border displacement (2.60 vs. 0.75) and a 60% higher intra-subject variability (cortex = 74%, outer medulla = 62% and inner medulla = 44%). The anatomical integrity provided by the split-echo RARE DWI technique is an essential component of parametric imaging on the way towards robust renal tissue characterization, especially during kidney disease.
Collapse
|
14
|
Jiang K, Ferguson CM, Lerman LO. Noninvasive assessment of renal fibrosis by magnetic resonance imaging and ultrasound techniques. Transl Res 2019; 209:105-120. [PMID: 31082371 PMCID: PMC6553637 DOI: 10.1016/j.trsl.2019.02.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/12/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is a useful biomarker for diagnosis and guidance of therapeutic interventions of chronic kidney disease (CKD), a worldwide disease that affects more than 10% of the population and is one of the major causes of death. Currently, tissue biopsy is the gold standard for assessment of renal fibrosis. However, it is invasive, and prone to sampling error and observer variability, and may also result in complications. Recent advances in diagnostic imaging techniques, including magnetic resonance imaging (MRI) and ultrasonography, have shown promise for noninvasive assessment of renal fibrosis. These imaging techniques measure renal fibrosis by evaluating its impacts on the functional, mechanical, and molecular properties of the kidney, such as water mobility by diffusion MRI, tissue hypoxia by blood oxygenation level dependent MRI, renal stiffness by MR and ultrasound elastography, and macromolecule content by magnetization transfer imaging. Other MR techniques, such as T1/T2 mapping and susceptibility-weighted imaging have also been explored for measuring renal fibrosis. Promising findings have been reported in both preclinical and clinical studies using these techniques. Nevertheless, limited specificity, sensitivity, and practicality in these techniques may hinder their immediate application in clinical routine. In this review, we will introduce methodologies of these techniques, outline their applications in fibrosis imaging, and discuss their limitations and pitfalls.
Collapse
Affiliation(s)
- Kai Jiang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota
| | | | - Lilach O Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
15
|
Application of Blood Oxygenation Level-Dependent Magnetic Resonance Imaging and Intravoxel Incoherent Motion to Assess Bilateral Renal Pathophysiological Processes Induced by Iodixanol Renal Artery First-Pass in Rabbit Model. J Comput Assist Tomogr 2019; 43:634-640. [PMID: 31162241 DOI: 10.1097/rct.0000000000000870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Noninvasive blood oxygen level-dependent imaging and intravoxel incoherent motion sequences were used to assess bilateral renal oxygenation, hemodynamics, and proton diffusion in iodixanol renal artery first-pass in rabbit model. METHODS Forty-two rabbits were divided into 2 groups. Saline and iodixanol (1 g iodine/kg, left renal artery) were administered. Magnetic resonance imaging scans were acquired longitudinally at 24 hours prior to and 1, 24, 48, and 72 hours after administration to assess apparent diffusion coefficient, pure molecular diffusion (D), perfusion-related diffusion (D*), volume fraction (f), and relative spin-spin relaxation rate (R2*) values, respectively. The experiment evaluated serum creatinine, histological, and hypoxia-inducible factor 1α immunoexpression. RESULTS During 1 to 48 hours, the values of D, f, and D* significantly decreased (P < 0.05), but R2* values significantly increased (P < 0.05) in cortex, outer medulla, and inner medulla after administration of iodixanol through left renal artery, which showed in the 72 hours. The change of the left kidney is noteworthy. Significant negative correlations were observed between apparent diffusion coefficient, D, f, and R2* in cortex, outer medulla, and inner medulla (all P < 0.001, r = -0.635-0.697). CONCLUSIONS The first-pass effect of the contrast agent significantly reduces ipsilateral renal perfusion and renal oxygenation, and noninvasive monitoring can be performed by using blood oxygen level-dependent magnetic resonance imaging and intravoxel incoherent motion.
Collapse
|