1
|
Wang F, Numata K, Funaoka A, Kumamoto T, Takeda K, Chuma M, Nozaki A, Ruan L, Maeda S. Construction of a nomogram combining CEUS and MRI imaging for preoperative diagnosis of microvascular invasion in hepatocellular carcinoma. Eur J Radiol Open 2024; 13:100587. [PMID: 39070064 PMCID: PMC11279689 DOI: 10.1016/j.ejro.2024.100587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/30/2024] Open
Abstract
Purpose To use Sonazoid contrast-enhanced ultrasound (S-CEUS) and Gadolinium-Ethoxybenzyl-Diethylenetriamine Penta-Acetic Acid magnetic-resonance imaging (EOB-MRI), exploring a non-invasive preoperative diagnostic strategy for microvascular invasion (MVI) of hepatocellular carcinoma (HCC). Methods 111 newly developed HCC cases were retrospectively collected. Both S-CEUS and EOB-MRI examinations were performed within one month of hepatectomy. The following indicators were investigated: size; vascularity in three phases of S-CEUS; margin, signal intensity, and peritumoral wedge shape in EOB-MRI; tumoral homogeneity, presence and integrity of the tumoral capsule in S-CEUS or EOB-MRI; presence of branching enhancement in S-CEUS; baseline clinical and serological data. The least absolute shrinkage and selection operator regression and multivariate logistic regression analysis were applied to optimize feature selection for the model. A nomogram for MVI was developed and verified by bootstrap resampling. Results Of the 16 variables we included, wedge and margin in HBP of EOB-MRI, capsule integrity in AP or HBP/PVP images of EOB-MRI/S-CEUS, and branching enhancement in AP of S-CEUS were identified as independent risk factors for MVI and incorporated into construction of the nomogram. The nomogram achieved an excellent diagnostic efficiency with an area under the curve of 0.8434 for full data training set and 0.7925 for bootstrapping validation set for 500 repetitions. In evaluating the nomogram, Hosmer-Lemeshow test for training set exhibited a good model fit with P > 0.05. Decision curve analysis of nomogram model yielded excellent clinical net benefit with a wide range (5-80 % and 85-94 %) of risk threshold. Conclusions The MVI Nomogram established in this study may provide a strategy for optimizing the preoperative diagnosis of MVI, which in turn may improve the treatment and prognosis of MVI-related HCC.
Collapse
Affiliation(s)
- Feiqian Wang
- Ultrasound Department, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, Shaanxi 710061, PR China
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan
| | - Akihiro Funaoka
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan
| | - Takafumi Kumamoto
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan
| | - Kazuhisa Takeda
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan
| | - Makoto Chuma
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan
| | - Akito Nozaki
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024, Japan
| | - Litao Ruan
- Ultrasound Department, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, Shaanxi 710061, PR China
| | - Shin Maeda
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-0004, Japan
| |
Collapse
|
2
|
Sobhani N, D'Angelo A, Pittacolo M, Mondani G, Generali D. Future AI Will Most Likely Predict Antibody-Drug Conjugate Response in Oncology: A Review and Expert Opinion. Cancers (Basel) 2024; 16:3089. [PMID: 39272947 PMCID: PMC11394064 DOI: 10.3390/cancers16173089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
The medical research field has been tremendously galvanized to improve the prediction of therapy efficacy by the revolution in artificial intelligence (AI). An earnest desire to find better ways to predict the effectiveness of therapy with the use of AI has propelled the evolution of new models in which it can become more applicable in clinical settings such as breast cancer detection. However, in some instances, the U.S. Food and Drug Administration was obliged to back some previously approved inaccurate models for AI-based prognostic models because they eventually produce inaccurate prognoses for specific patients who might be at risk of heart failure. In light of instances in which the medical research community has often evolved some unrealistic expectations regarding the advances in AI and its potential use for medical purposes, implementing standard procedures for AI-based cancer models is critical. Specifically, models would have to meet some general parameters for standardization, transparency of their logistic modules, and avoidance of algorithm biases. In this review, we summarize the current knowledge about AI-based prognostic methods and describe how they may be used in the future for predicting antibody-drug conjugate efficacy in cancer patients. We also summarize the findings of recent late-phase clinical trials using these conjugates for cancer therapy.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Alberto D'Angelo
- Department of Medicine, Northern General Hospital, Sheffield S5 7AT, UK
| | - Matteo Pittacolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35122 Padova, Italy
| | - Giuseppina Mondani
- Royal Infirmary Hospital, Foresterhill Health Campus, Aberdeen AB25 2ZN, UK
| | - Daniele Generali
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34100 Trieste, Italy
| |
Collapse
|
3
|
Jayasankar G, Koilpillai J, Narayanasamy D. A Systematic Study on Long-acting Nanobubbles: Current Advancement and Prospects on Theranostic Properties. Adv Pharm Bull 2024; 14:278-301. [PMID: 39206408 PMCID: PMC11347731 DOI: 10.34172/apb.2024.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 09/04/2024] Open
Abstract
Delivery of diagnostic drugs via nanobubbles (NBs) has shown to be an emerging field of study. Due to their small size, NBs may more easily travel through constricted blood vessels and precisely target certain bodily parts. NB is considered the major treatment for cancer treatment and other diseases which are difficult to diagnose. The field of NBs is dynamic and continues to grow as researchers discover new properties and seek practical applications in various fields. The predominant usage of NBs in novel drug delivery is to enhance the bioavailability, and controlled drug release along with imaging properties NBs are important because they may change interfacial characteristics including surface force, lubrication, and absorption. The quick diffusion of gas into the water was caused by a hypothetical film that was stimulated and punctured by a strong acting force at the gas/water contact of the bubble. In this article, various prominent aspects of NBs have been discussed, along with the long-acting nature, and the theranostical aspect which elucidates the potential marketed drugs along with clinical trial products. The article also covers quality by design aspects, different production techniques that enable method-specific therapeutic applications, increasing the floating time of the bubble, and refining its properties to enhance the prepared NB's quality. NB containing both analysis and curing properties makes it special from other nano-carriers. This work includes all the possible methods of preparing NB, its application, all marketed drugs, and products in clinical trials.
Collapse
Affiliation(s)
| | | | - Damodharan Narayanasamy
- Department of Pharmaceutics, SRM College of Pharmacy, SRM Institution of Science and Technology, Kattankulathur, Chengalpattu, India
| |
Collapse
|
4
|
Kuon Yeng Escalante CM, Siu Xiao T, Nagaraj RU, Savsani E, Mohammed A, Li J, Lyshchik A, Liu JB, Wessner CE, Tahmasebi A, Soulen MC, Kono Y, Eisenbrey JR. Evaluation of the Contrast-Enhanced Ultrasound Nonradiation Treatment Response Assessment LI-RADS v2024 Using Data From a Multi-Center Transarterial Chemoembolization Study. Acad Radiol 2024:S1076-6332(24)00363-5. [PMID: 38908918 DOI: 10.1016/j.acra.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/24/2024]
Abstract
RATIONALE AND OBJECTIVE Hepatocellular carcinoma (HCC) locoregional treatment response is commonly evaluated using the Modified Response Evaluation Criteria in Solid Tumors and the American College of Radiology (ACR) Liver Reporting and Data System (LI-RADS) Treatment Response Assessment (TRA) for MRI/CT. This study aims to evaluate the diagnostic performance of the new ACR contrast-enhanced ultrasound (CEUS) Nonradiation TRA LI-RADS v2024 in HCC treated with transarterial chemoembolization (TACE). MATERIALS AND METHODS This retrospective observational study included 87 patients treated with TACE from a previously reported cohort. At 15- and 30-days post-treatment, 68 and 72 HCC lesions were evaluated. Three blinded radiologists with different levels of CEUS experience interpreted the images independently. According to CEUS Nonradiation TRA LI-RADSv2024, both intralesional and perilesional tumor viability were evaluated and final TRA categories were as follows: TR-Nonviable, TR-Equivocal, and TR-Viable. The reference standard used was a composite of histology and imaging. RESULTS 140 HCC lesions were analyzed. At 15 days post-treatment, the sensitivity (SN), specificity (SP), positive predictive value (PPV), negative predictive value (NPV), and accuracy of TR-Viable classification ranged from 72.5-94.3%, 72.2-86.4%, 86.8-91.4%, 65.6-86.7%, 76.9-86.8%, respectively. At 30 days post-treatment, the SN, PPV, and NPV of TR-Viable classification decreased, ranging from 65.9-84.2%, 85.7-90.6%, and 59.5-73.9%, respectively, while the SP increased, ranging from 80.0-88.0%. Kappa values ranged from 0.557-0.730, indicating moderate to substantial agreement. CONCLUSION CEUS Nonradiation TRA LI-RADS is a reliable tool for the detection of viable tumors in lesions treated with TACE and demonstrates reproducibility across readers.
Collapse
Affiliation(s)
| | - Tania Siu Xiao
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rohit U Nagaraj
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Esika Savsani
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Amr Mohammed
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joy Li
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Andrej Lyshchik
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Corinne E Wessner
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Aylin Tahmasebi
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael C Soulen
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuko Kono
- Department of Medicine, Gastroenterology and Hepatology, University of California, San Diego, California, USA
| | - John R Eisenbrey
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Lyshchik A, Fetzer DT, Kono Y, Wilson SR, Dietrich CF, Clevert DA, Meloni MF, Jang HJ, Kim TK, Lee JM, Minami Y, Kudo M, Piscaglia F, Atzen S. Liver Imaging Reporting and Data System Contrast-Enhanced US Nonradiation Treatment Response Assessment Version 2024. Radiology 2024; 311:e232369. [PMID: 38805727 PMCID: PMC11140523 DOI: 10.1148/radiol.232369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 05/30/2024]
Abstract
The American College of Radiology Liver Imaging Reporting and Data System (LI-RADS) standardizes the imaging technique, reporting lexicon, disease categorization, and management for patients with or at risk for hepatocellular carcinoma (HCC). LI-RADS encompasses HCC surveillance with US; HCC diagnosis with CT, MRI, or contrast-enhanced US (CEUS); and treatment response assessment (TRA) with CT or MRI. LI-RADS was recently expanded to include CEUS TRA after nonradiation locoregional therapy or surgical resection. This report provides an overview of LI-RADS CEUS Nonradiation TRA v2024, including a lexicon of imaging findings, techniques, and imaging criteria for posttreatment tumor viability assessment. LI-RADS CEUS Nonradiation TRA v2024 takes into consideration differences in the CEUS appearance of viable tumor and posttreatment changes within and in close proximity to a treated lesion. Due to the high sensitivity of CEUS to vascular flow, posttreatment reactive changes commonly manifest as areas of abnormal perilesional enhancement without washout, especially in the first 3 months after treatment. To improve the accuracy of CEUS for nonradiation TRA, different diagnostic criteria are used to evaluate tumor viability within and outside of the treated lesion margin. Broader criteria for intralesional enhancement increase sensitivity for tumor viability detection. Stricter criteria for perilesional enhancement limit miscategorization of posttreatment reactive changes as viable tumor. Finally, the TRA algorithm reconciles intralesional and perilesional tumor viability assessment and assigns a single LI-RADS treatment response (LR-TR) category: LR-TR nonviable, LR-TR equivocal, or LR-TR viable.
Collapse
Affiliation(s)
- Andrej Lyshchik
- From the Department of Radiology, Thomas Jefferson University
Hospital, 132 S 10th St, 763G Main Bldg, Philadelphia, PA 19107 (A.L.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (D.T.F.);
Departments of Medicine and Radiology, University of California, San Diego, San
Diego, Calif (Y.K.); Department of Diagnostic Imaging, University of Calgary,
Calgary, Alberta, Canada (S.R.W.); Department of General Internal Medicine,
Hirslanden Klinik Beau-Site, Hirslanden Salem-Spital, and Hirslanden Klinik
Permanence, Bern, Switzerland (C.F.D.); Interdisciplinary Ultrasound Center,
Department of Radiology, LMU University Hospital, Ludwig Maximilian University
of Munich, Munich, Germany (D.A.C.); Department of Interventional Ultrasound,
Casa di Cura Igea, Milan, Italy (M.F.M.); Joint Department of Medical Imaging,
University of Toronto, Toronto, Ontario, Canada (H.J.J., T.K.K.); Department of
Radiology and Institute of Radiation Medicine, Seoul National University
Hospital, Seoul, Korea (J.M.L.); Department of Radiology, Seoul National
University College of Medicine, Seoul, Korea (J.M.L.); Department of
Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka,
Japan (Y.M., M.K.); Hepatobiliary and Immunoallergic Diseases, Division of
Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy (F.P.); and Department of Medical and Surgical Sciences, University of
Bologna, Bologna, Italy (F.P.)
| | - David T. Fetzer
- From the Department of Radiology, Thomas Jefferson University
Hospital, 132 S 10th St, 763G Main Bldg, Philadelphia, PA 19107 (A.L.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (D.T.F.);
Departments of Medicine and Radiology, University of California, San Diego, San
Diego, Calif (Y.K.); Department of Diagnostic Imaging, University of Calgary,
Calgary, Alberta, Canada (S.R.W.); Department of General Internal Medicine,
Hirslanden Klinik Beau-Site, Hirslanden Salem-Spital, and Hirslanden Klinik
Permanence, Bern, Switzerland (C.F.D.); Interdisciplinary Ultrasound Center,
Department of Radiology, LMU University Hospital, Ludwig Maximilian University
of Munich, Munich, Germany (D.A.C.); Department of Interventional Ultrasound,
Casa di Cura Igea, Milan, Italy (M.F.M.); Joint Department of Medical Imaging,
University of Toronto, Toronto, Ontario, Canada (H.J.J., T.K.K.); Department of
Radiology and Institute of Radiation Medicine, Seoul National University
Hospital, Seoul, Korea (J.M.L.); Department of Radiology, Seoul National
University College of Medicine, Seoul, Korea (J.M.L.); Department of
Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka,
Japan (Y.M., M.K.); Hepatobiliary and Immunoallergic Diseases, Division of
Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy (F.P.); and Department of Medical and Surgical Sciences, University of
Bologna, Bologna, Italy (F.P.)
| | - Yuko Kono
- From the Department of Radiology, Thomas Jefferson University
Hospital, 132 S 10th St, 763G Main Bldg, Philadelphia, PA 19107 (A.L.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (D.T.F.);
Departments of Medicine and Radiology, University of California, San Diego, San
Diego, Calif (Y.K.); Department of Diagnostic Imaging, University of Calgary,
Calgary, Alberta, Canada (S.R.W.); Department of General Internal Medicine,
Hirslanden Klinik Beau-Site, Hirslanden Salem-Spital, and Hirslanden Klinik
Permanence, Bern, Switzerland (C.F.D.); Interdisciplinary Ultrasound Center,
Department of Radiology, LMU University Hospital, Ludwig Maximilian University
of Munich, Munich, Germany (D.A.C.); Department of Interventional Ultrasound,
Casa di Cura Igea, Milan, Italy (M.F.M.); Joint Department of Medical Imaging,
University of Toronto, Toronto, Ontario, Canada (H.J.J., T.K.K.); Department of
Radiology and Institute of Radiation Medicine, Seoul National University
Hospital, Seoul, Korea (J.M.L.); Department of Radiology, Seoul National
University College of Medicine, Seoul, Korea (J.M.L.); Department of
Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka,
Japan (Y.M., M.K.); Hepatobiliary and Immunoallergic Diseases, Division of
Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy (F.P.); and Department of Medical and Surgical Sciences, University of
Bologna, Bologna, Italy (F.P.)
| | - Stephanie R. Wilson
- From the Department of Radiology, Thomas Jefferson University
Hospital, 132 S 10th St, 763G Main Bldg, Philadelphia, PA 19107 (A.L.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (D.T.F.);
Departments of Medicine and Radiology, University of California, San Diego, San
Diego, Calif (Y.K.); Department of Diagnostic Imaging, University of Calgary,
Calgary, Alberta, Canada (S.R.W.); Department of General Internal Medicine,
Hirslanden Klinik Beau-Site, Hirslanden Salem-Spital, and Hirslanden Klinik
Permanence, Bern, Switzerland (C.F.D.); Interdisciplinary Ultrasound Center,
Department of Radiology, LMU University Hospital, Ludwig Maximilian University
of Munich, Munich, Germany (D.A.C.); Department of Interventional Ultrasound,
Casa di Cura Igea, Milan, Italy (M.F.M.); Joint Department of Medical Imaging,
University of Toronto, Toronto, Ontario, Canada (H.J.J., T.K.K.); Department of
Radiology and Institute of Radiation Medicine, Seoul National University
Hospital, Seoul, Korea (J.M.L.); Department of Radiology, Seoul National
University College of Medicine, Seoul, Korea (J.M.L.); Department of
Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka,
Japan (Y.M., M.K.); Hepatobiliary and Immunoallergic Diseases, Division of
Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy (F.P.); and Department of Medical and Surgical Sciences, University of
Bologna, Bologna, Italy (F.P.)
| | - Christoph F. Dietrich
- From the Department of Radiology, Thomas Jefferson University
Hospital, 132 S 10th St, 763G Main Bldg, Philadelphia, PA 19107 (A.L.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (D.T.F.);
Departments of Medicine and Radiology, University of California, San Diego, San
Diego, Calif (Y.K.); Department of Diagnostic Imaging, University of Calgary,
Calgary, Alberta, Canada (S.R.W.); Department of General Internal Medicine,
Hirslanden Klinik Beau-Site, Hirslanden Salem-Spital, and Hirslanden Klinik
Permanence, Bern, Switzerland (C.F.D.); Interdisciplinary Ultrasound Center,
Department of Radiology, LMU University Hospital, Ludwig Maximilian University
of Munich, Munich, Germany (D.A.C.); Department of Interventional Ultrasound,
Casa di Cura Igea, Milan, Italy (M.F.M.); Joint Department of Medical Imaging,
University of Toronto, Toronto, Ontario, Canada (H.J.J., T.K.K.); Department of
Radiology and Institute of Radiation Medicine, Seoul National University
Hospital, Seoul, Korea (J.M.L.); Department of Radiology, Seoul National
University College of Medicine, Seoul, Korea (J.M.L.); Department of
Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka,
Japan (Y.M., M.K.); Hepatobiliary and Immunoallergic Diseases, Division of
Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy (F.P.); and Department of Medical and Surgical Sciences, University of
Bologna, Bologna, Italy (F.P.)
| | - Dirk A. Clevert
- From the Department of Radiology, Thomas Jefferson University
Hospital, 132 S 10th St, 763G Main Bldg, Philadelphia, PA 19107 (A.L.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (D.T.F.);
Departments of Medicine and Radiology, University of California, San Diego, San
Diego, Calif (Y.K.); Department of Diagnostic Imaging, University of Calgary,
Calgary, Alberta, Canada (S.R.W.); Department of General Internal Medicine,
Hirslanden Klinik Beau-Site, Hirslanden Salem-Spital, and Hirslanden Klinik
Permanence, Bern, Switzerland (C.F.D.); Interdisciplinary Ultrasound Center,
Department of Radiology, LMU University Hospital, Ludwig Maximilian University
of Munich, Munich, Germany (D.A.C.); Department of Interventional Ultrasound,
Casa di Cura Igea, Milan, Italy (M.F.M.); Joint Department of Medical Imaging,
University of Toronto, Toronto, Ontario, Canada (H.J.J., T.K.K.); Department of
Radiology and Institute of Radiation Medicine, Seoul National University
Hospital, Seoul, Korea (J.M.L.); Department of Radiology, Seoul National
University College of Medicine, Seoul, Korea (J.M.L.); Department of
Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka,
Japan (Y.M., M.K.); Hepatobiliary and Immunoallergic Diseases, Division of
Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy (F.P.); and Department of Medical and Surgical Sciences, University of
Bologna, Bologna, Italy (F.P.)
| | - Maria Franca Meloni
- From the Department of Radiology, Thomas Jefferson University
Hospital, 132 S 10th St, 763G Main Bldg, Philadelphia, PA 19107 (A.L.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (D.T.F.);
Departments of Medicine and Radiology, University of California, San Diego, San
Diego, Calif (Y.K.); Department of Diagnostic Imaging, University of Calgary,
Calgary, Alberta, Canada (S.R.W.); Department of General Internal Medicine,
Hirslanden Klinik Beau-Site, Hirslanden Salem-Spital, and Hirslanden Klinik
Permanence, Bern, Switzerland (C.F.D.); Interdisciplinary Ultrasound Center,
Department of Radiology, LMU University Hospital, Ludwig Maximilian University
of Munich, Munich, Germany (D.A.C.); Department of Interventional Ultrasound,
Casa di Cura Igea, Milan, Italy (M.F.M.); Joint Department of Medical Imaging,
University of Toronto, Toronto, Ontario, Canada (H.J.J., T.K.K.); Department of
Radiology and Institute of Radiation Medicine, Seoul National University
Hospital, Seoul, Korea (J.M.L.); Department of Radiology, Seoul National
University College of Medicine, Seoul, Korea (J.M.L.); Department of
Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka,
Japan (Y.M., M.K.); Hepatobiliary and Immunoallergic Diseases, Division of
Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy (F.P.); and Department of Medical and Surgical Sciences, University of
Bologna, Bologna, Italy (F.P.)
| | - Hyun-Jung Jang
- From the Department of Radiology, Thomas Jefferson University
Hospital, 132 S 10th St, 763G Main Bldg, Philadelphia, PA 19107 (A.L.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (D.T.F.);
Departments of Medicine and Radiology, University of California, San Diego, San
Diego, Calif (Y.K.); Department of Diagnostic Imaging, University of Calgary,
Calgary, Alberta, Canada (S.R.W.); Department of General Internal Medicine,
Hirslanden Klinik Beau-Site, Hirslanden Salem-Spital, and Hirslanden Klinik
Permanence, Bern, Switzerland (C.F.D.); Interdisciplinary Ultrasound Center,
Department of Radiology, LMU University Hospital, Ludwig Maximilian University
of Munich, Munich, Germany (D.A.C.); Department of Interventional Ultrasound,
Casa di Cura Igea, Milan, Italy (M.F.M.); Joint Department of Medical Imaging,
University of Toronto, Toronto, Ontario, Canada (H.J.J., T.K.K.); Department of
Radiology and Institute of Radiation Medicine, Seoul National University
Hospital, Seoul, Korea (J.M.L.); Department of Radiology, Seoul National
University College of Medicine, Seoul, Korea (J.M.L.); Department of
Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka,
Japan (Y.M., M.K.); Hepatobiliary and Immunoallergic Diseases, Division of
Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy (F.P.); and Department of Medical and Surgical Sciences, University of
Bologna, Bologna, Italy (F.P.)
| | - Tae Kyoung Kim
- From the Department of Radiology, Thomas Jefferson University
Hospital, 132 S 10th St, 763G Main Bldg, Philadelphia, PA 19107 (A.L.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (D.T.F.);
Departments of Medicine and Radiology, University of California, San Diego, San
Diego, Calif (Y.K.); Department of Diagnostic Imaging, University of Calgary,
Calgary, Alberta, Canada (S.R.W.); Department of General Internal Medicine,
Hirslanden Klinik Beau-Site, Hirslanden Salem-Spital, and Hirslanden Klinik
Permanence, Bern, Switzerland (C.F.D.); Interdisciplinary Ultrasound Center,
Department of Radiology, LMU University Hospital, Ludwig Maximilian University
of Munich, Munich, Germany (D.A.C.); Department of Interventional Ultrasound,
Casa di Cura Igea, Milan, Italy (M.F.M.); Joint Department of Medical Imaging,
University of Toronto, Toronto, Ontario, Canada (H.J.J., T.K.K.); Department of
Radiology and Institute of Radiation Medicine, Seoul National University
Hospital, Seoul, Korea (J.M.L.); Department of Radiology, Seoul National
University College of Medicine, Seoul, Korea (J.M.L.); Department of
Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka,
Japan (Y.M., M.K.); Hepatobiliary and Immunoallergic Diseases, Division of
Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy (F.P.); and Department of Medical and Surgical Sciences, University of
Bologna, Bologna, Italy (F.P.)
| | - Jeong Min Lee
- From the Department of Radiology, Thomas Jefferson University
Hospital, 132 S 10th St, 763G Main Bldg, Philadelphia, PA 19107 (A.L.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (D.T.F.);
Departments of Medicine and Radiology, University of California, San Diego, San
Diego, Calif (Y.K.); Department of Diagnostic Imaging, University of Calgary,
Calgary, Alberta, Canada (S.R.W.); Department of General Internal Medicine,
Hirslanden Klinik Beau-Site, Hirslanden Salem-Spital, and Hirslanden Klinik
Permanence, Bern, Switzerland (C.F.D.); Interdisciplinary Ultrasound Center,
Department of Radiology, LMU University Hospital, Ludwig Maximilian University
of Munich, Munich, Germany (D.A.C.); Department of Interventional Ultrasound,
Casa di Cura Igea, Milan, Italy (M.F.M.); Joint Department of Medical Imaging,
University of Toronto, Toronto, Ontario, Canada (H.J.J., T.K.K.); Department of
Radiology and Institute of Radiation Medicine, Seoul National University
Hospital, Seoul, Korea (J.M.L.); Department of Radiology, Seoul National
University College of Medicine, Seoul, Korea (J.M.L.); Department of
Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka,
Japan (Y.M., M.K.); Hepatobiliary and Immunoallergic Diseases, Division of
Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy (F.P.); and Department of Medical and Surgical Sciences, University of
Bologna, Bologna, Italy (F.P.)
| | - Yasunori Minami
- From the Department of Radiology, Thomas Jefferson University
Hospital, 132 S 10th St, 763G Main Bldg, Philadelphia, PA 19107 (A.L.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (D.T.F.);
Departments of Medicine and Radiology, University of California, San Diego, San
Diego, Calif (Y.K.); Department of Diagnostic Imaging, University of Calgary,
Calgary, Alberta, Canada (S.R.W.); Department of General Internal Medicine,
Hirslanden Klinik Beau-Site, Hirslanden Salem-Spital, and Hirslanden Klinik
Permanence, Bern, Switzerland (C.F.D.); Interdisciplinary Ultrasound Center,
Department of Radiology, LMU University Hospital, Ludwig Maximilian University
of Munich, Munich, Germany (D.A.C.); Department of Interventional Ultrasound,
Casa di Cura Igea, Milan, Italy (M.F.M.); Joint Department of Medical Imaging,
University of Toronto, Toronto, Ontario, Canada (H.J.J., T.K.K.); Department of
Radiology and Institute of Radiation Medicine, Seoul National University
Hospital, Seoul, Korea (J.M.L.); Department of Radiology, Seoul National
University College of Medicine, Seoul, Korea (J.M.L.); Department of
Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka,
Japan (Y.M., M.K.); Hepatobiliary and Immunoallergic Diseases, Division of
Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy (F.P.); and Department of Medical and Surgical Sciences, University of
Bologna, Bologna, Italy (F.P.)
| | - Masatoshi Kudo
- From the Department of Radiology, Thomas Jefferson University
Hospital, 132 S 10th St, 763G Main Bldg, Philadelphia, PA 19107 (A.L.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (D.T.F.);
Departments of Medicine and Radiology, University of California, San Diego, San
Diego, Calif (Y.K.); Department of Diagnostic Imaging, University of Calgary,
Calgary, Alberta, Canada (S.R.W.); Department of General Internal Medicine,
Hirslanden Klinik Beau-Site, Hirslanden Salem-Spital, and Hirslanden Klinik
Permanence, Bern, Switzerland (C.F.D.); Interdisciplinary Ultrasound Center,
Department of Radiology, LMU University Hospital, Ludwig Maximilian University
of Munich, Munich, Germany (D.A.C.); Department of Interventional Ultrasound,
Casa di Cura Igea, Milan, Italy (M.F.M.); Joint Department of Medical Imaging,
University of Toronto, Toronto, Ontario, Canada (H.J.J., T.K.K.); Department of
Radiology and Institute of Radiation Medicine, Seoul National University
Hospital, Seoul, Korea (J.M.L.); Department of Radiology, Seoul National
University College of Medicine, Seoul, Korea (J.M.L.); Department of
Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka,
Japan (Y.M., M.K.); Hepatobiliary and Immunoallergic Diseases, Division of
Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy (F.P.); and Department of Medical and Surgical Sciences, University of
Bologna, Bologna, Italy (F.P.)
| | - Fabio Piscaglia
- From the Department of Radiology, Thomas Jefferson University
Hospital, 132 S 10th St, 763G Main Bldg, Philadelphia, PA 19107 (A.L.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (D.T.F.);
Departments of Medicine and Radiology, University of California, San Diego, San
Diego, Calif (Y.K.); Department of Diagnostic Imaging, University of Calgary,
Calgary, Alberta, Canada (S.R.W.); Department of General Internal Medicine,
Hirslanden Klinik Beau-Site, Hirslanden Salem-Spital, and Hirslanden Klinik
Permanence, Bern, Switzerland (C.F.D.); Interdisciplinary Ultrasound Center,
Department of Radiology, LMU University Hospital, Ludwig Maximilian University
of Munich, Munich, Germany (D.A.C.); Department of Interventional Ultrasound,
Casa di Cura Igea, Milan, Italy (M.F.M.); Joint Department of Medical Imaging,
University of Toronto, Toronto, Ontario, Canada (H.J.J., T.K.K.); Department of
Radiology and Institute of Radiation Medicine, Seoul National University
Hospital, Seoul, Korea (J.M.L.); Department of Radiology, Seoul National
University College of Medicine, Seoul, Korea (J.M.L.); Department of
Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka,
Japan (Y.M., M.K.); Hepatobiliary and Immunoallergic Diseases, Division of
Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy (F.P.); and Department of Medical and Surgical Sciences, University of
Bologna, Bologna, Italy (F.P.)
| | - Sarah Atzen
- From the Department of Radiology, Thomas Jefferson University
Hospital, 132 S 10th St, 763G Main Bldg, Philadelphia, PA 19107 (A.L.);
Department of Radiology, UT Southwestern Medical Center, Dallas, Tex (D.T.F.);
Departments of Medicine and Radiology, University of California, San Diego, San
Diego, Calif (Y.K.); Department of Diagnostic Imaging, University of Calgary,
Calgary, Alberta, Canada (S.R.W.); Department of General Internal Medicine,
Hirslanden Klinik Beau-Site, Hirslanden Salem-Spital, and Hirslanden Klinik
Permanence, Bern, Switzerland (C.F.D.); Interdisciplinary Ultrasound Center,
Department of Radiology, LMU University Hospital, Ludwig Maximilian University
of Munich, Munich, Germany (D.A.C.); Department of Interventional Ultrasound,
Casa di Cura Igea, Milan, Italy (M.F.M.); Joint Department of Medical Imaging,
University of Toronto, Toronto, Ontario, Canada (H.J.J., T.K.K.); Department of
Radiology and Institute of Radiation Medicine, Seoul National University
Hospital, Seoul, Korea (J.M.L.); Department of Radiology, Seoul National
University College of Medicine, Seoul, Korea (J.M.L.); Department of
Gastroenterology and Hepatology, Faculty of Medicine, Kindai University, Osaka,
Japan (Y.M., M.K.); Hepatobiliary and Immunoallergic Diseases, Division of
Internal Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna,
Italy (F.P.); and Department of Medical and Surgical Sciences, University of
Bologna, Bologna, Italy (F.P.)
| |
Collapse
|
6
|
Xu N, Wang D, Hong Y, Huang P, Xu Q, Sun H, Cai L, Yin J, Zhang L, Yang B. A nomogram based on contrast-enhanced ultrasound for evaluating the glomerulosclerosis rate in transplanted kidneys. Quant Imaging Med Surg 2024; 14:3060-3074. [PMID: 38617161 PMCID: PMC11007528 DOI: 10.21037/qims-23-1514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024]
Abstract
Background A high rate of glomerulosclerosis serves as an important signal of poor response to treatment and a high risk of disease progression or adverse prognosis in transplanted kidneys. We hypothesized that contrast-enhanced ultrasound (CEUS) could serve as a novel imaging biomarker in the early prediction of glomerulosclerosis rate by evaluating renal allograft microcirculation. Methods A retrospective analysis was performed on 143 transplanted kidney recipients with confirmed pathology, including 100 in the training group and 43 in the validation group. All patients underwent conventional ultrasound (CUS) and CEUS examinations. The patients were divided into two groups: those with >50% glomerulosclerosis and those with ≤50% glomerulosclerosis. The nomograms derived from independent predictors identified by multivariate logistic analysis were assessed using receiver operating characteristic (ROC) curve analysis, 1,000 bootstrap resamples, calibration curves, and decision curve analysis (DCA). Results The patients with >50% glomerulosclerosis and those with ≤50% glomerulosclerosis showed statistically significant differences in CEUS parameters, including in peak intensity (PI) (25 vs. 30; P<0.001), absolute time to peak (ATTP) (10 vs. 9; P=0.004), and time to peak (TTP) (22 vs. 19.5; P=0.026). Multivariate analysis revealed that PI [odds ratio (OR) =0.852; 95% confidence interval (CI): 0.737-0.986], peak systolic velocity (PSV) of the interlobar artery (OR =0.850; 95% CI: 0.758-0.954), cortical echogenicity (OR =38.429; 95% CI: 3.695-399.641), and time since transplantation (OR =1.017; 95% CI: 1.006-1.028) were independent predictors of whether the glomerulosclerosis rate was >50% and were incorporated into the construction of a nomogram. The area under the curve (AUC) of the nomogram in the training and validation groups was 0.914 (95% CI: 0.840-0.960) and 0.909 (95% CI: 0.781-0.975), respectively, with a bootstrap resampling AUC of 0.877. The calibration curve and DCA confirmed the diagnostic performance of the nomogram model. Conclusions The nomogram, which combined CUS, CEUS, and clinical indicators, exhibited notable predictive efficacy for the glomerulosclerosis rate in transplanted kidneys, thereby demonstrating the potential to improve clinical decision-making.
Collapse
Affiliation(s)
- Nan Xu
- Department of Ultrasound, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dandan Wang
- Department of Ultrasound, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Hong
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Pengfei Huang
- Department of Ultrasound, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qianjin Xu
- Department of Ultrasound, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hui Sun
- Department of Ultrasound, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liping Cai
- Department of Ultrasound, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jing Yin
- Department of Ultrasound, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lijuan Zhang
- Department of Ultrasound Medicine, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Yang
- Department of Ultrasound, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
7
|
AIUM Practice Parameter for the Performance of Contrast-Enhanced Ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:E8-E19. [PMID: 37873725 DOI: 10.1002/jum.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
|
8
|
Yang J, Zhang Y, Bao WYG, Chen YD, Jiang H, Huang JY, Zeng KY, Song B, Huang ZX, Lu Q. Comparison contrast-enhanced CT with contrast-enhanced US in diagnosing combined hepatocellular-cholangiocarcinoma: a propensity score-matched study. Insights Imaging 2024; 15:44. [PMID: 38353807 PMCID: PMC10866845 DOI: 10.1186/s13244-023-01576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/25/2023] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVES To develop and compare noninvasive models for differentiating between combined hepatocellular-cholangiocarcinoma (cHCC-CCA) and HCC based on serum tumor markers, contrast-enhanced ultrasound (CEUS), and computed tomography (CECT). METHODS From January 2010 to December 2021, patients with pathologically confirmed cHCC-CCA or HCC who underwent both preoperative CEUS and CECT were retrospectively enrolled. Propensity scores were calculated to match cHCC-CCA and HCC patients with a near-neighbor ratio of 1:2. Two predicted models, a CEUS-predominant (CEUS features plus tumor markers) and a CECT-predominant model (CECT features plus tumor markers), were constructed using logistic regression analyses. Model performance was evaluated by the area under the curve (AUC), sensitivity, specificity, and accuracy. RESULTS A total of 135 patients (mean age, 51.3 years ± 10.9; 122 men) with 135 tumors (45 cHCC-CCA and 90 HCC) were included. By logistic regression analysis, unclear boundary in the intratumoral nonenhanced area, partial washout on CEUS, CA 19-9 > 100 U/mL, lack of cirrhosis, incomplete tumor capsule, and nonrim arterial phase hyperenhancement (APHE) volume < 50% on CECT were independent factors for a diagnosis of cHCC-CCA. The CECT-predominant model showed almost perfect sensitivity for cHCC-CCA, unlike the CEUS-predominant model (93.3% vs. 55.6%, p < 0.001). The CEUS-predominant model showed higher diagnostic specificity than the CECT-predominant model (80.0% vs. 63.3%; p = 0.020), especially in the ≤ 5 cm subgroup (92.0% vs. 70.0%; p = 0.013). CONCLUSIONS The CECT-predominant model provides higher diagnostic sensitivity than the CEUS-predominant model for CHCC-CCA. Combining CECT features with serum CA 19-9 > 100 U/mL shows excellent sensitivity. CRITICAL RELEVANCE STATEMENT Combining lack of cirrhosis, incomplete tumor capsule, and nonrim arterial phase hyperenhancement (APHE) volume < 50% on CECT with serum CA 19-9 > 100 U/mL shows excellent sensitivity in differentiating cHCC-CCA from HCC. KEY POINTS 1. Accurate differentiation between cHCC-CCA and HCC is essential for treatment decisions. 2. The CECT-predominant model provides higher accuracy than the CEUS-predominant model for CHCC-CCA. 3. Combining CECT features and CA 19-9 levels shows a sensitivity of 93.3% in diagnosing cHCC-CCA.
Collapse
Affiliation(s)
- Jie Yang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yun Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wu-Yong-Ga Bao
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi-di Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanyu Jiang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jia-Yan Huang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ke-Yu Zeng
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Radiology, Sanya People's Hospital, Hainan, China
| | - Zi-Xing Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Department of Radiology, West China Tianfu hospital of Sichuan University, Sichuan, China.
| | - Qiang Lu
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
9
|
Cheng MQ, Huang H, Ruan SM, Xu P, Tong WJ, He DN, Huang Y, Lin MX, Lu MD, Kuang M, Wang W, Wu SH, Chen LD. Complementary Role of CEUS and CT/MR LI-RADS for Diagnosis of Recurrent HCC. Cancers (Basel) 2023; 15:5743. [PMID: 38136289 PMCID: PMC10741803 DOI: 10.3390/cancers15245743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/25/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
PURPOSE We retrospectively compared the diagnostic performance of contrast-enhanced ultrasonography (CEUS) and contrast-enhanced computer tomography-magnetic resonance imaging (CT/MRI) for recurrent hepatocellular carcinoma (HCC) after curative treatment. MATERIALS AND METHODS After curative treatment with 421 ultrasound (US) detected lesions, 303 HCC patients underwent both CEUS and CT/MRI. Each lesion was assigned a Liver Imaging Reporting and Data System (LI-RADS) category according to CEUS and CT/MRI LI-RADS. Receiver-operating characteristic (ROC) curves were computed to determine the optimal diagnosis algorithms for CEUS, CT and MRI. The diagnostic accuracy, sensitivity, specificity, and area under the curve (AUC) were compared between CEUS and CT/MRI. RESULTS Among the 421 lesions, 218 were diagnosed as recurrent HCC, whereas 203 lesions were diagnosed as benign. In recurrent HCC, CEUS detected more arterial hyperenhancement (APHE) and washout than CT and more APHE than MRI. CEUS yielded better diagnostic performance than CT (AUC: 0.981 vs. 0.958) (p = 0.024) comparable diagnostic performance to MRI (AUC: 0.952 vs. 0.933) (p > 0.05) when using their optimal diagnostic criteria. CEUS missed 12 recurrent HCCs, CT missed one, and MRI missed none. The detection rate of recurrent HCC on CEUS (94.8%, 218/230) was lower than that on CT/MRI (99.6%, 259/260) (p = 0.001). Lesions located on the US blind spots and visualization score C would hinder the ability of CEUS to detect recurrent HCC. CONCLUSION CEUS demonstrated excellent diagnostic performance but an inferior detection rate for recurrent HCC. CEUS and CT/MRI played a complementary role in the detection and characterization of recurrent HCC.
Collapse
Affiliation(s)
- Mei-Qing Cheng
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (M.-Q.C.); (H.H.); (S.-M.R.); (W.-J.T.); (Y.H.); (M.-X.L.); (M.-D.L.); (M.K.); (W.W.)
| | - Hui Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (M.-Q.C.); (H.H.); (S.-M.R.); (W.-J.T.); (Y.H.); (M.-X.L.); (M.-D.L.); (M.K.); (W.W.)
| | - Si-Min Ruan
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (M.-Q.C.); (H.H.); (S.-M.R.); (W.-J.T.); (Y.H.); (M.-X.L.); (M.-D.L.); (M.K.); (W.W.)
| | - Ping Xu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China;
| | - Wen-Juan Tong
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (M.-Q.C.); (H.H.); (S.-M.R.); (W.-J.T.); (Y.H.); (M.-X.L.); (M.-D.L.); (M.K.); (W.W.)
| | - Dan-Ni He
- Department of Medical Ultrasonics, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518107, China;
| | - Yang Huang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (M.-Q.C.); (H.H.); (S.-M.R.); (W.-J.T.); (Y.H.); (M.-X.L.); (M.-D.L.); (M.K.); (W.W.)
| | - Man-Xia Lin
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (M.-Q.C.); (H.H.); (S.-M.R.); (W.-J.T.); (Y.H.); (M.-X.L.); (M.-D.L.); (M.K.); (W.W.)
| | - Ming-De Lu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (M.-Q.C.); (H.H.); (S.-M.R.); (W.-J.T.); (Y.H.); (M.-X.L.); (M.-D.L.); (M.K.); (W.W.)
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ming Kuang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (M.-Q.C.); (H.H.); (S.-M.R.); (W.-J.T.); (Y.H.); (M.-X.L.); (M.-D.L.); (M.K.); (W.W.)
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Wang
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (M.-Q.C.); (H.H.); (S.-M.R.); (W.-J.T.); (Y.H.); (M.-X.L.); (M.-D.L.); (M.K.); (W.W.)
| | - Shao-Hong Wu
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (M.-Q.C.); (H.H.); (S.-M.R.); (W.-J.T.); (Y.H.); (M.-X.L.); (M.-D.L.); (M.K.); (W.W.)
| | - Li-Da Chen
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China; (M.-Q.C.); (H.H.); (S.-M.R.); (W.-J.T.); (Y.H.); (M.-X.L.); (M.-D.L.); (M.K.); (W.W.)
| |
Collapse
|
10
|
Hsieh C, Laguna A, Ikeda I, Maxwell AWP, Chapiro J, Nadolski G, Jiao Z, Bai HX. Using Machine Learning to Predict Response to Image-guided Therapies for Hepatocellular Carcinoma. Radiology 2023; 309:e222891. [PMID: 37934098 DOI: 10.1148/radiol.222891] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Interventional oncology is a rapidly growing field with advances in minimally invasive image-guided local-regional treatments for hepatocellular carcinoma (HCC), including transarterial chemoembolization, transarterial radioembolization, and thermal ablation. However, current standardized clinical staging systems for HCC are limited in their ability to optimize patient selection for treatment as they rely primarily on serum markers and radiologist-defined imaging features. Given the variation in treatment responses, an updated scoring system that includes multidimensional aspects of the disease, including quantitative imaging features, serum markers, and functional biomarkers, is needed to optimally triage patients. With the vast amounts of numerical medical record data and imaging features, researchers have turned to image-based methods, such as radiomics and artificial intelligence (AI), to automatically extract and process multidimensional data from images. The synthesis of these data can provide clinically relevant results to guide personalized treatment plans and optimize resource utilization. Machine learning (ML) is a branch of AI in which a model learns from training data and makes effective predictions by teaching itself. This review article outlines the basics of ML and provides a comprehensive overview of its potential value in the prediction of treatment response in patients with HCC after minimally invasive image-guided therapy.
Collapse
Affiliation(s)
- Celina Hsieh
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Amanda Laguna
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Ian Ikeda
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Aaron W P Maxwell
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Julius Chapiro
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Gregory Nadolski
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Zhicheng Jiao
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| | - Harrison X Bai
- From the Department of Diagnostic Imaging (C.H., A.W.P.M., Z.J.) and Warren Alpert Medical School (A.L.), Brown University, Providence, RI; Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Conn (I.I., J.C.); Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pa (G.N.); and Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N Caroline St, Baltimore, MD 21205 (H.X.B.)
| |
Collapse
|
11
|
Han S, Kim SW, Park S, Yoon JH, Kang HJ, Yoo J, Joo I, Bae JS, Lee JM. Perfluorobutane-Enhanced Ultrasound for Characterization of Hepatocellular Carcinoma From Non-hepatocellular Malignancies or Benignancy: Comparison of Imaging Acquisition Methods. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2256-2263. [PMID: 37495497 DOI: 10.1016/j.ultrasmedbio.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/20/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE The aim of the work described here was to evaluate the diagnostic performance of perfluorobutane (PFB)-enhanced ultrasound in differentiating hepatocellular carcinoma (HCC) from non-HCC malignancies and other benign lesions using different acquisition methods. METHODS This prospective study included 69 patients with solid liver lesions larger than 1 cm who were scheduled for biopsy or radiofrequency ablation between September 2020 and March 2021. Lesion diagnosis was designated by three blinded radiologists after reviewing three different sets of acquired images selected according to the following presumed acquisition methods: (i) method A, acquisition up to 5 min after contrast injection; (ii) method B, acquisition up to 1 min after contrast injection with additional Kupffer phase; and (iii) method C, acquisition up to 5 min after contrast injection with additional Kupffer phase. RESULTS After excluding 7 technical failures, 62 patients with liver lesions (mean size: 24.2 ± 14.8 mm), which consisted of 7 benign lesions, 37 non-HCC malignancies and 18 HCCs. For the HCC diagnosis, method C had the highest sensitivity (75.9%), followed by method B (72.2%) and method A (68.5%), but failed to exhibit statistical significance (p = 0.12). There was no significant difference with respect to the pooled specificity between the three methods (p = 0.28). Diagnostic accuracy was the highest with method C (87.1%) but failed to exhibit statistical significance (p = 0.24). CONCLUSION Image acquisition up to 5 min after contrast injection with additional Kupffer phase could potentially result in high accuracy and sensitivity without loss of specificity in diagnosing HCC with PFB-enhanced ultrasound.
Collapse
Affiliation(s)
- Seungchul Han
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Radiology, Samsung Medical Center, Seoul, Republic of Korea
| | - Se Woo Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sungeun Park
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Jeong Hee Yoon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo-Jin Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeongin Yoo
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ijin Joo
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jae Seok Bae
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jeong Min Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea; Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Tu H, Feng S, Chen L, Huang Y, Zhang J, Wu X. Revolutionising hepatocellular carcinoma surveillance: Harnessing contrast-enhanced ultrasound and serological indicators for postoperative early recurrence prediction. Medicine (Baltimore) 2023; 102:e34937. [PMID: 37657058 PMCID: PMC10476781 DOI: 10.1097/md.0000000000034937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 09/03/2023] Open
Abstract
This study aimed to develop a noninvasive predictive model for identifying early postoperative recurrence of hepatocellular carcinoma (within 2 years after surgery) based on contrast-enhanced ultrasound and serum biomarkers. Additionally, the model's validity was assessedthrough internal and external validation. Clinical data were collected from patients who underwent liver resection at the First Hospital of Quanzhou and Mengchao Hepatobiliary Hospital. The data included general information, contrast-enhanced ultrasound parameters, Liver Imaging Reporting and Data System (LI-RADS) classification, and serum biomarkers. The data from Mengchao Hospital were divided into 2 groups, with a ratio of 6:4, to form the modeling and internal validation sets, respectively. On the other hand, the data from the First Hospital of Quanzhou served as the external validation group. The developed model was named the Hepatocellular Carcinoma Early Recurrence (HCC-ER) prediction model. The predictive efficiency of the HCC-ER model was compared with other established models. The baseline characteristics were found to be well-balanced across the modeling, internal validation, and external validation groups. Among the independent risk factors identified for early recurrence, LI-RADS classification, alpha-fetoprotein, and tumor maximum diameter exhibited hazard ratios of 1.352, 1.337, and 1.135 respectively. Regarding predictive accuracy, the HCC-ER, Tumour-Node-Metastasis, Barcelona Clinic Liver Cancer, and China Liver Cancer models demonstrated prediction errors of 0.196, 0.204, 0.201, and 0.200 in the modeling group; 0.215, 0.215, 0.218, and 0.212 in the internal validation group; 0.210, 0.215, 0.216, and 0.221 in the external validation group. Using the HCC-ER model, risk scores were calculated for all patients, and a cutoff value of 50 was selected. This cutoff effectively distinguished the high-risk recurrence group from the low-risk recurrence group in the modeling, internal validation, and external validation groups. However, the calibration curve of the predictive model slightly overestimated the risk of recurrence. The HCC-ER model developed in this study demonstrated high accuracy in predicting early recurrence within 2 years after hepatectomy. It provides valuable information for developing precise treatment strategies in clinical practice and holds considerable promise for further clinical implementation.
Collapse
Affiliation(s)
- Haibin Tu
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Siyi Feng
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Lihong Chen
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Yujie Huang
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Juzhen Zhang
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoxiong Wu
- Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
Kim TK. Contrast-enhanced US Incorporating Kupffer-Phase Findings for the Diagnosis of Hepatocellular Carcinoma. Radiology 2023; 308:e231494. [PMID: 37642565 DOI: 10.1148/radiol.231494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Affiliation(s)
- Tae Kyoung Kim
- From the Joint Department of Medical Imaging, University Health Network, Mount Sinai Hospital and Women's College Hospital, University of Toronto, 585 University Ave, Toronto, ON, Canada M5G 2N2
| |
Collapse
|
14
|
Marks RM, Fung A, Cruite I, Blevins K, Lalani T, Horvat N, Protopapas Z, Chaudhry H, Bijan B, Shiehmorteza M, Nepal P, Tang A. The adoption of LI-RADS: a survey of non-academic radiologists. Abdom Radiol (NY) 2023; 48:2514-2524. [PMID: 37233747 DOI: 10.1007/s00261-023-03951-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE To understand the practice and determinants of non-academic radiologists regarding LI-RADS and the four current LI-RADS algorithms: CT/MRI, contrast-enhanced ultrasound (CEUS), ultrasound (US), and CT/MRI Treatment Response. MATERIALS AND METHODS Seven themes were covered in this international survey, as follows: (1) demographics of participants and sub-specialty, (2) HCC practice and interpretation, (3) reporting practice, (4) screening and surveillance, (5) HCC imaging diagnosis, (6) treatment response, and (7) CT and MRI technique. RESULTS Of the 232 participants, 69.4% were from the United States, 25.0% from Canada, and 5.6% from other countries and 45.9% were abdominal/body imagers. During their radiology training or fellowship, no formal HCC diagnostic system was used by 48.7% and LI-RADS was used by 44.4% of participants. In their current practice, 73.6% used LI-RADS, 24.7% no formal system, 6.5% UNOS-OPTN, and 1.3% AASLD. Barriers to LI-RADS adoption included lack of familiarity (25.1%), not used by referring clinicians (21.6%), perceived complexity (14.5%), and personal preference (5.3%). The US LI-RADS algorithm was used routinely by 9.9% of respondents and CEUS LI-RADS was used by 3.9% of the respondents. The LI-RADS treatment response algorithm was used by 43.5% of the respondents. 60.9% of respondents thought that webinars/workshops on LI-RADS Technical Recommendations would help them implement these recommendations in their practice. CONCLUSION A majority of the non-academic radiologists surveyed use the LI-RADS CT/MR algorithm for HCC diagnosis, while nearly half use the LI-RADS TR algorithm for assessment of treatment response. Less than 10% of the participants routinely use the LI-RADS US and CEUS algorithms.
Collapse
Affiliation(s)
- Robert M Marks
- Department of Radiology, Naval Medical Center San Diego, 34800 Bob Wilson Dr. Suite 204, San Diego, CA, 92134, USA.
- Department of Radiology, University of California San Diego, San Diego, CA, USA.
| | - Alice Fung
- Department of Radiology, Oregon Health & Science University, Portland, OR, USA
| | | | | | - Tasneem Lalani
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Natally Horvat
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Humaira Chaudhry
- Department of Radiology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Bijan Bijan
- Sutter Medical Group Sacramento, Sacramento, USA
- Department of Radiology, University of California Davis, Sacramento, CA, USA
| | | | - Pankaj Nepal
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - An Tang
- Department of Radiology, Centre Hospitalier de L'Université de Montréal (CHUM), Montreal, QC, Canada
| |
Collapse
|
15
|
Tu H, Feng S, Chen L, Huang Y, Zhang J, Wu X. Contrast enhanced ultrasound combined with serology predicts hepatocellular carcinoma recurrence: a retrospective observation cohort study. Front Oncol 2023; 13:1154064. [PMID: 37519810 PMCID: PMC10380982 DOI: 10.3389/fonc.2023.1154064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Objectives To construct a novel model based on contrast-enhanced ultrasound (CEUS) and serological biomarkers to predict the early recurrence (ER) of primary hepatocellular carcinoma within 2 years after hepatectomy. Methods A total of 466 patients who underwent CEUS and curative resection between 2016.1.1 and 2019.1.1 were retrospectively recruited from one institution. The training and testing cohorts comprised 326 and 140 patients, respectively. Data on general characteristics, CEUS Liver Imaging Reporting and Data System (LI-RADS) parameters, and serological were collected. Univariate analysis and multivariate Cox proportional hazards regression model were used to evaluate the independent prognostic factors for tumor recurrence, and the Contrast-enhanced Ultrasound Serological (CEUSS) model was constructed. Different models were compared using prediction error and time-dependent area under the receiver operating characteristic curve (AUC). The CEUSS model's performances in ER prediction were assessed. Results The baseline data of the training and testing cohorts were equal. LI-RADS category, α-fetoprotein level, tumor maximum diameter, total bilirubin level, starting time, iso-time, and enhancement pattern were independent hazards, and their hazards ratios were 1.417, 1.309, 1.133, 1.036, 0.883, 0.985, and 0.70, respectively. The AUCs of CEUSS, BCLC,TNM, and CNLC were 0.706, 0.641, 0.647, and 0.636, respectively, in the training cohort and 0.680, 0.583, 0.607, and 0.597, respectively, in the testing cohort. The prediction errors of CEUSS, BCLC, TNM, and CNLC were 0.202, 0.205, 0.205, and 0.200, respectively, in the training cohort and 0.204, 0.221, 0.219, and 0.211, respectively, in the testing cohort. Conclusions The CEUSS model can accurately and individually predict ER before surgery and may represent a new tool for individualized treatment.
Collapse
Affiliation(s)
- Haibin Tu
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Siyi Feng
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Lihong Chen
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yujie Huang
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Juzhen Zhang
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaoxiong Wu
- Department of Oncology, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Xu LL, Zhou L, Liang X, Zheng LL, Xu HS, Chen C, Hu P, Li SY. Preoperative Value of Contrast-Enhanced Ultrasound in Totally Laparoscopic Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy for Liver Tumors: A Preliminary Study. Ultrasound Q 2023; 39:95-99. [PMID: 36580400 DOI: 10.1097/ruq.0000000000000631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
ABSTRACT The clinical data of 15 cases that planned to receive totally laparoscopic associating liver partition and portal vein ligation for staged hepatectomy were retrospectively collected. Before the stage 1 operation, the size and number of the tumors in future liver remnant (FLR) and the presence of cancer embolus in the portal vein were assessed using contrast-enhanced ultrasound (CEUS) and contrast-enhanced computed tomography (CECT). Before the stage 2 operation, CEUS was performed to assess the presence of traffic blood flow between the diseased liver and FLR after round-the-liver ligation. Before the stage 1 operation, 5 cases with tumors in FLR were found by CEUS and 6 cases were found by CECT ( P > 0.05). Similarly, CEUS found 5 cases with cancer thrombus in portal vein, and CECT found 7 cases ( P = 0.500). The consistency between the 2 modalities was good (κ = 0.857, P < 0.05, κ = 0.727, P < 0.05, respectively). Before the stage 2 operation, CEUS confirmed that there were 7 cases without traffic blood flow between the diseased liver and FLR, and 3 cases with residual traffic blood flow. The daily growth rate of FLR in the group without traffic blood flow (mean rank = 7.00) was higher than that in the group with traffic blood flow (2.00) significantly ( P < 0.05). Contrast-enhanced ultrasound is a promising application in the preoperative evaluation of totally laparoscopic associating liver partition and portal vein ligation for staged hepatectomy.
Collapse
Affiliation(s)
| | | | | | | | | | - Chao Chen
- Radiology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | - Peng Hu
- Radiology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, Hangzhou, China
| | | |
Collapse
|
17
|
Cekuolis A, Schreiber-Dietrich D, Augustinienė R, Taut H, Squires J, Chaves EL, Dong Y, Dietrich CF. Incidental Findings in Pediatric Patients: How to Manage Liver Incidentaloma in Pediatric Patients. Cancers (Basel) 2023; 15:cancers15082360. [PMID: 37190288 DOI: 10.3390/cancers15082360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The World Federation for Ultrasound in Medicine and Biology (WFUMB) is addressing the issue of incidental findings (IFs) with a series of publications entitled "Incidental imaging findings-the role of ultrasound". IFs in the liver of newborns and children are rare and much less commonly encountered than in adults; as a result, they are relatively much more frequently malignant and life-threatening, even when they are of benign histology. Conventional B-mode ultrasound is the well-established first line imaging modality for the assessment of liver pathology in pediatric patients. US technological advances, resulting in image quality improvement, contrast-enhanced ultrasound (CEUS), liver elastography and quantification tools for steatosis have expanded the use of ultrasound technology in daily practice. The following overview is intended to illustrate incidentally detected liver pathology covering all pediatric ages. It aims to aid the examiner in establishing the final diagnosis. Management of incidentally detected focal liver lesions (FLL) needs to take into account the diagnostic accuracy of each imaging modality, the patient's safety issues (including ionizing radiation and nephrotoxic contrast agents), the delay in diagnosis, the psychological burden on the patient and the cost for the healthcare system. Moreover, this paper should help the pediatric clinician and ultrasound practitioner to decide which pathologies need no further investigation, which ones require interval imaging and which cases require further and immediate diagnostic procedures.
Collapse
Affiliation(s)
- Andrius Cekuolis
- Ultrasound Section, Department of Pediatric Radiology, Radiology and Nuclear Medicine Centre, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | | | - Rasa Augustinienė
- Ultrasound Section, Department of Pediatric Radiology, Radiology and Nuclear Medicine Centre, Vilnius University Hospital Santaros Klinikos, 08661 Vilnius, Lithuania
| | - Heike Taut
- Children's Hospital, Universitätsklinikum Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - Judy Squires
- Department of Radiology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Edda L Chaves
- Radiology Department, Hospital Regional Nicolas Solano, La Chorrera 1007, Panama
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem und Permancence, 3013 Bern, Switzerland
| |
Collapse
|
18
|
Spontaneously Ruptured Hepatocellular Carcinoma: Computed Tomography-Based Assessment. Diagnostics (Basel) 2023; 13:diagnostics13061021. [PMID: 36980330 PMCID: PMC10047024 DOI: 10.3390/diagnostics13061021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
Spontaneously ruptured hepatocellular carcinoma (SRHCC) is an uncommon and life-threatening complication in patients with hepatocellular carcinoma (HCC). It is usually associated with chronic liver disease and has a poor prognosis with a high mortality rate during the acute phase. SRHCC can cause a severe and urgent condition of acute abdomen disease and requires a correct diagnosis to achieve adequate treatment. Clinical presentation is related to the presence of hemoperitoneum, and abdominal pain is the most common symptom (66–100% of cases). Although the treatment approach is not unique, trans-arterial (chemo)embolization (TAE/TACE) followed by staged hepatectomy has shown better results in long-term survival. A multi-phase contrast-enhanced CT (CECT) scan is a pivotal technique in the diagnosis of SRHCC due to its diagnostic accuracy and optimal temporal resolution. The correct interpretation of the main CT findings in SRHCC, such as active contrast extravasation and the sentinel clot sign, is fundamental for a prompt and correct diagnosis. Furthermore, CT also plays a role as a post-operative control procedure, especially in patients treated with TAE/TACE. Therefore, a multi-phase CECT scan should be the diagnostic tool of choice in SRHCC since it suggests an immediate need for treatment with a consequent improvement in prognosis.
Collapse
|
19
|
de Lange C, Möller T, Hebelka H. Fontan-associated liver disease: Diagnosis, surveillance, and management. Front Pediatr 2023; 11:1100514. [PMID: 36937979 PMCID: PMC10020358 DOI: 10.3389/fped.2023.1100514] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
The Fontan operation is a lifesaving procedure for patients with functional single-ventricle congenital heart disease, where hypoplastic left heart syndrome is the most frequent anomaly. Hemodynamic changes following Fontan circulation creation are now increasingly recognized to cause multiorgan affection, where the development of a chronic liver disease, Fontan-associated liver disease (FALD), is one of the most important morbidities. Virtually, all patients with a Fontan circulation develop liver congestion, resulting in fibrosis and cirrhosis, and most patients experience childhood onset. FALD is a distinctive type of congestive hepatopathy, and its pathogenesis is thought to be a multifactorial process driven by increased nonpulsatile central venous pressure and decreased cardiac output, both of which are inherent in the Fontan circulation. In the advanced stage of liver injury, complications of portal hypertension often occur, and there is a risk of developing secondary liver cancer, reported at young age. However, FALD develops with few clinical symptoms, a surprisingly variable degree of severity in liver disease, and with little relation to poor cardiac function. The disease mechanisms and modifying factors of its development are still not fully understood. As one of the more important noncardiac complications of the Fontan circulation, FALD needs to be diagnosed in a timely manner with a structured monitoring scheme of disease development, early detection of malignancy, and determination of the optimal time point for transplantation. There is also a clear need for consensus on the best surveillance strategy for FALD. In this regard, imaging plays an important role together with clinical scoring systems, biochemical workups, and histology. Patients operated on with a Fontan circulation are generally followed up in cardiology units. Ultimately, the resulting multiorgan affection requires a multidisciplinary team of healthcare personnel to address the different organ complications. This article discusses the current concepts, diagnosis, and management of FALD, with special emphasis on the role of different imaging techniques in the diagnosis and monitoring of disease progression, as well as current recommendations for liver disease surveillance.
Collapse
Affiliation(s)
- Charlotte de Lange
- Department of Pediatric Radiology, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Möller
- Department of Pediatric Cardiology, Oslo University Hospital, Oslo, Norway
| | - Hanna Hebelka
- Department of Pediatric Radiology, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
- Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
20
|
Focal Liver Lesions other than Hepatocellular Carcinoma in Cirrhosis: Diagnostic Challenges. J Transl Int Med 2023; 10:308-327. [PMID: 36860624 PMCID: PMC9969567 DOI: 10.2478/jtim-2022-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Liver cirrhosis is associated with regenerative nodules and an increased risk of developing hepatocellular carcinoma (HCC). However, other benign and malignant liver lesions may also occur. Differentiating the other lesions from HCC is important for further therapeutic decisions. This review discusses the characteristics of non-HCC liver lesions in cirrhosis and their consequent appearance on contrast-enhanced ultrasonography (CEUS) with consideration of other imaging. Knowledge of this data would be helpful in avoiding misdiagnoses.
Collapse
|
21
|
Alhyari A, Görg C, Alakhras R, Dietrich CF, Trenker C, Safai Zadeh E. HCC or Something Else? Frequency of Various Benign and Malignant Etiologies in Cirrhotic Patients with Newly Detected Focal Liver Lesions in Relation to Different Clinical and Sonographic Parameters. Diagnostics (Basel) 2022; 12:diagnostics12092079. [PMID: 36140481 PMCID: PMC9497913 DOI: 10.3390/diagnostics12092079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aims: To investigate the frequency of different benign and malignant focal liver lesions (FLLs) in relation to clinical and sonographic features among patients with liver cirrhosis (LC) and newly detected FLLs. Methods: This study was a retrospective analysis of 225 cirrhotic patients with newly detected FLLs who underwent hepatic ultrasound (US) examinations at our university hospital from 2011 to 2022. The diagnosis of FLLs was based on histology and/or consensus radiological criteria, in accordance with the current diagnostic guidelines. The FLLs were classified into benign (bFLLs) or malignant (mFLLs) lesions and the latter group was subclassified into HCC and non-HCC mFLLs. The frequency, clinical parameters, and sonographic features of the different groups were examined and compared. Results: Of the 225 FLLs, 154 (68.4%) were mFLLs and 71 (31.6%) bFLLs. HCC was the most frequent subcategory of FLLs (132; 58.7%). There were (22; 9.8%) non-HCC mFLLs with 11 (4.9%) metastases and 11 (4.9%) non-HCC primary liver tumors. Regenerative nodules (RNs) were the most frequent form of bFLLs (25; 11.1%), followed by simple cysts (22; 9.8%) and hemangiomas (14; 6.2%). The other bFLLs (10; 14.1%) were fat deposition/sparing (5), hematomas (2), abscesses (2), and echinococcal cysts (1). The distribution of bFLLs and HCC and non-HCC mFLLs varied significantly according to the clinical scenarios. HCC mFLLs were more frequent in males (p = 0.001), in those with no history of active non-hepatic primary malignant disease (NHPMD) (p < 0.001), in those with a hepatitis B or C etiology of LC (p = 0.002), when located in the right lobe (p = 0.008), and when portal vein thrombosis was present (p = 0.03). Conclusion: In cirrhotic patients with newly detected FLLs, the non-HCC etiology was more frequently diagnosed in lesions that were located in the left lobe, in females, and in patients with a history of active NHPMD. Thus, the lower frequency of HCC in the abovementioned groups demonstrated that a cautious implementation of the current consensus radiological criteria would be required for these groups, particularly in patients with an active NHPMD, given the fact that the consensus criteria were not validated in these populations. A more active diagnostic approach may ultimately be needed for these patients. Large prospective studies are needed to validate these findings.
Collapse
Affiliation(s)
- Amjad Alhyari
- Gastroenterology, Endocrinology, Metabolism and Clinical Infectiology, University Hospital Giessen and Marburg, Philipp University of Marburg, Baldingerstraße, 35033 Marburg, Germany
- Interdisciplinary Centre of Ultrasound Diagnostics, University Hospital Giessen and Marburg, Philipp University of Marburg, Baldingerstraße, 35033 Marburg, Germany
- Correspondence: ; Tel.: +49-6421-58-61538
| | - Christian Görg
- Gastroenterology, Endocrinology, Metabolism and Clinical Infectiology, University Hospital Giessen and Marburg, Philipp University of Marburg, Baldingerstraße, 35033 Marburg, Germany
- Interdisciplinary Centre of Ultrasound Diagnostics, University Hospital Giessen and Marburg, Philipp University of Marburg, Baldingerstraße, 35033 Marburg, Germany
| | - Raed Alakhras
- Gastroenterology, Endocrinology, Metabolism and Clinical Infectiology, University Hospital Giessen and Marburg, Philipp University of Marburg, Baldingerstraße, 35033 Marburg, Germany
| | - Christoph Frank Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Bern, Beau Site, Salem und Permanence, 3013 Bern, Switzerland
| | - Corrina Trenker
- Interdisciplinary Centre of Ultrasound Diagnostics, University Hospital Giessen and Marburg, Philipp University of Marburg, Baldingerstraße, 35033 Marburg, Germany
- Haematology, Oncology and Immunology, University Hospital Giessen and Marburg, Philipps University Marburg, Baldingerstraße, 35033 Marburg, Germany
| | - Ehsan Safai Zadeh
- Gastroenterology, Endocrinology, Metabolism and Clinical Infectiology, University Hospital Giessen and Marburg, Philipp University of Marburg, Baldingerstraße, 35033 Marburg, Germany
- Interdisciplinary Centre of Ultrasound Diagnostics, University Hospital Giessen and Marburg, Philipp University of Marburg, Baldingerstraße, 35033 Marburg, Germany
| |
Collapse
|
22
|
Mei Q, Yu M, Chen Q. Clinical value of contrast-enhanced ultrasound in early diagnosis of small hepatocellular carcinoma (≤ 2 cm). World J Clin Cases 2022; 10:8525-8534. [PMID: 36157793 PMCID: PMC9453369 DOI: 10.12998/wjcc.v10.i24.8525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/10/2022] [Accepted: 07/17/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of primary liver malignancy. Contrast-enhanced ultrasound (CEUS) uses contrast microbubbles during ultrasound, allowing the detection and characterization of malignant focal liver lesions with much higher diagnostic accuracy than conventional ultrasound; however, there are few reports focusing on the pattern of enhancement of CEUS for the diagnosis of HCC smaller than 2 cm.
AIM To investigate the clinical value of CEUS in the early detection of small HCC with high risk factors.
METHODS A total of 395 patients with 632 nodules at high risk of HCC, who underwent regular follow-up at Xuhui Dahua Hospital from January 2007 to December 2021, were retrospectively examined. Conventional ultrasonography combined with CEUS was adopted to analyze the echo, size, location, and enhancement characteristics of benign and malignant nodules, as well as the enhancement methods for HCC with different diameters.
RESULTS The follow-up rate and duration were 92.15% (364/395) and 51.28 ± 45.09 mo, respectively. Conventional ultrasonography combined with CEUS revealed 65 (11.80%) nodules with a follow-up diagnosis of HCC, 19 (3.45%) dysplastic nodules, and 467 (84.75%) benign cirrhotic hyperplastic nodules. Among 65 cases of confirmed HCC, 40 (61.54%) were transformed from hypoechoic nodules, 9 (13.85%) from hyperechoic nodules, and the remaining 16 (24.62%) from isoechoic nodules. Significant differences in CEUS characteristics were found among cirrhotic nodules, dysplastic nodules, and HCC nodules at each phase. Significant differences in the enhancement mode were observed between nodules ≤ 1 cm and those 1–2 cm. The smaller the HCC nodule, the later the contrast agent began to flush and the longer the duration of contrast enhancement.
CONCLUSION Conventional ultrasonography combined with CEUS could identify small HCC and help monitor patients with an early diagnosis of HCC. Significant differences in the enhancement mode are noted between nodules ≤ 1 cm and those 1–2 cm.
Collapse
Affiliation(s)
- Qi Mei
- Department of Ultrasound, Shanghai Xuhui Dahua Hospital, Shanghai 200237, China
| | - Mei Yu
- Department of Ultrasound, Shanghai Xuhui Dahua Hospital, Shanghai 200237, China
| | - Qiong Chen
- Department of Radiology, Shanghai Xuhui Dahua Hospital, Shanghai 200237, China
| |
Collapse
|
23
|
Vidili G, Arru M, Solinas G, Calvisi DF, Meloni P, Sauchella A, Turilli D, Fabio C, Cossu A, Madeddu G, Babudieri S, Zocco MA, Iannetti G, Di Lembo E, Delitala AP, Manetti R. Contrast-enhanced ultrasound Liver Imaging Reporting and Data System: Lights and shadows in hepatocellular carcinoma and cholangiocellular carcinoma diagnosis. World J Gastroenterol 2022; 28:3488-3502. [PMID: 36158272 PMCID: PMC9346460 DOI: 10.3748/wjg.v28.i27.3488] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/10/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Contrast-enhanced ultrasound (CEUS) is considered a secondary examination compared to computed tomography (CT) and magnetic resonance imaging (MRI) in the diagnosis of hepatocellular carcinoma (HCC), due to the risk of misdiagnosing intrahepatic cholangiocarcinoma (ICC). The introduction of CEUS Liver Imaging Reporting and Data System (CEUS LI-RADS) might overcome this limitation. Even though data from the literature seems promising, its reliability in real-life context has not been well-established yet.
AIM To test the accuracy of CEUS LI-RADS for correctly diagnosing HCC and ICC in cirrhosis.
METHODS CEUS LI-RADS class was retrospectively assigned to 511 nodules identified in 269 patients suffering from liver cirrhosis. The diagnostic standard for all nodules was either biopsy (102 nodules) or CT/MRI (409 nodules). Common diagnostic accuracy indexes such as sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were assessed for the following associations: CEUS LR-5 and HCC; CEUS LR-4 and 5 merged class and HCC; CEUS LR-M and ICC; and CEUS LR-3 and malignancy. The frequency of malignant lesions in CEUS LR-3 subgroups with different CEUS patterns was also determined. Inter-rater agreement for CEUS LI-RADS class assignment and for major CEUS pattern identification was evaluated.
RESULTS CEUS LR-5 predicted HCC with a 67.6% sensitivity, 97.7% specificity, and 99.3% PPV (P < 0.001). The merging of LR-4 and 5 offered an improved 93.9% sensitivity in HCC diagnosis with a 94.3% specificity and 98.8% PPV (P < 0.001). CEUS LR-M predicted ICC with a 91.3% sensitivity, 96.7% specificity, and 99.6% NPV (P < 0.001). CEUS LR-3 predominantly included benign lesions (only 28.8% of malignancies). In this class, the hypo-hypo pattern showed a much higher rate of malignant lesions (73.3%) than the iso-iso pattern (2.6%). Inter-rater agreement between internal raters for CEUS-LR class assignment was almost perfect (n = 511, k = 0.94, P < 0.001), while the agreement among raters from separate centres was substantial (n = 50, k = 0.67, P < 0.001). Agreement was stronger for arterial phase hyperenhancement (internal k = 0.86, P < 2.7 × 10-214; external k = 0.8, P < 0.001) than washout (internal k = 0.79, P < 1.6 × 10-202; external k = 0.71, P < 0.001).
CONCLUSION CEUS LI-RADS is effective but can be improved by merging LR-4 and 5 to diagnose HCC and by splitting LR-3 into two subgroups to differentiate iso-iso nodules from other patterns.
Collapse
Affiliation(s)
- Gianpaolo Vidili
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Marco Arru
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Giuliana Solinas
- Department of Biomedical Sciences, Public Health-Laboratory of Biostatistics, University of Sassari, Sassari 07100, Italy
| | - Diego Francesco Calvisi
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Pierluigi Meloni
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Assunta Sauchella
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Davide Turilli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Claudio Fabio
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Antonio Cossu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Giordano Madeddu
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Sergio Babudieri
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| | - Maria Assunta Zocco
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University, Rome 00168, Italy
| | | | - Enza Di Lembo
- Ultrasound Unit, Ospedale S. Spirito, Pescara 65123, Italy
| | | | - Roberto Manetti
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
24
|
Fetzer DT. Invited Commentary: Nodules in Patients at Risk for Hepatocellular Carcinoma-Benefits of Contrast-Enhanced US. Radiographics 2022; 42:E121-E122. [PMID: 35486580 DOI: 10.1148/rg.210210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- David T Fetzer
- From the Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, E6-230-BF, Dallas TX 75390
| |
Collapse
|
25
|
Nguyen SA, Merrill CD, Burrowes DP, Medellin GA, Wilson SR. Hepatocellular Carcinoma in Evolution: Correlation with CEUS LI-RADS. Radiographics 2022; 42:1028-1042. [PMID: 35486579 DOI: 10.1148/rg.210149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver with a high incidence worldwide and a high associated mortality. Well-recognized risk factors that cause a predisposition to the development of HCC include chronic infection with the hepatitis B or C virus, alcohol-related and non-alcohol-related fatty liver disease, and cirrhosis. In these chronically diseased livers, benign regenerative nodules can increase in size and develop cellular atypia that progress into dysplastic nodules and ultimately HCC. This sequence of hepatocarcinogenesis is coupled with changes in nodule vascularity, including progressive decreased density of portal triads and induced neoangiogenesis, resulting in increased hepatic arterial recruitment. Changes in vascularity result in an array of patterns of nodule enhancement and washout, which can be sensitively depicted with dynamic real-time contrast-enhanced US. Regenerative nodules are isoenhancing relative to the liver with all phases, while HCC classically shows avid arterial phase hyperenhancement with late mild washout. In between, there is great variation as nodules evolve through progressive grades of dysplasia toward HCC. Observed patterns of enhancement and washout can be used to diagnose or stratify the risk of malignancy in liver nodules by using the diagnostic algorithm described by the American College of Radiology Liver Imaging Reporting and Data System (LI-RADS). This facilitates the detection and close monitoring of potential early-stage disease. LI-RADS categorizes nodules according to a probabilistic likelihood for HCC with criteria for LR-5 nodules that are highly specific for the diagnosis of HCC, allowing treatment without exposing the patient to invasive biopsy. An invited commentary by Fetzer is available online. Online supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Stephanie A Nguyen
- From the Department of Radiology, University of Calgary, 1403 29 St NW, Calgary, AB, Canada T2N 2T9
| | - Christina D Merrill
- From the Department of Radiology, University of Calgary, 1403 29 St NW, Calgary, AB, Canada T2N 2T9
| | - David P Burrowes
- From the Department of Radiology, University of Calgary, 1403 29 St NW, Calgary, AB, Canada T2N 2T9
| | - G Alexandra Medellin
- From the Department of Radiology, University of Calgary, 1403 29 St NW, Calgary, AB, Canada T2N 2T9
| | - Stephanie R Wilson
- From the Department of Radiology, University of Calgary, 1403 29 St NW, Calgary, AB, Canada T2N 2T9
| |
Collapse
|
26
|
Squires JH, Fetzer DT, Dillman JR. Practical Contrast Enhanced Liver Ultrasound. Radiol Clin North Am 2022; 60:717-730. [DOI: 10.1016/j.rcl.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Wen R, Lin P, Wu Y, Yin H, Huang W, Guo D, Peng Y, Liu D, He Y, Yang H. Diagnostic value of CEUS LI-RADS and serum tumor markers for combined hepatocellular-cholangiocarcinoma. Eur J Radiol 2022; 154:110415. [PMID: 35738166 DOI: 10.1016/j.ejrad.2022.110415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/10/2022] [Accepted: 06/15/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE To analyze the contrast-enhanced ultrasound (CEUS) manifestations of combined hepatocellular-cholangiocarcinoma (CHC) and to investigate the diagnostic value of the 2017 version of the CEUS Liver Imaging Reporting and Data System (LI-RADS) and serum tumor markers in CHC. METHODS A total of 66 pathologically confirmed CHC nodules were retrospectively analyzed. We summarized the CEUS manifestations of CHC and analyzed the relationship between serum tumor markers and the enhancement pattern of CHC. We also classified CHC according to CEUS LI-RADS criteria. The Kappa test was used to assess the interreader agreement of CEUS LI-RADS between radiologists. RESULT According to the results, 52 of 62 (83.9%) patients had elevated alpha-fetoprotein (AFP), 19 of 61 (31.1%) had elevated carbohydrate antigen 199 (CA 199), and 13 of 61 (21.3%) had both elevated AFP and CA 199. Of the 66 CHC nodules, 64 (97.0%) were identified as malignant lesions by CEUS, 13 (19.7%) showed a hepatocellular carcinoma-like enhancement pattern, and 21 (31.8%) showed a cholangiocarcinoma-like enhancement pattern. For the CEUS LI-RADS categories, 39 of 53 (73.6%) CHC nodules were classified as LR-M, 12 (22.6%) were classified as LR-5, and 2 (3.8%) were classified as LR-4. The interreader agreement for the LI-RADS categories was 0.60. CONCLUSIONS Although CHC lacks specific CEUS features, CEUS LI-RADS and serum tumor markers can be useful tools for reducing the misdiagnosis of CHC. In addition, due to the relative complexity of the CEUS features involved in CHC, it is necessary for beginning radiologists to learn more about CEUS features.
Collapse
Affiliation(s)
- Rong Wen
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Peng Lin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuquan Wu
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Haihui Yin
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Weiche Huang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Danxia Guo
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yuye Peng
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Dun Liu
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Yun He
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Hong Yang
- Department of Medical Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
28
|
Yang J, Jiang H, Xie K, Bashir MR, Wan H, Huang J, Qin Y, Chen J, Lu Q, Song B. Profiling hepatocellular carcinoma aggressiveness with contrast-enhanced ultrasound and gadoxetate disodium-enhanced MRI: an intra-individual comparative study based on the Liver Imaging Reporting and Data System. Eur J Radiol 2022; 154:110397. [PMID: 35696735 DOI: 10.1016/j.ejrad.2022.110397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 02/07/2023]
|
29
|
Turco S, Tiyarattanachai T, Ebrahimkheil K, Eisenbrey J, Kamaya A, Mischi M, Lyshchik A, Kaffas AE. Interpretable Machine Learning for Characterization of Focal Liver Lesions by Contrast-Enhanced Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1670-1681. [PMID: 35320099 PMCID: PMC9188683 DOI: 10.1109/tuffc.2022.3161719] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This work proposes an interpretable radiomics approach to differentiate between malignant and benign focal liver lesions (FLLs) on contrast-enhanced ultrasound (CEUS). Although CEUS has shown promise for differential FLLs diagnosis, current clinical assessment is performed only by qualitative analysis of the contrast enhancement patterns. Quantitative analysis is often hampered by the unavoidable presence of motion artifacts and by the complex, spatiotemporal nature of liver contrast enhancement, consisting of multiple, overlapping vascular phases. To fully exploit the wealth of information in CEUS, while coping with these challenges, here we propose combining features extracted by the temporal and spatiotemporal analysis in the arterial phase enhancement with spatial features extracted by texture analysis at different time points. Using the extracted features as input, several machine learning classifiers are optimized to achieve semiautomatic FLLs characterization, for which there is no need for motion compensation and the only manual input required is the location of a suspicious lesion. Clinical validation on 87 FLLs from 72 patients at risk for hepatocellular carcinoma (HCC) showed promising performance, achieving a balanced accuracy of 0.84 in the distinction between benign and malignant lesions. Analysis of feature relevance demonstrates that a combination of spatiotemporal and texture features is needed to achieve the best performance. Interpretation of the most relevant features suggests that aspects related to microvascular perfusion and the microvascular architecture, together with the spatial enhancement characteristics at wash-in and peak enhancement, are important to aid the accurate characterization of FLLs.
Collapse
|
30
|
The AIUM Practice Parameter for the Performance of an Ultrasound Examination of the Abdomen and/or Retroperitoneum. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2022; 41:E1-E8. [PMID: 34792206 DOI: 10.1002/jum.15874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
|
31
|
Jing B, Lindsey BD. Very Low Frequency Radial Modulation for Deep Penetration Contrast-Enhanced Ultrasound Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:530-545. [PMID: 34972572 DOI: 10.1016/j.ultrasmedbio.2021.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/16/2021] [Accepted: 11/21/2021] [Indexed: 06/14/2023]
Abstract
Contrast-enhanced ultrasound imaging allows vascular imaging in a variety of diseases. Radial modulation imaging is a contrast agent-specific imaging approach for improving microbubble detection at high imaging frequencies (≥7.5 MHz), with imaging depth limited to a few centimeters. To provide high-sensitivity contrast-enhanced ultrasound imaging at high penetration depths, a new radial modulation imaging strategy using a very low frequency (100 kHz) ultrasound modulation wave in combination with imaging pulses ≤5 MHz is proposed. Microbubbles driven at 100 kHz were imaged in 10 successive oscillation states by manipulating the pulse repetition frequency to unlock the frame rate from the number of oscillation states. Tissue background was suppressed using frequency domain radial modulation imaging (F-RMI) and singular value decomposition-based radial modulation imaging (S-RMI). One hundred-kilohertz modulation resulted in significantly higher microbubble signal magnitude (63-88 dB) at the modulation frequency relative to that without 100-kHz modulation (51-59 dB). F-RMI produced images with high contrast-to-tissue ratios (CTRs) of 15 to 22 dB in a stationary tissue phantom, while S-RMI further improved the CTR (19-26 dB). These CTR values were significantly higher than that of amplitude modulation pulse inversion images (11.9 dB). In the presence of tissue motion (1 and 10 mm/s), S-RMI produced high-contrast images with CTR up to 18 dB; however, F-RMI resulted in minimal contrast enhancement in the presence of tissue motion. Finally, in transcranial ultrasound imaging studies through a highly attenuating ex vivo cranial bone, CTR values with S-RMI were as high as 23 dB. The proposed technique demonstrates successful modulation of microbubble response at 100 kHz for the first time. The presented S-RMI low-frequency radial modulation imaging strategy represents the first demonstration of real-time (20 frames/s), high-penetration-depth radial modulation imaging for contrast-enhanced ultrasound imaging.
Collapse
Affiliation(s)
- Bowen Jing
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
32
|
Qu M, Jia Z, Sun L, Wang H. Diagnostic accuracy of three-dimensional contrast-enhanced ultrasound for focal liver lesions: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e28147. [PMID: 34941062 PMCID: PMC8701827 DOI: 10.1097/md.0000000000028147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Contrast-enhanced ultrasound (CEUS) examination is a well-established technique for this purpose with several unique advantages. It is a real-time technology with high temporal resolution. With its unique ability to detect microvascular perfusion, it helps in better characterization of FLL.[1-4] Three-dimensional (3D) CEUS with quantitative analysis is updated in recent years. 3D-CEUS is a new ultrasonic diagnostic technique, which can observe the nourishing vessels of lesions from multiple angles. Previous studies showed that 3D-CEUS can detect tumor nourishing vessels to differentiate benign from malignant focal liver lesions (FLLs). However, the results of these studies have been contradictory. Therefore, this meta-analysis tested the hypothesis that 3D-CEUS is accurate in distinguishing benign and malignant FLLs. METHODS We will search PubMed, Web of Science, Cochrane Library, and Chinese biomedical databases from their inceptions to the April 30, 2021, without language restrictions. Two authors will independently carry out searching literature records, scanning titles and abstracts, full texts, collecting data, and assessing risk of bias. Review Manager 5.2 and Stata14.0 software will be used for data analysis. RESULTS This systematic review will determine the accuracy of 3D-CEUS in the differential diagnosis between benign and malignant FLLs. CONCLUSION Its findings will provide helpful evidence for the accuracy of 3D-CEUS in the differential diagnosis between benign and malignant FLLs. SYSTEMATIC REVIEW REGISTRATION INPLASY202150096.
Collapse
|
33
|
Chammas MC, Bordini AL. Contrast-enhanced ultrasonography for the evaluation of malignant focal liver lesions. Ultrasonography 2021; 41:4-24. [PMID: 34724777 PMCID: PMC8696138 DOI: 10.14366/usg.21001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 08/17/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, the authors address the analysis of different types of malignant focal liver lesions (FLLs) using contrast-enhanced ultrasonography (CEUS). The specific enhancing patterns of hepatocellular carcinoma, cholangiocarcinoma, and metastases are discussed and exemplified with images. In addition, the use of CEUS in malignant portal vein thrombosis is discussed. The advantages and limitations of CEUS for the analysis of malignant FLLs are also discussed.
Collapse
Affiliation(s)
- Maria Cristina Chammas
- Department of Radiology, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - André Leopoldino Bordini
- Department of Radiology, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
34
|
He M, Zhu L, Huang M, Zhong L, Ye Z, Jiang T. Comparison Between SonoVue and Sonazoid Contrast-Enhanced Ultrasound in Characterization of Focal Nodular Hyperplasia Smaller Than 3 cm. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:2095-2104. [PMID: 33305869 DOI: 10.1002/jum.15589] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVES This study aimed to compare the diagnostic efficacy of contrast-enhanced ultrasound (CEUS), including SonoVue (SV; sulfur hexafluoride; Bracco SpA, Milan, Italy) and Sonazoid (SZ; perflubutane; GE Healthcare, Oslo, Norway), and explore the differences between them in the characterization of CEUS features in focal nodular hyperplasia (FNH) smaller than 3 cm. METHODS This retrospective study included 31 lesions smaller than 3 cm diagnosed as FNH by CEUS between April 2019 and November 2019. Nine patients underwent SZ CEUS examinations, and 22 patients underwent SV CEUS examinations; all of them were confirmed by pathologic examinations or 2 other kinds of CEUS methods. We compared the CEUS features between SZ and SV in different phases, including arterial, portal venous, delayed, and Kupffer (SZ) phases. RESULTS Twenty-eight lesions were eventually diagnosed as FNH; 3 were misdiagnosed as FNH by SV CEUS. The overall diagnostic accuracy of CEUS including SZ and SV was 90.3% (28 of 31). No significant difference was found (P > .05) for the positive predictive value. Likewise, no significant difference in depicting centrifugal filling (9 of 9 versus 19 of 19), spoke wheel artery (6 of 9 versus 8 of 19), or feeding artery (2 of 9 versus 10 of 19) features was found between the contrast agents; However, SZ was significantly better at depicting the presence of a central scar than SV (5 of 9 versus 3 of 19; P = .030). Misdiagnosed cases are discussed in detail. CONCLUSIONS Contrast-enhanced ultrasound enables an accurate diagnosis in FNH smaller than 3 cm. Sonazoid CEUS and SV CEUS were comparable in diagnosing small FNH, and both agents were highly capable of depicting the centrifugal filling dynamic process of FNH smaller than 3 cm. Sonazoid CEUS might be better than SV CEUS at depicting a central scar.
Collapse
Affiliation(s)
- Mengna He
- Department of Ultrasound, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Zhu
- Department of Ultrasound, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Huang
- Department of Ultrasound, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liyun Zhong
- Department of Ultrasound, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengdu Ye
- Department of Ultrasound, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian'an Jiang
- Department of Ultrasound, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
Tu HB, Chen LH, Huang YJ, Feng SY, Lin JL, Zeng YY. Novel model combining contrast-enhanced ultrasound with serology predicts hepatocellular carcinoma recurrence after hepatectomy. World J Clin Cases 2021; 9:7009-7021. [PMID: 34540956 PMCID: PMC8409194 DOI: 10.12998/wjcc.v9.i24.7009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/12/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Surgery is the primary curative option in patients with hepatocellular carcinoma (HCC). However, recurrence within 2 years is observed in 30%–50% of patients, being a major cause of mortality.
AIM To construct and verify a non-invasive prediction model combining contrast-enhanced ultrasound (CEUS) with serology biomarkers to predict the early recurrence of HCC.
METHODS Records of 744 consecutive patients undergoing first-line curative surgery for HCC in one institution from 2016–2018 were reviewed, and 292 local patients were selected for analysis. General characteristics including gender and age, CEUS liver imaging reporting and data system (LIRADS) parameters including wash-in time, wash-in type, wash-out time, and wash-out type, and serology biomarkers including alanine aminotransferase, aspartate aminotransferase, platelets, and alpha-fetoprotein (AFP) were collected. Univariate analysis and multivariate Cox proportional hazards regression model were used to evaluate the independent prognostic factors for tumor recurrence. Then a nomogram called CEUS model was constructed. The CEUS model was then used to predict recurrence at 6 mo, 12 mo, and 24 mo, the cut-off value was calculate by X-tile, and each C-index was calculated. Then Kaplan-Meier curve was compared by log-rank test. The calibration curves of each time were depicted.
RESULTS A nomogram predicting early recurrence (ER), named CEUS model, was formulated based on the results of the multivariate Cox regression analysis. This nomogram incorporated tumor diameter, preoperative AFP level, and LIRADS, and the hazard ratio was 1.123 (95% confidence interval [CI]: 1.041-1.211), 1.547 (95%CI: 1.245-1.922), and 1.428 (95%CI: 1.059-1.925), respectively. The cut-off value at 6 mo, 12 mo, and 24 mo was 100, 80, and 50, and the C-index was 0.748 (95%CI: 0.683-0.813), 0.762 (95%CI: 0.704-0.820), and 0.762 (95%CI: 0.706-0.819), respectively. The model showed satisfactory results, and the calibration at 6 mo was desirable; however, the calibration at 12 and 24 mo should be improved.
CONCLUSION The CEUS model enables the well-calibrated individualized prediction of ER before surgery and may represent a novel tool for biomarker research and individual counseling.
Collapse
Affiliation(s)
- Hai-Bin Tu
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Li-Hong Chen
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Yu-Jie Huang
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Si-Yi Feng
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Jian-Ling Lin
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Yong-Yi Zeng
- Department of Hepatobiliary Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| |
Collapse
|
36
|
Zhang Y, Fowlkes JB. Liposomes-based nanoplatform enlarges ultrasound-related diagnostic and therapeutic precision. Curr Med Chem 2021; 29:1331-1341. [PMID: 34348609 DOI: 10.2174/0929867328666210804092624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 12/07/2022]
Abstract
Ultrasound (US) is notable in the medical field as a safe and effective imaging modality due to its lack of ionizing radiation, non-invasive approach, and real-time monitoring capability. Accompanying recent progress in nanomedicine, US has been providing hope of theranostic capability not only for imaging-based diagnosis but also for US-based therapy by taking advantage of the bioeffects induced by US. Cavitation, sonoporation, thermal effects, and other cascade effects stimulated by acoustic energy conversion have contributed to medical problem-solving in the past decades although to varying degrees of efficacy in comparisons to other methods. Recently, the usage of liposomes-based nanoplatform fuels the development of nanomedicine and provides novel clinical strategies for antitumor, thrombolysis, and controlled drug release. Merging of novel liposome-based nanoplatforms and US-induced reactions has promise for a new blueprint for future medicine. In the present review article, the value of liposome-based nanoplatforms in US-related diagnosis and therapy will be discussed and summarized along with potential future directions for further investigations.
Collapse
Affiliation(s)
- Ying Zhang
- Dept. Radiology, University of Michigan, Ann Arbor, Michigan, 48109. United States
| | - J Brian Fowlkes
- Dept. Radiology, University of Michigan, Ann Arbor, Michigan, 48109. United States
| |
Collapse
|
37
|
Abstract
Contrast-enhanced ultrasound (CEUS) is a safe adjunct tool for liver imaging and can be an alternative to computed tomography or MR imaging. CEUS has a proven track record in guiding management for patients with chronic liver disease who need further evaluation of focal liver lesions. CEUS is a dynamic examination with high temporal and spatial resolution. CEUS uses a pure blood pool contrast agent that allows for a unique evaluation of the perfusion kinetics of a region of interest.
Collapse
Affiliation(s)
- Stephanie Spann
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, E6-230-BF, Dallas, TX 75390-9316, USA
| | - David T Fetzer
- Department of Radiology, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, E6-230-BF, Dallas, TX 75390-9316, USA.
| |
Collapse
|
38
|
Barr RG, Wilson SR, Lyshchik A, McCarville B, Darge K, Grant E, Robbin M, Wilmann JK, Chong WK, Fleischer A, Paltiel HJ. Contrast -Enhanced Ultrasound: State of the Art in North America. Ultrasound Q 2021; 36:206-217. [PMID: 32890323 DOI: 10.1097/ruq.0000000000000514] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Society of Radiologists in Ultrasound convened a panel of specialists in contrast-enhanced ultrasound (CEUS) to produce a white paper on noncardiac CEUS in North America. The panel met in Chicago, Illinois, on October 24 and 25, 2017. The recommendations are based on analysis of current literature and common practice strategies and are thought to represent a reasonable approach to introduce the advantages of this safe and noninvasive technique for the benefit of our patients. Characterization of liver nodules, and pediatric vascular and intravesicular applications comprise the approved indications for CEUS in the United States. They, along with the very successful off-label use of CEUS for the kidney, are included in this publication.Other off-label uses are presented with emphasis on their value and literature support in the online version.
Collapse
Affiliation(s)
| | | | | | | | - Kassa Darge
- Children's Hospital of Philadelphia, Philadelphia, PA
| | - Edward Grant
- University of Southern California, Los Angeles, CA
| | | | | | | | | | | |
Collapse
|
39
|
Management of the Incidental Liver Lesion. Am J Gastroenterol 2021; 116:855-861. [PMID: 33298700 DOI: 10.14309/ajg.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
|
40
|
Malone CD, Fetzer DT, Monsky WL, Itani M, Mellnick VM, Velez PA, Middleton WD, Averkiou MA, Ramaswamy RS. Contrast-enhanced US for the Interventional Radiologist: Current and Emerging Applications. Radiographics 2021; 40:562-588. [PMID: 32125955 DOI: 10.1148/rg.2020190183] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
US is a powerful and nearly ubiquitous tool in the practice of interventional radiology. Use of contrast-enhanced US (CEUS) has gained traction in diagnostic imaging given the recent approval by the U.S. Food and Drug Administration (FDA) of microbubble contrast agents for use in the liver, such as sulfur hexafluoride lipid-type A microspheres. Adoption of CEUS by interventional radiologists can enhance not only procedure guidance but also preprocedure patient evaluation and assessment of treatment response across a wide spectrum of oncologic, vascular, and nonvascular procedures. In addition, the unique physical properties of microbubble contrast agents make them amenable as therapeutic vehicles in themselves, which can lay a foundation for future therapeutic innovations in the field in drug delivery, thrombolysis, and vascular flow augmentation. The purpose of this article is to provide an introduction to and overview of CEUS aimed at the interventional radiologist, highlighting its role before, during, and after frequently practiced oncologic and vascular interventions such as biopsy, ablation, transarterial chemoembolization, detection and control of hemorrhage, evaluation of transjugular intrahepatic portosystemic shunts (TIPS), detection of aortic endograft endoleak, thrombus detection and evaluation, evaluation of vascular malformations, lymphangiography, and percutaneous drain placement. Basic physical principles of CEUS, injection and scanning protocols, and logistics for practice implementation are also discussed. Early adoption of CEUS by the interventional radiology community will ensure rapid innovation of the field and development of future novel procedures. Online supplemental material is available for this article. ©RSNA, 2020.
Collapse
Affiliation(s)
- Christopher D Malone
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - David T Fetzer
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - Wayne L Monsky
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - Malak Itani
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - Vincent M Mellnick
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - Philip A Velez
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - William D Middleton
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - Michalakis A Averkiou
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| | - Raja S Ramaswamy
- From the Mallinckrodt Institute of Radiology, Washington University School of Medicine, 510 S Kingshighway Blvd, CB 8131, St Louis, MO 63110 (C.D.M., M.I., V.M.M., P.A.V., W.D.M., R.S.R.); Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Tex (D.T.F.); Department of Radiology, University of Washington Medical Center, Seattle, Wash (W.L.M.); and Department of Bioengineering, University of Washington, Seattle, Wash (M.A.A.)
| |
Collapse
|
41
|
Zuo D, Yang K, Wu S. Diagnostic performance of intravascular perfusion based contrast-enhanced ultrasound LI-RADS in the evaluation of hepatocellular carcinoma. Clin Hemorheol Microcirc 2021; 78:429-437. [PMID: 33867358 DOI: 10.3233/ch-211164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The contrast-enhanced ultrasound (CEUS) liver imaging reporting and data system (LI-RADS) is a relative new algorithm for hepatocellular carcinoma (HCC) assessment. OBJECTIVE To validate the diagnostic efficiency of the intravascular perfusion based CEUS LI-RADS for HCC. METHODS Archives of 873 patients with focal liver lesions (FLLs) undergoing CEUS were reviewed, and target images were read by two sonologists independently according to the CEUS LI-RADS. The diagnostic performance was calculated and compared. RESULTS Assessment with reference to CEUS LI-RADS, 87 of 218 FLLs (39.9%) were categorized as LR-5, 131 of 218 FLLs (60.1%) were categorized as non-LR-5, 19 of 99 HCCs were categorized as non-LR-5, and 7 of 119 non-HCCs were categorized as LR-5. The sensitivity, specificity, AUROC, positive and negative predictive values of CEUS LI-RADS for diagnosing HCC were 80.81%(95%CI: 71.7%-88.0%), 94.1%(95%CI: 88.3%-97.6%), 0.87 (95%CI: 0.82-0.92), 91.9%(95%CI: 84.1%-96.7%), and 85.5%(95%CI: 78.3%-91.0%), respectively. CONCLUSIONS The diagnostic efficiency of the intravascular perfusion based CEUS LI-RADS for the evaluation of HCCs is very good.
Collapse
Affiliation(s)
- Dongsheng Zuo
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University, Haikou, China.,Department of Ultrasound, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kefeng Yang
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Size Wu
- Department of Ultrasound, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
42
|
Fu T, Ding H, Xu C, Zhu Y, Xue L, Lin F. Imaging findings of fibrolamellar hepatocellular carcinomas on ultrasonography: A comparison with conventional hepatocellular carcinomas. Clin Hemorheol Microcirc 2021; 77:49-60. [PMID: 32924993 DOI: 10.3233/ch-200896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fibrolamellar hepatocellular carcinoma (FLHCC) is an unusual variant of hepatocellular carcinoma (HCC). Revealing the imaging features is important to the diagnosis of FLHCC. OBJECTIVE The aim of this study was to investigate the imaging characteristics of FLHCCs. METHODS This retrospective study included 29 patients with histopathologically proved FLHCC and 96 patients proved HCC. All patients underwent an ultrasound examination pre-operation. RESULTS The average maximum diameters of the FLHCC and HCC lesions were 7.4±4.1 cm and 4.1±3.0 cm, respectively. On the ultrasound, 79.3% of the FLHCCs and 12.3% of the HCCs showed the internal hyperechoic area; 48.3% of the FLHCCs and 3.3% of the HCCs displayed a strip-like attenuation. Calcification was noted in 20.7% of the FLHCCs, while none in HCCs. On the contrast-enhanced ultrasound (CEUS), all FLHCC lesions and 87.7% of the HCCs displayed hyperenhancement in the arterial phase. An internal, unenhanced central scar appeared in all FLHCCs, while none in HCCs. CONCLUSIONS The ultrasonographic features of FLHCC lesions indicate that they are relatively large masses showing the internal hyperechoic area or strip-like attenuation or calcification on the US and hypervascularity with an unenhanced central scar on the CEUS as compared with conventional HCC lesions.
Collapse
Affiliation(s)
- Tiantian Fu
- Department of Ultrasound, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuli Zhu
- Department of Ultrasound, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyun Xue
- Department of Ultrasound, Shanghai Institute of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Lin
- School of Computer Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
43
|
Wang F, Numata K, Chuma M, Miwa H, Moriya S, Ogushi K, Okada M, Otani M, Inayama Y, Maeda S. A study on the inconsistency of arterial phase hypervascularity detection between contrast-enhanced ultrasound using sonazoid and gadolinium-ethoxybenzyl-diethylenetriamine penta-acetic acid magnetic resonance imaging of hepatocellular carcinoma lesions. J Med Ultrason (2001) 2021; 48:215-224. [PMID: 33721130 DOI: 10.1007/s10396-021-01086-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/24/2021] [Indexed: 01/24/2023]
Abstract
PURPOSE By analyzing possible factors contributing to imaging misevaluation of arterial phase (AP) vascularity, we aimed to provide a more proper way to detect AP hypervascularity of hepatocellular carcinomas (HCCs) using the noninvasive imaging modalities magnetic resonance imaging (MRI) and contrast-enhanced ultrasound (CEUS). METHODS We retrospectively recruited 164 pathologically confirmed HCC lesions from 128 patients. Using CEUS with Sonazoid (SCEUS) and gadolinium-ethoxybenzyl-diethylenetriamine penta-acetic acid MRI (EOB-MRI), AP vascularity of the lesions was evaluated and inconsistencies in interpretation were examined. Indicators of margin, echogenicity, and halo and mosaic signs of lesions on grayscale US; depth of lesions on SCEUS; and tumoral homogeneity, signal contrast ratio of lesions to the surrounding area on precontrast and AP images on EOB-MRI, and histological grade were investigated. RESULTS When precontrast images were used to adjust the AP enhancement ratio, the proportion of inconsistent interpretations of AP vascularity declined from 26.2% (43/164; 29 non-hypervascularity instances using EOB-MRI and 14 using SCEUS) to 16.5% (27/164; 7 using EOB-MRI and 20 using SCEUS). Greater lesion depth (P = 0.017), ill-defined tumoral margin (P = 0.028), absence of halo sign (P = 0.034), and histologically early HCC (P = 0.007) on SCEUS, and small size (P = 0.012) and heterogeneity (P = 0.013) of lesions and slight enhancement (low AP enhancement ratio) (P = 0.018 and 0.009 before and after adjustment) on EOB-MRI, may relate to undetectable hypervascularity. CONCLUSIONS SCEUS and EOB-MRI may show discrepancies in evaluating AP vascularity in the case of deep, ill-defined, heterogeneous, slightly enhanced lesions, and histologically early HCCs. We recommend adjusting AP with precontrast images in EOB-MRI, and combining both modalities to detect hypervascularity.
Collapse
Affiliation(s)
- Feiqian Wang
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, 232-0024, Japan.,Ultrasound Department, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kazushi Numata
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, 232-0024, Japan.
| | - Makoto Chuma
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, 232-0024, Japan
| | - Haruo Miwa
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, 232-0024, Japan
| | - Satoshi Moriya
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, 232-0024, Japan
| | - Katsuaki Ogushi
- Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa, 232-0024, Japan
| | - Masahiro Okada
- Department of Radiology, Nihon University School of Medicine, Tokyo, 173-8610, Japan
| | - Masako Otani
- Division of Diagnostic Pathology, Yokohama City University Medical Center, Kanagawa, 232-0024, Japan
| | - Yoshiaki Inayama
- Division of Diagnostic Pathology, Yokohama City University Medical Center, Kanagawa, 232-0024, Japan
| | - Shin Maeda
- Division of Gastroenterology, Yokohama City University Graduate School of Medicine, Kanagawa, 236-0004, Japan
| |
Collapse
|
44
|
Bhogadi Y, Brown E, Lee SY. Contrast-enhanced ultrasound in the diagnosis of infiltrative hepatocellular carcinoma: A report of three cases. Radiol Case Rep 2021; 16:448-456. [PMID: 33363680 PMCID: PMC7753068 DOI: 10.1016/j.radcr.2020.11.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 02/08/2023] Open
Abstract
Infiltrative hepatocellular carcinoma (HCC) is a challenging imaging diagnosis due to its ill-defined appearance and variable enhancement, which may be difficult to distinguish from background changes from cirrhosis. The literature on the role of contrast-enhanced ultrasound (CEUS) in the diagnosis of infiltrative HCC is currently limited. CEUS has greater sensitivity for contrast enhancement due to its temporal resolution, and can be used when there is contraindication to CT or MRI contrast. We present 3 cases where CEUS aided in the diagnosis of infiltrative HCC in patients with equivocal CT and MRI findings and/or renal failure, with significant implications for management. As current guidelines focus on the role of CEUS in characterizing defined focal liver lesions or discrete observations on precontrast US, further studies are warranted to validate the utility of CEUS in the noninvasive diagnosis of infiltrative HCC and delineate its role in algorithms for imaging workup.
Collapse
Affiliation(s)
- Yasovineeth Bhogadi
- Michael G DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ethan Brown
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Stefanie Y. Lee
- Department of Radiology, McMaster University; Hamilton Health Sciences, Juravinski Hospital and Cancer Centre, Hamilton, Ontario, Canada
| |
Collapse
|
45
|
Bitterer F, Hornung M, Platz Batista da Silva N, Schlitt HJ, Stroszczynski C, Wege AK, Jung EM. In vivo detection of breast cancer liver metastases in humanized tumour mice using tumour specific contrast agent BR55®. Clin Hemorheol Microcirc 2021; 76:559-572. [PMID: 32924994 DOI: 10.3233/ch-200898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the diagnostic accuracy of high-resolution ultrasound (HRU) for the detection of hepatic metastases of breast cancer in a humanized tumour mouse (HTM) using clinical standard technology. In addition, the efficiency of standard contrast-enhanced ultrasound (CEUS) [microbubbles of sulphur hexafluoride] and CEUS using a novel VEGFR2-targeted contrast agent [BR55®] was examined. METHODS A total of 14 HTM were sonographically examined twice. In addition to a human immune system, the animals developed hepatic tumour lesions after intrahepatic injection of BT-474 breast cancer cells. Digital cine loops from the arterial phase (15-35 sec), the portal venous phase (35-90 sec) and the late phase (3-15 min) of the entire liver were analysed. Data were correlated to histopathology. RESULTS After 9 months, half of the mice (7/14) revealed the development of hepatic breast cancer metastases. The detection limit was 1 mm tumour diameter. In particular, the use of targeted contrast media reduced the needed tumour diameter and helped to precisely classify tumour tissue. In 93% (13/14), the findings of ultrasound could be approved by histological examination by the pathologist. CONCLUSIONS This study in HTM demonstrated the high feasibility of tumour specific contrast media and standard HRU contrast agents to detect early liver metastases.
Collapse
Affiliation(s)
- Florian Bitterer
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Matthias Hornung
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | | | - Hans J Schlitt
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | | | - Anja K Wege
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, Regensburg, Germany
| | - Ernst-Michael Jung
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
46
|
Lupsor-Platon M, Serban T, Silion AI, Tirpe GR, Tirpe A, Florea M. Performance of Ultrasound Techniques and the Potential of Artificial Intelligence in the Evaluation of Hepatocellular Carcinoma and Non-Alcoholic Fatty Liver Disease. Cancers (Basel) 2021; 13:790. [PMID: 33672827 PMCID: PMC7918928 DOI: 10.3390/cancers13040790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Global statistics show an increasing percentage of patients that develop non-alcoholic fatty liver disease (NAFLD) and NAFLD-related hepatocellular carcinoma (HCC), even in the absence of cirrhosis. In the present review, we analyzed the diagnostic performance of ultrasonography (US) in the non-invasive evaluation of NAFLD and NAFLD-related HCC, as well as possibilities of optimizing US diagnosis with the help of artificial intelligence (AI) assistance. To date, US is the first-line examination recommended in the screening of patients with clinical suspicion of NAFLD, as it is readily available and leads to a better disease-specific surveillance. However, the conventional US presents limitations that significantly hamper its applicability in quantifying NAFLD and accurately characterizing a given focal liver lesion (FLL). Ultrasound contrast agents (UCAs) are an essential add-on to the conventional B-mode US and to the Doppler US that further empower this method, allowing the evaluation of the enhancement properties and the vascular architecture of FLLs, in comparison to the background parenchyma. The current paper also explores the new universe of AI and the various implications of deep learning algorithms in the evaluation of NAFLD and NAFLD-related HCC through US methods, concluding that it could potentially be a game changer for patient care.
Collapse
Affiliation(s)
- Monica Lupsor-Platon
- Medical Imaging Department, Regional Institute of Gastroenterology and Hepatology, Iuliu Hatieganu University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania
| | - Teodora Serban
- Medical Imaging Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.S.); (A.I.S.)
| | - Alexandra Iulia Silion
- Medical Imaging Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400162 Cluj-Napoca, Romania; (T.S.); (A.I.S.)
| | - George Razvan Tirpe
- County Emergency Hospital Cluj-Napoca, 3-5 Clinicilor Street, 400000 Cluj-Napoca, Romania;
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania;
| | - Mira Florea
- Community Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400001 Cluj-Napoca, Romania;
| |
Collapse
|
47
|
Yang J, Huang JY, Chen X, Ling WW, Luo Y, Shi YJ, Liu JB, Lu Q, Lyshchik A. Combined hepatocellular-cholangiocarcinoma: can we use contrast-enhanced ultrasound Liver Imaging Reporting and Data System (LI-RADS) to predict the patient's survival? Eur Radiol 2021; 31:6397-6405. [PMID: 33492470 DOI: 10.1007/s00330-020-07656-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To evaluate the relationship between contrast-enhanced (CE) ultrasound Liver Reporting and Data System (LI-RADS) classification of combined hepatocellular-cholangiocarcinoma (cHCC-CCA) and their histopathological component predominance, and to determine if the CEUS LI-RADS category can be used to predict the patient's survival after surgical resection. METHODS Between January 2011 and December 2018, medical records and CEUS of patients with pathologically proven cHCC-CCA were studied. The predominance of hepatocellular carcinoma (HCC)/intrahepatic cholangiocarcinoma (ICC) component of cHCC-CCA was analyzed by histopathology. The proportion of HCC-predominant cHCC-CCA in different LI-RADS category was compared by using Fisher's exact test. Factors affecting tumor recurrence were analyzed by Cox proportional hazard model. Disease-free survival (DFS) was estimated by using Kaplan-Meier survival curve and compared by log-rank test. RESULTS The study included 37 cHCC-CCA patients (33 men, 4 women; average age, 50.4 ± 11.0 years) and 37 nodules (mean diameter, 6.1 ± 3.9 cm). According to CEUS LI-RADS, 62.2% (23/37), 18.9% (7/37), and 18.9% (7/37) of cHCC-CCA were classified as LR-M, LR-5, and LR-TIV, respectively. The ratio of HCC predominance in LR-5 was 100% (10/10) vs 81.5% (22/27) in the LR-M group (p = 0.591). In our population, LR-5 patients had longer DFS than LR-M and LR-TIV patients combined (median DFS: 18.0 vs 6.4 months, p = 0.016). Multiple lesions (hazard ratio, 3.1; p = 0.007), tumor size (≥ 5 cm, hazard ratio, 4.1; p = 0.003), and CEUS LI-RADS category (LR-M and LR-TIV, hazard ratio, 4.7; p = 0.011) showed independent association with shorter DFS. CONCLUSION cHCC-CCA characterized as LR-5 on CEUS tend to represent HCC-predominant tumors with significantly longer disease-free survival compared to cHCC-CCA categorized as LR-M and LR-TIV. KEY POINTS • By using the American College of Radiology contrast-enhanced ultrasound Liver Imaging Reporting and Data System (CEUS LI-RADS), majority (30/37, 81.1%) of cHCC-CCA tumors were classified as LR-M or LR-TIV and only 18.9% (7/30) of cHCC-CCA were categorized as LR-5. • Patients with CEUS LR-5 cHCC-CCA had statistically significant longer disease-free time than those with LR-M and TIV cHCC-CCA (median DFS: 18.0 vs 6.4 months, p = 0.016). • Multiple lesions (hazard ratio, 3.1; p = 0.007), tumor size (≥ 5 cm, hazard ratio, 4.1; p = 0.003), and CEUS LI-RADS category (LR-M and LR-TIV, hazard ratio, 4.7; p = 0.011) showed independent association with shorter DFS.
Collapse
Affiliation(s)
- Jie Yang
- Department of Ultrasound, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, China
| | - Jia-Yan Huang
- Department of Ultrasound, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, China
| | - Xing Chen
- Department of General Surgery, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, China
| | - Wen-Wu Ling
- Department of Ultrasound, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, China
| | - Yu-Jun Shi
- Department of Pathology, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, China
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Qiang Lu
- Department of Ultrasound, West China Hospital of Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan Province, China.
| | - Andrej Lyshchik
- Department of Radiology, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| |
Collapse
|
48
|
Perucca G, de Lange C, Franchi-Abella S, Napolitano M, Riccabona M, Ključevšek D, Toso S, Herrmann J, Stafrace S, Darge K, Damasio MB, Bruno C, Woźniak MM, Lobo L, Ibe D, Smets AM, Petit P, Ording Müller LS. Surveillance of Fontan-associated liver disease: current standards and a proposal from the European Society of Paediatric Radiology Abdominal Task Force. Pediatr Radiol 2021; 51:2598-2606. [PMID: 34654967 PMCID: PMC8599216 DOI: 10.1007/s00247-021-05173-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/08/2021] [Accepted: 07/31/2021] [Indexed: 12/16/2022]
Abstract
Since Francis Fontan first introduced the eponymous technique, the Fontan procedure, this type of surgical palliation has allowed thousands of children affected by specific heart malformations to reach adulthood. Nevertheless, abdominal, thoracic, lymphatic and neurologic complications are the price that is paid by these patients. Our review focuses on Fontan-associated liver disease; the purpose is to summarize the current understanding of its physiopathology, the aim of follow-up and the specific radiologic follow-up performed in Europe. Finally, we as members of the Abdominal Task Force of the European Society of Paediatric Radiology propose a consensus-based imaging follow-up algorithm.
Collapse
Affiliation(s)
- Giulia Perucca
- Department of Pediatric Radiology, Regina Margherita Children’s Hospital, Turin, Italy
| | - Charlotte de Lange
- Department of Radiology and Clinical Physiology, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Stéphanie Franchi-Abella
- Pediatric Radiology Department, Hôpital Bicêtre, Hôpitaux Universitaire Paris-Sud, Assistance Publique Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Marcello Napolitano
- Department of Paediatric Radiology and Neuroradiology, V. Buzzi Children’s Hospital, Milan, Italy
| | - Michael Riccabona
- Department of Radiology, Division of Pediatric Radiology, Medical University Graz and University Hospital LKH, Graz, Austria
| | - Damjana Ključevšek
- Department of Radiology, University Children’s Hospital Ljubljana, Ljubljana, Slovenia
| | - Seema Toso
- Department of Pediatric Radiology, University Hospital of Geneva, Geneva, Switzerland
| | - Jochen Herrmann
- Department of Pediatric Radiology, University Hospital Hamburg Eppendorf, Hamburg, Germany
| | - Samuel Stafrace
- Department of Diagnostic Imaging, Sidra Medicine, Doha, Qatar ,Weill Cornell Medicine, Doha, Qatar
| | - Kassa Darge
- Department of Radiology, The Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA USA
| | | | - Costanza Bruno
- Department of Radiology, Azienda Ospedaliera Universitaria Integrata Verona (AOUI), Verona, Italy
| | | | - Luisa Lobo
- Serviço de Imagiologia Geral, Hospital de Santa Maria–Centro Hospitalar Universitário Lisboa, Norte (CHULN), Lisbon, Portugal
| | - Donald Ibe
- Department of Radiology, Silhouette Diagnostic Consultants, Abuja, Nigeria
| | - Anne M. Smets
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Philippe Petit
- Aix Marseille Université, AP-HM, Equipe d’Accueil 3279 - IFR 125, Hôpital Timone Enfants, Service d’Imagerie Pédiatrique et Prénatale, Marseille, France
| | - Lil-Sofie Ording Müller
- Unit for Paediatric Radiology, Department of Radiology, Oslo University Hospital, Rikshospitalet, PB 4950 Nydalen, 0424 Oslo, Norway.
| |
Collapse
|
49
|
Fang C, Anupindi SA, Back SJ, Franke D, Green TG, Harkanyi Z, Jüngert J, Kwon JK, Paltiel HJ, Squires JH, Zefov VN, McCarville MB. Contrast-enhanced ultrasound of benign and malignant liver lesions in children. Pediatr Radiol 2021; 51:2181-2197. [PMID: 33978801 PMCID: PMC8566652 DOI: 10.1007/s00247-021-04976-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/17/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022]
Abstract
Contrast-enhanced ultrasound (CEUS) is increasingly being used in children. One of the most common referrals for CEUS performance is characterization of indeterminate focal liver lesions and follow-up of known liver lesions. In this setting, CEUS is performed with intravenous administration of ultrasound contrast agents (UCAs). When injected into a vein, UCA microbubbles remain confined within the vascular network until they dissipate. Therefore, visualization of UCA within the tissues and lesions corresponds to true blood flow. CEUS enables continuous, real-time observation of the enhancement pattern of a focal liver lesion, allowing in most cases for a definite diagnosis and obviating the need for further cross-sectional imaging or other interventional procedures. The recent approval of Lumason (Bracco Diagnostics, Monroe Township, NJ) for pediatric liver CEUS applications has spurred the widespread use of CEUS. In this review article we describe the role of CEUS in pediatric liver applications, focusing on the examination technique and interpretation of main imaging findings of the most commonly encountered benign and malignant focal liver lesions. We also compare the diagnostic performance of CEUS with other imaging modalities for accurate characterization of focal liver lesions.
Collapse
Affiliation(s)
- Cheng Fang
- Department of Radiology, King's College Hospital, Denmark Hill, London, SE5 9RS, UK.
| | - Sudha A. Anupindi
- Department of Radiology, Perelman School of Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA USA
| | - Susan J. Back
- Department of Radiology, Perelman School of Medicine, Children’s Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA USA
| | - Doris Franke
- Department of Pediatric Kidney, Liver and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | | | - Zoltan Harkanyi
- Department of Radiology, Heim Pál National Pediatric Institute, Budapest, Hungary
| | - Jörg Jüngert
- Department of Pediatrics, Friedrich-Alexander University Erlangen–Nürnberg, Erlangen, Germany
| | - Jeannie K. Kwon
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Harriet J. Paltiel
- Department of Radiology, Harvard Medical School, Boston Children’s Hospital, Boston, MA USA
| | - Judy H. Squires
- Department of Radiology, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Vassil N. Zefov
- Department of Radiology, Dubai Health Authority, Latifa Women and Children Hospital, Dubai, UAE
| | - M. Beth McCarville
- Department of Diagnostic Imaging, St. Jude Children’s Research Hospital, Memphis, TN USA
| |
Collapse
|
50
|
Yang J, Zhang YH, Li JW, Shi YY, Huang JY, Luo Y, Liu JB, Lu Q. Contrast-enhanced ultrasound in association with serum biomarkers for differentiating combined hepatocellular-cholangiocarcinoma from hepatocellular carcinoma and intrahepatic cholangiocarcinoma. World J Gastroenterol 2020; 26:7325-7337. [PMID: 33362387 PMCID: PMC7739159 DOI: 10.3748/wjg.v26.i46.7325] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Combined hepatocellular-cholangiocarcinoma (CHC) is a rare type of primary liver cancer. Due to its complex histopathological characteristics, the imaging features of CHC can overlap with those of hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC).
AIM To investigate the possibility and efficacy of differentiating CHC from HCC and ICC by using contrast-enhanced ultrasound (CEUS) Liver Imaging Reporting and Data System (LI-RADS) and tumor biomarkers.
METHODS Between January 2016 and December 2019, patients with histologically confirmed CHC, ICC and HCC with chronic liver disease were enrolled. The diagnostic formula for CHC was as follows: (1) LR-5 or LR-M with elevated alpha-fetoprotein (AFP) and carbohydrate antigen 19-9 (CA19-9); (2) LR-M with elevated AFP and normal CA19-9; or (3) LR-5 with elevated CA19-9 and normal AFP. The sensitivity, specificity, accuracy and area under the receiver operating characteristic curve were calculated to determine the diagnostic value of the criteria.
RESULTS After propensity score matching, 134 patients (mean age of 51.4 ± 9.4 years, 108 men) were enrolled, including 35 CHC, 29 ICC and 70 HCC patients. Based on CEUS LI-RADS classification, 74.3% (26/35) and 25.7% (9/35) of CHC lesions were assessed as LR-M and LR-5, respectively. The rates of elevated AFP and CA19-9 in CHC patients were 51.4% and 11.4%, respectively, and simultaneous elevations of AFP and CA19-9 were found in 8.6% (3/35) of CHC patients. The sensitivity, specificity, positive predictive value, negative predictive value, accuracy and area under the receiver operating characteristic curve of the aforementioned diagnostic criteria for discriminating CHC from HCC and ICC were 40.0%, 89.9%, 58.3%, 80.9%, 76.9% and 0.649, respectively. When considering the reported prevalence of CHC (0.4%-14.2%), the positive predictive value and NPV were revised to 1.6%-39.6% and 90.1%-99.7%, respectively.
CONCLUSION CHCs are more likely to be classified as LR-M than LR-5 by CEUS LI-RADS. The combination of the CEUS LI-RADS classification with serum tumor markers shows high specificity but low sensitivity for the diagnosis of CHC. Moreover, CHC could be confidently excluded with high NPV.
Collapse
Affiliation(s)
- Jie Yang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ya-han Zhang
- Department of Pathology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Wu Li
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ying-Yu Shi
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yan Huang
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Yan Luo
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Ji-Bin Liu
- Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Qiang Lu
- Department of Medical Ultrasound, West China Hospital of Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|