1
|
Al-Mubarak H, Bane O, Gillingham N, Kyriakakos C, Abboud G, Cuevas J, Gonzalez J, Meilika K, Horowitz A, Huang HHV, Daza J, Fauveau V, Badani K, Viswanath SE, Taouli B, Lewis S. Characterization of renal masses with MRI-based radiomics: assessment of inter-package and inter-observer reproducibility in a prospective pilot study. Abdom Radiol (NY) 2024; 49:3464-3475. [PMID: 38467854 DOI: 10.1007/s00261-024-04212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 03/13/2024]
Abstract
OBJECTIVES To evaluate radiomics features' reproducibility using inter-package/inter-observer measurement analysis in renal masses (RMs) based on MRI and to employ machine learning (ML) models for RM characterization. METHODS 32 Patients (23M/9F; age 61.8 ± 10.6 years) with RMs (25 renal cell carcinomas (RCC)/7 benign masses; mean size, 3.43 ± 1.73 cm) undergoing resection were prospectively recruited. All patients underwent 1.5 T MRI with T2-weighted (T2-WI), diffusion-weighted (DWI)/apparent diffusion coefficient (ADC), and pre-/post-contrast-enhanced T1-weighted imaging (T1-WI). RMs were manually segmented using volume of interest (VOI) on T2-WI, DWI/ADC, and T1-WI pre-/post-contrast imaging (1-min, 3-min post-injection) by two independent observers using two radiomics software packages for inter-package and inter-observer assessments of shape/histogram/texture features common to both packages (104 features; n = 26 patients). Intra-class correlation coefficients (ICCs) were calculated to assess inter-observer and inter-package reproducibility of radiomics measurements [good (ICC ≥ 0.8)/moderate (ICC = 0.5-0.8)/poor (ICC < 0.5)]. ML models were employed using reproducible features (between observers and packages, ICC > 0.8) to distinguish RCC from benign RM. RESULTS Inter-package comparisons demonstrated that radiomics features from T1-WI-post-contrast had the highest proportion of good/moderate ICCs (54.8-58.6% for T1-WI-1 min), while most features extracted from T2-WI, T1-WI-pre-contrast, and ADC exhibited poor ICCs. Inter-observer comparisons found that radiomics measurements from T1-WI pre/post-contrast and T2-WI had the greatest proportion of features with good/moderate ICCs (95.3-99.1% T1-WI-post-contrast 1-min), while ADC measurements yielded mostly poor ICCs. ML models generated an AUC of 0.71 [95% confidence interval = 0.67-0.75] for diagnosis of RCC vs. benign RM. CONCLUSION Radiomics features extracted from T1-WI-post-contrast demonstrated greater inter-package and inter-observer reproducibility compared to ADC, with fair accuracy for distinguishing RCC from benign RM. CLINICAL RELEVANCE Knowledge of reproducibility of MRI radiomics features obtained on renal masses will aid in future study design and may enhance the diagnostic utility of radiomics models for renal mass characterization.
Collapse
Affiliation(s)
- Haitham Al-Mubarak
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Octavia Bane
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | - Nicolas Gillingham
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai West, New York, NY, 10019, USA
| | - Christopher Kyriakakos
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | - Ghadi Abboud
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | - Jordan Cuevas
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | - Janette Gonzalez
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | - Kirolos Meilika
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amir Horowitz
- Precision Immunology Institute/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hsin-Hui Vivien Huang
- Department of Population Sciences and Health Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jorge Daza
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute/Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valentin Fauveau
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ketan Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Satish E Viswanath
- Department of Biomedical Engineering, School of Medicine, Case School of Engineering, Case Western Reserve University, Cleveland, OH, USA
- Department of Radiology, Case School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Bachir Taouli
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA
| | - Sara Lewis
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1234, New York, NY, 10029, USA.
| |
Collapse
|
2
|
Cellina M, Irmici G, Pepa GD, Ce M, Chiarpenello V, Alì M, Papa S, Carrafiello G. Radiomics and Artificial Intelligence in Renal Lesion Assessment. Crit Rev Oncog 2024; 29:65-75. [PMID: 38505882 DOI: 10.1615/critrevoncog.2023051084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Radiomics, the extraction and analysis of quantitative features from medical images, has emerged as a promising field in radiology with the potential to revolutionize the diagnosis and management of renal lesions. This comprehensive review explores the radiomics workflow, including image acquisition, feature extraction, selection, and classification, and highlights its application in differentiating between benign and malignant renal lesions. The integration of radiomics with artificial intelligence (AI) techniques, such as machine learning and deep learning, can help patients' management and allow the planning of the appropriate treatments. AI models have shown remarkable accuracy in predicting tumor aggressiveness, treatment response, and patient outcomes. This review provides insights into the current state of radiomics and AI in renal lesion assessment and outlines future directions for research in this rapidly evolving field.
Collapse
Affiliation(s)
- Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121, Milan, Italy
| | - Giovanni Irmici
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Gianmarco Della Pepa
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Maurizio Ce
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Vittoria Chiarpenello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, 20122 Milan, Italy
| | - Marco Alì
- Radiology Unit, CDI, Centro Diagnostico Italiano, 20147 Milan, Italy
| | - Sergio Papa
- Radiology Unit, CDI, Centro Diagnostico Italiano, Via Simone Saint Bon, 20, 20147 Milan, Italy
| | - Gianpaolo Carrafiello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy; Radiology Department, Fondazione IRCCS Cà Granda, Policlinico di Milano Ospedale Maggiore, Università di Milano, 20122 Milan, Italy
| |
Collapse
|
3
|
Lu J, Xu W, Chen X, Wang T, Li H. Noninvasive prediction of IDH mutation status in gliomas using preoperative multiparametric MRI radiomics nomogram: A mutlicenter study. Magn Reson Imaging 2023; 104:72-79. [PMID: 37778708 DOI: 10.1016/j.mri.2023.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/21/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE To establish and validate a radiomics nomogram for preoperative prediction of isocitrate dehydrogenase (IDH) mutation status of gliomas in a multicenter setting. METHODS 414 gliomas patients were collected (306 from local institution and 108 from TCGA). 851 radiomics features were extracted from contrast-enhanced T1-weighted (CE-T1W) and fluid attenuated inversion recovery (FLAIR) sequence, respectively. The features were refined using least absolute shrinkage and selection operator (LASSO) regression combing 10-fold cross-validation. The optimal radiomics features with age and sex were processed by multivariate logistic regression analysis to construct a prediction model, which was developed in the training dataset and assessed in the test and validation dataset. Receiver operating characteristic (ROC) curve, calibration curve and decision curve analysis were applied in the test and external validation datasets to evaluate the performance of the prediction model. RESULTS Ten robust radiomics features were selected from the 1702 features (four CE-T1W features and six FLAIR features). A nomogram was plotted to represent the prediction model. The accuracy and AUC of the radiomics nomogram achieved 86.96% and 0.891(0.809-0.947) in the test dataset and 84.26% and 0.881(0.805-0.936) in the external validation dataset (all p < 0.05). The positive predictive value (PPV) and negative predictive value (NPV) were 83.72% and 87.75% in the test dataset and 87.81% and 82.09% in the external validation dataset. CONCLUSION IDH genotypes of gliomas can be identified by preoperative multiparametric MRI radiomics nomogram and might be clinically meaningful for treatment strategy and prognosis stratification of gliomas.
Collapse
Affiliation(s)
- Jun Lu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Beijing 100050, China; Department of Radiology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, Henan 450008, China
| | - Wenjuan Xu
- Department of Radiology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, Henan 450008, China
| | - Xiaocao Chen
- Department of Radiology, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, Henan 450008, China
| | - Tan Wang
- Department of Ophthalmology, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Dongdan North Street, Beijing 100005, China
| | - Hailiang Li
- Department of Minimally Invasive Intervention, the Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, No. 127 Dongming Road, Zhengzhou, Henan 450008, China.
| |
Collapse
|
4
|
Sim KC, Han NY, Cho Y, Sung DJ, Park BJ, Kim MJ, Han YE. Machine Learning-Based Magnetic Resonance Radiomics Analysis for Predicting Low- and High-Grade Clear Cell Renal Cell Carcinoma. J Comput Assist Tomogr 2023; 47:873-881. [PMID: 37948361 DOI: 10.1097/rct.0000000000001453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
PURPOSE To explore whether high- and low-grade clear cell renal cell carcinomas (ccRCC) can be distinguished using radiomics features extracted from magnetic resonance imaging. METHODS In this retrospective study, 154 patients with pathologically proven clear ccRCC underwent contrast-enhanced 3 T magnetic resonance imaging and were assigned to the development (n = 122) and test (n = 32) cohorts in a temporal-split setup. A total of 834 radiomics features were extracted from whole-tumor volumes using 3 sequences: T2-weighted imaging (T2WI), diffusion-weighted imaging, and contrast-enhanced T1-weighted imaging. A random forest regressor was used to extract important radiomics features that were subsequently used for model development using the random forest algorithm. Tumor size, apparent diffusion coefficient value, and percentage of tumor-to-renal parenchymal signal intensity drop in the tumors were recorded by 2 radiologists for quantitative analysis. The area under the receiver operating characteristic curve (AUC) was generated to predict ccRCC grade. RESULTS In the development cohort, the T2WI-based radiomics model demonstrated the highest performance (AUC, 0.82). The T2WI-based radiomics and radiologic feature hybrid model showed AUCs of 0.79 and 0.83, respectively. In the test cohort, the T2WI-based radiomics model achieved an AUC of 0.82. The range of AUCs of the hybrid model of T2WI-based radiomics and radiologic features was 0.73 to 0.80. CONCLUSION Magnetic resonance imaging-based classifier models using radiomics features and machine learning showed satisfactory diagnostic performance in distinguishing between high- and low-grade ccRCC, thereby serving as a helpful noninvasive tool for predicting ccRCC grade.
Collapse
Affiliation(s)
- Ki Choon Sim
- From the Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine
| | - Na Yeon Han
- From the Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine
| | - Yongwon Cho
- Department of Radiology and AI Center, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Deuk Jae Sung
- From the Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine
| | - Beom Jin Park
- From the Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine
| | - Min Ju Kim
- From the Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine
| | - Yeo Eun Han
- From the Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine
| |
Collapse
|
5
|
Pickovsky JS, Alo Nasiyabi K, Eldihimi F, Schieda N. Utility of multiparametric renal CT for differentiation of low-grade from high-grade cT1a clear cell renal cell carcinoma. Br J Radiol 2023; 96:20221087. [PMID: 37428147 PMCID: PMC10546453 DOI: 10.1259/bjr.20221087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 07/11/2023] Open
Abstract
OBJECTIVE To determine if CT can differentiate low-grade from high-grade clear cell renal cell carcinoma (ccRCC) in cT1a solid ccRCC. METHODS AND MATERIALS This retrospective cross-sectional study evaluated 78 < 4 cm solid (>25% enhancing) ccRCC in 78 patients with renal CT within 12 months of surgery between January 2016 and December 2019. Two radiologists (R1/R2), blinded to pathology, independently recorded mass:size, calcification, attenuation and heterogeneity (5-point Likert scale) and recorded a 5-point ccRCC CT Score. Multivariate logistic regression (LR) was performed. RESULTS There were 64.1% (50/78) low-grade (5/50 Grade 1 and 45/50 Grade 2) and 35.9% (28/78) high-grade (27/28 Grade 3 and 1/28 Grade 4) tumors.Unenhanced CT attenuation was higher (35.9±10.3 R1 and 34.9±10.7 R2 high-grade vs 29.7±10.2 R1 and 29.5±9.8 R2 low-grade, p=0.01-0.02), absolute corticomedullary phase attenuation ratio (CMphase-ratio; 0.67±0.16 R1 and 0.66±0.16 R2 vs 0.93±0.83 R1 and 0.80±0.33 R2, p=0.04-0.05) and 3-tiered stratification of CMphase-ratio (p=0.02) lower in high-grade tumors.A two-variable LR-model including unenhanced CT attenuation and CM.phase-ratio achieved area under the receiver operator characteristic curve of: 73% (95% confidence intervals 59-86%) and 72% (59-84%) for R1 and R2.ccRCC CT score differed by ccRCC grade (p<0.01 R1, R2) with high-grade tumors occurring most commonly in moderately enhancing ccRCC score 4 (46.4% [13/28] R1 and 54% [15/28]). CONCLUSION Among cT1a ccRCC, high-grade tumors have higher unenhanced CT attenuation and are less avidly enhancing. ADVANCES IN KNOWLEDGE High-grade ccRCC have higher attenuation (possibly due to less microscopic fat) and lower corticomedullary phase enhancement compared to low-grade tumors. This may result in categorization of high-grade tumors in lower ccRCC diagnostic algorithm categories.
Collapse
Affiliation(s)
- Jana S Pickovsky
- Department of Medical Imaging, The Ottawa Hospital, Ottawa, Canada
| | | | | | - Nicola Schieda
- Department of Medical Imaging, The Ottawa Hospital, Ottawa, Canada
| |
Collapse
|
6
|
Ludwig DR, Thacker Y, Luo C, Narra A, Mintz AJ, Siegel CL. CT-derived textural analysis parameters discriminate high-attenuation renal cysts from solid renal neoplasms. Clin Radiol 2023; 78:e782-e790. [PMID: 37586966 DOI: 10.1016/j.crad.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/15/2023] [Accepted: 07/05/2023] [Indexed: 08/18/2023]
Abstract
AIM To assess the utility of textural features on computed tomography (CT) to differentiate high-attenuation cysts from solid renal neoplasms among indeterminate renal lesions detected incidentally on CT. MATERIALS AND METHODS Patients were included if they had an indeterminate renal lesion on CT that was subsequently characterised on ultrasound or magnetic resonance imaging (MRI). Up to three lesions per patient were included if they had a size ≥10 mm and density of 20-70 HU on unenhanced CT or any single phase of contrast-enhanced CT. Cases were categorised as benign or most likely benign cysts (Bosniak II and IIF) versus indeterminate (Bosniak III), mixed solid and cystic (Bosniak IV), or solid renal lesions. A random forest model was generated using 95 textural parameters and four clinical parameters for each lesion. RESULTS Two hundred and thirty-four patients were included who had a total of 278 lesions. Of these, 193 (69%) were benign or most likely benign cysts and 85 (31%) were indeterminate, mixed cystic and solid, or solid renal lesions. The random forest model had an area under the curve of 0.71 (95% confidence interval [CI]: 0.65, 0.78), with a sensitivity and specificity of 81.2% and 38.9%, respectively. CONCLUSION A multivariate model including textural and clinical parameters had moderate overall performance for discriminating benign or likely benign cysts from indeterminate, mixed solid and cystic, or solid renal lesions. This study serves as a proof of concept and may reduce the need for further follow-up by characterising a significant portion of indeterminate lesions on CT as benign.
Collapse
Affiliation(s)
- D R Ludwig
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Y Thacker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - C Luo
- Division of Public Health Sciences, Washington University School of Medicine, Saint Louis, MO, USA
| | - A Narra
- St George's University School of Medicine, Grenada, West Indies
| | - A J Mintz
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - C L Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
7
|
Sha Z, Song Y, Wu Y, Sha P, Ye C, Fan G, Gao S, Yu R. The value of texture analysis in peritumoral edema of differentiating diagnosis between glioblastoma and primary brain lymphoma. Br J Neurosurg 2023; 37:1074-1077. [PMID: 33307833 DOI: 10.1080/02688697.2020.1856783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate the value of texture analysis of routine MRI image in peritumoral edema of differentiating diagnosis between glioblastoma (GBM) and primary brain lymphoma (PBL). METHODS The MRI imaging data of 22 patients with glioblastoma and 21 patients with PBL who were hospitalized in our hospital from January 2010 to October 2018 were selected. All the patients were pathologically diagnosed as glioblastoma or PBL, and MRI plain scan and enhanced examination were performed before operation. FireVoxel software was used to delineate the region of interest (ROI) on the most obvious level of peritumoral edema based on T1WI enhancement. Texture parameters were extracted and compared between glioblastoma and PBL. RESULTS In the glioblastoma group, the inhomogeneity, kurtosis and entropy texture parameters were statistically different from those in the PBL group. The entropy parameter area under the curve (AUC) (0.903) was significantly better than the kurtosis parameter AUC (0.859) and the inhomogeneity parameter AUC (0.729). When the entropy parameter Cut-off point = 3.883, the sensitivity, specificity and accuracy of glioblastoma and PBL were 85.7, 86.4 and 86.0%, respectively, by differential diagnosis. CONCLUSION Texture analysis of tumor peritumoral edema provided quantifiable information, which might be a new method for differentiating glioblastoma from PBL.
Collapse
Affiliation(s)
- Zhuang Sha
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yunnong Song
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yihao Wu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Pei Sha
- Department of Orthopedic Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chengkun Ye
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guangwei Fan
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shangfeng Gao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Wang Y, Zhang X, Wang S, Chen Y. MR texture analysis in the differentiation of renal oncocytoma with localized renal cell carcinoma subtypes. Br J Radiol 2023; 96:20221009. [PMID: 37129341 PMCID: PMC10392638 DOI: 10.1259/bjr.20221009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023] Open
Abstract
OBJECTIVES We aimed to explore the diagnostic efficacy of MR texture analysis and imaging signs in the differentiation of renal oncocytoma from renal cell carcinoma (RCC). METHODS From January 2015 to March 2019, a total of 168 localized solid renal masses (37 oncocytomas, 131 RCCs) were retrospectively included. Two radiologists reviewed complete MR images and recorded imaging presentation. Texture parameters were extracted from 3D ROIs on axial FSE-T2WI. Univariate and multivariate logistic regressions were used for feature selection and nomogram construction. The diagnostic performances were assessed by receiver operating characteristic (ROC) curves. RESULTS Cystic change, hemorrhage, SEI and four texture parameters significantly correlated with oncocytoma in the training cohort. For differentiating oncocytoma from RCC, the nomogram yielded an AUC of 0.874 in the training cohort and 0.830 in the testing cohort. For differentiating oncocytoma from chRCC, the nomogram had an AUC of 0.889 in the training cohort and 0.861 in the testing cohort. For differentiating oncocytoma from pRCC, the nomogram had an AUC of 0.932 in the training cohort and 0.792 in the testing cohort. For differentiating oncocytoma from ccRCC, the nomogram had an AUC of 0.829 in the training cohort and 0.813 in the testing cohort. CONCLUSION The diagnostic nomogram combining MR texture parameters with imaging signs performed well in differentiating oncocytomas with localized RCC and its subtypes. ADVANCES IN KNOWLEDGE Few articles reported using the combination of MR texture analysis with imaging signs in differentiating RCC from oncocytoma. Our study established a useful nomogram in subtype characterization.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinxin Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | | | - Yan Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| |
Collapse
|
9
|
Sun J, Xing Z, Pan L, Wang Q, Xing W, Chen J. Using the "2 standard deviations" rule with Dixon MRI to differentiate renal cell carcinoma types. Clin Imaging 2023; 101:113-120. [PMID: 37329638 DOI: 10.1016/j.clinimag.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Clear cell and non-clear cell renal cell carcinoma (RCC) are distinguishable based on microscopic fat, detectable by chemical shift MRI. However, these assessments are often subjective. Conversely, Dixon MRIs and the "2 standard deviations" rule (2SDR) are quantitative methods that may decrease diagnostic subjectivity. Therefore, this study assessed the value of the 2SDR for detecting microscopic fat and thus differentiating clear cell and non-clear cell RCC using Dixon MRI. METHODS This retrospective study included patients with RCC who underwent preoperative Dixon MRI. The patients were grouped based on tumor type: clear cell RCC and non-clear cell RCC. The 2SDR value was calculated based on in-phase and opposed-phase images and then compared between the two groups. 2SDR values >0 indicated clear cell RCCs, whereas values <0 indicated non-clear cell RCC. RESULTS We included 151 patients; 114 patients had clear cell RCC, of which 106 had a 2SDR value >0. Furthermore, 37 patients had non-clear cell RCC, of which 3 had a 2SDR value >0. The 2SDR value was significantly higher in the clear cell RCC group than in the non-clear cell RCC group (p = 0.000). Overall, 93.0% (106/114) and 8.1% (3/37) of patients with clear cell and non-clear cell RCC, respectively, had microscopic fat. The evaluation indices for this 2SDR method were: accuracy: 92.72%, sensitivity: 92.98%, specificity: 91.89%, positive predictive value: 97.25%, and negative predictive value: 80.95%. CONCLUSIONS 2SDR values calculated from Dixon magnetic resonance images can differentiate clear cell from non-clear cell RCCs by detecting microscopic fat. PRECIS The "2 standard deviations" rule value calculated from Dixon MR images differentiates clear cell from non-clear cell renal cell carcinoma with high efficiency by detecting microscopic fat.
Collapse
Affiliation(s)
- Jun Sun
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Zhaoyu Xing
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Liang Pan
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Qing Wang
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Wei Xing
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Jie Chen
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
10
|
Shehata M, Abouelkheir RT, Gayhart M, Van Bogaert E, Abou El-Ghar M, Dwyer AC, Ouseph R, Yousaf J, Ghazal M, Contractor S, El-Baz A. Role of AI and Radiomic Markers in Early Diagnosis of Renal Cancer and Clinical Outcome Prediction: A Brief Review. Cancers (Basel) 2023; 15:2835. [PMID: 37345172 DOI: 10.3390/cancers15102835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Globally, renal cancer (RC) is the 10th most common cancer among men and women. The new era of artificial intelligence (AI) and radiomics have allowed the development of AI-based computer-aided diagnostic/prediction (AI-based CAD/CAP) systems, which have shown promise for the diagnosis of RC (i.e., subtyping, grading, and staging) and prediction of clinical outcomes at an early stage. This will absolutely help reduce diagnosis time, enhance diagnostic abilities, reduce invasiveness, and provide guidance for appropriate management procedures to avoid the burden of unresponsive treatment plans. This survey mainly has three primary aims. The first aim is to highlight the most recent technical diagnostic studies developed in the last decade, with their findings and limitations, that have taken the advantages of AI and radiomic markers derived from either computed tomography (CT) or magnetic resonance (MR) images to develop AI-based CAD systems for accurate diagnosis of renal tumors at an early stage. The second aim is to highlight the few studies that have utilized AI and radiomic markers, with their findings and limitations, to predict patients' clinical outcome/treatment response, including possible recurrence after treatment, overall survival, and progression-free survival in patients with renal tumors. The promising findings of the aforementioned studies motivated us to highlight the optimal AI-based radiomic makers that are correlated with the diagnosis of renal tumors and prediction/assessment of patients' clinical outcomes. Finally, we conclude with a discussion and possible future avenues for improving diagnostic and treatment prediction performance.
Collapse
Affiliation(s)
- Mohamed Shehata
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| | - Rasha T Abouelkheir
- Department of Radiology, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | | | - Eric Van Bogaert
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Mohamed Abou El-Ghar
- Department of Radiology, Urology and Nephrology Center, Mansoura University, Mansoura 35516, Egypt
| | - Amy C Dwyer
- Kidney Disease Program, University of Louisville, Louisville, KY 40202, USA
| | - Rosemary Ouseph
- Kidney Disease Program, University of Louisville, Louisville, KY 40202, USA
| | - Jawad Yousaf
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
11
|
Chartier S, Arif-Tiwari H. MR Virtual Biopsy of Solid Renal Masses: An Algorithmic Approach. Cancers (Basel) 2023; 15:2799. [PMID: 37345136 DOI: 10.3390/cancers15102799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Between 1983 and 2002, the incidence of solid renal tumors increased from 7.1 to 10.8 cases per 100,000. This is in large part due to the increase in the volume of ultrasound and cross-sectional imaging, although a majority of solid renal tumors are still found incidentally. Ultrasound and computed tomography (CT) have been the mainstay of renal mass screening and diagnosis but recent advances in magnetic resonance (MR) technology have made this the optimal choice when diagnosing and staging renal tumors. Our purpose in writing this review is to survey the modern MR imaging approach to benign and malignant solid renal tumors, consolidate the various imaging findings into an easy-to-read reference, and provide an imaging-based, algorithmic approach to renal mass characterization for clinicians. MR is at the forefront of renal mass characterization, surpassing ultrasound and CT in its ability to describe multiple tissue parameters and predict tumor biology. Cutting-edge MR protocols and the integration of diagnostic algorithms can improve patient outcomes, allowing the imager to narrow the differential and better guide oncologic and surgical management.
Collapse
Affiliation(s)
- Stephane Chartier
- Department of Medical Imaging, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Hina Arif-Tiwari
- Department of Medical Imaging, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| |
Collapse
|
12
|
Whole-tumor radiomics analysis of T2-weighted imaging in differentiating neuroblastoma from ganglioneuroblastoma/ganglioneuroma in children: an exploratory study. Abdom Radiol (NY) 2023; 48:1372-1382. [PMID: 36892608 DOI: 10.1007/s00261-023-03862-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
PURPOSE To examine the potential of whole-tumor radiomics analysis of T2-weighted imaging (T2WI) in differentiating neuroblastoma (NB) from ganglioneuroblastoma/ganglioneuroma (GNB/GN) in children. MATERIALS AND METHODS This study included 102 children with peripheral neuroblastic tumors, comprising 47 NB patients and 55 GNB/GN patients, which were randomly divided into a training group (n = 72) and a test group (n = 30). Radiomics features were extracted from T2WI images, and feature dimensionality reduction was applied. Linear discriminant analysis was used to construct radiomics models, and one-standard error role combined with leave-one-out cross-validation was used to choose the optimal radiomics model with the least predictive error. Subsequently, the patient age at initial diagnosis and the selected radiomics features were incorporated to construct a combined model. The receiver operator characteristic (ROC) curve, decision curve analysis (DCA) and clinical impact curve (CIC) were applied to evaluate the diagnostic performance and clinical utility of the models. RESULTS Fifteen radiomics features were eventually chosen to construct the optimal radiomics model. The area under the curve (AUC) of the radiomics model in the training group and test group was 0.940 [95% confidence interval (CI) 0.886, 0.995] and 0.799 (95%CI 0.632, 0.966), respectively. The combined model, which incorporated patient age and radiomics features, achieved an AUC of 0.963 (95%CI 0.925, 1.000) in the training group and 0.871 (95%CI 0.744, 0.997) in the test group. DCA and CIC demonstrated that the radiomics model and combined model could provide benefits at various thresholds, with the combined model being superior to the radiomics model. CONCLUSION Radiomics features derived from T2WI, in combination with the age of the patient at initial diagnosis, may offer a quantitative method for distinguishing NB from GNB/GN, thus aiding in the pathological differentiation of peripheral neuroblastic tumors in children.
Collapse
|
13
|
Wang Y, Zhang X, Zhang J, Zhang L, Zhang J, Chen Y. MR texture analysis in differentiation of small and very small renal cell carcinoma subtypes. Abdom Radiol (NY) 2023; 48:1044-1050. [PMID: 36650366 DOI: 10.1007/s00261-022-03794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE To explore the diagnostic efficacy of MR-based texture analysis in differentiation of small (≤ 4 cm) and very small (≤ 2 cm) renal cell carcinoma subtypes. METHODS One hundred and eight patients with pT1a (≤ 4 cm) renal cell carcinoma and pretreatment MRI were enrolled in this retrospective study. Histogram and gray-level co-occurrence matrix (GLCM) parameters were extracted from whole-tumor images. Among subtypes, patient age, tumor size, histological grading and texture parameters were compared. Diagnostic model using combination of texture parameters was constructed using logistic regression and validated using fivefold cross-validation. AUC with 95% CI, accuracy, sensitivity and specificity for subtype differentiation are reported. Further we explored the distinguishing ability of texture parameters and diagnostic model in very small (≤ 2 cm) RCC subgroups. RESULTS Significant texture parameters among RCC subtypes were identified. For small (≤ 4 cm) renal cell carcinoma subtyping, combining models based on texture parameters achieved good AUCs for differentiating ccRCC vs. non-ccRCC, chRCC vs. non-chRCC and ccRCC vs. chRCC (0.79, 0.74 and 0.81). Further, in subgroups of very small (≤ 2 cm) RCCs, diagnostic models had better differentiating performances, achieving AUCs of 0.88, 0.99, 0.96 in differentiating ccRCC vs. non-ccRCC, chRCC vs. non-chRCC and ccRCC vs. chRCC. CONCLUSION MR texture analysis may help to differentiate small (≤ 4 cm) and very small (≤ 2 cm) RCC subtypes. This non-invasive method can potentially provide additional information for localized RCC treatment and surveillance strategy.
Collapse
Affiliation(s)
- Yichen Wang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xinxin Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jin Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lianyu Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
14
|
Ferro M, Musi G, Marchioni M, Maggi M, Veccia A, Del Giudice F, Barone B, Crocetto F, Lasorsa F, Antonelli A, Schips L, Autorino R, Busetto GM, Terracciano D, Lucarelli G, Tataru OS. Radiogenomics in Renal Cancer Management-Current Evidence and Future Prospects. Int J Mol Sci 2023; 24:4615. [PMID: 36902045 PMCID: PMC10003020 DOI: 10.3390/ijms24054615] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Renal cancer management is challenging from diagnosis to treatment and follow-up. In cases of small renal masses and cystic lesions the differential diagnosis of benign or malignant tissues has potential pitfalls when imaging or even renal biopsy is applied. The recent artificial intelligence, imaging techniques, and genomics advancements have the ability to help clinicians set the stratification risk, treatment selection, follow-up strategy, and prognosis of the disease. The combination of radiomics features and genomics data has achieved good results but is currently limited by the retrospective design and the small number of patients included in clinical trials. The road ahead for radiogenomics is open to new, well-designed prospective studies, with large cohorts of patients required to validate previously obtained results and enter clinical practice.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology (IEO) IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20141 Milan, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, 66100 Chieti, Italy
- Urology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Urology, ASL Abruzzo 2, 66100 Chieti, Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, University of Rome, 00161 Rome, Italy
| | - Alessandro Veccia
- Department of Urology, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37126 Verona, Italy
| | - Francesco Del Giudice
- Department of Maternal Infant and Urologic Sciences, Policlinico Umberto I Hospital, University of Rome, 00161 Rome, Italy
| | - Biagio Barone
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Felice Crocetto
- Department of Neurosciences and Reproductive Sciences and Odontostomatology, University of Naples Federico II, 80131 Naples, Italy
| | - Francesco Lasorsa
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Alessandro Antonelli
- Department of Urology, Azienda Ospedaliera Universitaria Integrata of Verona, University of Verona, 37126 Verona, Italy
| | - Luigi Schips
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, 66100 Chieti, Italy
- Urology Unit, SS. Annunziata Hospital, 66100 Chieti, Italy
- Department of Urology, ASL Abruzzo 2, 66100 Chieti, Italy
| | | | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia, 71122 Foggia, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation Unit, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Octavian Sabin Tataru
- Department of Simulation Applied in Medicine, The Institution Organizing University Doctoral Studies (I.O.S.U.D.), George Emil Palade University of Medicine, Pharmacy, Sciences, and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| |
Collapse
|
15
|
Ferro M, Crocetto F, Barone B, del Giudice F, Maggi M, Lucarelli G, Busetto GM, Autorino R, Marchioni M, Cantiello F, Crocerossa F, Luzzago S, Piccinelli M, Mistretta FA, Tozzi M, Schips L, Falagario UG, Veccia A, Vartolomei MD, Musi G, de Cobelli O, Montanari E, Tătaru OS. Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review. Ther Adv Urol 2023; 15:17562872231164803. [PMID: 37113657 PMCID: PMC10126666 DOI: 10.1177/17562872231164803] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/04/2023] [Indexed: 04/29/2023] Open
Abstract
Radiomics and artificial intelligence (AI) may increase the differentiation of benign from malignant kidney lesions, differentiation of angiomyolipoma (AML) from renal cell carcinoma (RCC), differentiation of oncocytoma from RCC, differentiation of different subtypes of RCC, to predict Fuhrman grade, to predict gene mutation through molecular biomarkers and to predict treatment response in metastatic RCC undergoing immunotherapy. Neural networks analyze imaging data. Statistical, geometrical, textural features derived are giving quantitative data of contour, internal heterogeneity and gray zone features of lesions. A comprehensive literature review was performed, until July 2022. Studies investigating the diagnostic value of radiomics in differentiation of renal lesions, grade prediction, gene alterations, molecular biomarkers and ongoing clinical trials have been analyzed. The application of AI and radiomics could lead to improved sensitivity, specificity, accuracy in detecting and differentiating between renal lesions. Standardization of scanner protocols will improve preoperative differentiation between benign, low-risk cancers and clinically significant renal cancers and holds the premises to enhance the diagnostic ability of imaging tools to characterize renal lesions.
Collapse
Affiliation(s)
| | - Felice Crocetto
- Department of Neurosciences and Reproductive
Sciences and Odontostomatology, University of Naples Federico II, Naples,
Italy
| | - Biagio Barone
- Department of Neurosciences and Reproductive
Sciences and Odontostomatology, University of Naples Federico II, Naples,
Italy
| | - Francesco del Giudice
- Department of Maternal Infant and Urologic
Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome,
Italy
| | - Martina Maggi
- Department of Maternal Infant and Urologic
Sciences, Policlinico Umberto I Hospital, Sapienza University of Rome, Rome,
Italy
| | - Giuseppe Lucarelli
- Urology, Andrology and Kidney Transplantation
Unit, Department of Emergency and Organ Transplantation, University of Bari,
Bari, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ
Transplantation, University of Foggia, Foggia, Italy
| | | | - Michele Marchioni
- Department of Medical, Oral and
Biotechnological Sciences, Urology Unit, SS Annunziata Hospital, G.
d’Annunzio University of Chieti, Chieti, Italy
- Department of Urology, ASL Abruzzo 2, Chieti,
Italy
| | - Francesco Cantiello
- Department of Urology, Magna Graecia
University of Catanzaro, Catanzaro, Italy
| | - Fabio Crocerossa
- Department of Urology, Magna Graecia
University of Catanzaro, Catanzaro, Italy
| | - Stefano Luzzago
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Università degli Studi di Milano, Milan,
Italy
| | - Mattia Piccinelli
- Cancer Prognostics and Health Outcomes Unit,
Division of Urology, University of Montréal Health Center, Montréal, QC,
Canada
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
| | - Francesco Alessandro Mistretta
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Tozzi
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Università degli Studi di Milano, Milan,
Italy
| | - Luigi Schips
- Department of Medical, Oral and
Biotechnological Sciences, Urology Unit, SS Annunziata Hospital, G.
d’Annunzio University of Chieti, Chieti, Italy
| | | | - Alessandro Veccia
- Urology Unit, Azienda Ospedaliera
Universitaria Integrata Verona, University of Verona, Verona, Italy
| | - Mihai Dorin Vartolomei
- Department of Cell and Molecular Biology,
George Emil Palade University of Medicine, Pharmacy, Science and Technology
of Târgu Mures, Târgu Mures, Romania
- Department of Urology, Medical University of
Vienna, Vienna, Austria
| | - Gennaro Musi
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Ottavio de Cobelli
- Department of Urology, IEO – European
Institute of Oncology, IRCCS – Istituto di Ricovero e Cura a Carattere
Scientifico, Milan, Italy
- Department of Oncology and
Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Emanuele Montanari
- Department of Urology, Foundation IRCCS Ca’
Granda – Ospedale Maggiore Policlinico, Department of Clinical Sciences and
Community Health, University of Milan, Milan, Italy
| | - Octavian Sabin Tătaru
- Institution Organizing University Doctoral
Studies (IOSUD), George Emil Palade University of Medicine, Pharmacy,
Science and Technology of Târgu Mures, Târgu Mures, Romania
| |
Collapse
|
16
|
Massa'a RN, Stoeckl EM, Lubner MG, Smith D, Mao L, Shapiro DD, Abel EJ, Wentland AL. Differentiation of benign from malignant solid renal lesions with MRI-based radiomics and machine learning. ABDOMINAL RADIOLOGY (NEW YORK) 2022; 47:2896-2904. [PMID: 35723716 DOI: 10.1007/s00261-022-03577-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Solid renal masses are often indeterminate for benignity versus malignancy on magnetic resonance imaging. Such masses are typically evaluated with either percutaneous biopsy or surgical resection. Percutaneous biopsy can be non-diagnostic and some surgically resected lesions are inadvertently benign. PURPOSE To assess the performance of ten machine learning (ML) algorithms trained with MRI-based radiomics features in distinguishing benign from malignant solid renal masses. METHODS Patients with solid renal masses identified on pre-intervention MRI were curated from our institutional database. Masses with a definitive diagnosis via imaging (for angiomyolipomas) or via biopsy or surgical resection (for oncocytomas or renal cell carcinomas) were selected. Each mass was segmented for both T2- and post-contrast T1-weighted images. Radiomics features were derived from the segmented masses for each imaging sequence. Ten ML algorithms were trained with the radiomics features gleaned from each MR sequence, as well as the combination of MR sequences. RESULTS In total, 182 renal masses in 160 patients were included in the study. The support vector machine algorithm trained on radiomics features from T2-weighted images performed superiorly, with an accuracy of 0.80 and an area under the curve (AUC) of 0.79. Linear discriminant analysis (accuracy = 0.84 and AUC = 0.77) and logistic regression (accuracy = 0.78 and AUC = 0.78) algorithms trained on T2-based radiomics features performed similarly. ML algorithms trained on radiomics features from post-contrast T1-weighted images or the combination of radiomics features from T2- and post-contrast T1-weighted images yielded lower performance. CONCLUSION Machine learning models trained with radiomics features derived from T2-weighted images can provide high accuracy for distinguishing benign from malignant solid renal masses. CLINICAL IMPACT Machine learning models derived from MRI-based radiomics features may improve the clinical management of solid renal masses and have the potential to reduce the frequency with which benign solid renal masses are biopsied or surgically resected.
Collapse
Affiliation(s)
- Ruben Ngnitewe Massa'a
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Elizabeth M Stoeckl
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Meghan G Lubner
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, Madison, WI, 53792, USA
| | - David Smith
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, Madison, WI, 53792, USA
| | - Lu Mao
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Daniel D Shapiro
- Department of Urology, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - E Jason Abel
- Department of Urology, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA
| | - Andrew L Wentland
- Department of Radiology, University of Wisconsin School of Medicine & Public Health, 600 Highland Avenue, Madison, WI, 53792, USA. .,Department of Medical Physics, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA. .,Department of Biomedical Engineering, University of Wisconsin School of Medicine & Public Health, Madison, WI, USA.
| |
Collapse
|
17
|
Rasmussen R, Sanford T, Parwani AV, Pedrosa I. Artificial Intelligence in Kidney Cancer. Am Soc Clin Oncol Educ Book 2022; 42:1-11. [PMID: 35580292 DOI: 10.1200/edbk_350862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Artificial intelligence is rapidly expanding into nearly all facets of life, particularly within the field of medicine. The diagnosis, characterization, management, and treatment of kidney cancer is ripe with areas for improvement that may be met with the promises of artificial intelligence. Here, we explore the impact of current research work in artificial intelligence for clinicians caring for patients with renal cancer, with a focus on the perspectives of radiologists, pathologists, and urologists. Promising preliminary results indicate that artificial intelligence may assist in the diagnosis and risk stratification of newly discovered renal masses and help guide the clinical treatment of patients with kidney cancer. However, much of the work in this field is still in its early stages, limited in its broader applicability, and hampered by small datasets, the varied appearance and presentation of kidney cancers, and the intrinsic limitations of the rigidly structured tasks artificial intelligence algorithms are trained to complete. Nonetheless, the continued exploration of artificial intelligence holds promise toward improving the clinical care of patients with kidney cancer.
Collapse
Affiliation(s)
- Robert Rasmussen
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX
| | - Thomas Sanford
- Department of Urology, Upstate Medical University, Syracuse, NY
| | - Anil V Parwani
- Department of Pathology, The Ohio State University, Columbus, OH
| | - Ivan Pedrosa
- Department of Radiology, The University of Texas Southwestern Medical Center, Dallas, TX.,Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX.,Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
18
|
A radiomics feature-based nomogram to predict telomerase reverse transcriptase promoter mutation status and the prognosis of lower-grade gliomas. Clin Radiol 2022; 77:e560-e567. [PMID: 35595562 DOI: 10.1016/j.crad.2022.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/07/2022] [Indexed: 11/21/2022]
Abstract
AIM To explore the predictive value of the radiomics feature-based nomogram for predicting telomerase reverse transcriptase (TERT) promoter mutation status and prognosis of lower-grade gliomas (LGGs) non-invasively. MATERIALS AND METHODS One hundred and seventy-six LGG patients (123 in the training cohort and 53 in the validation cohort) were enrolled retrospectively. A total of 851 radiomics features were extracted from contrast-enhanced magnetic resonance imaging (MRI) images. The radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) method and a rad-score was calculated. Multivariate logistic regression analysis was used to build a radiomics signature based on rad-score, participant's age, and gender, and a radiomics nomogram was used to represent this signature. The performance of the signature was evaluated by receiver operating characteristic (ROC) curve analysis, and the patient prognosis was stratified based on the TERT promoter mutation status and the radiomics signature. RESULTS Seven robust radiomics features were selected by LASSO and the radiomics signature showed good performance for predicting the TERT promoter mutation status, with an area under the curve (AUC) of 0.900 (0.832-0.946) and 0.873 (0.753-0.948) in the training and validation datasets. With a median overall survival time of 28.5 months, the radiomics signature stratified the LGG patients into two risk groups with significantly different prognosis (log-rank = 47.531, p<0.001). CONCLUSION The radiomics feature-based nomogram is a promising approach for predicting the TERT promoter mutation status preoperatively and evaluating the prognosis of lower-grade glioma patients non-invasively.
Collapse
|
19
|
Wei C, Li N, Shi B, Wang C, Wu Y, Lin T, Chen Y, Ge Y, Yu Y, Dong J. The predictive value of conventional MRI combined with radiomics in the immediate ablation rate of HIFU treatment for uterine fibroids. Int J Hyperthermia 2022; 39:475-484. [PMID: 35271784 DOI: 10.1080/02656736.2022.2046182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
OBJECTIVE This study aimed to assess the predictive value of conventional magnetic resonance imaging (MRI) combined with radiomics in determining the nonperfused volume ratio (NPVR) following high-intensity focused ultrasound (HIFU) ablation for uterine fibroids. METHODS AND MATERIALS A total of 216 symptomatic uterine fibroids in 216 women were subjected to HIFU ablation from October 2015 to March 2020. Baseline clinical and MR parameters acquired before and after HIFU ablation were analyzed, and the NPVR was calculated accordingly. Radiomics features were extracted using A.K. software on T2-weighted imaging (T2WI). The minimum redundancy and maximum relevancy (mRMR) method were used to refine the selected radiomics features. Then, multiple linear regression models, the Wilcoxon signed-rank test, and Spearman's rank correlation and Bland-Altman analyses were conducted. RESULTS Conventional MRI combined with radiomics revealed the signal intensity on T2WI (X9), enhancement degree on T1-weighted imaging (T1WI) (X11), uterine fibroid location (X4), wavelet_glszm_SizeZoneNonUniformity first order (X12) and wavelet_HHH_firstorder_Skewness (X13) negatively affected the NPVR. The resulting regression equation was NPVR = 104.030 - 11.886 × X9 - 5.459 × X11 - 2.776 × X4 - 0.20 × X12 - 16.913 × X13. The adjusted R2 values of the conventional MRI model and combined model were 0.385 and 0.408, respectively, and the two fitted models were statistically significant (p < 0.05). No significant differences were observed between the predicted NPVR value [81 (71, 91) %] of the combined model and the actual NPVR value [89 (77, 97) %] (p > 0.05). In addition, the predicted NPVR was correlated with the actual NPVR (r = 0.655, p < 0.001). CONCLUSIONS The efficiency of the combined model was better than that of the conventional MRI model in predicting the NPVR following HIFU ablation for uterine fibroids. Radiomics is an important supplemental modality to conventional MRI.
Collapse
Affiliation(s)
- Chao Wei
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Naiyu Li
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bin Shi
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Chuanbin Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yaoyuan Wu
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Tingting Lin
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yulan Chen
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | | | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jiangning Dong
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
20
|
Mao Y, Wang J, Zhu Y, Chen J, Mao L, Kong W, Qiu Y, Wu X, Guan Y, He J. Gd-EOB-DTPA-enhanced MRI radiomic features for predicting histological grade of hepatocellular carcinoma. Hepatobiliary Surg Nutr 2022; 11:13-24. [PMID: 35284527 DOI: 10.21037/hbsn-19-870] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 05/11/2020] [Indexed: 01/03/2023]
Abstract
Background Prediction models for the histological grade of hepatocellular carcinoma (HCC) remain unsatisfactory. The purpose of this study is to develop preoperative models to predict histological grade of HCC based on gadolinium-ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) radiomics. And to compare the performance between artificial neural network (ANN) and logistic regression model. Methods A total of 122 HCCs were randomly assigned to the training set (n=85) and the test set (n=37). There were 242 radiomic features extracted from volumetric of interest (VOI) of arterial and hepatobiliary phases images. The radiomic features and clinical parameters [gender, age, alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), carbohydrate antigen 19-9 (CA19-9), alanine aminotransferase (ALT), aspartate transaminase (AST)] were selected by permutation test and decision tree. ANN of arterial phase (ANN-AP), logistic regression model of arterial phase (LR-AP), ANN of hepatobiliary phase (ANN-HBP), logistic regression mode of hepatobiliary phase (LR-HBP), ANN of combined arterial and hepatobiliary phases (ANN-AP + HBP), and logistic regression model of combined arterial and hepatobiliary phases (LR-AP + HBP) were built to predict HCC histological grade. Those prediction models were assessed and compared. Results ANN-AP and LR-AP were composed by AST and radiomic features based on arterial phase. ANN-HBP and LR-HBP were composed by AFP and radiomic features based on hepatobiliary phase. ANN-AP + HBP and LR-AP + HBP were composed by AST and radiomic features based on arterial and hepatobiliary phases. The prediction models could distinguish between high-grade tumors [Edmondson-Steiner (E-S) grade III and IV] and low-grade tumors (E-S grade I and II) in both training set and test set. In the test set, the AUCs of ANN-AP, LR-AP, ANN-HBP, LR-HBP, ANN-AP + HBP and LR-AP + HBP were 0.889, 0.777, 0.941, 0.819, 0.944 and 0.792 respectively. The ANN-HBP was significantly superior to LR-HBP (P=0.001). And the ANN-AP + HBP was significantly superior to LR-AP + HBP (P=0.007). Conclusions Prediction models consisting of clinical parameters and Gd-EOB-DTPA-enhanced MRI radiomic features (based on arterial phase, hepatobiliary phase, and combined arterial and hepatobiliary phases) could distinguish between high-grade HCCs and low-grade HCCs. And the ANN was superior to logistic regression model in predicting histological grade of HCC.
Collapse
Affiliation(s)
- Yingfan Mao
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jincheng Wang
- Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yong Zhu
- Department of Radiology, Jiangsu Province Hospital of Traditional Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Chen
- Department of Pathology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Liang Mao
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Weiwei Kong
- Department of Oncology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaoyan Wu
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yue Guan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
21
|
Yang YC, Wei XY, Tang XQ, Yin RH, Zhang M, Duan SF, Pan CJ. Exploring value of CT coronary imaging combined with machine-learning methods to predict myocardial ischemia. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2022; 30:767-776. [PMID: 35527621 DOI: 10.3233/xst-221160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
PURPOSE To establish a machine-learning (ML) model based on coronary computed tomography angiography (CTA) images for evaluating myocardial ischemia in patients diagnosed with coronary atherosclerosis. METHODS This retrospective analysis includes CTA images acquired from 110 patients. Among them, 58 have myocardial ischemia and 52 have normal myocardial blood supply. The patients are divided into training and test datasets with a ratio 7 : 3. Deep learning model-based CQK software is used to automatically segment myocardium on CTA images and extract texture features. Then, seven ML models are constructed to classify between myocardial ischemia and normal myocardial blood supply cases. Predictive performance and stability of the classifiers are determined by receiver operating characteristic curve with cross validation. The optimal ML model is then validated using an independent test dataset. RESULTS Accuracy and areas under ROC curves (AUC) obtained from the support vector machine with extreme gradient boosting linear method are 0.821 and 0.777, respectively, while accuracy and AUC achieved by the neural network (NN) method are 0.818 and 0.757, respectively. The naive Bayes model yields the highest sensitivity (0.942), and the random forest model yields the highest specificity (0.85). The k-nearest neighbors model yields the lowest accuracy (0.74). Additionally, NN model demonstrates the lowest relative standard deviations (0.16 for accuracy and 0.08 for AUC) indicating the high stability of this model, and its AUC applying to the independent test dataset is 0.72. CONCLUSION The NN model demonstrates the best performance in predicting myocardial ischemia using radiomics features computed from CTA images, which suggests that this ML model has promising potential in guiding clinical decision-making.
Collapse
Affiliation(s)
- You-Chang Yang
- Department of Radiology, Changzhou Second People's Hospital, Changzhou, China
| | - Xiao-Yu Wei
- Department of Radiology, Changzhou Second People's Hospital, Changzhou, China
| | - Xiao-Qiang Tang
- Department of Radiology, Changzhou Second People's Hospital, Changzhou, China
| | - Ruo-Han Yin
- Department of Radiology, Changzhou Second People's Hospital, Changzhou, China
| | - Ming Zhang
- Department of Radiology, Changzhou Second People's Hospital, Changzhou, China
| | - Shao-Feng Duan
- Precision Health Institution, GE Healthcare (China), Shanghai, China
| | - Chang-Jie Pan
- Department of Radiology, Changzhou Second People's Hospital, Changzhou, China
| |
Collapse
|
22
|
Zhang L, Zhao H, Jiang H, Zhao H, Han W, Wang M, Fu P. 18F-FDG texture analysis predicts the pathological Fuhrman nuclear grade of clear cell renal cell carcinoma. Abdom Radiol (NY) 2021; 46:5618-5628. [PMID: 34455450 PMCID: PMC8590655 DOI: 10.1007/s00261-021-03246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/08/2021] [Accepted: 08/09/2021] [Indexed: 11/20/2022]
Abstract
PURPOSE This article analyzes the image heterogeneity of clear cell renal cell carcinoma (ccRCC) based on positron emission tomography (PET) and positron emission tomography-computed tomography (PET/CT) texture parameters, and provides a new objective quantitative parameter for predicting pathological Fuhrman nuclear grading before surgery. METHODS A retrospective analysis was performed on preoperative PET/CT images of 49 patients whose surgical pathology was ccRCC, 27 of whom were low grade (Fuhrman I/II) and 22 of whom were high grade (Fuhrman III/IV). Radiological parameters and standard uptake value (SUV) indicators on PET and computed tomography (CT) images were extracted by using the LIFEx software package. The discriminative ability of each texture parameter was evaluated through receiver operating curve (ROC). Binary logistic regression analysis was used to screen the texture parameters with distinguishing and diagnostic capabilities and whose area under curve (AUC) > 0.5. DeLong's test was used to compare the AUCs of PET texture parameter model and PET/CT texture parameter model with traditional maximum standardized uptake value (SUVmax) model and the ratio of tumor SUVmax to liver SUVmean (SUL)model. In addition, the models with the larger AUCs among the SUV models and texture models were prospectively internally verified. RESULTS In the ROC curve analysis, the AUCs of SUVmax model, SUL model, PET texture parameter model, and PET/CT texture parameter model were 0.803, 0.819, 0.873, and 0.926, respectively. The prediction ability of PET texture parameter model or PET/CT texture parameter model was significantly better than SUVmax model (P = 0.017, P = 0.02), but it was not better than SUL model (P = 0.269, P = 0.053). In the prospective validation cohort, both the SUL model and the PET/CT texture parameter model had good predictive ability, and the AUCs of them were 0.727 and 0.792, respectively. CONCLUSION PET and PET/CT texture parameter models can improve the prediction ability of ccRCC Fuhrman nuclear grade; SUL model may be the more accurate and easiest way to predict ccRCC Fuhrman nuclear grade.
Collapse
Affiliation(s)
- Linhan Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Hong Zhao
- Department of Nuclear Medicine, ShenZhen People's Hospital, ShenZhen, China
| | - Wei Han
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengjiao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Peng Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
23
|
Grajo JR, Batra NV, Bozorgmehri S, Magnelli LL, O'Malley P, Terry R, Su LM, Crispen PL. Association between nuclear grade of renal cell carcinoma and the aorta-lesion-attenuation-difference. Abdom Radiol (NY) 2021; 46:5629-5638. [PMID: 34463815 DOI: 10.1007/s00261-021-03260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/27/2022]
Abstract
INTRODUCTION AND BACKGROUND Several features noted on renal mass biopsy (RMB) can influence treatment selection including tumor histology and nuclear grade. However, there is poor concordance between renal cell carcinoma (RCC) nuclear grade on RMB compared to nephrectomy specimens. Here, we evaluate the association of nuclear grade with aorta-lesion-attenuation-difference (ALAD) values determined on preoperative CT scan. METHODS AND MATERIALS A retrospective review of preoperative CT scans and surgical pathology was performed on patients undergoing nephrectomy for solid renal masses. ALAD was calculated by measuring the difference in Hounsfield units (HU) between the aorta and the lesion of interest on the same image slice on preoperative CT scan. The discriminative ability of ALAD to differentiate low-grade (nuclear grade 1 and 2) and high-grade (nuclear grade 3 and 4) tumors was evaluated by sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under curve (AUC) using ROC analysis. Sub-group analysis by histologic sub-type was also performed. RESULTS A total of 368 preoperative CT scans in patients with RCC on nephrectomy specimen were reviewed. Median patient age was 61 years (IQR 52-68). The majority of patients were male, 66% (243/368). Tumor histology was chromophobe RCC in 7.6%, papillary RCC in 15.5%, and clear cell RCC in 76.9%. The majority, 69.3% (253/365) of tumors, were stage T1a. Nuclear grade was grade 1 in 5.46% (19/348), grade 2 in 64.7% (225/348), grade 3 in 26.2% (91/348), and grade 4 in 3.2% (11/348). Nephrographic ALAD values for grade 1, 2, 3, and 4 were 73.7, 46.5, 36.4, and 43.1, respectively (p = 0.0043). Nephrographic ALAD was able to differentiate low-grade from high-grade RCC with a sensitivity of 32%, specificity of 89%, PPV of 86%, and NPV of 36%. ROC analysis demonstrated the predictive utility of nephrographic ALAD to predict high- versus low-grade RCC with an AUC of 0.60 (95% CI 0.51-0.69). CONCLUSION ALAD was significantly associated with nuclear grade in our nephrectomy series. Strong specificity and PPV for the nephrographic phrase demonstrate a potential role for ALAD in the pre-operative setting that may augment RMB findings in assessing nuclear grade of RCC. Although this association was statistically significant, the clinical utility is limited at this time given the results of the statistical analysis (relatively poor ROC analysis). Sub-group analysis by histologic subtype yielded very similar diagnostic performance and limitations of ALAD. Further studies are necessary to evaluate this relationship further.
Collapse
Affiliation(s)
- Joseph R Grajo
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Nikhil V Batra
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Shahab Bozorgmehri
- Department of Epidemiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Laura L Magnelli
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Padraic O'Malley
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Russell Terry
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Li-Ming Su
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Paul L Crispen
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| |
Collapse
|
24
|
Tsili AC, Moulopoulos LA, Varakarakis IΜ, Argyropoulou MI. Cross-sectional imaging assessment of renal masses with emphasis on MRI. Acta Radiol 2021; 63:1570-1587. [PMID: 34709096 DOI: 10.1177/02841851211052999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetic resonance imaging (MRI) is a useful complementary imaging tool for the diagnosis and characterization of renal masses, as it provides both morphologic and functional information. A core MRI protocol for renal imaging should include a T1-weighted sequence with in- and opposed-phase images (or, alternatively with DIXON technique), T2-weighted and diffusion-weighted images as well as a dynamic contrast-enhanced sequence with subtraction images, followed by a delayed post-contrast T1-weighted sequence. The main advantages of MRI over computed tomography include increased sensitivity for contrast enhancement, less sensitivity for detection of calcifications, absence of pseudoenhancement, and lack of radiation exposure. MRI may be applied for renal cystic lesion characterization, differentiation of renal cell carcinoma (RCC) from benign solid renal tumors, RCC histologic grading, staging, post-treatment follow-up, and active surveillance of patients with treated or untreated RCC.
Collapse
Affiliation(s)
- Athina C Tsili
- Department of Clinical Radiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - Lia-Angela Moulopoulos
- 1st Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital, Athens, Greece
| | - Ioannis Μ Varakarakis
- 2nd Department of Urology, National and Kapodistrian University of Athens, Sismanoglio Hospital, Athens, Greece
| | - Maria I Argyropoulou
- Department of Clinical Radiology, School of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
25
|
Chen XY, Zhang Y, Chen YX, Huang ZQ, Xia XY, Yan YX, Xu MP, Chen W, Wang XL, Chen QL. MRI-Based Grading of Clear Cell Renal Cell Carcinoma Using a Machine Learning Classifier. Front Oncol 2021; 11:708655. [PMID: 34660276 PMCID: PMC8517330 DOI: 10.3389/fonc.2021.708655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/15/2021] [Indexed: 11/14/2022] Open
Abstract
Objective To develop a machine learning (ML)-based classifier for discriminating between low-grade (ISUP I-II) and high-grade (ISUP III-IV) clear cell renal cell carcinomas (ccRCCs) using MRI textures. Materials and Methods We retrospectively evaluated a total of 99 patients (with 61 low-grade and 38 high-grade ccRCCs), who were randomly divided into a training set (n = 70) and a validation set (n = 29). Regions of interest (ROIs) of all tumors were manually drawn three times by a radiologist at the maximum lesion level of the cross-sectional CMP sequence images. The quantitative texture analysis software, MaZda, was used to extract texture features, including histograms, co-occurrence matrixes, run-length matrixes, gradient models, and autoregressive models. Reproducibility of the texture features was assessed with the intra-class correlation coefficient (ICC). Features were chosen based on their importance coefficients in a random forest model, while the multi-layer perceptron algorithm was used to build a classifier on the training set, which was later evaluated with the validation set. Results The ICCs of 257 texture features were equal to or higher than 0.80 (0.828–0.998. Six features, namely Kurtosis, 135dr_RLNonUni, Horzl_GLevNonU, 135dr_GLevNonU, S(4,4)Entropy, and S(0,5)SumEntrp, were chosen to develop the multi-layer perceptron classifier. A three-layer perceptron model, which has 229 nodes in the hidden layer, was trained on the training set. The accuracy of the model was 95.7% with the training set and 86.2% with the validation set. The areas under the receiver operating curves were 0.997 and 0.758 for the training and validation sets, respectively. Conclusions A machine learning-based grading model was developed that can aid in the clinical diagnosis of clear cell renal cell carcinoma using MRI images.
Collapse
Affiliation(s)
- Xin-Yuan Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yu Zhang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.,Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Yu-Xing Chen
- Department of Bioinformatics, School of Basic Medical Sciences, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Zi-Qiang Huang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiao-Yue Xia
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yi-Xin Yan
- Department of Bioinformatics, School of Basic Medical Sciences, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Mo-Ping Xu
- Department of Bioinformatics, School of Basic Medical Sciences, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Wen Chen
- Department of Bioinformatics, School of Basic Medical Sciences, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Xian-Long Wang
- Department of Bioinformatics, School of Basic Medical Sciences, School of Medical Technology and Engineering, Key Laboratory of Medical Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Qun-Lin Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
26
|
Kuusk T, Neves JB, Tran M, Bex A. Radiomics to better characterize small renal masses. World J Urol 2021; 39:2861-2868. [PMID: 33495866 DOI: 10.1007/s00345-021-03602-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Radiomics is a specific field of medical research that uses programmable recognition tools to extract objective information from standard images to combine with clinical data, with the aim of improving diagnostic, prognostic, and predictive accuracy beyond standard visual interpretation. We performed a narrative review of radiomic applications that may support improved characterization of small renal masses (SRM). The main focus of the review was to identify and discuss methods which may accurately differentiate benign from malignant renal masses, specifically between renal cell carcinoma (RCC) subtypes and from angiomyolipoma without visible fat (fat-poor AML) and oncocytoma. Furthermore, prediction of grade, sarcomatoid features, and gene mutations would be of importance in terms of potential clinical utility in prognostic stratification and selecting personalised patient management strategies. METHODS A detailed search of original articles was performed using the PubMed-MEDLINE database until 20 September 2020 to identify the English literature relevant to radiomics applications in renal tumour assessment. In total, 42 articles were included in the analysis in 3 main categories related to SRM: prediction of benign versus malignant SRM, subtypes, and nuclear grade, and other features of aggressiveness. CONCLUSION Overall, studies reported the superiority of radiomics over expert radiological assessment, but were mainly of retrospective design and therefore of low-quality evidence. However, it is clear that radiomics is an attractive modality that has the potential to improve the non-invasive diagnostic accuracy of SRM imaging and prediction of its natural behaviour. Further prospective validation studies of radiomics are needed to augment management algorithms of SRM.
Collapse
Affiliation(s)
- Teele Kuusk
- Urology Department, Darent Valley Hospital, Dartford and Gravesham NHS Trust, Dartford, UK
- Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, London, UK
| | - Joana B Neves
- Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, London, UK
| | - Maxine Tran
- Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, London, UK
- UCL Division of Surgery and Interventional Science, London, UK
| | - Axel Bex
- Specialist Centre for Kidney Cancer, Royal Free London NHS Foundation Trust, London, UK.
- UCL Division of Surgery and Interventional Science, London, UK.
- Surgical Oncology Division, Urology Department, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Sun J, Pan L, Zha T, Xing W, Chen J, Duan S. The role of MRI texture analysis based on susceptibility-weighted imaging in predicting Fuhrman grade of clear cell renal cell carcinoma. Acta Radiol 2021; 62:1104-1111. [PMID: 32867506 DOI: 10.1177/0284185120951964] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The Fuhrman nuclear grade system is one of the most important independent indicators in patients with clear cell renal cell carcinoma (ccRCC) for aggressiveness and prognosis. Preoperative assessment of tumor aggressiveness is important for surgical decision-making. PURPOSE To explore the role of magnetic resonance imaging (MRI) texture analysis based on susceptibility-weighted imaging (SWI) in predicting Fuhrman grade of ccRCC. MATERIAL AND METHODS A total of 45 patients with SWI and surgically proven ccRCC were divided into two groups: the low-grade group (Fuhrman I/II, n = 29) and the high-grade group (Fuhrman III/IV, n = 16). Texture features were extracted from SWI images. Feature selection was performed, and multivariable logistic regression analysis was performed to develop the SWI-based texture model for grading ccRCCs. Receiver operating characteristic (ROC) curve analysis and leave-group-out cross-validation (LGOCV) were performed to test the reliability of the model. RESULTS A total of 396 SWI-based texture features were extracted from each SWI image. The SWI-based texture model developed by multivariable logistic regression analysis was: SWIscore = -0.59 + 1.60 * ZonePercentage. The area under the ROC curve of the SWI-based texture model for differentiating high-grade ccRCC from low-grade ccRCC was 0.81 (95% confidence interval 0.67-0.94), with 80% accuracy, 56.25% sensitivity, and 93.10% specificity. After 100 LGOCVs, the mean accuracy, sensitivity, and specificity were 90.91%, 91.83%, and 89.89% for the training sets, and 77.29%, 80.52%, and 71.44% for the test sets, respectively. CONCLUSION SWI-based texture analysis might be a reliable quantitative approach for differentiating high-grade ccRCC from low-grade ccRCC.
Collapse
Affiliation(s)
- Jun Sun
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, PR China
| | - Liang Pan
- GE Healthcare China, Shanghai, Shanghai, PR China
| | - Tingting Zha
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, PR China
| | - Wei Xing
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, PR China
| | - Jie Chen
- Department of Radiology, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, PR China
| | | |
Collapse
|
28
|
Grajo JR, Batra NV, Bozorgmehri S, Magnelli LL, Pavlinec J, O'Malley P, Su LM, Crispen PL. Validation of aorta-lesion-attenuation difference on preoperative contrast-enhanced computed tomography scan to differentiate between malignant and benign oncocytic renal tumors. Abdom Radiol (NY) 2021; 46:3269-3279. [PMID: 33665734 DOI: 10.1007/s00261-021-02971-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES We previously noted that the aorta-lesion-attenuation difference (ALAD) determined on CT scan discriminated well between chromophobe RCC and oncocytoma. The current evaluation seeks to validate these initial findings in a second cohort of nephrectomy patients. METHODS A retrospective review of preoperative CT scans and surgical pathology was performed on patients undergoing nephrectomy for small, solid renal masses. ALAD was calculated by measuring the difference in Hounsfield units (HU) between the aorta and the lesion of interest on the same image slice on preoperative CT scan. The discriminative ability of ALAD to differentiate malignant pathology from oncocytoma was evaluated by sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and area under curve (AUC) using ROC analysis. RESULTS Twenty-one preoperative CT scans and corresponding pathology reports were reviewed and included in the validation cohort. ALAD values were calculated during the excretory and nephrographic phases. Compared to the training cohort, patients in the validation cohort were significantly older (62 versus 59 years old), had larger tumors (3.7 versus 2.7 cm), and higher stage disease (59% versus 79% T1a disease). Nephrographic ALAD was able to differentiate malignant pathology from oncocytoma in the training and validation cohorts with a sensitivity of 84% versus 73%, specificity of 86% and 67%, PPV of 98% versus 91%, and NPV of 33% versus 35%. The AUC for malignant pathology versus oncocytoma in the validation cohort was 0.72 (95% CI 0.63-0.82). Nephrographic ALAD was able to differentiate chromophobe RCC from oncocytoma in the training and validation cohorts with a sensitivity of 100% versus 67%, specificity of 86% versus 67%, PPV of 75% versus 43%, and NPV of 100% versus 84%. The AUC for chromophobe RCC versus oncocytoma in the validation cohort was 0.72 (95% CI 0.48-0.96). CONCLUSIONS The ability of ALAD to discriminate between chromophobe RCC and oncocytoma was diminished in the validation cohort compared to the training cohort, but remained significant. The current findings support further investigation in the role of ALAD in the management of patients with indeterminate diagnoses of oncocytic neoplasm.
Collapse
Affiliation(s)
- Joseph R Grajo
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| | - Nikhil V Batra
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Shahab Bozorgmehri
- Department of Epidemiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Laura L Magnelli
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Jonathan Pavlinec
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Padraic O'Malley
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Li-Ming Su
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Paul L Crispen
- Department of Urology, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| |
Collapse
|
29
|
Caruso D, Polici M, Zerunian M, Pucciarelli F, Guido G, Polidori T, Landolfi F, Nicolai M, Lucertini E, Tarallo M, Bracci B, Nacci I, Rucci C, Eid M, Iannicelli E, Laghi A. Radiomics in Oncology, Part 2: Thoracic, Genito-Urinary, Breast, Neurological, Hematologic and Musculoskeletal Applications. Cancers (Basel) 2021; 13:cancers13112681. [PMID: 34072366 PMCID: PMC8197789 DOI: 10.3390/cancers13112681] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/08/2023] Open
Abstract
Simple Summary This Part II is an overview of the main applications of Radiomics in oncologic imaging with a focus on diagnosis, prognosis prediction and assessment of response to therapy in thoracic, genito-urinary, breast, neurologic, hematologic and musculoskeletal oncology. In this part II we describe the radiomic applications, limitations and future perspectives for each pre-eminent tumor. In the future, Radiomics could have a pivotal role in management of cancer patients as an imaging tool to support clinicians in decision making process. However, further investigations need to obtain some stable results and to standardize radiomic analysis (i.e., image acquisitions, segmentation and model building) in clinical routine. Abstract Radiomics has the potential to play a pivotal role in oncological translational imaging, particularly in cancer detection, prognosis prediction and response to therapy evaluation. To date, several studies established Radiomics as a useful tool in oncologic imaging, able to support clinicians in practicing evidence-based medicine, uniquely tailored to each patient and tumor. Mineable data, extracted from medical images could be combined with clinical and survival parameters to develop models useful for the clinicians in cancer patients’ assessment. As such, adding Radiomics to traditional subjective imaging may provide a quantitative and extensive cancer evaluation reflecting histologic architecture. In this Part II, we present an overview of radiomic applications in thoracic, genito-urinary, breast, neurological, hematologic and musculoskeletal oncologic applications.
Collapse
Affiliation(s)
- Damiano Caruso
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Michela Polici
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Marta Zerunian
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Francesco Pucciarelli
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Gisella Guido
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Tiziano Polidori
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Federica Landolfi
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Matteo Nicolai
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Elena Lucertini
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Mariarita Tarallo
- Department of Surgery “Pietro Valdoni”, Sapienza University of Rome, 00161 Rome, Italy;
| | - Benedetta Bracci
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Ilaria Nacci
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Carlotta Rucci
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Marwen Eid
- Internal Medicine, Northwell Health Staten Island University Hospital, Staten Island, New York, NY 10305, USA;
| | - Elsa Iannicelli
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
| | - Andrea Laghi
- Radiology Unit, Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome-Sant’Andrea University Hospital, Via di Grottarossa, 1035-1039, 00189 Rome, Italy; (D.C.); (M.P.); (M.Z.); (F.P.); (G.G.); (T.P.); (F.L.); (M.N.); (E.L.); (B.B.); (I.N.); (C.R.); (E.I.)
- Correspondence: ; Tel.: +39-0633775285
| |
Collapse
|
30
|
Tsili AC, Andriotis E, Gkeli MG, Krokidis M, Stasinopoulou M, Varkarakis IM, Moulopoulos LA. The role of imaging in the management of renal masses. Eur J Radiol 2021; 141:109777. [PMID: 34020173 DOI: 10.1016/j.ejrad.2021.109777] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/26/2022]
Abstract
The wide availability of cross-sectional imaging is responsible for the increased detection of small, usually asymptomatic renal masses. More than 50 % of renal cell carcinomas (RCCs) represent incidental findings on noninvasive imaging. Multimodality imaging, including conventional US, contrast-enhanced US (CEUS), CT and multiparametric MRI (mpMRI) is pivotal in diagnosing and characterizing a renal mass, but also provides information regarding its prognosis, therapeutic management, and follow-up. In this review, imaging data for renal masses that urologists need for accurate treatment planning will be discussed. The role of US, CEUS, CT and mpMRI in the detection and characterization of renal masses, RCC staging and follow-up of surgically treated or untreated localized RCC will be presented. The role of percutaneous image-guided ablation in the management of RCC will be also reviewed.
Collapse
Affiliation(s)
- Athina C Tsili
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, 45110, Ioannina, Greece.
| | - Efthimios Andriotis
- Department of Newer Imaging Methods of Tomography, General Anti-Cancer Hospital Agios Savvas, 11522, Athens, Greece.
| | - Myrsini G Gkeli
- 1st Department of Radiology, General Anti-Cancer Hospital Agios Savvas, 11522, Athens, Greece.
| | - Miltiadis Krokidis
- 1st Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital, 11528, Athens, Greece; Department of Diagnostic, Interventional and Pediatric Radiology, Inselspital Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
| | - Myrsini Stasinopoulou
- Department of Newer Imaging Methods of Tomography, General Anti-Cancer Hospital Agios Savvas, 11522, Athens, Greece.
| | - Ioannis M Varkarakis
- 2nd Department of Urology, National and Kapodistrian University of Athens, Sismanoglio Hospital, 15126, Athens, Greece.
| | - Lia-Angela Moulopoulos
- 1st Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Areteion Hospital, 11528, Athens, Greece.
| | | |
Collapse
|
31
|
Qiao X, Li Z, Li L, Ji C, Li H, Shi T, Gu Q, Liu S, Zhou Z, Zhou K. Preoperative T 2-weighted MR imaging texture analysis of gastric cancer: prediction of TNM stages. Abdom Radiol (NY) 2021; 46:1487-1497. [PMID: 33047226 DOI: 10.1007/s00261-020-02802-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/20/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To explore the capability of algorithms to build multivariate models integrating morphological and texture features derived from preoperative T2-weighted magnetic resonance (MR) images of gastric cancer (GC) to evaluate tumor- (T), node- (N), and metastasis- (M) stages. METHODS A total of 80 patients at our hospital who underwent abdominal MR imaging and were diagnosed with GC from December 2011 to November 2016 were retrospectively included. Texture features were calculated using T2-weighted images with a manual region of interest. Morphological characteristics were also evaluated. Classifiers and regression analyses were used to build multivariate models. Receiver operating characteristic (ROC) curve analysis was performed to assess diagnostic efficacy. RESULTS There were 8, 10, and 3 texture parameters that showed significant differences in GCs at different overall (I-II vs. III-IV), T (1-2 vs. 3-4), and N (- vs. +) stages (all p < 0.05), respectively. Mild thickening was more common in stages I-II, T1-2, and N- GCs (all p < 0.05). An irregular outer contour was more commonly observed in stages III-IV (p = 0.001) and T3-4 (p = 0.001) GCs. T3-4 and N+ GCs tended to be thickening type lesions (p = 0.005 and 0.032, respectively). The multivariate models using the naive bayes algorithm showed the highest diagnostic efficacy in predicting T and N stages (area under the ROC curves [AUC] = 0.900 and 0.863, respectively), and the model based on regression analysis had the best predictive performance in overall staging (AUC = 0.839). CONCLUSION Multivariate models combining morphological characteristics with texture parameters based on machine learning algorithms were able to improve diagnostic efficacy in predicting the overall, T, and N stages of GCs.
Collapse
Affiliation(s)
- Xiangmei Qiao
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Zhengliang Li
- State Key Lab of Novel Software Technology, Nanjing University, Nanjing, 210046, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, 210008, China
| | - Changfeng Ji
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Hui Li
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Tingting Shi
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Qing Gu
- State Key Lab of Novel Software Technology, Nanjing University, Nanjing, 210046, China
| | - Song Liu
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Zhengyang Zhou
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Kefeng Zhou
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, No. 321, Zhongshan Road, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
32
|
Huang Y, Zeng H, Chen L, Luo Y, Ma X, Zhao Y. Exploration of an Integrative Prognostic Model of Radiogenomics Features With Underlying Gene Expression Patterns in Clear Cell Renal Cell Carcinoma. Front Oncol 2021; 11:640881. [PMID: 33763374 PMCID: PMC7982462 DOI: 10.3389/fonc.2021.640881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/26/2021] [Indexed: 02/05/2023] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) is one of the most common malignancies in urinary system, and radiomics has been adopted in tumor staging and prognostic evaluation in renal carcinomas. This study aimed to integrate image features of contrast-enhanced CT and underlying genomics features to predict the overall survival (OS) of ccRCC patients. Method We extracted 107 radiomics features out of 205 patients with available CT images obtained from TCIA database and corresponding clinical and genetic information from TCGA database. LASSO-COX and SVM-RFE were employed independently as machine-learning algorithms to select prognosis-related imaging features (PRIF). Afterwards, we identified prognosis-related gene signature through WGCNA. The random forest (RF) algorithm was then applied to integrate PRIF and the genes into a combined imaging-genomics prognostic factors (IGPF) model. Furthermore, we constructed a nomogram incorporating IGPF and clinical predictors as the integrative prognostic model for ccRCC patients. Results A total of four PRIF and four genes were identified as IGPF and were represented by corresponding risk score in RF model. The integrative IGPF model presented a better prediction performance than the PRIF model alone (average AUCs for 1-, 3-, and 5-year were 0.814 vs. 0.837, 0.74 vs. 0.806, and 0.689 vs. 0.751 in test set). Clinical characteristics including gender, TNM stage and IGPF were independent risk factors. The nomogram integrating clinical predictors and IGPF provided the best net benefit among the three models. Conclusion In this study we established an integrative prognosis-related nomogram model incorporating imaging-genomic features and clinical indicators. The results indicated that IGPF may contribute to a comprehensive prognosis assessment for ccRCC patients.
Collapse
Affiliation(s)
- Yeqian Huang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Zeng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linyan Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuling Luo
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Zhao
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
33
|
Priya S, Ward C, Locke T, Soni N, Maheshwarappa RP, Monga V, Agarwal A, Bathla G. Glioblastoma and primary central nervous system lymphoma: differentiation using MRI derived first-order texture analysis - a machine learning study. Neuroradiol J 2021; 34:320-328. [PMID: 33657924 DOI: 10.1177/1971400921998979] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES To evaluate the diagnostic performance of multiple machine learning classifier models derived from first-order histogram texture parameters extracted from T1-weighted contrast-enhanced images in differentiating glioblastoma and primary central nervous system lymphoma. METHODS Retrospective study with 97 glioblastoma and 46 primary central nervous system lymphoma patients. Thirty-six different combinations of classifier models and feature selection techniques were evaluated. Five-fold nested cross-validation was performed. Model performance was assessed for whole tumour and largest single slice using receiver operating characteristic curve. RESULTS The cross-validated model performance was relatively similar for the top performing models for both whole tumour and largest single slice (area under the curve 0.909-0.924). However, there was a considerable difference between the worst performing model (logistic regression with full feature set, area under the curve 0.737) and the highest performing model for whole tumour (least absolute shrinkage and selection operator model with correlation filter, area under the curve 0.924). For single slice, the multilayer perceptron model with correlation filter had the highest performance (area under the curve 0.914). No significant difference was seen between the diagnostic performance of the top performing model for both whole tumour and largest single slice. CONCLUSIONS T1 contrast-enhanced derived first-order texture analysis can differentiate between glioblastoma and primary central nervous system lymphoma with good diagnostic performance. The machine learning performance can vary significantly depending on the model and feature selection methods. Largest single slice and whole tumour analysis show comparable diagnostic performance.
Collapse
Affiliation(s)
- Sarv Priya
- Department of Radiology, University of Iowa Hospitals and Clinics, USA
| | - Caitlin Ward
- Department of Biostatistics, University of Iowa, USA
| | - Thomas Locke
- Department of Radiology, University of Iowa Hospitals and Clinics, USA
| | - Neetu Soni
- Department of Radiology, University of Iowa Hospitals and Clinics, USA
| | | | - Varun Monga
- Department of Medicine, University of Iowa Hospitals and Clinics, USA
| | - Amit Agarwal
- Department of Radiology, University of South Western Medical Center, USA
| | - Girish Bathla
- Department of Radiology, University of Iowa Hospitals and Clinics, USA
| |
Collapse
|
34
|
An H, Wang Y, Wong EMF, Lyu S, Han L, Perucho JAU, Cao P, Lee EYP. CT texture analysis in histological classification of epithelial ovarian carcinoma. Eur Radiol 2021; 31:5050-5058. [PMID: 33409777 DOI: 10.1007/s00330-020-07565-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/05/2020] [Accepted: 11/25/2020] [Indexed: 10/22/2022]
Abstract
OBJECTIVES The study aimed to compare the ability of morphological and texture features derived from contrast-enhanced CT in histological subtyping of epithelial ovarian carcinoma (EOC). METHODS Consecutive 205 patients with newly diagnosed EOC who underwent contrast-enhanced CT were included and dichotomised into high-grade serous carcinoma (HGSC) and non-HGSC. Clinical information including age and cancer antigen 125 (CA-125) was documented. The pre-treatment images were analysed using commercial software, TexRAD, by two independent radiologists. Eight qualitative CT morphological features were evaluated, and 36 CT texture features at 6 spatial scale factors (SSFs) were extracted per patient. Features' reduction was based on kappa score, intra-class correlation coefficient (ICC), univariate ROC analysis and Pearson's correlation test. Texture features with ICC ≥ 0.8 were compared by histological subtypes. Patients were randomly divided into training and testing sets by 8:2. Two random forest classifiers were determined and compared: model 1 incorporating selected morphological and clinical features and model 2 incorporating selected texture and clinical features. RESULTS HGSC showed specifically higher texture features than non-HGSC (p < 0.05). Both models performed highly in predicting histological subtypes of EOC (model 1: AUC 0.891 and model 2: AUC 0.937), and no statistical significance was found between the two models (p = 0.464). CONCLUSION CT texture analysis provides objective and quantitative metrics on tumour characteristics with HGSC demonstrating specifically high texture features. The model incorporating texture analysis could classify histology subtypes of EOC with high accuracy and performed as well as morphological features. KEY POINTS • A number of CT morphological and texture features showed good inter- and intra-observer agreements. • High-grade serous ovarian carcinoma showed specifically higher CT texture features than non-high-grade serous ovarian carcinoma. • CT texture analysis could differentiate histological subtypes of epithelial ovarian carcinoma with high accuracy.
Collapse
Affiliation(s)
- He An
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yiang Wang
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Esther M F Wong
- Department of Radiology, Pamela Youde Nethersole Eastern Hospital, Hong Kong, Hong Kong SAR
| | - Shanshan Lyu
- Department of Pathology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lujun Han
- Department of Diagnostic Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jose A U Perucho
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Peng Cao
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Elaine Y P Lee
- Department of Diagnostic Radiology, Queen Mary Hospital, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR.
| |
Collapse
|
35
|
Yin RH, Yang YC, Tang XQ, Shi HF, Duan SF, Pan CJ. Enhanced computed tomography radiomics-based machine-learning methods for predicting the Fuhrman grades of renal clear cell carcinoma. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2021; 29:1149-1160. [PMID: 34657848 DOI: 10.3233/xst-210997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To develop and test an optimal machine learning model based on the enhanced computed tomography (CT) to preoperatively predict pathological grade of clear cell renal cell carcinoma (ccRCC). METHODS A retrospective analysis of 53 pathologically confirmed cases of ccRCC was performed and 25 consecutive ccRCC cases were selected as a prospective testing set. All patients underwent routine preoperative abdominal CT plain and enhanced scans. Renal tumor lesions were segmented on arterial phase images and 396 radiomics features were extracted. In the training set, seven discrimination classifiers for high- and low-grade ccRCCs were constructed based on seven different machine learning models, respectively, and their performance and stability for predicting ccRCC grades were evaluated through receiver operating characteristic (ROC) analysis and cross-validation. Prediction accuracy and area under ROC curve were used as evaluation indices. Finally, the diagnostic efficacy of the optimal model was verified in the testing set. RESULTS The accuracies and AUC values achieved by support vector machine with radial basis function kernel (svmRadial), random forest and naïve Bayesian models were 0.860±0.158 and 0.919±0.118, 0.840±0.160 and 0.915±0.138, 0.839±0.147 and 0.921±0.133, respectively, which showed high predictive performance, whereas K-nearest neighborhood model yielded lower accuracy of 0.720±0.188 and lower AUC value of 0.810±0.150. Additionally, svmRadial had smallest relative standard deviation (RSD, 0.13 for AUC, 0.17 for accuracy), which indicates higher stability. CONCLUSION svmRadial performs best in predicting pathological grades of ccRCC using radiomics features computed from the preoperative CT images, and thus may have high clinical potential in guiding preoperative decision.
Collapse
Affiliation(s)
- Ruo-Han Yin
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - You-Chang Yang
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Xiao-Qiang Tang
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Hai-Feng Shi
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Shao-Feng Duan
- Precision Health Institution, GE Healthcare (China), Shanghai, China
| | - Chang-Jie Pan
- Department of Radiology, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
36
|
Said D, Hectors SJ, Wilck E, Rosen A, Stocker D, Bane O, Beksaç AT, Lewis S, Badani K, Taouli B. Characterization of solid renal neoplasms using MRI-based quantitative radiomics features. Abdom Radiol (NY) 2020; 45:2840-2850. [PMID: 32333073 DOI: 10.1007/s00261-020-02540-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To assess the diagnostic value of magnetic resonance imaging (MRI)-based radiomics features using machine learning (ML) models in characterizing solid renal neoplasms, in comparison/combination with qualitative radiologic evaluation. METHODS Retrospective analysis of 125 patients (mean age 59 years, 67% males) with solid renal neoplasms that underwent MRI before surgery. Qualitative (signal and enhancement characteristics) and quantitative radiomics analyses (histogram and texture features) were performed on T2-weighted imaging (WI), T1-WI pre- and post-contrast, and DWI. Mann-Whitney U test and receiver-operating characteristic analysis were used in a training set (n = 88) to evaluate diagnostic performance of qualitative and radiomics features for differentiation of renal cell carcinomas (RCCs) from benign lesions, and characterization of RCC subtypes (clear cell RCC [ccRCC] and papillary RCC [pRCC]). Random forest ML models were developed for discrimination between tumor types on the training set, and validated on an independent set (n = 37). RESULTS We assessed 104 RCCs (51 ccRCC, 29 pRCC, and 24 other subtypes) and 21 benign lesions in 125 patients. Significant qualitative and quantitative radiomics features (area under the curve [AUC] between 0.62 and 0.90) were included for ML analysis. Models with best diagnostic performance on validation sets showed AUC of 0.73 (confidence interval [CI] 0.5-0.96) for differentiating RCC from benign lesions (using combination of qualitative and radiomics features); AUC of 0.77 (CI 0.62-0.92) for diagnosing ccRCC (using radiomics features), and AUC of 0.74 (CI 0.53-0.95) for diagnosing pRCC (using qualitative features). CONCLUSION ML models incorporating MRI-based radiomics features and qualitative radiologic assessment can help characterize renal masses.
Collapse
Affiliation(s)
- Daniela Said
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Universidad de los Andes, Santiago, Chile
| | - Stefanie J Hectors
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Eric Wilck
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ally Rosen
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Radiology, Long Island School of Medicine, NYU-Winthrop Hospital, Mineola, NY, USA
| | - Daniel Stocker
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute of Interventional and Diagnostic Radiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Octavia Bane
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alp Tuna Beksaç
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sara Lewis
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ketan Badani
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bachir Taouli
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
37
|
Razik A, Goyal A, Sharma R, Kandasamy D, Seth A, Das P, Ganeshan B. MR texture analysis in differentiating renal cell carcinoma from lipid-poor angiomyolipoma and oncocytoma. Br J Radiol 2020; 93:20200569. [PMID: 32667833 DOI: 10.1259/bjr.20200569] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES To assess the utility of magnetic resonance texture analysis (MRTA) in differentiating renal cell carcinoma (RCC) from lipid-poor angiomyolipoma (lpAML) and oncocytoma. METHODS After ethical approval, 42 patients with 54 masses (34 RCC, 14 lpAML and six oncocytomas) who underwent MRI on a 1.5 T scanner (Avanto, Siemens, Erlangen, Germany) between January 2011 and December 2012 were retrospectively included in the study. MRTA was performed on the TexRAD research software (Feedback Plc., Cambridge, UK) using free-hand polygonal region of interest (ROI) drawn on the maximum cross-sectional area of the tumor to generate six first-order statistical parameters. The Mann-Whitney U test was used to look for any statically significant difference. The receiver operating characteristic (ROC) curve analysis was done to select the parameter with the highest class separation capacity [area under the curve (AUC)] for each MRI sequence. RESULTS Several texture parameters on MRI showed high-class separation capacity (AUC > 0.8) in differentiating RCC from lpAML and oncocytoma. The best performing parameter in differentiating RCC from lpAML was mean of positive pixels (MPP) at SSF 2 (AUC: 0.891) on DWI b500. In differentiating RCC from oncocytoma, the best parameter was mean at SSF 0 (AUC: 0.935) on DWI b1000. CONCLUSIONS MRTA could potentially serve as a useful non-invasive tool for differentiating RCC from lpAML and oncocytoma. ADVANCES IN KNOWLEDGE There is limited literature addressing the role of MRTA in differentiating RCC from lpAML and oncocytoma. Our study demonstrated several texture parameters which were useful in this regard.
Collapse
Affiliation(s)
- Abdul Razik
- Departments of Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Ankur Goyal
- Departments of Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Raju Sharma
- Departments of Radiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | - Amlesh Seth
- Departments of Urology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Prasenjit Das
- Departments of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, University College London Hospital NHS Trust, London, United Kingdom
| |
Collapse
|
38
|
Jiang Y, Li W, Huang C, Tian C, Chen Q, Zeng X, Cao Y, Chen Y, Yang Y, Liu H, Bo Y, Luo C, Li Y, Zhang T, Wang R. Preoperative CT Radiomics Predicting the SSIGN Risk Groups in Patients With Clear Cell Renal Cell Carcinoma: Development and Multicenter Validation. Front Oncol 2020; 10:909. [PMID: 32850304 PMCID: PMC7402386 DOI: 10.3389/fonc.2020.00909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/11/2020] [Indexed: 12/15/2022] Open
Abstract
Objective: The stage, size, grade, and necrosis (SSIGN) score can facilitate the assessment of tumor aggressiveness and the personal management for patients with clear cell renal cell carcinoma (ccRCC). However, this score is only available after the postoperative pathological evaluation. The aim of this study was to develop and validate a CT radiomic signature for the preoperative prediction of SSIGN risk groups in patients with ccRCC in multicenters. Methods: In total, 330 patients with ccRCC from three centers were classified into the training, external validation 1, and external validation 2 cohorts. Through consistent analysis and the least absolute shrinkage and selection operator, a radiomic signature was developed to predict the SSIGN low-risk group (scores 0–3) and intermediate- to high-risk group (score ≥ 4). An image feature model was developed according to the independent image features, and a fusion model was constructed integrating the radiomic signature and the independent image features. Furthermore, the predictive performance of the above models for the SSIGN risk groups was evaluated with regard to their discrimination, calibration, and clinical usefulness. Results: A radiomic signature consisting of sixteen relevant features from the nephrographic phase CT images achieved a good calibration (all Hosmer–Lemeshow p > 0.05) and favorable prediction efficacy in the training cohort [area under the curve (AUC): 0.940, 95% confidence interval (CI): 0.884–0.973] and in the external validation cohorts (AUC: 0.876, 95% CI: 0.811–0.942; AUC: 0.928, 95% CI: 0.844–0.975, respectively). The radiomic signature performed better than the image feature model constructed by intra-tumoral vessels (all p < 0.05) and showed similar performance with the fusion model integrating radiomic signature and intra-tumoral vessels (all p > 0.05) in terms of the discrimination in all cohorts. Moreover, the decision curve analysis verified the clinical utility of the radiomic signature in both external cohorts. Conclusion: Radiomic signature could be used as a promising non-invasive tool to predict SSIGN risk groups and to facilitate preoperative clinical decision-making for patients with ccRCC.
Collapse
Affiliation(s)
- Yi Jiang
- Medical College, Guizhou University, Guiyang, China.,Department of Medical Records and Statistics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Wuchao Li
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou Provincial Key Laboratory of Intelligent Medical Image Analysis and Precision Diagnosis, Guizhou Provincial People's Hospital, Guiyang, China
| | - Chencui Huang
- Research Collaboration Department, R&D Center, Beijing Deepwise & League of PHD Technology Co. Ltd, Beijing, China
| | - Chong Tian
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou Provincial Key Laboratory of Intelligent Medical Image Analysis and Precision Diagnosis, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qi Chen
- Department of Medical Records and Statistics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xianchun Zeng
- Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou Provincial Key Laboratory of Intelligent Medical Image Analysis and Precision Diagnosis, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yin Cao
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yi Chen
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yintong Yang
- Department of Pathology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Heng Liu
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yonghua Bo
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chenggong Luo
- Department of Urinary Surgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yiming Li
- Research Collaboration Department, R&D Center, Beijing Deepwise & League of PHD Technology Co. Ltd, Beijing, China
| | - Tijiang Zhang
- Department of Radiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Rongping Wang
- Medical College, Guizhou University, Guiyang, China.,Department of Radiology, Guizhou Provincial People's Hospital, Guiyang, China.,Guizhou Provincial Key Laboratory of Intelligent Medical Image Analysis and Precision Diagnosis, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
39
|
Diffusion-Weighted Imaging in Oncology: An Update. Cancers (Basel) 2020; 12:cancers12061493. [PMID: 32521645 PMCID: PMC7352852 DOI: 10.3390/cancers12061493] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
To date, diffusion weighted imaging (DWI) is included in routine magnetic resonance imaging (MRI) protocols for several cancers. The real additive role of DWI lies in the "functional" information obtained by probing the free diffusivity of water molecules into intra and inter-cellular spaces that in tumors mainly depend on cellularity. Although DWI has not gained much space in some oncologic scenarios, this non-invasive tool is routinely used in clinical practice and still remains a hot research topic: it has been tested in almost all cancers to differentiate malignant from benign lesions, to distinguish different malignant histotypes or tumor grades, to predict and/or assess treatment responses, and to identify residual or recurrent tumors in follow-up examinations. In this review, we provide an up-to-date overview on the application of DWI in oncology.
Collapse
|
40
|
Thomas JV, Abou Elkassem AM, Ganeshan B, Smith AD. MR Imaging Texture Analysis in the Abdomen and Pelvis. Magn Reson Imaging Clin N Am 2020; 28:447-456. [PMID: 32624161 DOI: 10.1016/j.mric.2020.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Add "which is a" before "distribution"? Texture analysis (TA) is a form of radiomics that refers to quantitative measurements of the histogram, distribution and/or relationship of pixel intensities or gray scales within a region of interest on an image. TA can be applied to MR images of the abdomen and pelvis, with the main strength quantitative analysis of pixel intensities and heterogeneity rather than subjective/qualitative analysis. There are multiple limitations of MRTA. Despite these limitations, there is a growing body of literature supporting MRTA. This review discusses application of MRTA to the abdomen and pelvis.
Collapse
Affiliation(s)
- John V Thomas
- Body Imaging Section, Department of Radiology, University of Alabama at Birmingham, N355 Jefferson Tower, 619 19th Street South, Birmingham, AL 35249-6830, USA.
| | - Asser M Abou Elkassem
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street South, Birmingham, AL 35249-6830, USA
| | - Balaji Ganeshan
- Institute of Nuclear Medicine, University College of London, 5th Floor, Tower, 235 Euston Road, London NW1 2BU, UK
| | - Andrew D Smith
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street South, Birmingham, AL 35249-6830, USA
| |
Collapse
|
41
|
Radiomics Applications in Renal Tumor Assessment: A Comprehensive Review of the Literature. Cancers (Basel) 2020; 12:cancers12061387. [PMID: 32481542 PMCID: PMC7352711 DOI: 10.3390/cancers12061387] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/21/2022] Open
Abstract
Radiomics texture analysis offers objective image information that could otherwise not be obtained by radiologists′ subjective radiological interpretation. We investigated radiomics applications in renal tumor assessment and provide a comprehensive review. A detailed search of original articles was performed using the PubMed-MEDLINE database until 20 March 2020 to identify English literature relevant to radiomics applications in renal tumor assessment. In total, 42 articles were included in the analysis and divided into four main categories: renal mass differentiation, nuclear grade prediction, gene expression-based molecular signatures, and patient outcome prediction. The main area of research involves accurately differentiating benign and malignant renal masses, specifically between renal cell carcinoma (RCC) subtypes and from angiomyolipoma without visible fat and oncocytoma. Nuclear grade prediction may enhance proper patient selection for risk-stratified treatment. Radiomics-predicted gene mutations may serve as surrogate biomarkers for high-risk disease, while predicting patients’ responses to targeted therapies and their outcomes will help develop personalized treatment algorithms. Studies generally reported the superiority of radiomics over expert radiological interpretation. Radiomics provides an alternative to subjective image interpretation for improving renal tumor diagnostic accuracy. Further incorporation of clinical and imaging data into radiomics algorithms will augment tumor prediction accuracy and enhance individualized medicine.
Collapse
|
42
|
MRI texture features differentiate clinicopathological characteristics of cervical carcinoma. Eur Radiol 2020; 30:5384-5391. [PMID: 32382845 DOI: 10.1007/s00330-020-06913-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To evaluate MRI texture analysis in differentiating clinicopathological characteristics of cervical carcinoma (CC). METHODS Patients with newly diagnosed CC who underwent pre-treatment MRI were retrospectively reviewed. Texture analysis was performed using commercial software (TexRAD). Largest single-slice ROIs were manually drawn around the tumour on T2-weighted (T2W) images, apparent diffusion coefficient (ADC) maps and contrast-enhanced T1-weighted (T1c) images. First-order texture features were calculated and compared among histological subtypes, tumour grades, FIGO stages and nodal status using the Mann-Whitney U test. Feature selection was achieved by elastic net. Selected features from different sequences were used to build the multivariable support vector machine (SVM) models and the performances were assessed by ROC curves and AUC. RESULTS Ninety-five patients with FIGO stage IB~IVB were evaluated. A number of texture features from multiple sequences were significantly different among all the clinicopathological subgroups (p < 0.05). Texture features from different sequences were selected to build the SVM models. The AUCs of SVM models for discriminating histological subtypes, tumour grades, FIGO stages and nodal status were 0.841, 0.850, 0.898 and 0.879, respectively. CONCLUSIONS Texture features derived from multiple sequences were helpful in differentiating the clinicopathological signatures of CC. The SVM models with selected features from different sequences offered excellent diagnostic discrimination of the tumour characteristics in CC. KEY POINTS • First-order texture features are able to differentiate clinicopathological signatures of cervical carcinoma. • Combined texture features from different sequences can offer excellent diagnostic discrimination of the tumour characteristics in cervical carcinoma.
Collapse
|
43
|
Wang W, Cao K, Jin S, Zhu X, Ding J, Peng W. Differentiation of renal cell carcinoma subtypes through MRI-based radiomics analysis. Eur Radiol 2020; 30:5738-5747. [PMID: 32367419 DOI: 10.1007/s00330-020-06896-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/02/2020] [Accepted: 04/15/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To explore whether clear cell renal cell carcinoma (ccRCC), papillary renal cell carcinoma (pRCC), and chromophobe renal cell carcinoma (cRCC) can be distinguished using radiomics features extracted from magnetic resonance (MR) images. METHODS Seventy-seven patients (ccRCC = 32, pRCC = 23, cRCC = 22) underwent MRI before surgery between May 2013 and August 2018 in this retrospective study. Thirty-nine radiomics features were extracted from tumor volumes on three sequences (T2WI, EN-T1WI CMP, and EN-T1WI NP). The Kruskal-Wallis test with Bonferonni correction and variance threshold were used for feature selection among the three RCC subtypes. ROC curves for the three subtypes were generated based on radiomics features. AUC, accuracy, sensitivity, and specificity for subtype differentiation are reported. Linear discriminant analysis (LDA) was used to assess the discriminative ability of these radiomics features. RESULTS Significant radiomics features among the three subtypes were identified, and ROC curves achieved excellent AUCs for T2WI, EN-T1WI CMP, EN-T1WI NP, and combined three MR sequences (0.631, 0.790, 0.959, and 0.959 between ccRCC and cRCC; 0.688, 0.854, 0.909, and 0.955 between pRCC and cRCC; 0.747, 0.810, 0.814, and 0.890 between ccRCC and pRCC). In addition, LDA demonstrated the three RCC subtypes were correctly classified by radiomics analysis (66.2% for EN-T1WI CMP, 71.4% for EN-T1WI NP, 55.8% for T2WI, and 71.4% for the combined three MR sequences). CONCLUSIONS Radiomics analysis can be used to differentiate among ccRCC, pRCC, and cRCC based on radiomics features extracted from multiple-sequence MRI and may help diagnose and treat RCC patients in the future, while further study is still needed. KEY POINTS • Radiomics features on multiple-sequence MRI can help differentiate the three subtypes of renal cell carcinoma (clear cell, papillary renal cell, and chromophobe renal cell carcinoma). • Radiomics features based on MRI indicate greater textural heterogeneity on ccRCCs than pRCCs and cRCCs (the highest AUCs on EN-T1WI NP are 0.814 for ccRCCs vs pRCCs and 0.959 for ccRCCs vs cRCCs, respectively). • There is a significant difference in the textural heterogeneity of radiomics features between pRCCs and cRCCs (the AUC is 0.909, 0.854, and 0.688 on EN-T1WI NP, EN-T1WI CMP, and T2WI, respectively).
Collapse
Affiliation(s)
- Wei Wang
- Department of Radiology, Fudan University Shanghai Cancer Center (FUSCC), No. 270, Dongan Rd, Shanghai, 200032, People's Republic of China. .,Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dongan Rd, Shanghai, 200032, People's Republic of China.
| | - KaiMing Cao
- Department of Radiology, Shanghai East Hospital, Tongji University School of Medicine, No. 150, Jimo Rd, Shanghai, 200120, People's Republic of China
| | - ShengMing Jin
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dongan Rd, Shanghai, 200032, People's Republic of China.,Department of Urology, Fudan University Shanghai Cancer Center (FUSCC), No. 270, Dongan Rd, Shanghai, 200032, People's Republic of China
| | - XiaoLi Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dongan Rd, Shanghai, 200032, People's Republic of China.,Department of Pathology, Fudan University Shanghai Cancer Center (FUSCC), No. 270, Dongan Rd, Shanghai, 200032, People's Republic of China
| | - JianHui Ding
- Department of Radiology, Fudan University Shanghai Cancer Center (FUSCC), No. 270, Dongan Rd, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dongan Rd, Shanghai, 200032, People's Republic of China
| | - WeiJun Peng
- Department of Radiology, Fudan University Shanghai Cancer Center (FUSCC), No. 270, Dongan Rd, Shanghai, 200032, People's Republic of China.,Department of Oncology, Shanghai Medical College, Fudan University, No. 270, Dongan Rd, Shanghai, 200032, People's Republic of China
| |
Collapse
|
44
|
Krishna S, Leckie A, Kielar A, Hartman R, Khandelwal A. Imaging of Renal Cancer. Semin Ultrasound CT MR 2020; 41:152-169. [DOI: 10.1053/j.sult.2019.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|