1
|
Murakami T, Shimizu H, Nojima H, Shuto K, Usui A, Kosugi C, Koda K. Diffusion-Weighted Magnetic Resonance Imaging for the Diagnosis of Lymph Node Metastasis in Patients with Biliary Tract Cancer. Cancers (Basel) 2024; 16:3143. [PMID: 39335116 PMCID: PMC11430223 DOI: 10.3390/cancers16183143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Objective: The diagnostic efficacy of the apparent diffusion coefficient (ADC) in diffusion-weighted magnetic resonance imaging (DW-MRI) for lymph node metastasis in biliary tract cancer was investigated in the present study. Methods: In total, 112 surgically resected lymph nodes from 35 biliary tract cancer patients were examined in this study. The mean and minimum ADC values of the lymph nodes as well as the long-axis and short-axis diameters of the lymph nodes were assessed by computed tomography (CT). The relationship between these parameters and the presence of histological lymph node metastasis was evaluated. Results: Histological lymph node metastasis was detected in 31 (27.7%) out of 112 lymph nodes. Metastatic lymph nodes had a significantly larger short-axis diameter compared with non-metastatic lymph nodes (p = 0.002), but the long-axis diameter was not significantly different between metastatic and non-metastatic lymph nodes. The mean and minimum ADC values for metastatic lymph nodes were significantly reduced compared with those for non-metastatic lymph nodes (p < 0.001 for both). However, the minimum ADC value showed the highest accuracy for the diagnosis of histological lymph node metastasis, with an area under the curve of 0.877, sensitivity of 87.1%, specificity of 82.7%, and accuracy of 83.9%. Conclusions: The minimum ADC value in DW-MRI is highly effective for the diagnosis of lymph node metastasis in biliary tract cancer. Accurate preoperative diagnosis of lymph node metastasis in biliary tract cancer should enable the establishment of more appropriate treatment strategies.
Collapse
Affiliation(s)
- Takashi Murakami
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara 299-0112, Japan
| | - Hiroaki Shimizu
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara 299-0112, Japan
| | - Hiroyuki Nojima
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara 299-0112, Japan
| | - Kiyohiko Shuto
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara 299-0112, Japan
| | - Akihiro Usui
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara 299-0112, Japan
| | - Chihiro Kosugi
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara 299-0112, Japan
| | - Keiji Koda
- Department of Surgery, Teikyo University Chiba Medical Center, Ichihara 299-0112, Japan
| |
Collapse
|
2
|
Nardone V, Reginelli A, Rubini D, Gagliardi F, Del Tufo S, Belfiore MP, Boldrini L, Desideri I, Cappabianca S. Delta radiomics: an updated systematic review. LA RADIOLOGIA MEDICA 2024; 129:1197-1214. [PMID: 39017760 PMCID: PMC11322237 DOI: 10.1007/s11547-024-01853-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Radiomics can provide quantitative features from medical imaging that can be correlated with various biological features and diverse clinical endpoints. Delta radiomics, on the other hand, consists in the analysis of feature variation at different acquisition time points, usually before and after therapy. The aim of this study was to provide a systematic review of the different delta radiomics approaches. METHODS Eligible articles were searched in Embase, Pubmed, and ScienceDirect using a search string that included free text and/or Medical Subject Headings (MeSH) with 3 key search terms: 'radiomics,' 'texture,' and 'delta.' Studies were analyzed using QUADAS-2 and the RQS tool. RESULTS Forty-eight studies were finally included. The studies were divided into preclinical/methodological (5 studies, 10.4%); rectal cancer (6 studies, 12.5%); lung cancer (12 studies, 25%); sarcoma (5 studies, 10.4%); prostate cancer (3 studies, 6.3%), head and neck cancer (6 studies, 12.5%); gastrointestinal malignancies excluding rectum (7 studies, 14.6%) and other disease sites (4 studies, 8.3%). The median RQS of all studies was 25% (mean 21% ± 12%), with 13 studies (30.2%) achieving a quality score < 10% and 22 studies (51.2%) < 25%. CONCLUSIONS Delta radiomics shows potential benefit for several clinical endpoints in oncology, such asdifferential diagnosis, prognosis and prediction of treatment response, evaluation of side effects. Nevertheless, the studies included in this systematic review suffer from the bias of overall low methodological rigor, so that the conclusions are currently heterogeneous, not robust and hardly replicable. Further research with prospective and multicenter studies is needed for the clinical validation of delta radiomics approaches.
Collapse
Affiliation(s)
- Valerio Nardone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy.
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Dino Rubini
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Federico Gagliardi
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Sara Del Tufo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Isacco Desideri
- Department of Biomedical, Experimental and Clinical Sciences "M. Serio", University of Florence, Florence, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "L. Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
3
|
Wei Q, Chen L, Hou X, Lin Y, Xie R, Yu X, Zhang H, Wen Z, Wu Y, Liu X, Chen W. Multiparametric MRI-based radiomic model for predicting lymph node metastasis after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Insights Imaging 2024; 15:163. [PMID: 38922456 PMCID: PMC11208366 DOI: 10.1186/s13244-024-01726-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
OBJECTIVES To construct and validate multiparametric MR-based radiomic models based on primary tumors for predicting lymph node metastasis (LNM) following neoadjuvant chemoradiotherapy (nCRT) in locally advanced rectal cancer (LARC) patients. METHODS A total of 150 LARC patients from two independent centers were enrolled. The training cohort comprised 100 patients from center A. Fifty patients from center B were included in the external validation cohort. Radiomic features were extracted from the manually segmented volume of interests of the primary tumor before and after nCRT. Feature selection was performed using multivariate logistic regression analysis. The clinical risk factors were selected via the least absolute shrinkage and selection operator method. The radiologist's assessment of LNM was performed. Eight models were constructed using random forest classifiers, including four single-sequence models, three combined-sequence models, and a clinical model. The models' discriminative performance was assessed via receiver operating characteristic curve analysis quantified by the area under the curve (AUC). RESULTS The AUCs of the radiologist's assessment, the clinical model, and the single-sequence models ranged from 0.556 to 0.756 in the external validation cohort. Among the single-sequence models, modelpost_DWI exhibited superior predictive power, with an AUC of 0.756 in the external validation set. In combined-sequence models, modelpre_T2_DWI_post had the best diagnostic performance in predicting LNM after nCRT, with a significantly higher AUC (0.831) than those of the clinical model, modelpre_T2_DWI, and the single-sequence models (all p < 0.05). CONCLUSIONS A multiparametric model that incorporates MR radiomic features before and after nCRT is optimal for predicting LNM after nCRT in LARC. CRITICAL RELEVANCE STATEMENT This study enrolled 150 LARC patients from two independent centers and constructed multiparametric MR-based radiomic models based on primary tumors for predicting LNM following nCRT, which aims to guide therapeutic decisions and predict prognosis for LARC patients. KEY POINTS The biological characteristics of primary tumors and metastatic LNs are similar in rectal cancer. Radiomics features and clinical data before and after nCRT provide complementary tumor information. Preoperative prediction of LN status after nCRT contributes to clinical decision-making.
Collapse
Affiliation(s)
- Qiurong Wei
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Ling Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoyan Hou
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yunying Lin
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Renlong Xie
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiayu Yu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanliang Zhang
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuankui Wu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xian Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Weicui Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
4
|
Tang CT, Wu Y, Jiang L, Zeng CY, Chen YX. Radiomics analysis based on CT for predicting lymph node metastasis and prognosis in duodenal papillary carcinoma. Insights Imaging 2024; 15:155. [PMID: 38900393 PMCID: PMC11190116 DOI: 10.1186/s13244-024-01732-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
OBJECTIVES Radiomics has been demonstrated to be strongly associated with TNM stage and patient prognosis. We aimed to develop a model for predicting lymph node metastasis (LNM) and survival. METHODS For radiomics texture selection, 3D Slicer 5.0.3 software and the least absolute shrinkage and selection operator (LASSO) algorithm were used. Subsequently, the radiomics model, computed tomography (CT) image, and clinical risk model were compared. The performance of the three models was evaluated using receiver operating characteristic (ROC) curves, decision curve analysis (DCA), calibration plots, and clinical impact curves (CICs). RESULTS For the LNM prediction model, 224 patients with LNM information were used to construct a model that was applied to predict LNM. According to the CT data and clinical characteristics, we constructed a radiomics model, CT imaging model and clinical model. The radiomics model for evaluating LNM status showed excellent calibration and discrimination in the training cohort (AUC = 0.926, 95% CI = 0.869-0.982) and the validation cohort (AUC = 0.872, 95% CI = 0.802-0.941). DeLong's test demonstrated that the difference among the three models was significant. Similarly, DCA and CIC showed that the radiomics model has better clinical utility than the CT imaging model and clinical model. Our model also exhibited good performance in predicting survival-in line with the findings of the model built with clinical risk factors. CONCLUSIONS CT radiomics models exhibited better predictive performance for LNM than models built based on clinical risk characteristics and CT imaging and had comparative clinical utility for predicting patient prognosis. CRITICAL RELEVANCE STATEMENT The radiomics model showed excellent performance and discrimination for predicting LNM and survival of duodenal papillary carcinoma (DPC). KEY POINTS LNM status determines the most appropriate treatment for DPC. Our radiomics model for evaluating the LNM status of DPC performed excellently. The radiomics model had high sensitivity and specificity for predicting survival, exhibiting great clinical value.
Collapse
Affiliation(s)
- Chao-Tao Tang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yonghui Wu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Longzhou Jiang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chun-Yan Zeng
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China.
| | - You-Xiang Chen
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
- Jiangxi Clinical Research Center for Gastroenterology, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Abbaspour E, Karimzadhagh S, Monsef A, Joukar F, Mansour-Ghanaei F, Hassanipour S. Application of radiomics for preoperative prediction of lymph node metastasis in colorectal cancer: a systematic review and meta-analysis. Int J Surg 2024; 110:3795-3813. [PMID: 38935817 PMCID: PMC11175807 DOI: 10.1097/js9.0000000000001239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/19/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Colorectal cancer (CRC) stands as the third most prevalent cancer globally, projecting 3.2 million new cases and 1.6 million deaths by 2040. Accurate lymph node metastasis (LNM) detection is critical for determining optimal surgical approaches, including preoperative neoadjuvant chemoradiotherapy and surgery, which significantly influence CRC prognosis. However, conventional imaging lacks adequate precision, prompting exploration into radiomics, which addresses this shortfall by converting medical images into reproducible, quantitative data. METHODS Following PRISMA, Supplemental Digital Content 1 (http://links.lww.com/JS9/C77) and Supplemental Digital Content 2 (http://links.lww.com/JS9/C78), and AMSTAR-2 guidelines, Supplemental Digital Content 3 (http://links.lww.com/JS9/C79), we systematically searched PubMed, Web of Science, Embase, Cochrane Library, and Google Scholar databases until 11 January 2024, to evaluate radiomics models' diagnostic precision in predicting preoperative LNM in CRC patients. The quality and bias risk of the included studies were assessed using the Radiomics Quality Score (RQS) and the modified Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Subsequently, statistical analyses were conducted. RESULTS Thirty-six studies encompassing 8039 patients were included, with a significant concentration in 2022-2023 (20/36). Radiomics models predicting LNM demonstrated a pooled area under the curve (AUC) of 0.814 (95% CI: 0.78-0.85), featuring sensitivity and specificity of 0.77 (95% CI: 0.69, 0.84) and 0.73 (95% CI: 0.67, 0.78), respectively. Subgroup analyses revealed similar AUCs for CT and MRI-based models, and rectal cancer models outperformed colon and colorectal cancers. Additionally, studies utilizing cross-validation, 2D segmentation, internal validation, manual segmentation, prospective design, and single-center populations tended to have higher AUCs. However, these differences were not statistically significant. Radiologists collectively achieved a pooled AUC of 0.659 (95% CI: 0.627, 0.691), significantly differing from the performance of radiomics models (P<0.001). CONCLUSION Artificial intelligence-based radiomics shows promise in preoperative lymph node staging for CRC, exhibiting significant predictive performance. These findings support the integration of radiomics into clinical practice to enhance preoperative strategies in CRC management.
Collapse
Affiliation(s)
- Elahe Abbaspour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sahand Karimzadhagh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Abbas Monsef
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soheil Hassanipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
6
|
Ye YX, Yang L, Kang Z, Wang MQ, Xie XD, Lou KX, Bao J, Du M, Li ZX. Magnetic resonance imaging-based lymph node radiomics for predicting the metastasis of evaluable lymph nodes in rectal cancer. World J Gastrointest Oncol 2024; 16:1849-1860. [PMID: 38764830 PMCID: PMC11099437 DOI: 10.4251/wjgo.v16.i5.1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Lymph node (LN) staging in rectal cancer (RC) affects treatment decisions and patient prognosis. For radiologists, the traditional preoperative assessment of LN metastasis (LNM) using magnetic resonance imaging (MRI) poses a challenge. AIM To explore the value of a nomogram model that combines Conventional MRI and radiomics features from the LNs of RC in assessing the preoperative metastasis of evaluable LNs. METHODS In this retrospective study, 270 LNs (158 nonmetastatic, 112 metastatic) were randomly split into training (n = 189) and validation sets (n = 81). LNs were classified based on pathology-MRI matching. Conventional MRI features [size, shape, margin, T2-weighted imaging (T2WI) appearance, and CE-T1-weighted imaging (T1WI) enhancement] were evaluated. Three radiomics models used 3D features from T1WI and T2WI images. Additionally, a nomogram model combining conventional MRI and radiomics features was developed. The model used univariate analysis and multivariable logistic regression. Evaluation employed the receiver operating characteristic curve, with DeLong test for comparing diagnostic performance. Nomogram performance was assessed using calibration and decision curve analysis. RESULTS The nomogram model outperformed conventional MRI and single radiomics models in evaluating LNM. In the training set, the nomogram model achieved an area under the curve (AUC) of 0.92, which was significantly higher than the AUCs of 0.82 (P < 0.001) and 0.89 (P < 0.001) of the conventional MRI and radiomics models, respectively. In the validation set, the nomogram model achieved an AUC of 0.91, significantly surpassing 0.80 (P < 0.001) and 0.86 (P < 0.001), respectively. CONCLUSION The nomogram model showed the best performance in predicting metastasis of evaluable LNs.
Collapse
Affiliation(s)
- Yong-Xia Ye
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Liu Yang
- Department of Colorectal Surgery, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Zheng Kang
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Mei-Qin Wang
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Xiao-Dong Xie
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Ke-Xin Lou
- Department of Pathology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Jun Bao
- Colorectal Center, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Mei Du
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| | - Zhe-Xuan Li
- Department of Radiology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing 210011, Jiangsu Province, China
| |
Collapse
|
7
|
Liu J, Yu J, Wei Y, Li W, Lu J, Chen Y, Wang M. Ultrasound radiomics signature for predicting central lymph node metastasis in clinically node-negative papillary thyroid microcarcinoma. Thyroid Res 2024; 17:4. [PMID: 38369523 PMCID: PMC10875890 DOI: 10.1186/s13044-024-00191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/06/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Whether prophylactic central lymph node dissection is necessary for patients with clinically node-negative (cN0) papillary thyroid microcarcinoma (PTMC) remains controversial. Herein, we aimed to establish an ultrasound (US) radiomics (Rad) score for assessing the probability of central lymph node metastasis (CLNM) in such patients. METHODS 480 patients (327 in the training cohort, 153 in the validation cohort) who underwent thyroid surgery for cN0 PTMC at two institutions between January 2018 and December 2020 were included. Radiomics features were extracted from the US images. Least absolute shrinkage and selection operator logistic regression were utilized to generate a Rad score. A nomogram consisting of the Rad score and clinical factors was then constructed for the training cohort. Both cohorts assessed model performance using discrimination, calibration, and clinical usefulness. RESULTS Based on the six most valuable radiomics features, the Rad score was calculated for each patient. A multivariate analysis revealed that a higher Rad score (P < 0.001), younger age (P = 0.006), and presence of capsule invasion (P = 0.030) were independently associated with CLNM. A nomogram integrating these three factors demonstrated good calibration and promising clinical utility in the training and validation cohorts. The nomogram yielded areas under the curve of 0.795 (95% confidence interval [CI], 0.745-0.846) and 0.774 (95% CI, 0.696-0.852) in the training and validation cohorts, respectively. CONCLUSIONS The radiomics nomogram may be a clinically useful tool for the individual prediction of CLNM in patients with cN0 PTMC.
Collapse
Affiliation(s)
- Jie Liu
- Department of Head and Neck Thyroid Surgery, Cangzhou Hospital of Integrated TCM-WM·Hebei, No.31 Huanghe West Road, 061000, Cangzhou, Hebei Province, China.
| | - Jingchao Yu
- Department of Head and Neck Thyroid Surgery, Cangzhou Hospital of Integrated TCM-WM·Hebei, No.31 Huanghe West Road, 061000, Cangzhou, Hebei Province, China
| | - Yanan Wei
- Department of TCM Internal Medicine, Cangzhou Hospital of Integrated TCM-WM·Hebei, 061000, Cangzhou, China
| | - Wei Li
- Department of Head and Neck Thyroid Surgery, Cangzhou Hospital of Integrated TCM-WM·Hebei, No.31 Huanghe West Road, 061000, Cangzhou, Hebei Province, China
| | - Jinle Lu
- Department of Head and Neck Thyroid Surgery, Cangzhou Hospital of Integrated TCM-WM·Hebei, No.31 Huanghe West Road, 061000, Cangzhou, Hebei Province, China
| | - Yating Chen
- Department of Head and Neck Thyroid Surgery, Cangzhou Hospital of Integrated TCM-WM·Hebei, No.31 Huanghe West Road, 061000, Cangzhou, Hebei Province, China
| | - Meng Wang
- Department of Head and Neck Thyroid Surgery, Cangzhou Hospital of Integrated TCM-WM·Hebei, No.31 Huanghe West Road, 061000, Cangzhou, Hebei Province, China
| |
Collapse
|