1
|
Heider M, Nickel K, Högner M, Bassermann F. Multiple Myeloma: Molecular Pathogenesis and Disease Evolution. Oncol Res Treat 2021; 44:672-681. [PMID: 34749378 DOI: 10.1159/000520312] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/12/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Multiple myeloma is the second most common hematologic malignancy, which to date remains incurable despite advances in treatment strategies including the use of novel substances such as proteasome inhibitors, immunomodulatory drugs, and monoclonal antibodies. SUMMARY The bone marrow-based disease is preceded by the 2 sequential premalignant conditions: monoclonal gammo-pathy of undetermined significance and smoldering myeloma. Plasma cell leukemia and extramedullary disease occur, when malignant clones lose their dependency on the bone marrow. Key genetic features of these plasma cell dyscrasias include chromosomal aberrations such as translocations and hyperdiploidy, which occur during error-prone physiologic processes in B-cell development. Next-generation sequencing studies have identified mutations in major oncogenic pathways and tumor suppressors, which contribute to the pathogenesis of multiple myeloma and have revealed insights into the clonal evolution of the disease, particularly along different lines of therapy. More recently, the importance of epigenetic alterations and the role of the bone marrow microenvironment, including immune and osteogenic cells, have become evident. Key Messages: We herein review the current knowledge of the pathogenesis of multiple myeloma, which is crucial for the development of novel targeted therapeutic strategies. These can contribute to the endeavor to make multiple myeloma a curable disease.
Collapse
Affiliation(s)
- Michael Heider
- Department of Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - Katharina Nickel
- Department of Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marion Högner
- Department of Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Bassermann
- Department of Medicine III, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Krejcik J, Barnkob MB, Nyvold CG, Larsen TS, Barington T, Abildgaard N. Harnessing the Immune System to Fight Multiple Myeloma. Cancers (Basel) 2021; 13:4546. [PMID: 34572773 PMCID: PMC8467095 DOI: 10.3390/cancers13184546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous plasma cell malignancy differing substantially in clinical behavior, prognosis, and response to treatment. With the advent of novel therapies, many patients achieve long-lasting remissions, but some experience aggressive and treatment refractory relapses. So far, MM is considered incurable. Myeloma pathogenesis can broadly be explained by two interacting mechanisms, intraclonal evolution of cancer cells and development of an immunosuppressive tumor microenvironment. Failures in isotype class switching and somatic hypermutations result in the neoplastic transformation typical of MM and other B cell malignancies. Interestingly, although genetic alterations occur and evolve over time, they are also present in premalignant stages, which never progress to MM, suggesting that genetic mutations are necessary but not sufficient for myeloma transformation. Changes in composition and function of the immune cells are associated with loss of effective immune surveillance, which might represent another mechanism driving malignant transformation. During the last decade, the traditional view on myeloma treatment has changed dramatically. It is increasingly evident that treatment strategies solely based on targeting intrinsic properties of myeloma cells are insufficient. Lately, approaches that redirect the cells of the otherwise suppressed immune system to take control over myeloma have emerged. Evidence of utility of this principle was initially established by the observation of the graft-versus-myeloma effect in allogeneic stem cell-transplanted patients. A variety of new strategies to harness both innate and antigen-specific immunity against MM have recently been developed and intensively tested in clinical trials. This review aims to give readers a basic understanding of how the immune system can be engaged to treat MM, to summarize the main immunotherapeutic modalities, their current role in clinical care, and future prospects.
Collapse
Affiliation(s)
- Jakub Krejcik
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Mike Bogetofte Barnkob
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
| | - Thomas Stauffer Larsen
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Torben Barington
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Niels Abildgaard
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
3
|
Costa F, Das R, Kini Bailur J, Dhodapkar K, Dhodapkar MV. Checkpoint Inhibition in Myeloma: Opportunities and Challenges. Front Immunol 2018; 9:2204. [PMID: 30319648 PMCID: PMC6168958 DOI: 10.3389/fimmu.2018.02204] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022] Open
Abstract
Despite major improvements in the treatment landscape, most multiple myeloma (MM) patients eventually succumb to the underlying malignancy. Immunotherapy represents an attractive strategy to achieve durable remissions due to its specificity and capacity for long term memory. Activation of immune cells is controlled by a balance of agonistic and inhibitory signals via surface and intracellular receptors. Blockade of such inhibitory immune receptors (termed as "immune checkpoints") including PD-1/PD-L1 has led to impressive tumor regressions in several cancers. Preclinical studies suggest that these immune checkpoints may also play a role in regulating tumor immunity in MM. Indeed, myeloma was among the first tumors wherein therapeutic efficacy of blockade of PD-1 axis was demonstrated in preclinical models. Expression of PD-L1 on tumor and immune cells also correlates with the risk of malignant transformation. However, early clinical studies of single agent PD-1 blockade have not led to meaningful tumor regressions. Immune modulatory drugs (IMiDs) are now the mainstay of most MM therapies. Interestingly, the mechanism of immune activation by IMiDs also involves release of inhibitory checkpoints, such as Ikaros-mediated suppression of IL-2. Combination of PD-1 targeted agents with IMiDs led to promising clinical activity, including objective responses in some patients refractory to IMiD therapy. However, some of these studies were transiently halted in 2017 due to concern for a possible safety signal with IMiD-PD1 combination. The capacity of the immune system to control MM has been further reinforced by recent success of adoptive cell therapies, such as T cells redirected by chimeric-antigen receptors (CAR-Ts). There remains an unmet need to better understand the immunologic effects of checkpoint blockade, delineate mechanisms of resistance to these therapies and identify optimal combination of agonistic signaling, checkpoint inhibitors as well as other therapies including CAR-Ts, to realize the potential of the immune system to control and prevent MM.
Collapse
Affiliation(s)
- Federica Costa
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Rituparna Das
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | | | - Kavita Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | | |
Collapse
|
4
|
Abstract
An important role of the immune system is in the surveillance for abnormal or transformed cells, which is known as cancer immunosurveillance. Through this process, the first changes to normal tissue homeostasis caused by infectious or other inflammatory insults can be detected by the immune system through the recognition of antigenic molecules (including tumour antigens) expressed by abnormal cells. However, as they develop, tumour cells can acquire antigenic and other changes that allow them to escape elimination by the immune system. To bias this process towards elimination, immunosurveillance can be improved by the administration of vaccines based on tumour antigens. Therapeutic cancer vaccines have been extensively tested in patients with advanced cancer but have had little clinical success, which has been attributed to the immunosuppressive tumour microenvironment. Thus, the administration of preventive vaccines at pre-malignant stages of the disease holds promise, as they function before tumour-associated immune suppression is established. Accordingly, immunological and clinical studies are yielding impressive results.
Collapse
|
5
|
Dhodapkar MV, Borrello I, Cohen AD, Stadtmauer EA. Hematologic Malignancies: Plasma Cell Disorders. Am Soc Clin Oncol Educ Book 2017; 37:561-568. [PMID: 28561703 DOI: 10.1200/edbk_175546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by the growth of tumor cells in the bone marrow. Properties of the tumor microenvironment provide both potential tumor-promoting and tumor-restricting properties. Targeting underlying immune triggers for evolution of tumors as well as direct attack of malignant plasma cells is an emerging focus of therapy for MM. The monoclonal antibodies daratumumab and elotuzumab, which target the plasma cell surface proteins CD38 and SLAMF7/CS1, respectively, particularly when used in combination with immunomodulatory agents and proteasome inhibitors, have resulted in high response rates and improved survival for patients with relapsed and refractory MM. A number of other monoclonal antibodies are in various stages of clinical development, including those targeting MM cell surface antigens, the bone marrow microenvironment, and immune effector T cells such as antiprogrammed cell death protein 1 antibodies. Bispecific preparations seek to simultaneously target MM cells and activate endogenous T cells to enhance efficacy. Cellular immunotherapy seeks to overcome the limitations of the endogenous antimyeloma immune response through adoptive transfer of immune effector cells with MM specificity. Allogeneic donor lymphocyte infusion can be effective but can cause graft-versus-host disease. The most promising approach appears to be genetically modified cellular therapy, in which T cells are given novel antigen specificity through expression of transgenic T-cell receptors (TCRs) or chimeric antigen receptors (CARs). CAR T cells against several different targets are under investigation in MM. Infusion of CD19-targeted CAR T cells following salvage autologous stem cell transplantation (SCT) was safe and extended remission duration in a subset of patients with relapsed/refractory MM. CAR T cells targeting B-cell maturation antigen (BCMA) appear most promising, with dramatic remissions seen in patients with highly refractory disease in three ongoing trials. Responses are associated with degree of CAR T-cell expansion/persistence and often toxicity, including cytokine release syndrome (CRS) and neurotoxicity. Ongoing and future studies are exploring correlates of response, ways to mitigate toxicity, and "universal" CAR T cells.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- From Yale University, New Haven, CT; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Ivan Borrello
- From Yale University, New Haven, CT; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Adam D Cohen
- From Yale University, New Haven, CT; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| | - Edward A Stadtmauer
- From Yale University, New Haven, CT; The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
6
|
MGUS to myeloma: a mysterious gammopathy of underexplored significance. Blood 2016; 128:2599-2606. [PMID: 27737890 DOI: 10.1182/blood-2016-09-692954] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 10/04/2016] [Indexed: 12/13/2022] Open
Abstract
All cases of multiple myeloma (MM) are preceded by precursor states termed monoclonal gammopathy of undetermined significance (MGUS) or smoldering myeloma (SMM). Genetic analyses of MGUS cells have provided evidence that it is a genetically advanced lesion, wherein tumor cells carry many of the genetic changes found in MM cells. Intraclonal heterogeneity is also established early during the MGUS phase. Although the genetic features of MGUS or SMM cells at baseline may predict disease risk, transition to MM involves altered growth of preexisting clones. Recent advances in mouse modeling of MGUS suggest that the clinical dormancy of the clone may be regulated in part by growth controls extrinsic to the tumor cells. Interactions of MGUS cells with immune cells, bone cells, and others in the bone marrow niche may be key regulators of malignant transformation. These interactions involve a bidirectional crosstalk leading to both growth-supporting and inhibitory signals. Because MGUS is already a genetically complex lesion, application of new tools for earlier detection should allow delineation of earlier stages, which we term as pre-MGUS Analyses of populations at increased risk of MGUS also suggest the possible existence of a polyclonal phase preceding the development of MGUS. Monoclonal gammopathy in several patients may have potential clinical significance in spite of low risk of malignancy. Understanding the entire spectrum of these disorders may have broader implications beyond prevention of clinical malignancy.
Collapse
|
7
|
Finn OJ, Khleif SN, Herberman RB. The FDA guidance on therapeutic cancer vaccines: the need for revision to include preventive cancer vaccines or for a new guidance dedicated to them. Cancer Prev Res (Phila) 2015; 8:1011-6. [PMID: 26353948 DOI: 10.1158/1940-6207.capr-15-0234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022]
Abstract
Cancer vaccines based on antigens derived from self molecules rather than pathogens have been under basic and clinical investigations for many years. Up until very recently, they had been tested primarily in the setting of metastatic disease with the goal to engage the immune system in slowing down disease progression. Many therapeutic vaccine trials, either investigator initiated or led by pharmaceutical companies, have been completed and many are currently ongoing, following the FDA Guidance on therapeutic cancer vaccines published in 2011. In recent years, the target of cancer vaccines is being shifted to early cancer and even premalignant disease with the goal of preventing cancer. Although some issues addressed in the FDA Guidance on therapeutic vaccines apply to preventive vaccines, many do not. Here, we discuss a set of recommendations for revising the current Guidance to also cover preventive vaccines, or to include in a new Guidance dedicated specifically to vaccines for cancer prevention.
Collapse
Affiliation(s)
- Olivera J Finn
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Samir N Khleif
- GRU Cancer Center, Georgia Regent University, Augusta, Georgia
| | | |
Collapse
|
8
|
Thakur A, Norkina O, Lum LG. In vitro synthesis of primary specific anti-breast cancer antibodies by normal human peripheral blood mononuclear cells. Cancer Immunol Immunother 2011; 60:1707-20. [PMID: 21713642 PMCID: PMC3792712 DOI: 10.1007/s00262-011-1056-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/27/2011] [Indexed: 11/30/2022]
Abstract
In this study, we developed a unique in vitro model to mimic the endogenous tumor microenvironment to understand the effect of immunotherapy with activated T-cells (ATC) armed with anti-CD3 × anti-Her2 bispecific antibody (aATC) on antibody response by naive immune cells. This model contained a co-culture of naïve peripheral blood mononuclear cells (PBMC), breast cancer cells (SK-BR-3), ATC or aATC and CpG ODNs. Culture supernatants were tested at various time points for anti-SK-BR-3 antibodies by ELISA, Western blot and flow cytometry. PBMC cocultured with non-irradiated aATC or irradiated (*) aATC showed significant increases in anti-tumor antibody production at day 14 (P < 0.0001) in the presence of CpG-ODN compared to unstimulated PBMC cultures (n = 9). Antibody specificity was confirmed by ELISA, Western blot and flow cytometry. Co-cultures containing *aATC and CpG showed significantly enhanced levels of IgG(2) (P < 0.001) and cytokines that promote IgG(2) synthesis including IL-13 (P < 0.02), IFNγ (P < 0.01) and GM-CSF (P < 0.05) compared to unstimulated PBMC control (n = 3). We show that aATC targeting and lysis of tumor cells induces an anti-tumor antibody response in our in vitro model. This model provides a unique opportunity to evaluate the interactions of T-cells, B-cells, and antigen-presenting cells leading to specific anti-tumor antibody responses.
Collapse
Affiliation(s)
- Archana Thakur
- Departments of Oncology, Medicine, Immunology and Microbiology, Wayne State University School of Medicine, 731 Hudson Webber Cancer Research Center, 4100 John R., Detroit, MI 48201, USA.
| | | | | |
Collapse
|
9
|
Rozková D, Tiserová H, Fucíková J, Last'ovicka J, Podrazil M, Ulcová H, Budínský V, Prausová J, Linke Z, Minárik I, Sedivá A, Spísek R, Bartůnková J. FOCUS on FOCIS: combined chemo-immunotherapy for the treatment of hormone-refractory metastatic prostate cancer. Clin Immunol 2009; 131:1-10. [PMID: 19201656 DOI: 10.1016/j.clim.2009.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 01/05/2009] [Indexed: 01/21/2023]
Abstract
Immunotherapy has emerged as another treatment modality in cancer. The goal of immunotherapy in advanced cancer patients does not have to be the complete eradication of tumor cells but rather the restoration of a dynamic balance between tumor cells and the immune response. Appropriate combination of tumor mass reduction (by surgery and/or chemotherapy) and neutralization of tumor-induced immunosuppression might set the right conditions for the induction of anti-tumor immune response by active immunotherapy. We review experimental basis and key concepts of combined chemo-immunotherapy and document its principles in the case report of patient with hormone refractory metastatic prostate cancer with sinister prognosis. More than four hundred prostate cancer patients have been treated with DC-based immunotherapy and tumor-specific immune responses have been reported in two-thirds of them. In half of these patients, DC immunotherapy resulted in transient clinical responses. Tregs, among other factors, potently inhibit tumor-specific T cells. Prostate cancer patients have elevated numbers of circulating and tumor infiltrating Tregs and there is evidence that Tregs increase tumor growth in vivo. Because of the high frequency of circulating Tregs in our patients, we first administered metronomic cyclophosphamide. After obtaining IRB approval, we started regular vaccinations with dendritic cells (DCs) loaded with killed prostate cancer cells. In accordance with the principles of combined immunotherapy, we continued palliative chemotherapy with docetaxel to reduce the tumor cell burden. DC-based vaccination induced prostate cancer cell-specific immune response. Combined chemo-immunotherapy consisting of alternate courses of chemotherapy and vaccination with mature DCs pulsed with LNCap prostate cancer cell line led to the marked improvement in the clinical and laboratory presentation and to the decrease of PSA levels by more than 90%.
Collapse
Affiliation(s)
- Daniela Rozková
- Institute of Immunology, Charles University, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Inflammation-associated lysophospholipids as ligands for CD1d-restricted T cells in human cancer. Blood 2008; 112:1308-16. [PMID: 18535199 DOI: 10.1182/blood-2008-04-149831] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CD1d-restricted T cells have been implicated in the pathogenesis of several chronic inflammatory states. However, the nature of the specific ligands recognized by these cells in vivo in patients with inflammatory or malignant diseases remains unknown. We took a biochemical approach to directly isolate and characterize the nature of CD1d-binding ligands from the plasma of myeloma patients. Characterization of these ligands revealed several lysophosphatidylcholine (LPC) species. Human LPC-CD1d dimer binding cells are T-cell receptoralphabeta(+) T cells but predominantly Valpha24(-)Vbeta11(-). Cytokine secretion by LPC-specific T cells is skewed toward IL-13 secretion, and the frequencies of these cells are increased in myeloma patients relative to healthy donors. These data identify a distinct population of human CD1d-restricted T cells specific for inflammation-associated lysolipids and suggest a novel mechanism for inflammation mediated immune regulation in human cancer.
Collapse
|
11
|
Phase I Study and Preliminary Pharmacology of the Novel Innate Immune Modulator rBBX-01 in Gynecologic Cancers. Clin Cancer Res 2008; 14:3089-97. [DOI: 10.1158/1078-0432.ccr-07-4250] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
In-vivo detectable antibodies directed against the oncofetal antigen/immature laminin receptor can recognize and control myeloma cells—clinical implications. Leukemia 2008; 22:2115-8. [DOI: 10.1038/leu.2008.92] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Spisek R, Kukreja A, Chen LC, Matthews P, Mazumder A, Vesole D, Jagannath S, Zebroski HA, Simpson AJG, Ritter G, Durie B, Crowley J, Shaughnessy JD, Scanlan MJ, Gure AO, Barlogie B, Dhodapkar MV. Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. ACTA ACUST UNITED AC 2007; 204:831-40. [PMID: 17389240 PMCID: PMC2118551 DOI: 10.1084/jem.20062387] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specific targets of cellular immunity in human premalignancy are largely unknown. Monoclonal gammopathy of undetermined significance (MGUS) represents a precursor lesion to myeloma (MM). We show that antigenic targets of spontaneous immunity in MGUS differ from MM. MGUS patients frequently mount a humoral and cellular immune response against SOX2, a gene critical for self-renewal in embryonal stem cells. Intranuclear expression of SOX2 marks the clonogenic CD138− compartment in MGUS. SOX2 expression is also detected in a proportion of CD138+ cells in MM patients. However, these patients lack anti-SOX2 immunity. Cellular immunity to SOX2 inhibits the clonogenic growth of MGUS cells in vitro. Detection of anti-SOX2 T cells predicts favorable clinical outcome in patients with asymptomatic plasmaproliferative disorders. Harnessing immunity to antigens expressed by tumor progenitor cells may be critical for prevention and therapy of human cancer.
Collapse
Affiliation(s)
- Radek Spisek
- Laboratory of Tumor Immunology and Immunotherapy, The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
This article discusses the current understanding of the interactions between tumors and cells of the immune system, particularly at the early stages of carcinogenesis. A growing body of data suggests that these interactions help shape the eventual development of tumors. Inflammation is a common feature of several cancers, and the immune system can serve as a two-edged sword against cancer, capable of supporting and suppressing cancer. Data from human studies show that the immune system is capable of detecting the smallest expansions of transformed cells, well before the development of clinical cancer. These advances suggest a need to change the current emphasis for harnessing antitumor immunity from therapy to prevention of cancers.
Collapse
Affiliation(s)
- Radek Spisek
- Laboratory of Tumor Immunology and Immunotherapy, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
15
|
Schreiber K, Rowley DA, Riethmüller G, Schreiber H. Cancer immunotherapy and preclinical studies: why we are not wasting our time with animal experiments. Hematol Oncol Clin North Am 2006; 20:567-84. [PMID: 16762725 DOI: 10.1016/j.hoc.2006.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Experimental research on the immune response to transplanted tumors has led to pioneering discoveries that laid many of the foundations for the current field of immunology. Experimental research in oncology has proven that murine and human tumors have antigens that are truly cancer specific. This article discusses research investigating how can antigens on cancer cells be used to help eradicate cancer.
Collapse
Affiliation(s)
- Karin Schreiber
- Department of Pathology, The University of Chicago, IL 60637, USA.
| | | | | | | |
Collapse
|
16
|
Garbe AI, Vermeer B, Gamrekelashvili J, von Wasielewski R, Greten FR, Westendorf AM, Buer J, Schmid RM, Manns MP, Korangy F, Greten TF. Genetically induced pancreatic adenocarcinoma is highly immunogenic and causes spontaneous tumor-specific immune responses. Cancer Res 2006; 66:508-16. [PMID: 16397267 DOI: 10.1158/0008-5472.can-05-2383] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Treatment options for pancreatic cancer are limited and often ineffective. Immunotherapeutic approaches are one possible option that needs to be evaluated in appropriate animal models. The aim of the present study was to analyze tumor-specific immune responses in a mouse model of pancreatic cancer, which mimics the human disease closely. C57BL/6 EL-TGF-alpha x Trp53-/- mice, which develop spontaneous ductal pancreatic carcinoma, were generated. EL-TGF-alpha x Trp53-/- mice developed spontaneous pancreatic tumors with pathomorphologic features close to the human disease. Tumor-specific CD8+ T-cell responses and IgG responses were analyzed in EL-TGF-alpha x Trp53-/- mice during tumor development and compared with mice with s.c. growing pancreatic tumors. In contrast to spontaneous pancreatic tumors, cell lines generated from these tumors were rejected after s.c. injection into wild-type mice but not in nude or RAG knockout mice. Direct comparison of spontaneous and s.c. injected tumors revealed an impaired infiltration of CD8+ T cells in spontaneous pancreatic tumors, which was also evident after adoptive transfer of tumor-specific T cells. Intratumoral cytokine secretion of tumor necrosis factor-alpha, IFN-gamma, IL-6, and MCP-1 was lower in spontaneous tumors as well as the number of adoptively transferred tumor-specific T cells. Our data provide clear evidence for tumor-specific immune responses in a genetic mouse model for pancreatic carcinoma. Comparative analysis of s.c. injected tumors and spontaneous tumors showed significant differences in tumor-specific immune responses, which will help in improving current immune-based cancer therapies against adenocarcinoma of the pancreas.
Collapse
Affiliation(s)
- Annette I Garbe
- Department of Gastroenterology, Hepatology, and Endocrinology, Medizinische Hochschule Hannover, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|