1
|
Qiao DR, Shan GY, Wang S, Cheng JY, Yan WQ, Li HJ. The mononuclear phagocyte system in hepatocellular carcinoma. World J Gastroenterol 2022; 28:6345-6355. [PMID: 36533105 PMCID: PMC9753057 DOI: 10.3748/wjg.v28.i45.6345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/10/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
The mononuclear phagocyte system (MPS) consists of monocytes, dendritic cells and macrophages, which play vital roles in innate immune defense against cancer. Hepatocellular carcinoma (HCC) is a complex disease that is affected or initiated by many factors, including chronic hepatitis B virus infection, hepatitis C virus infection, metabolic disorders or alcohol consumption. Liver function, tumor stage and the performance status of patients affect HCC clinical outcomes. Studies have shown that targeted treatment of tumor microenvironment disorders may improve the efficacy of HCC treatments. Cytokines derived from the innate immune response can regulate T-cell differentiation, thereby shaping adaptive immunity, which is associated with the prognosis of HCC. Therefore, it is important to elucidate the function of the MPS in the progression of HCC. In this review, we outline the impact of HCC on the MPS. We illustrate how HCC reshapes MPS cell phenotype remodeling and the production of associated cytokines and characterize the function and impairment of the MPS in HCC.
Collapse
Affiliation(s)
- Duan-Rui Qiao
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Guan-Yue Shan
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Shuai Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
- Department of Students Affairs, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Jun-Ya Cheng
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| | - Wei-Qun Yan
- Department of Bioengineering, Pharmacy School of Jilin University, Changchun 130021, Jilin Province, China
| | - Hai-Jun Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
- Institute of Liver Diseases, The First Hospital of Jilin University, Changchun 130061, Jilin Province, China
| |
Collapse
|
2
|
Hussein YM, Hendawy DM, Alghamdy AN, Raafat N. Phenotypic and genetic evaluation of human monocyte-derived dendritic cells generated from whole blood for immunotherapy. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Dendritic cells (DCs) recognize different pathogens and cancer cells and activate the adaptive immune response. The generation of effective DC-based cancer vaccines depends on the appropriate differentiation of monocytes in vitro. This study aimed to standardize a protocol for the in vitro differentiation of human peripheral blood monocytes into immature DCs upon treatment with growth factors and generate monocyte-derived DCs (MoDCs). Peripheral blood mononuclear cells were separated from peripheral blood. After monocyte enrichment by plastic adhesion, monocytes were cultured for 6 days in the presence of granulocyte-macrophage colony-stimulating factor and interleukin-4 to generate immature DCs. The cells were examined by microscopy. Using flow cytometry, DCs were evaluated for the expression of the CD83 and HLA-DR surface antigens, for the uptake of fluorescein isothiocyanate conjugated dextran, and also for the expression of CD80 and CD86 mRNA.
Results
CD80 and CD86 genes expression was upregulated at day six and exhibited a significant difference (P < 0.05). DCs showed positive expression of the CD83 and HLA-DR surface antigens by flow cytometry and FITC-conjugated dextran uptake.
Conclusion
This study represents a preliminary trial to generate immature MoDCs in vitro from blood monocytes collected by the flask adherence method. It offers a panel of surface markers for DCs characterization and provides Immature DCs for experimental procedures after 6 incubation days.
Collapse
|
3
|
Saeed M, Faisal SM, Akhtar F, Ahmad S, Alreshidi MM, Kausar MA, Kazmi S, Saeed A, Adnan M, Ashraf GM. Human Papillomavirus Induced Cervical and Oropharyngeal Cancers: From Mechanisms to Potential Immuno-therapeutic Strategies. Curr Drug Metab 2020; 21:167-177. [DOI: 10.2174/1389200221666200421121228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/04/2019] [Accepted: 01/30/2020] [Indexed: 01/09/2023]
Abstract
The human papillomavirus (HPV) associated infections are the hallmark of cervical and neck cancer.
Almost all the cases of cervical cancer (CC) and 70% of oropharyngeal cancer (OC) are, more or less, caused by the
persistent infection of HPV. CC is the fourth most common cancer globally, and is commenced by the persistent
infection with human papillomaviruses (HPVs), predominantly HPV types; 16 and 18. In the light of the above facts,
there is an immediate requirement to develop novel preventive and innovative therapeutic strategies that may help in
lower occurrences of HPV mediated cancers. Currently, only radiation and chemical-based therapies are the treatment
for HPV mediated neck cancer (NC) and CC. Recent advances in the field of immunotherapy are underway,
which are expected to unravel the optimal treatment strategies for the growing HPV mediated cancers. In this review,
we decipher the mechanism of pathogenesis with current immunotherapeutic advances in regressing the NC and CC,
with an emphasis on immune-therapeutic strategies being tested in clinical trials and predominantly focus on defining
the efficacy and limitations. Taken together, these immunological advances have enhanced the effectiveness of immunotherapy
and promises better treatment results in coming future.
Collapse
Affiliation(s)
- Mohd. Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Syed Mohd Faisal
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Firoz Akhtar
- Department of Pharmacology and Toxicology, Higuchi Biosciences Center, University of Kansas, Lawrence, KS 2099, United States
| | - Saheem Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Mousa M. Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Mohd. Adnan Kausar
- Department of Biochemistry, College of Medicine University of Hail, Hail, Saudi Arabia
| | - Shadab Kazmi
- Molecular Immunology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Amir Saeed
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Mohd. Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Shinde P, Melinkeri S, Santra MK, Kale V, Limaye L. Autologous Hematopoietic Stem Cells Are a Preferred Source to Generate Dendritic Cells for Immunotherapy in Multiple Myeloma Patients. Front Immunol 2019; 10:1079. [PMID: 31164886 PMCID: PMC6536579 DOI: 10.3389/fimmu.2019.01079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
In multiple myeloma (MM), dendritic cells (DCs), and their precursors are prone to malignant cell-mediated regulation of function leading to low efficacy of DC vaccine. DCs taken directly from MM patient's body or derived from monocytes are fewer in numbers and are also dysfunctional. Here, we investigated the functionality of Hematopoietic stem cell-derived DCs (SC-DCs) from MM patients. Mature-MM-SC-DCs showed all essential functions like antigen uptake, allogenic T cells simulation and migration comparable to those derived from healthy donor (HD) samples. A comparison of Mo-DCs and SC-DCs obtained from the same MM patients' samples revealed that the expression of IL-6 was higher in the precursors of Mo-DCs leading to their impaired migration. In addition, expression of CCR7 which is responsible for DCs migration was found to be lower in MM-Mo-DCs. The chromatin permissiveness as observed by H3K4me3 histone modification at the Ccr7 promoter in MM-Mo-DCs was significantly lower than those in MM-SC-DCs. Levels of Zbtb46- a hall mark DC transcription factor mRNA was also found to be reduced in MM-Mo-DCs. Cytotoxic T cells generated from MM-SC-DCs from autologous naïve T cells exhibited reduced antitumor activity because the T cells were exhausted. Blocking of CTLA-4 on autologous T cells could partially restore T cell proliferation and activation. Thus, a combination of MM-SC-DC vaccine and anti-CTLA-4 antibody may serve as a better candidate for immunotherapy of MM. This study has implications in increasing the efficacy of cancer immunotherapy in MM.
Collapse
Affiliation(s)
- Prajakta Shinde
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Sameer Melinkeri
- Blood and Marrow Transplant Unit, Deenanath Mangeshkar Hospital, Pune, India
| | - Manas Kumar Santra
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Vaijayanti Kale
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| | - Lalita Limaye
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, India
| |
Collapse
|
5
|
Choi YJ, Park SJ, Park YS, Park HS, Yang KM, Heo K. EpCAM peptide-primed dendritic cell vaccination confers significant anti-tumor immunity in hepatocellular carcinoma cells. PLoS One 2018; 13:e0190638. [PMID: 29298343 PMCID: PMC5752035 DOI: 10.1371/journal.pone.0190638] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Cancer stem-like cells (CSCs) may play a key role in tumor initiation, self-renewal, differentiation, and resistance to current treatments. Dendritic cells (DCs) play a vital role in host immune reactions as well as antigen presentation. In this study, we explored the suitability of using CSC peptides as antigen sources for DC vaccination against human breast cancer and hepatocellular carcinoma (HCC) with the aim of achieving CSC targeting and enhancing anti-tumor immunity. CD44 is used as a CSC marker for breast cancer and EpCAM is used as a CSC marker for HCC. We selected CD44 and EpCAM peptides that bind to HLA-A2 molecules on the basis of their binding affinity, as determined by a peptide-T2 binding assay. Our data showed that CSCs express high levels of tumor-associated antigens (TAAs) as well as major histocompatibility complex (MHC) molecules. Pulsing DCs with CD44 and EpCAM peptides resulted in the efficient generation of mature DCs (mDCs), thus enhancing T cell stimulation and generating potent cytotoxic T lymphocytes (CTLs). The activation of CSC peptide-specific immune responses by the DC vaccine in combination with standard chemotherapy may provide better clinical outcomes in advanced carcinomas.
Collapse
Affiliation(s)
- Yoo Jin Choi
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Seong-Joon Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - You-Soo Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Hee Sung Park
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
| | - Kwang Mo Yang
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
- Department of Radiation Oncology, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
- Department of Radiation Oncology, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
- * E-mail: (KH); (KMY)
| | - Kyu Heo
- Research Center, Dongnam Institute of Radiological & Medical Sciences, Busan, Republic of Korea
- * E-mail: (KH); (KMY)
| |
Collapse
|
6
|
Liu Y, Chen C. Role of nanotechnology in HIV/AIDS vaccine development. Adv Drug Deliv Rev 2016; 103:76-89. [PMID: 26952542 DOI: 10.1016/j.addr.2016.02.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/25/2022]
Abstract
HIV/AIDS is one of the worst crises affecting global health and influencing economic development and social stability. Preventing and treating HIV infection is a crucial task. However, there is still no effective HIV vaccine for clinical application. Nanotechnology has the potential to solve the problems associated with traditional HIV vaccines. At present, various nano-architectures and nanomaterials can function as potential HIV vaccine carriers or adjuvants, including inorganic nanomaterials, liposomes, micelles and polymer nanomaterials. In this review, we summarize the current progress in the use of nanotechnology for the development of an HIV/AIDS vaccine and discuss its potential to greatly improve the solubility, permeability, stability and pharmacokinetics of HIV vaccines. Although nanotechnology holds great promise for applications in HIV/AIDS vaccines, there are still many inadequacies that result in a variety of risks and challenges. The potential hazards to the human body and environment associated with some nano-carriers, and their underlying mechanisms require in-depth study. Non-toxic or low-toxic nanomaterials with adjuvant activity have been identified. However, studying the confluence of factors that affect the adjuvant activity of nanomaterials may be more important for the optimization of the dosage and immunization strategy and investigations into the exact mechanism of action. Moreover, there are no uniform standards for investigations of nanomaterials as potential vaccine adjuvants. These limitations make it harder to analyze and deduce rules from the existing data. Developing vaccine nano-carriers or adjuvants with high benefit-cost ratios is important to ensure their broad usage. Despite some shortcomings, nanomaterials have great potential and application prospects in the fields of AIDS treatment and prevention.
Collapse
Affiliation(s)
- Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China; CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
7
|
Differential expression and clinical relevance of MUC1 in renal cell carcinoma metastasis. World J Urol 2016; 34:1635-1641. [PMID: 26995391 DOI: 10.1007/s00345-016-1804-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/05/2016] [Indexed: 02/06/2023] Open
Abstract
PURPOSE To determine the differential expression patterns and prognostic relevance of Mucin-1 (MUC1) expression in clear cell renal cell carcinoma (RCC) metastasis. METHODS Tissue microarrays (TMA) from samples of 151 RCC metastases, 61 primary RCCs and corresponding benign renal tissues were immunohistochemically stained for MUC1 and semi-quantitatively evaluated by immunoreactivity scores (IRS). MUC1 differential expression in metastasis, primary RCC and normal tissue were comparatively analyzed. Patient characteristics and clinical follow-up for patients with metastatic RCC (mRCC) were recorded. Correlations of MUC1 expression with mRCC survival were determined. RESULTS Median cytoplasmic expression was highest in benign tissue (IRS = 1.04). Primary RCC (0.50) and metastasis (0.12) showed significantly lower cytoplasmic staining intensity. Membranous expression in benign tissue was, however, significantly lower (0.21) compared with primary RCC (0.59) and metastasis (0.57). Notable differences of MUC1 cytoplasmic and membranous expression were observed between different metastasis sites. Significantly higher (P = 0.014) membranous expression was observed in pulmonary versus non-pulmonary lesions, while no significant differences of cytoplasmic MUC1 expression were observed. The prognostic relevance of MUC1 expression in metastatic RCC was limited. CONCLUSIONS MUC1 is differentially expressed in benign renal tissue, primary RCC and RCC metastasis. Membranous MUC1 expression was significantly elevated in pulmonary metastases compared to non-pulmonary lesions, which may reflect individual biology and putative response to MUC1-based anti-cancer therapy.
Collapse
|
8
|
Exploring the role and diversity of mucins in health and disease with special insight into non-communicable diseases. Glycoconj J 2015; 32:575-613. [PMID: 26239922 DOI: 10.1007/s10719-015-9606-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 06/18/2015] [Indexed: 12/11/2022]
Abstract
Mucins are major glycoprotein components of the mucus that coats the surfaces of cells lining the respiratory, digestive, gastrointestinal and urogenital tracts. They function to protect epithelial cells from infection, dehydration and physical or chemical injury, as well as to aid the passage of materials through a tract i.e., lubrication. They are also implicated in the pathogenesis of benign and malignant diseases of secretory epithelial cells. In Human there are two types of mucins, membrane-bound and secreted that are originated from mucous producing goblet cells localized in the epithelial cell layer or in mucous producing glands and encoded by MUC gene. Mucins belong to a heterogeneous family of high molecular weight proteins composed of a long peptidic chain with a large number of tandem repeats that form the so-called mucin domain. The molecular weight is generally high, ranging between 0.2 and 10 million Dalton and all mucins contain one or more domains which are highly glycosylated. The size and number of repeats vary between mucins and the genetic polymorphism represents number of repeats (VNTR polymorphisms), which means the size of individual mucins can differ substantially between individuals which can be used as markers. In human it is only MUC1 and MUC7 that have mucin domains with less than 40% serine and threonine which in turn could reduce number of PTS domains. Mucins can be considered as powerful two-edged sword, as its normal function protects from unwanted substances and organisms at an arm's length while, malfunction of mucus may be an important factor in human diseases. In this review we have unearthed the current status of different mucin proteins in understanding its role and function in various non-communicable diseases in human with special reference to its organ specific locations. The findings described in this review may be of direct relevance to the major research area in biomedicine with reference to mucin and mucin associated diseases.
Collapse
|
9
|
Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2014; 1:1111-1134. [PMID: 23170259 PMCID: PMC3494625 DOI: 10.4161/onci.21494] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) occupy a central position in the immune system, orchestrating a wide repertoire of responses that span from the development of self-tolerance to the elicitation of potent cellular and humoral immunity. Accordingly, DCs are involved in the etiology of conditions as diverse as infectious diseases, allergic and autoimmune disorders, graft rejection and cancer. During the last decade, several methods have been developed to load DCs with tumor-associated antigens, ex vivo or in vivo, in the attempt to use them as therapeutic anticancer vaccines that would elicit clinically relevant immune responses. While this has not always been the case, several clinical studies have demonstrated that DC-based anticancer vaccines are capable of activating tumor-specific immune responses that increase overall survival, at least in a subset of patients. In 2010, this branch of clinical research has culminated with the approval by FDA of a DC-based therapeutic vaccine (sipuleucel-T, Provenge®) for use in patients with asymptomatic or minimally symptomatic metastatic hormone-refractory prostate cancer. Intense research efforts are currently dedicated to the identification of the immunological features of patients that best respond to DC-based anticancer vaccines. This knowledge may indeed lead to personalized combination strategies that would extend the benefit of DC-based immunotherapy to a larger patient population. In addition, widespread enthusiasm has been generated by the results of the first clinical trials based on in vivo DC targeting, an approach that holds great promises for the future of DC-based immunotherapy. In this Trial Watch, we will summarize the results of recently completed clinical trials and discuss the progress of ongoing studies that have evaluated/are evaluating DC-based interventions for cancer therapy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Université Paris Descartes/Paris V; Sorbonne Paris Cité; Paris, France ; Institut Gustave Roussy; Villejuif, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang X, Zhang FC, Zhao HY, Lu XL, Sun Y, Xiong ZY, Jiang XB. Human IP10-scFv and DC-induced CTL synergistically inhibit the growth of glioma in a xenograft model. Tumour Biol 2014; 35:7781-91. [PMID: 24816916 PMCID: PMC4158415 DOI: 10.1007/s13277-014-1867-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Accepted: 03/18/2014] [Indexed: 12/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) mutant of EGFRvIII is highly expressed in glioma cells, and the EGFRvIII-specific dendritic cell (DC)-induced tumor antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) may hold promise in cancer immunotherapy. Interferon (IFN)-γ-inducible protein (IP)-10 (IP-10) is a potent inhibitor of angiogenesis and can recruit CXCR3(+) T cells, including CD8(+) T cells, which are important for the control of tumor growth. In this study, we assessed if the combination of IP10-EGFRvIIIscFv with DC-induced CTLs would improve the therapeutic antitumor efficacy. IP10-scFv was generated by linking the human IP-10 gene with the DNA fragment for anti-EGFRvIIIscFv with a (Gly4Ser)3 flexible linker, purified by affinity chromatography, and characterized for its anti-EGFRvIII immunoreactivity and chemotactic activity. DCs were isolated from human peripheral blood monocyte cells and pulsed with EGFRvIII-peptide, then co-cultured with autologous CD8(+) T cells. BALB/c-nu mice were inoculated with human glioma U87-EGFRvIII cells in the brain and treated intracranially with IP10-scFv and/or intravenously with DC-induced CTLs for evaluating the therapeutic effect. Treatment with both IP10-scFv and EGFRvIII peptide-pulsed, DC-induced CTL synergistically inhibited the growth of glioma and prolonged the survival of tumor-bearing mice, which was accompanied by the inhibition of tumor angiogenesis and enhancement of cytotoxicity, thereby increasing the numbers of brain-infiltrating lymphocytes (BILs) and prolonging the residence time of CTLs in the tumor.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Fang-Cheng Zhang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Hong-Yang Zhao
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Xiao-Ling Lu
- National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning, 530021 Guangxi China
| | - Yun Sun
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Zhi-Yong Xiong
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| | - Xiao-Bing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022 Wuhan, China
| |
Collapse
|
11
|
Tang CK, Katsara M, Apostolopoulos V. Strategies used for MUC1 immunotherapy: human clinical studies. Expert Rev Vaccines 2014; 7:963-75. [DOI: 10.1586/14760584.7.7.963] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Cui H, Zhang W, Hu W, Liu K, Wang T, Ma N, Liu X, Liu Y, Jiang Y. Recombinant mammaglobin A adenovirus-infected dendritic cells induce mammaglobin A-specific CD8+ cytotoxic T lymphocytes against breast cancer cells in vitro. PLoS One 2013; 8:e63055. [PMID: 23650543 PMCID: PMC3641140 DOI: 10.1371/journal.pone.0063055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 03/30/2013] [Indexed: 12/23/2022] Open
Abstract
Mammaglobin A (MGBA) is a novel breast cancer-associated antigen almost exclusively over-expressed in primary and metastatic human breast cancers, making it a potential therapeutic target for breast cancer. The development of dendritic cell (DC)-induced tumor antigen specific CD8+ cytotoxic T lymphocytes (CTLs) may hold promise in cancer immunotherapy. In this study we constructed recombinant replication-defective adenoviral (Ad) vectors encoding MGBA and evaluated their ability to trigger anti-tumor immunity in vitro. DCs were isolated from the human peripheral blood monocyte cells (PBMCs) of two HLA-A33+ healthy female volunteers, and infected with adenovirus carrying MGBA cDNA (Ad-MGBA). After that, the Ad-MGBA-infected DCs were used to stimulate CD8+ CTLs in vitro and the latter was used for co-culture with breast cancer cell lines. The data revealed that infection with Ad-MGBA improved DC maturation and up-regulated the expression of co-stimulatory molecules and the secretion of interleukin-12 (IL-12), but down-regulated interleukin-10 (IL-10) secretion from DCs. Ad-MGBA-infected DC-stimulated CD8+CTLs displayed the highest cytotoxicity towards HLA-A33+/MGBA+ breast cancer MDA-MB-415 cells compared with other CD8+CTL populations, and compared with the cytotoxicity towards HLA-A33−/MGBA+ breast cancer HBL-100 cells and HLA-A33−/MGBA− breast cancer MDA-MB 231 cells. In addition, Ad-MGBA-infected DC-stimulated CD8+ CTLs showed a high level of IFNγ secretion when stimulated with HLA-A33+/MGBA+ breast cancer MDA-MB-415 cells, but not when stimulated with HLA-A33−/MGBA+ HBL-100 and HLA-A33−/MGBA−MDA-MB-231 cells. In addition, killing of CD8+CTLs against breast cancer was in a major histocompability complex (MHC)-limited pattern. Finally, the data also determined the importance of TNF-α in activating DCs and T cells. These data together suggest that MGBA recombinant adenovirus-infected DCs could induce specific anti-tumor immunity against MGBA+ breast cancers, which could provide a novel strategy in the immunotherapy of breast cancer.
Collapse
Affiliation(s)
- Huixia Cui
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
- College of Nursing, Liaoning Medical University, Jinzhou, China
| | - Wenlu Zhang
- Department of Oncology, The First Hospital of Liaoning Medical University, Jinzhou, China
| | - Wei Hu
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
| | - Kun Liu
- College of Nursing, Liaoning Medical University, Jinzhou, China
| | - Tong Wang
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
| | - Nan Ma
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
| | - Xiaohui Liu
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China
| | - Youhong Jiang
- Cancer Research Institute, The First Hospital of China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
13
|
Bhargava A, Mishra D, Banerjee S, Mishra PK. Dendritic cell engineering for tumor immunotherapy: from biology to clinical translation. Immunotherapy 2012; 4:703-18. [PMID: 22853757 DOI: 10.2217/imt.12.40] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) are the most potent APCs, with the ability to orchestrate a repertoire of immune responses. DCs play a pivotal role in the initiation, programming and regulation of tumor-specific immune responses, as they are poised to take up, process and present tumor antigens to naive or effector T lymphocytes. Although, to an extent, DC-based immunotherapeutic strategies have successfully induced specific anti-tumor responses in animal models, their clinical efficacy has rarely been translated into the clinic. This article attempts to present a complete picture of recent developments of DC-based therapeutic strategies addressing multiple components of tumor immunoenvironment. It also showcases certain practical intricacies in order to explore novel strategies for providing new impetus to DC-based cancer vaccination.
Collapse
Affiliation(s)
- Arpit Bhargava
- Division of Translational Research, Tata Memorial Centre, ACTREC, India
| | | | | | | |
Collapse
|
14
|
Astoul P, Roca E, Galateau-Salle F, Scherpereel A. Malignant Pleural Mesothelioma: From the Bench to the Bedside. Respiration 2012; 83:481-93. [DOI: 10.1159/000339259] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
15
|
Cools N, Petrizzo A, Smits E, Buonaguro FM, Tornesello ML, Berneman Z, Buonaguro L. Dendritic cells in the pathogenesis and treatment of human diseases: a Janus Bifrons? Immunotherapy 2012; 3:1203-22. [PMID: 21995572 DOI: 10.2217/imt.11.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) represent the bridging cell compartment between a variety of nonself antigens (i.e., microbial, cancer and vaccine antigens) and adaptive immunity, orchestrating the quality and potency of downstream immune responses. Because of the central role of DCs in the generation and regulation of immunity, the modulation of DC function in order to shape immune responses is gaining momentum. In this respect, recent advances in understanding DC biology, as well as the required molecular signals for induction of T-cell immunity, have spurred many experimental strategies to use DCs for therapeutic immunological approaches for infections and cancer. However, when DCs lose control over such 'protective' responses - by alterations in their number, phenotype and/or function - undesired effects leading to allergy and autoimmune clinical manifestations may occur. Novel therapeutic approaches have been designed and currently evaluated in order to address DCs and silence these immunopathological processes. In this article we present recent concepts of DC biology and some medical implications in view of therapeutic opportunities.
Collapse
Affiliation(s)
- Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (Vaxinfectio), University of Antwerp, B-2610 Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
16
|
Franceschi C, Collignon A, Isnardon D, Benkoel L, Vérine A, Silvy F, Bernard JP, Lombardo D, Beraud E, Olive D, Mas E. A novel tumor-associated pancreatic glycoprotein is internalized by human dendritic cells and induces their maturation. THE JOURNAL OF IMMUNOLOGY 2011; 186:4067-77. [PMID: 21346236 DOI: 10.4049/jimmunol.1000408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aberrant glycosylation or overexpression of cell-surface glycosylated tumor-associated Ags (TAA) distinguish neoplastic from normal cells. Interactions of TAA MUC1 and HER2/neu with dendritic cells (DC) preclude efficient processing, which impairs immune responses. It is thus important to define the mechanisms of interactions between DC and glycosylated TAA and their trafficking and processing for further T cell activation. In this work, we study interactions between DC and the oncofetal fucose-rich glycovariants of bile salt-dependent lipase (BSDL), expressed in pancreatic cancer tissues and referred to as pathological BSDL carrying the fucosylated J28 glycotope (pBSDL-J28) because it is characterized by the mAb J28. The expression of pBSDL-J28 was assessed by immunohistochemistry and quantified by confocal microscopy. Nontumoral pancreatic tissues and cells do not express pBSDL-J28. Using multidisciplinary approaches and functional studies, we provide the first evidence, to our knowledge, that this tumoral glycoprotein is rapidly internalized by human DC through macropinocytosis and endocytosis via mannose receptors and then transported to late endosomes for processing. Interestingly, pBSDL-J28 per se induced DC maturation with increased expression of costimulatory and CD83 molecules associated with cytokine secretion (IL-8 and IL-6). Surprisingly, DC retained their full ability to internalize Ags, making this maturation atypical. Finally, the allogeneic pBSDL-J28-treated DC stimulated lymphocyte proliferation. Besides, pulsing DC with pBSDL-J28 C-terminal glycopolypeptide and maturation with CD40L triggered CD4(+) and CD8(+) T cell proliferation. Therefore, interactions of pBSDL-J28, expressed on tumoral pancreatic tissue, with DC may lead to adequate Ag trafficking and processing and result in T cell activation.
Collapse
Affiliation(s)
- Cécile Franceschi
- INSERM Unité Mixte de Recherche 911, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, F-13005 Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Immunotherapy for renal cell carcinoma. Clin Dev Immunol 2011; 2010:284581. [PMID: 21253521 PMCID: PMC3022170 DOI: 10.1155/2010/284581] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 11/29/2010] [Indexed: 11/30/2022]
Abstract
Immunotherapy plays a significant role in the management of renal cell carcinoma (RCC) patients with metastatic disease because RCC is highly resistant to both chemotherapy and radiation therapy. Many reports illustrate various approaches to the treatment of RCC, such as cytokine-, antigen- or dendritic cell- (DC-) based immunotherapy, and the safety and effectiveness of immunotherapy have been highlighted by multiple clinical trials. Although antitumor immune responses and clinically significant outcomes have been achieved in these trials, the response rate is still low, and very few patients show long-term clinical improvement. Recently, the importance of immune regulation by antigen-presenting cells (APC) and regulatory T cells (Treg cells) has also been discussed. The authors outline the principles of cell-mediated tumor immunotherapy and discuss clinical trials of immunotherapy for RCC.
Collapse
|
18
|
Van Elssen CHMJ, Clausen H, Germeraad WTV, Bennet EP, Menheere PP, Bos GMJ, Vanderlocht J. Flow cytometry-based assay to evaluate human serum MUC1-Tn antibodies. J Immunol Methods 2010; 365:87-94. [PMID: 21194532 DOI: 10.1016/j.jim.2010.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 11/22/2010] [Accepted: 12/13/2010] [Indexed: 01/27/2023]
Abstract
Mucin-1 (MUC1) is a heavily O-glycosylated, transmembrane protein that is expressed on the apical surface of most secretory epithelia. In malignantly transformed epithelia, MUC1 has lost its apical distribution, is underglycosylated and is secreted into the circulation. Due to the underglycosylation of MUC1, cancer-specific MUC1-Tn/STn antigens, which are highly immunogenic, become exposed. We aimed at developing a system that allows detection of antibodies directed to the native form of MUC1 and the underglycosylated MUC1-Tn epitopes. To this end, we made use of the Chinese Hamster Ovary (CHO) ldlD cell line stably transfected with MUC1. This cell line has a glycosylation defect, which can be reversed by addition of different monosaccharides to the cell culture and enables the production of cells expressing the MUC1-Tn glycoforms. After validation with glycospecific antibodies, the CHO-ldlD MUC1 system was used to detect serum MUC1 and MUC1-Tn antibodies. Using this system, we could confirm the presence of MUC1-Tn antibodies in the serum of a patient vaccinated with a truncated MUC1 peptide. This indicates that the CHO-ldlD MUC1 system represents a flow cytometry-based technique to detect antibodies binding to the underglycosylated MUC1 protein. This cellular system is complementary to the previously published methods to detect MUC1 serum antibodies, since the antibodies to the native protein are evaluated and therefore it can be effectively used for MUC1 antibody monitoring in vaccination studies as well as for functional assays.
Collapse
|
19
|
Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther 2010; 19:990-9. [PMID: 21189474 DOI: 10.1038/mt.2010.289] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The aim of this phase I/II nonrandomized trial was to assess feasibility, safety as well as immunological and clinical responses of a mRNA-based vaccination in patients with stage IV renal cell cancer using granulocyte-macrophage colony stimulating factor (GM-CSF) as adjuvant. Intradermal injections of in vitro transcribed naked mRNA, which was generated using plasmids coding for the tumor-associated antigens mucin 1(MUC1), carcinoembryonic (CEA), human epidermal growth factor receptor 2 (Her-2/neu), telomerase, survivin, and melanoma-associated antigen 1 (MAGE-A1) were performed in 30 enrolled patients. In the first 14 patients (cohort A) vaccinations were administered on days 0, 14, 28, and 42 (20 µg/antigen) while in the consecutive 16 patients (cohort B) an intensified protocol consisting of injections at days 0-3, 7-10, 28, and 42 (50 µg/antigen) was used. In both cohorts, after this induction period, vaccinations were repeated monthly until tumor progression analyzed by Response Evaluation Criteria In Solid Tumors criteria (RECIST). Vaccinations were well tolerated with no severe side effects and induced clinical responses [six stable diseases (SD) and one partial response in cohort A and nine SD in cohort B]. In cohort A, 35.7% survived 4 years (median survival 24 months) compared to 31.25% in cohort B (median survival 29 months). Induction of CD4(+) and CD8(+) T cell responses was shown for several tumor-associated antigens (TAA) using interferon-γ (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) and Cr-release assays.
Collapse
|
20
|
Gene carriers and transfection systems used in the recombination of dendritic cells for effective cancer immunotherapy. Clin Dev Immunol 2010; 2010:565643. [PMID: 21197274 PMCID: PMC3010860 DOI: 10.1155/2010/565643] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/28/2010] [Indexed: 12/11/2022]
Abstract
Dendritic cells (DCs) are the most potent antigen-presenting cells. They play a vital role in the initiation of immune response by presenting antigens to T cells and followed by induction of T-cell response. Reported research in animal studies indicated that vaccine immunity could be a promising alternative therapy for cancer patients. However, broad clinical utility has not been achieved yet, owing to the low transfection efficiency of DCs. Therefore, it is essential to improve the transfection efficiency of DC-based vaccination in immunotherapy. In several studies, DCs were genetically engineered by tumor-associated antigens or by immune molecules such as costimulatory molecules, cytokines, and chemokines. Encouraging results have been achieved in cancer treatment using various animal models. This paper describes the recent progress in gene delivery systems including viral vectors and nonviral carriers for DC-based genetically engineered vaccines. The reverse and three-dimensional transfection systems developed in DCs are also discussed.
Collapse
|
21
|
Zhang Y, Campbell C, Li Q, Gildersleeve JC. Multidimensional glycan arrays for enhanced antibody profiling. MOLECULAR BIOSYSTEMS 2010; 6:1583-91. [PMID: 20711537 PMCID: PMC3462433 DOI: 10.1039/c002259d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Carbohydrate-binding antibodies play a critical role in basic and clinical research. Monoclonal antibodies that bind glycans are used to measure carbohydrate expression, and serum antibodies to glycans can be important elements of the immune response to pathogens and vaccines. Carbohydrate antigen arrays, or glycan arrays, have emerged as powerful tools for the high-throughput analysis of carbohydrate-protein interactions. Our group has focused on the development and application of neoglycoprotein arrays, a unique array format wherein carbohydrates are covalently attached to a carrier protein prior to immobilization on the surface. The neoglycoprotein format permits variations of glycan structure, glycan density, and neoglycoprotein density on a single array. The focus of this study was on the effects of neoglycoprotein density on antibody binding. First, we evaluated binding of five monoclonal antibodies (81FR2.2, HE-195, HE-193, B480, and Z2A) to the blood group A antigen and found that neoglycoprotein density had a substantial effect on recognition. Next, we profiled serum antibodies in 15 healthy individuals and showed that inclusion of multiple neoglycoprotein densities helps distinguish different subpopulations of antibodies. Finally, we evaluated immune responses induced by a prostate cancer vaccine and showed that variations in neoglycoprotein density enable one to detect antibody responses that could not be detected otherwise. Neoglycoprotein density is a useful element of diversity for evaluating antibody recognition and, when combined with variations in glycan structure and glycan density, provides multidimensional glycan arrays with enhanced performance for monoclonal antibody development, biomarker discovery, and vaccine optimization.
Collapse
Affiliation(s)
- Yalong Zhang
- Chemical Biology Laboratory, National Cancer Institute, 376 Boyles Street, Building 376, Frederick, Maryland, 21702
| | - Christopher Campbell
- Chemical Biology Laboratory, National Cancer Institute, 376 Boyles Street, Building 376, Frederick, Maryland, 21702
| | - Qian Li
- Chemical Biology Laboratory, National Cancer Institute, 376 Boyles Street, Building 376, Frederick, Maryland, 21702
| | - Jeffrey C. Gildersleeve
- Chemical Biology Laboratory, National Cancer Institute, 376 Boyles Street, Building 376, Frederick, Maryland, 21702
| |
Collapse
|
22
|
Abstract
Ovarian cancer is the most lethal gynecologic malignancy and the five-year survival rate is only 35% after diagnosis. Epithelial ovarian cancer is a highly metastatic disease characterized by widespread peritoneal dissemination and ascites. The death incidences from ovarian cancer could be significantly lowered by developing new methods for the early diagnosis and treatment of this fatal disease. Several potential markers have been identified recently. However, mucins are the most promising markers for ovarian cancer diagnosis. Mucins are large extracellular, heavily glycosylated proteins and their aberrant expression has been implicated in the pathogenesis of a variety of cancers, including ovarian cancer. This review will summarize known facts about the pathological and molecular characteristics of ovarian cancer, the current status of ovarian cancer markers, as well as general information about mucins, the putative role of mucins in the progression of ovarian cancer and their potential use for the early diagnosis and treatment of this disease.
Collapse
|
23
|
Sharma A, Czerniecki BJ. Developing dendritic cell-based therapies to condition immune responses to novel oncogenic proteins and stem cells. Expert Rev Clin Pharmacol 2009; 2:517-26. [PMID: 22112225 DOI: 10.1586/ecp.09.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer vaccines have been disappointing when utilized as stand-alone therapy, especially in late disease settings. However, recent clinical studies in prostate cancer have suggested that dendritic cellular (DC) vaccines may impact patient survival, reviving the notion that cancer vaccines can impact established cancer. In this review we will highlight the advances that have been made in the development of DC-based therapies activated by Toll-like receptor agonists with the capacity to condition toward strong Th1 cellular responses, through the production of cytokines and chemokines, and a capacity to induce apoptosis of tumor cells. Used in early cancer settings, these DCs induce clinically effective immune responses, thus shifting the emphasis toward using these cells earlier in the disease process. We will also discuss targeting novel molecules and cancer stem cells that can eliminate cells with high metastatic potential, moving DC-based therapies into mainstream cancer therapy.
Collapse
Affiliation(s)
- Anupama Sharma
- Research and Department of Surgery, Rena Rowan Breast Center, Abramson Cancer Center, PENN Medicine, University of Pennsylvania, PA, USA.
| | | |
Collapse
|
24
|
Immune responses of human immature dendritic cells can be modulated by the recombinant Aspergillus fumigatus antigen Aspf1. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1485-92. [PMID: 19675222 DOI: 10.1128/cvi.00175-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Invasive aspergillosis is a significant cause of morbidity and mortality in patients after stem cell transplantation, in solid organ transplant recipients, and in patients with hematological malignancies. The interactions between human immature dendritic cells (iDCs) and Aspergillus fumigatus antigens are widely uncharacterized. We analyzed the immune response of iDCs to different recombinant A. fumigatus antigens (Aspf1 and Crf1). One of these antigens, the 18-kDa RNase Aspf1, triggered the increased level of expression of genes encoding proinflammatory cytokines and chemokines, and augmented the activation of NFkappaB and the apoptosis of iDCs. Furthermore, by fluorescence microscopy, we could demonstrate that in the first 3 h a major portion of Aspf1 accumulates on the cell surface. Finally, we could show an increased segregation of cytokines and chemokines after the stimulation of iDCs by an Aspf1 deletion mutant strain of A. fumigatus.
Collapse
|
25
|
Aline F, Brand D, Pierre J, Roingeard P, Séverine M, Verrier B, Dimier-Poisson I. Dendritic cells loaded with HIV-1 p24 proteins adsorbed on surfactant-free anionic PLA nanoparticles induce enhanced cellular immune responses against HIV-1 after vaccination. Vaccine 2009; 27:5284-91. [PMID: 19450633 DOI: 10.1016/j.vaccine.2009.05.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 05/06/2009] [Accepted: 05/10/2009] [Indexed: 01/07/2023]
Abstract
Biodegradable nanoparticles with surface adsorbed antigens represent a promising method for in vivo delivery of vaccines targeting a wide range of infectious diseases or cancers. We investigated the feasibility of loading dendritic cells with a vaccine antigen, HIV p24 protein, on the surface of surfactant-free anionic (d,l-lactic acid, PLA) nanoparticles. The p24 protein had a high affinity for the nanoparticles and the antigenicity and immunogenicity of the p24 protein on the nanoparticle was well preserved after immunization. p24-coated nanoparticles were efficiently taken up by mouse dendritic cells (DCs), inducing DC maturation by increasing MHC-I, MHC-II, CD40, CD80 and CD86 surface expression and secreting IL-12 (p70) and IL-4. We evaluated the ability of DCs pulsed with p24-coated nanoparticles to elicit an optimal humoral and cellular immune response in the blood and intestine. DCs pulsed with p24-nanoparticles induced high seric and mucosal antibody production and elicited strong systemic and local lymproliferative responses, correlated with a Th1/Th2-type response, and systemic CTL responses in mice. Thus, DCs pulsed with antigen-loaded PLA nanoparticles may provide a novel delivery tool for cell therapy vaccination against chronic infectious diseases.
Collapse
Affiliation(s)
- Fleur Aline
- Université François Rabelais Tours, INRA, UMR 0483 Université-INRA d'Immunologie Parasitaire et Vaccinologie, Biothérapies anti-infectieuses, IFR agents transmissibles en Infectiologie; UFR des Sciences Pharmaceutiques, 37200 Tours, France
| | | | | | | | | | | | | |
Collapse
|
26
|
Bellone S, Anfossi S, O'Brien TJ, Cannon MJ, Silasi DA, Azodi M, Schwartz PE, Rutherford TJ, Pecorelli S, Santin AD. Induction of human tumor-associated differentially expressed gene-12 (TADG-12/TMPRSS3)-specific cytotoxic T lymphocytes in human lymphocyte antigen-A2.1-positive healthy donors and patients with advanced ovarian cancer. Cancer 2009; 115:800-11. [PMID: 19117353 DOI: 10.1002/cncr.24048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Tumor-associated differentially expressed gene-12 (TADG-12) is a serine protease recently found highly differentially expressed in epithelial ovarian cancer. The goal of this study was to identify potential immunogenic peptides derived from TADG-12 for immunotherapy of ovarian carcinoma. METHODS A bioinformatics approach (ie, the BIMAS algorithm, National Institutes of Health, http://bimas.dcrt.nih.gov/molbio/hla_bind) was used to identify multiple immunogenic peptides derived from TADG-12 that bind to human leukocyte antigen-A2.1 and elicit peptide-specific human cytotoxic T lymphocyte (CTL) responses in healthy individuals and in patients with advanced stage ovarian cancer. RESULTS CD8+ CTL populations generated against 5 TADG-12-derived peptides were consistently able to induce lysis of autologous peptide-loaded target cells above background. Importantly, TADG-12 YLPKSWTIQV peptide-specific CTLs from healthy donors and ovarian cancer patients were found to effectively kill ovarian cancer cells naturally expressing TADG-12. Cytotoxicity was significantly inhibited by anti-human lymphocyte antigen (HLA)-A2.1 (BB7-2) and anti-HLA class I (W6 of 32) monoclonal antibodies, whereas natural killer-sensitive K562 cells were not lysed. TADG-12 YLPKSWTIQV peptide-specific CTL precursor frequency was low in peripheral blood leukocytes of normal donors and ovarian cancer patients, as determined by interferon-gamma production in enzyme-linked immunosorbent spot-forming cell assays. Intracellular cytokine expression measured by flow cytometry after OKT-3 monoclonal antibody stimulation showed a type 1 cytokine profile in YLPKSWTIQV peptide-specific CTLs. CONCLUSIONS The TADG-12 YLPKSWTIQV peptide is an immunogenic epitope in ovarian tumors and may represent an attractive target for immunotherapy of ovarian cancer. These data may pave the way for TADG-12 peptide-derived cell-based therapy, including dendritic cell immunotherapy, for the vaccination of ovarian cancer patients harboring chemotherapy-resistant or residual disease.
Collapse
Affiliation(s)
- Stefania Bellone
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520-8063, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Matsunaga Y, Fukuma D, Hirata S, Fukushima S, Haruta M, Ikeda T, Negishi I, Nishimura Y, Senju S. Activation of antigen-specific cytotoxic T lymphocytes by beta 2-microglobulin or TAP1 gene disruption and the introduction of recipient-matched MHC class I gene in allogeneic embryonic stem cell-derived dendritic cells. THE JOURNAL OF IMMUNOLOGY 2009; 181:6635-43. [PMID: 18941254 DOI: 10.4049/jimmunol.181.9.6635] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A method for the genetic modification of dendritic cells (DC) was previously established based on the in vitro differentiation of embryonic stem (ES) cells to DC (ES-DC). The unavailability of human ES cells genetically identical to the patients will be a problem in the future clinical application of this technology. This study attempted to establish a strategy to overcome this issue. The TAP1 or beta(2)-microglobulin (beta(2)m) gene was disrupted in 129 (H-2(b))-derived ES cells and then expression vectors for the H-2K(d) or beta(2)m-linked form of K(d) (beta2m-K(d)) were introduced, thus resulting in two types of genetically engineered ES-DC, TAP1(-/-)/K(d) ES-DC and beta(2)m(-/-)/beta(2)m-K(d) ES-DC. As intended, both of the transfectant ES-DC expressed K(d) but not the intrinsic H-2(b) haplotype-derived MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) and TAP1(-/-)/K(d) ES-DC were not recognized by pre-activated H-2(b)-reactive CTL and did not prime H-2(b) reactive CTL in vitro or in vivo. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC and TAP1(-/-)/K(d) ES-DC had a survival advantage in comparison to beta(2)m(+/-)/beta(2)m-K(d) ES-DC and TAP1(+/+)/K(d) ES-DC, when transferred into BALB/c mice. K(d)-restricted RSV-M2-derived peptide-loaded ES-DC could prime the epitope-specific CTL upon injection into the BALB/c mice, irrespective of the cell surface expression of intrinsic H-2(b) haplotype-encoded MHC class I. Beta(2)m(-/-)/beta(2)m-K(d) ES-DC were significantly more efficient in eliciting immunity against RSV M2 protein-expressing tumor cells than beta(2)m(+/-)/beta(2)m-K(d) ES-DC. The modification of the beta(2)m or TAP gene may therefore be an effective strategy to resolve the problem of HLA class I allele mismatch between human ES or induced pluripotent stem cells and the recipients to be treated.
Collapse
Affiliation(s)
- Yusuke Matsunaga
- Department of Immunogenetics, Kumamoto University, Graduate School of Medical Sciences, Kumamoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bellone S, Anfossi S, O'Brien TJ, Cannon MJ, Silasi DA, Azodi M, Schwartz PE, Rutherford TJ, Pecorelli S, Santin AD. Generation of CA125-specific cytotoxic T lymphocytes in human leukocyte antigen-A2.1-positive healthy donors and patients with advanced ovarian cancer. Am J Obstet Gynecol 2009; 200:75.e1-10. [PMID: 18976739 DOI: 10.1016/j.ajog.2008.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/17/2008] [Accepted: 08/07/2008] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To identify potential immunogenic peptides derived from CA125. STUDY DESIGN A bioinformatics approach was used to identify peptides derived from CA125 that bind to human leukocyte antigen A2.1 and elicit peptide-specific human cytotoxic T-lymphocyte responses in healthy individuals and patients with ovarian carcinoma. RESULTS CD8+ cytotoxic T-lymphocyte populations generated against 4 CA125-derived peptides were able to induce lysis of autologous peptide-loaded target cells. CA125 YTLDrDSLYV peptide-specific cytotoxic T lymphocytes were found to effectively kill ovarian tumors expressing CA125. Cytotoxicity was inhibited by antihuman leukocyte antigen A2.1 (BB7-2) and antihuman leukocyte antigen class I (W6/32) antibodies, whereas natural killer-sensitive targets were not lysed. YTLDrDSLYV peptide-specific cytotoxic T lymphocyte precursor frequency was low in peripheral blood leukocytes of normal donors and patients with ovarian cancer as determined by interferon-gamma production in ELISPOT assays. Intracellular cytokine expression measured by flow cytometry showed a type 1 cytokine profile in YTLDrDSLYV peptide-specific cytotoxic T lymphocytes. CONCLUSION The CA125 YTLDrDSLYV peptide is an immunogenic epitope and may represent an attractive target for immunotherapy of ovarian cancer.
Collapse
Affiliation(s)
- Stefania Bellone
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Chen T, Tang XD, Wan Y, Chen L, Yu ST, Xiong Z, Fang DC, Liang GP, Yang SM. HLA-A2-restricted cytotoxic T lymphocyte epitopes from human heparanase as novel targets for broad-spectrum tumor immunotherapy. Neoplasia 2008; 10:977-86. [PMID: 18714399 PMCID: PMC2517643 DOI: 10.1593/neo.08576] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 06/18/2008] [Accepted: 06/20/2008] [Indexed: 02/01/2023]
Abstract
Peptide vaccination for cancer immunotherapy requires identification of peptide epitopes derived from antigenic proteins associated with tumors. Heparanase (Hpa) is broadly expressed in various advanced tumors and seems to be an attractive new tumor-associated antigen. The present study was designed to predict and identify HLA-A2-restricted cytotoxic T lymphocyte (CTL) epitopes in the protein of human Hpa. For this purpose, HLA-A2-restricted CTL epitopes were identified using the following four-step procedure: 1) a computer-based epitope prediction from the amino acid sequence of human Hpa, 2) a peptide-binding assay to determine the affinity of the predicted protein with the HLA-A2 molecule, 3) stimulation of the primary T-cell response against the predicted peptides in vitro, and 4) testing of the induced CTLs toward different kinds of carcinoma cells expressing Hpa antigens and/or HLA-A2. The results demonstrated that, of the tested peptides, effectors induced by peptides of human Hpa containing residues 525-533 (PAFSYSFFV, Hpa525), 277-285 (KMLKSFLKA, Hpa277), and 405-413 (WLSLLFKKL, Hpa405) could effectively lyse various tumor cell lines that were Hpa-positive and HLA-A2-matched. We also found that these peptide-specific CTLs could not lyse autologous lymphocytes with low Hpa activity. Further study revealed that Hpa525, Hpa277, and Hpa405 peptides increased the frequency of IFN-gamma-producing T cells compared to a negative peptide. Our results suggest that Hpa525, Hpa277, and Hpa405 peptides are new HLA-A2-restricted CTL epitopes capable of inducing Hpa-specific CTLs in vitro. Because Hpa is expressed in most advanced malignant tumors, Hpa525, Hpa277, and Hpa405 peptide-based vaccines may be useful for the immunotherapy for patients with advanced tumors.
Collapse
Affiliation(s)
- Ting Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Xu-Dong Tang
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Yin Wan
- Institute of Immunology of PLA, Medical College, Third Military Medical University, Chongqing 400038, PR China
| | - Ling Chen
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Song-Tao Yu
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Zhen Xiong
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Dian-Chun Fang
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Guang-Ping Liang
- Institute of Burn Research of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| | - Shi-Ming Yang
- Institute of Gastroenterology of PLA, Southwest Hospital, Third Military Medical University, Chongqing 400038, PR China
| |
Collapse
|
30
|
Gulley JL, Arlen PM, Tsang KY, Yokokawa J, Palena C, Poole DJ, Remondo C, Cereda V, Jones JL, Pazdur MP, Higgins JP, Hodge JW, Steinberg SM, Kotz H, Dahut WL, Schlom J. Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin Cancer Res 2008; 14:3060-9. [PMID: 18483372 DOI: 10.1158/1078-0432.ccr-08-0126] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Poxviral vectors have a proven safety record and can be used to incorporate multiple transgenes. Prior clinical trials with poxviral vaccines have shown that immunologic tolerance to self-antigens can be broken. Carcinoembryonic antigen (CEA) and MUC-1 are overexpressed in a substantial proportion of common solid carcinomas. The primary end point of this study was vaccine safety, with immunologic and clinical responses as secondary end points. EXPERIMENTAL DESIGN We report here a pilot study of 25 patients treated with a poxviral vaccine regimen consisting of the genes for CEA and MUC-1, along with a triad of costimulatory molecules (TRICOM; composed of B7.1, intercellular adhesion molecule 1, and lymphocyte function-associated antigen 3) engineered into vaccinia (PANVAC-V) as a prime vaccination and into fowlpox (PANVAC-F) as a booster vaccination. RESULTS The vaccine was well tolerated. Apart from injection-site reaction, no grade > or =2 toxicity was seen in more than 2% of the cycles. Immune responses to MUC-1 and/or CEA were seen following vaccination in 9 of 16 patients tested. A patient with clear cell ovarian cancer and symptomatic ascites had a durable (18-month) clinical response radiographically and biochemically, and one breast cancer patient had a confirmed decrease of >20% in the size of large liver metastasis. CONCLUSIONS This vaccine strategy seems to be safe, is associated with both CD8 and CD4 immune responses, and has shown evidence of clinical activity. Further trials with this agent, either alone or in combination with immunopotentiating and other therapeutic agents, are warranted.
Collapse
Affiliation(s)
- James L Gulley
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Schaft N, Birkholz K, Hofmann C, Schmid M, Theiner G, Dörrie J. Dendritic cell vaccination and other strategies to tip the balance of the immune system : DC2007 5th International Meeting, July 16-18, Bamberg, Germany. Cancer Immunol Immunother 2008; 57:913-28. [PMID: 18236041 PMCID: PMC11030558 DOI: 10.1007/s00262-007-0443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 12/12/2007] [Indexed: 10/22/2022]
Affiliation(s)
- Niels Schaft
- Department of Dermatology, University Hospital Erlangen, Hartmannstrasse 14, 91052 Erlangen, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Creaney J, Segal A, Sterrett G, Platten MA, Baker E, Murch AR, Nowak AK, Robinson BWS, Millward MJ. Overexpression and altered glycosylation of MUC1 in malignant mesothelioma. Br J Cancer 2008; 98:1562-9. [PMID: 18454162 PMCID: PMC2391110 DOI: 10.1038/sj.bjc.6604340] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Current interest in the MUC1/EMA mucin relates to its role in malignancy, and its potential as a therapeutic target. MUC1/EMA expression has been observed in the majority of epithelioid mesotheliomas. However, little is known of the characteristics of MUC1/EMA in mesothelioma. Herein, we studied the cell surface and soluble expression of the MUC1/EMA glycoprotein, and determined the mRNA and genomic expression profiles in mesothelioma. We found that the anti-MUC1 antibody, E29, was the most diagnostically useful of seven antibody clones examined with a sensitivity of 84% (16 out of 19 cases) and no false positive results. MUC1 mRNA expression was significantly higher in mesothelioma samples than in benign mesothelial cells. No amplification of the MUC1 gene was observed by FISH. Seven of 9 mesothelioma samples expressed MUC1-secreted mRNA isoform in addition to the archetypal MUC1/transmembrane form. CA15.3 (soluble MUC1) levels were significantly higher in the serum of mesothelioma patients than in healthy controls but were not significantly different to levels in patients with benign asbestos-related disease. CA15-3 in effusions could differentiate malignant from benign effusions but were not specific for mesothelioma. Thus, as in other cancers, alterations in MUC1 biology occur in mesothelioma and these results suggest that specific MUC1 characteristics may be useful for mesothelioma diagnosis and should also be investigated as a potential therapeutic target.
Collapse
Affiliation(s)
- J Creaney
- National Research Centre for Asbestos Related Diseases, Western Australian Institute of Medical Research, University of Western Australia, Perth, Western Australia, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Dendritic cells (DCs) ‘pulsed’ with an appropriate antigen may elicit an antitumour immune response in mouse models. However, while attempting to develop a DC immunotherapy protocol for the treatment of breast cancer based on the tumour-associated MUC1 glycoforms, we found that unpulsed DCs can affect tumour growth. Protection from RMA-MUC1 tumour challenge was achieved in C57Bl/6 MUC1 transgenic mice by immunising with syngeneic DCs pulsed with a MUC1 peptide. However, unpulsed DCs gave a similar level of protection, making it impossible to evaluate the effect of immunisation of mice with DCs pulsed with the specific peptide. Balb/C mice could also be protected from tumour challenge by immunisation with unpulsed DCs prior to challenge with murine mammary tumour cells (410.4) or these cells transfected with MUC1 (E3). Protection was achieved with as few as three injections of 50 000 naïve DCs per mouse per week, was not dependent on injection route, and was not specific to cell lines expressing human MUC1. However, the use of Rag2-knockout mice demonstrated that the adaptive immune response was required for tumour rejection. Injection of unpulsed DCs into mice bearing the E3 tumour slowed tumour growth. In vitro, production of IFN-γ and IL-4 was increased in splenic cells isolated from mice immunised with DCs. Depleting CD4 T cells in vitro partially decreased cytokine production by splenocytes, but CD8 depletion had no effect. This paper shows that naïve syngeneic DCs may induce an antitumour immune response and has implications for DC immunotherapy preclinical and clinical trials.
Collapse
|
34
|
Wells JW, Cowled CJ, Darling D, Guinn BA, Farzaneh F, Noble A, Galea-Lauri J. Semi-allogeneic dendritic cells can induce antigen-specific T-cell activation, which is not enhanced by concurrent alloreactivity. Cancer Immunol Immunother 2007; 56:1861-73. [PMID: 17487489 PMCID: PMC11030391 DOI: 10.1007/s00262-007-0328-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 04/11/2007] [Indexed: 11/28/2022]
Abstract
BACKGROUND Alloreactive T-cell responses are known to result in the production of large amounts of proinflammatory cytokines capable of activating and maturing dendritic cells (DC). However, it is unclear whether these allogeneic responses could also act as an adjuvant for concurrent antigen-specific responses. OBJECTIVE To examine effects of simultaneous alloreactive and antigen-specific T-cell responses induced by semi-allogeneic DC. METHODS Semi-allogeneic DC were generated from the F(1) progeny of inbred strains of mice (C57BL/6 and C3H, or C57BL/6 and DBA). We directly primed antigen-specific CD8(+) and CD4(+) T-cells from OT-I and OT-II mice, respectively, in the absence of allogeneic responses, in vitro, and in the presence or absence of alloreactivity in vivo. RESULTS In vitro, semi-allogeneic DC cross-presented ovalbumin (OVA) to naïve CD8(+) OT-I transgenic T-cells, primed naïve CD4(+) OT-II transgenic T-cells and could stimulate strong alloreactive T-cell proliferation in a primary mixed lymphocyte reaction (MLR). In vivo, semi-allogeneic DC migrated efficiently to regional lymph nodes but did not survive there as long as autologous DC. In addition, they were not able to induce cytotoxic T-lymphocyte (CTL) activity to a target peptide, and only weakly stimulated adoptively transferred OT-II cells. The CD4(+) response was unchanged in allo-tolerized mice, indicating that alloreactive T-cell responses could not provide help for concurrently activated antigen-specific responses. In an EL4 tumour-treatment model, vaccination with semi-allogeneic DC/EL4 fusion hybrids, but not allogeneic DC/EL4 hybrids, significantly increased mouse survival. CONCLUSION Expression of self-Major histocompatibility complex (MHC) by semi-allogeneic DC can cause the induction of antigen-specific immunity, however, concurrently activated allogeneic bystander responses do not provide helper or adjuvant effects.
Collapse
Affiliation(s)
- James W. Wells
- Department of Haematological and Molecular Medicine, King’s College London, The Rayne Institute, London, SE5 9NU UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, 5th Floor Thomas Guy House, Guy’s Hospital, London, SE1 9RT UK
| | - Chris J. Cowled
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, 5th Floor Thomas Guy House, Guy’s Hospital, London, SE1 9RT UK
| | - David Darling
- Department of Haematological and Molecular Medicine, King’s College London, The Rayne Institute, London, SE5 9NU UK
| | - Barbara-Ann Guinn
- Department of Haematological and Molecular Medicine, King’s College London, The Rayne Institute, London, SE5 9NU UK
| | - Farzin Farzaneh
- Department of Haematological and Molecular Medicine, King’s College London, The Rayne Institute, London, SE5 9NU UK
| | - Alistair Noble
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College London, 5th Floor Thomas Guy House, Guy’s Hospital, London, SE1 9RT UK
| | - Joanna Galea-Lauri
- Department of Haematological and Molecular Medicine, King’s College London, The Rayne Institute, London, SE5 9NU UK
| |
Collapse
|
35
|
Abstract
With growing understanding of the regulation of immune responses, multiple new immunotherapeutic targets have evolved. This article gives a survey over the current approaches in pancreatic cancer therapy including peptide vaccinations, unspecific immunotherapy, allogene modified tumor cell vaccines, and vector-based vaccines. Although several trials have shown detectable immune responses, such as delayed-type hypersensitivity reactions and cytokine release in enzyme-linked immunosorbent spot (ELISPOTS) assays, and some have reported prolonged survival for immune responders, immunotherapy remains experimental. However, some approaches have made it into a phase III setting. In addition, the emerging concept of tumor stem cells may lead to a new focus on immunotherapy, since these often highly chemotherapy-resistant cells are thought to be the source of recurrences.
Collapse
|
36
|
Therapeutic immunization with human immunodeficiency virus type 1 (HIV-1) peptide-loaded dendritic cells is safe and induces immunogenicity in HIV-1-infected individuals. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 15:284-92. [PMID: 17942609 DOI: 10.1128/cvi.00221-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Treatments for human immunodeficiency virus type 1 (HIV-1)-positive individuals that augment HIV-1 suppression and have potential for achieving long-term control of HIV-1 viremia in the absence of antiretroviral therapy (ART) are urgently needed. We therefore conducted a phase I, clinical safety trial of a dendritic cell (DC)-based vaccination strategy as immunotherapy for HIV-1-positive individuals on ART. We studied 18 HIV-1-positive subjects on ART who underwent leukapheresis to obtain peripheral blood mononuclear cells for DC generation from monocytes cultured with cytokines. Mature DC were pulsed with three HIV-1 HLA*A0201 Gag, Env, and Pol peptides and one influenza A virus matrix protein peptide. The vaccine was administered to donors randomized to receive two vaccinations, either intravenously or subcutaneously. The primary end points were safety and tolerability of two doses of peptide-DC vaccine (3 million versus 10 million). Secondary end points included gamma interferon (IFN-gamma) enzyme-linked immunospot assay responses and clinical correlates of an immune response to vaccination. Autologous DC-peptide vaccine was safe, well tolerated, and feasible for use in all participants. Adverse events were rare. Although the trial was not powered to assess an immunologic response, a significantly increased frequency of HIV-1 peptide-specific IFN-gamma-positive cells was observed 2 weeks following the second vaccine, with three individuals responding to all four peptides. DC vaccination was safe, was feasible, and showed promise of immunogenicity in ART-treated, HIV-1-positive individuals. Additional studies of DC immunization strategies for HIV-1 infection are warranted.
Collapse
|
37
|
Mohammadi M, Rasaee MJ, Rajabibazl M, Paknejad M, Zare M, Mohammadzadeh S. Epitope Mapping of PR81 anti-MUC1 Monoclonal Antibody Following PEPSCAN and Phage Display Techniques. Hybridoma (Larchmt) 2007; 26:223-30. [PMID: 17725384 DOI: 10.1089/hyb.2007.0502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PR81 is an anti-MUC1 monoclonal antibody (MAb) which was generated against human MUC1 mucin that reacted with breast cancerous tissue, MUC1 positive cell line (MCF-7, BT-20, and T-4 7 D), and synthetic peptide, including the tandem repeat sequence of MUC1. Here we characterized the binding properties of PR81 against the tandem repeat of MUC1 by two different epitope mapping techniques, namely, PEPSCAN and phage display. Epitope mapping of PR81 MAb by PEPSCAN revealed a minimal consensus binding sequence, PDTRP, which is found on MUC1 peptide as the most important epitope. Using the phage display peptide library, we identified the motif PD(T/S/G)RP as an epitope and the motif AVGLSPDGSRGV as a mimotope recognized by PR81. Results of these two methods showed that the two residues, arginine and aspartic acid, have important roles in antibody binding and threonine can be substituted by either glycine or serine. These results may be of importance in tailor making antigens used in immunoassay.
Collapse
|
38
|
Haferkamp A, Hohenfellner M, Hautmann R, Zöller M. [Renal cell carcinoma associated proteins. Isolation, cloning and immunogenicity evaluation]. Urologe A 2007; 46:1292-8. [PMID: 17628779 DOI: 10.1007/s00120-007-1418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- B-Lymphocytes/immunology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/pathology
- Cloning, Molecular
- Disease Progression
- Humans
- Immunotherapy, Adoptive
- Kidney Neoplasms/genetics
- Kidney Neoplasms/immunology
- Kidney Neoplasms/pathology
- Mice
- Mice, SCID
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/immunology
- Neoplasm Staging
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- A Haferkamp
- Urologische Klinik, Universitätsklinikum, Im Neuenheimer Feld 110, 69120 Heidelberg.
| | | | | | | |
Collapse
|
39
|
Gouttefangeas C, Stenzl A, Stevanović S, Rammensee HG. Immunotherapy of renal cell carcinoma. Cancer Immunol Immunother 2007; 56:117-28. [PMID: 16676181 PMCID: PMC11030119 DOI: 10.1007/s00262-006-0172-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2006] [Accepted: 04/10/2006] [Indexed: 01/02/2023]
Abstract
Carcinomas of the kidney generally have a poor prognosis and respond minimally to classical radiotherapy or chemotherapy. Immunotherapy constitutes an interesting alternative to these established forms of treatment, and indeed, cytokine-based therapies have been used for many years, leading to favorable clinical responses in a small subset of patients. During the past few years, immunotherapeutical trials targeting renal cell tumor-associated antigens have also been reported, with diverse passive or active approaches using antibodies or aimed at activating tumor-directed T lymphocytes. The following review presents the results and the progress made in the field, including classical cytokine treatments, non-myeloablative stem cell transplantation and antigen specific-based trials, with special focus on T-cell studies. In consideration of the few specific molecular targets described so far for this tumor entity, current strategies which can lead to the identification of new relevant antigens will be discussed. Hopefully these will very soon contribute to an improvement in renal cell carcinoma specific immunotherapy and its evaluation.
Collapse
Affiliation(s)
- Cécile Gouttefangeas
- Institute for Cell Biology, Department of Immunology, Eberhard Karls University, Auf der Morgenstelle 15, 72076, Tubingen, Germany.
| | | | | | | |
Collapse
|
40
|
Mukherjee P, Pathangey LB, Bradley JB, Tinder TL, Basu GD, Akporiaye ET, Gendler SJ. MUC1-specific immune therapy generates a strong anti-tumor response in a MUC1-tolerant colon cancer model. Vaccine 2006; 25:1607-18. [PMID: 17166639 PMCID: PMC1810513 DOI: 10.1016/j.vaccine.2006.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 10/27/2006] [Accepted: 11/02/2006] [Indexed: 02/07/2023]
Abstract
A MUC1-based vaccine was used in a preclinical model of colon cancer. The trial was conducted in a MUC1-tolerant immune competent host injected with MC38 colon cancer cells expressing MUC1. The vaccine included: MHC class I-restricted MUC1 peptides, MHC class II-restricted pan-helper-peptide, unmethylated CpG oligodeoxynucleotide, and granulocyte macrophage-colony stimulating factor. Immunization was successful in breaking MUC1 self-tolerance, and in eliciting a robust anti-tumor response. The vaccine stimulated IFN-gamma-producing CD4(+) helper and CD8(+) cytotoxic T cells against MUC1 and other undefined MC38 tumor antigens. In the prophylactic setting, immunization caused complete rejection of tumor cells, while in the therapeutic regimen, tumor burden was significantly reduced.
Collapse
Affiliation(s)
- P Mukherjee
- Mayo Clinic College of Medicine, Mayo Clinic Arizona, 13400 E. Shea Boulevard, Scottsdale, AZ 85259, United States.
| | | | | | | | | | | | | |
Collapse
|
41
|
Putz T, Ramoner R, Gander H, Rahm A, Bartsch G, Thurnher M. Antitumor action and immune activation through cooperation of bee venom secretory phospholipase A2 and phosphatidylinositol-(3,4)-bisphosphate. Cancer Immunol Immunother 2006; 55:1374-83. [PMID: 16485125 PMCID: PMC11030777 DOI: 10.1007/s00262-006-0143-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/27/2006] [Indexed: 10/25/2022]
Abstract
We evaluated tumor cell growth modulation by bee venom secretory phospholipase A2 (bv-sPLA2) and phosphatidylinositol-(3,4)-bisphosphate as well as potential cooperative effects. In addition, the immunomodulatory impact of tumor cell treatment was examined by monitoring changes in phenotype and function of monocyte-derived dendritic cells (moDCs) cocultured with pretreated tumor cells. Bv-sPLA2 or phosphatidylinositol-(3,4)-bisphosphate alone displayed moderate effects on the proliferation of A498 renal cell carcinoma cells, T-47D breast cancer cells, DU145 prostate cancer cells and BEAS-2B transformed lung cells. However, when bv-sPLA2 was coadministered with phosphatidylinositol-(3,4)-bisphosphate a potent inhibition of [3H] thymidine incorporation into all tested cell lines occurred. This inhibition was due to massive cell lysis that reduced the number of cells with proliferative capacity. Importantly, tumor cell lysates generated with bv-sPLA2 plus phosphatidylinositol-(3,4)-bisphosphate induced maturation of human moDCs demonstrated by enhanced expression of CD83 and improved stimulation in allogeneic mixed leukocyte reactions. Our data demonstrate that bv-sPLA2 and phosphatidylinositol-(3,4)-bisphosphate synergistically generate tumor lysates which enhance the maturation of immunostimulatory human monocyte-derived dendritic cells. Such tumor lysates which represent complex mixtures of tumor antigens and simultaneously display potent adjuvant properties meet all requirements of a tumor vaccine.
Collapse
Affiliation(s)
- Thomas Putz
- Department of Urology, University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Reinhold Ramoner
- Department of Urology, University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Hubert Gander
- Department of Urology, University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Andrea Rahm
- Department of Urology, University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Georg Bartsch
- Department of Urology, University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| | - Martin Thurnher
- Department of Urology, University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
| |
Collapse
|
42
|
Kyte JA, Gaudernack G. Immuno-gene therapy of cancer with tumour-mRNA transfected dendritic cells. Cancer Immunol Immunother 2006; 55:1432-42. [PMID: 16612595 PMCID: PMC11030124 DOI: 10.1007/s00262-006-0161-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2006] [Accepted: 03/14/2006] [Indexed: 10/24/2022]
Abstract
We have developed immuno-gene therapy for malignant melanoma and prostate cancer. The therapy is based on monocyte-derived dendritic cells (DCs) that are transfected with autologous melanoma-mRNA or mRNA from three prostate cancer cell lines (DU-145, LN-CaP and PC-3). A broad spectrum of tumour-associated antigens will be included in both DC-vaccines. The use of autologous melanoma-mRNA moreover allows targeting of individual tumour antigens that are specific to each patient. Effective protocols have been established for mRNA-transfection by square wave electroporation and for the generation of clinical grade DCs. A full scale preclinical evaluation demonstrated in vitro T cell responses in 6/6 advanced melanoma patients. The responses were specific to antigens encoded by the transfected tumour-mRNA. Recently, we have conducted two phase I/II trials, in advanced malignant melanoma and androgen-resistant prostate cancer. Successful vaccine preparations were obtained for all 41 patients elected. No serious adverse effects were observed. Specific T cell responses (T cell proliferation and/or IFNgamma ELISPOT) were demonstrated in 9/19 evaluable melanoma patients and in 12/19 prostate cancer patients. The response rates were higher for patients receiving intradermal vaccination, compared to intranodal injection. Thirteen prostate cancer patients developed a decrease in log-slope PSA. The PSA-response was significantly related to the T cell response (P=0.002). We conclude that the DC-vaccine is feasible and safe, and that T cell responses are elicited in about 50% of patients.
Collapse
Affiliation(s)
- Jon A Kyte
- Section for Immunotherapy, Department of Immunology, Cancer Research Institute, The Norwegian Radium Hospital, University of Oslo, 0310 Oslo, Norway.
| | | |
Collapse
|