1
|
White AM, Craig AJ, Richie DL, Corley C, Sadek SM, Barton HN, Gipson CD. Nicotine is an Immunosuppressant: Implications for Women's Health and Disease. J Neuroimmunol 2024; 397:578468. [PMID: 39461120 DOI: 10.1016/j.jneuroim.2024.578468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/04/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
A plethora of evidence supports that nicotine, the primary alkaloid in tobacco products that is generally accepted for maintaining use, is immunoregulatory and may function as an immunosuppressant. Women have unique experiences with use of nicotine-containing products and also undergo significant reproductive transitions throughout their lifespan which may be impacted by nicotine use. Within the extant literature, there is conflicting evidence that nicotine may confer beneficial health effects in specific disease states (e.g., in ulcerative colitis). Use prevalence of nicotine-containing products is exceptionally high in individuals presenting with some comorbid disease states that impact immune system health and can be a risk factor for the development of diseases which disproportionately impact women; however, the mechanisms underlying these relationships are largely unclear. Further, little is known regarding the impacts of nicotine's immunosuppressive effects on women's health during the menopausal transition, which is arguably an inflammatory event characterized by a pro-inflammatory peri-menopause period. Given that post-menopausal women are at a higher risk than men for the development of neurodegenerative diseases such as Alzheimer's disease and are also more vulnerable to negative health effects associated with diseases such as HIV-1 infection, it is important to understand how use of nicotine-containing products may impact the immune milieu in women. In this review, we define instances in which nicotine use confers immunosuppressive, anti-inflammatory, or pro-inflammatory effects in the context of comorbid disease states, and focus on how nicotine impacts neuroimmune signaling to maintain use. We posit that regardless of potential health benefits, nicotine use cessation should be a priority in the clinical care of women. The synthesis of this review demonstrates the importance of systematically defining the relationships between volitional nicotine use, immune system function, and comorbid disease states in women to better understand how nicotine impacts women's health and disease.
Collapse
Affiliation(s)
- Ashley M White
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Ashley J Craig
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Daryl L Richie
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Christa Corley
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Safiyah M Sadek
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | - Heather N Barton
- Beebe Health, Gastroenterology and Internal Medicine, Lewes, Delaware, USA
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Gautam N, Ramamoorthi G, Champion N, Han HS, Czerniecki BJ. Reviewing the significance of dendritic cell vaccines in interrupting breast cancer development. Mol Aspects Med 2024; 95:101239. [PMID: 38150884 DOI: 10.1016/j.mam.2023.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Breast cancer is a heterogeneous disease and is the most prevalent cancer in women. According to the U.S breast cancer statistics, about 1 in every 8 women develop an invasive form of breast cancer during their lifetime. Immunotherapy has been a significant advancement in the treatment of cancer with multiple studies reporting favourable patient outcomes by modulating the immune response to cancer cells. Here, we review the significance of dendritic cell vaccines in treating breast cancer patients. We discuss the involvement of dendritic cells and oncodrivers in breast tumorigenesis, highlighting the rationale for targeting oncodrivers and neoantigens using dendritic cell vaccine therapy. We review different dendritic cell subsets and maturation states previously used to develop vaccines and suggest the use of DC vaccines for breast cancer prevention. Further, we highlight that the intratumoral delivery of type 1 dendritic cell vaccines in breast cancer patients activates tumor antigen-specific CD4+ T helper cell type 1 (Th1) cells, promoting an anti-tumorigenic immune response while concurrently blocking pro-tumorigenic responses. In summary, this review provides an overview of the current state of dendritic cell vaccines in breast cancer highlighting the challenges and considerations necessary for an efficient dendritic cell vaccine design in interrupting breast cancer development.
Collapse
Affiliation(s)
- Namrata Gautam
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ganesan Ramamoorthi
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Nicholas Champion
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Hyo S Han
- Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Brian J Czerniecki
- Clinical Science & Immunology Program, H. Lee Moffitt Cancer Center, Tampa, FL, USA; Department of Breast Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
3
|
Huan C, Zhang R, Xie L, Wang X, Wang X, Wang X, Yao J, Gao S. Plantago asiatica L. polysaccharides: Physiochemical properties, structural characteristics, biological activity and application prospects: A review. Int J Biol Macromol 2024; 258:128990. [PMID: 38158057 DOI: 10.1016/j.ijbiomac.2023.128990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Plantago asiatica L. (PAL), a traditional herb, has been used in East Asia for thousands of years. In recent years, polysaccharides extracted from PAL have garnered increased attention due to their outstanding pharmacological and biological properties. Previous research has established that PAL-derived polysaccharides exhibit antioxidant, anti-inflammatory, antidiabetic, antitumor, antimicrobial, immune-regulatory, intestinal health-promoting, antiviral, and other effects. Nevertheless, a comprehensive summary of the research related to Plantago asiatica L. polysaccharides (PALP) has not been reported to date. In this paper, we review the methods for isolation and purification, physiochemical properties, structural features, and biological activities of PALP. To provide a foundation for research and application in the fields of medicine and food, this review also outlines the future development prospects of plantain polysaccharides.
Collapse
Affiliation(s)
- Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Ruizhen Zhang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Li Xie
- Fujian Yixinbao Biopharmaceutical Co., Ltd., Zhangzhou, China
| | - Xingyu Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Xiaotong Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Xiaobing Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Jingting Yao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Song Gao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
4
|
Subtirelu RC, Teichner EM, Ashok A, Parikh C, Talasila S, Matache IM, Alnemri AG, Anderson V, Shahid O, Mannam S, Lee A, Werner T, Revheim ME, Alavi A. Advancements in dendritic cell vaccination: enhancing efficacy and optimizing combinatorial strategies for the treatment of glioblastoma. Front Neurol 2023; 14:1271822. [PMID: 38020665 PMCID: PMC10644823 DOI: 10.3389/fneur.2023.1271822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Glioblastomas (GBM) are highly invasive, malignant primary brain tumors. The overall prognosis is poor, and management of GBMs remains a formidable challenge, necessitating novel therapeutic strategies such as dendritic cell vaccinations (DCVs). While many early clinical trials demonstrate an induction of an antitumoral immune response, outcomes are mixed and dependent on numerous factors that vary between trials. Optimization of DCVs is essential; the selection of GBM-specific antigens and the utilization of 18F-fludeoxyglucose Positron Emission Tomography (FDG-PET) may add significant value and ultimately improve outcomes for patients undergoing treatment for glioblastoma. This review provides an overview of the mechanism of DCV, assesses previous clinical trials, and discusses future strategies for the integration of DCV into glioblastoma treatment protocols. To conclude, the review discusses challenges associated with the use of DCVs and highlights the potential of integrating DCV with standard therapies.
Collapse
Affiliation(s)
- Robert C. Subtirelu
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Eric M. Teichner
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Arjun Ashok
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Chitra Parikh
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sahithi Talasila
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Irina-Mihaela Matache
- Department of Physiology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ahab G. Alnemri
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Victoria Anderson
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Osmaan Shahid
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Sricharvi Mannam
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Andrew Lee
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Thomas Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| | - Mona-Elisabeth Revheim
- Division of Technology and Innovation, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
5
|
Zhang Y, Li Q, Ding M, Xiu W, Shan J, Yuwen L, Yang D, Song X, Yang G, Su X, Mou Y, Teng Z, Dong H. Endogenous/Exogenous Nanovaccines Synergistically Enhance Dendritic Cell-Mediated Tumor Immunotherapy. Adv Healthc Mater 2023; 12:e2203028. [PMID: 36807733 PMCID: PMC11468714 DOI: 10.1002/adhm.202203028] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/20/2023] [Indexed: 02/20/2023]
Abstract
Traditional dendritic cell (DC)-mediated immunotherapy is usually suppressed by weak immunogenicity in tumors and generally leads to unsatisfactory outcomes. Synergistic exogenous/endogenous immunogenic activation can provide an alternative strategy for evoking a robust immune response by promoting DC activation. Herein, Ti3 C2 MXene-based nanoplatforms (termed MXP) are prepared with high-efficiency near-infrared photothermal conversion and immunocompetent loading capacity to form endogenous/exogenous nanovaccines. Specifically, the immunogenic cell death of tumor cells induced by the photothermal effects of the MXP can generate endogenous danger signals and antigens release to boost vaccination for DC maturation and antigen cross-presentation. In addition, MXP can deliver model antigen ovalbumin (OVA) and agonists (CpG-ODN) as an exogenous nanovaccine (MXP@OC), which further enhances DC activation. Importantly, the synergistic strategy of photothermal therapy and DC-mediated immunotherapy by MXP significantly eradicates tumors and enhances adaptive immunity. Hence, the present work provides a two-pronged strategy for improving immunogenicity and killing tumor cells to achieve a favorable outcome in tumor patients.
Collapse
Affiliation(s)
- Yu Zhang
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Weijun Xiu
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Jingyang Shan
- Department of NeurologyShenzhen Institute of Translational MedicineThe First Affiliated Hospital of Shenzhen UniversityShenzhen Second People's HospitalShenzhen518000P. R. China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Dongliang Yang
- School of Physical and Mathematical SciencesNanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
| | - Xuejiao Song
- School of Physical and Mathematical SciencesNanjing Tech University30 South Puzhu RoadNanjingJiangsu211816P. R. China
| | - Guangwen Yang
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Xiaodan Su
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Heng Dong
- Nanjing Stomatological HospitalMedical School of Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
6
|
Dong H, Li Q, Zhang Y, Ding M, Teng Z, Mou Y. Biomaterials Facilitating Dendritic Cell-Mediated Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301339. [PMID: 37088780 PMCID: PMC10288267 DOI: 10.1002/advs.202301339] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has exhibited remarkable clinical prospects because DCs play a central role in initiating and regulating adaptive immune responses. However, the application of traditional DC-mediated immunotherapy is limited due to insufficient antigen delivery, inadequate antigen presentation, and high levels of immunosuppression. To address these challenges, engineered biomaterials have been exploited to enhance DC-mediated immunotherapeutic effects. In this review, vital principal components that can enhance DC-mediated immunotherapeutic effects are first introduced. The parameters considered in the rational design of biomaterials, including targeting modifications, size, shape, surface, and mechanical properties, which can affect biomaterial optimization of DC functions, are further summarized. Moreover, recent applications of various engineered biomaterials in the field of DC-mediated immunotherapy are reviewed, including those serve as immune component delivery platforms, remodel the tumor microenvironment, and synergistically enhance the effects of other antitumor therapies. Overall, the present review comprehensively and systematically summarizes biomaterials related to the promotion of DC functions; and specifically focuses on the recent advances in biomaterial designs for DC activation to eradicate tumors. The challenges and opportunities of treatment strategies designed to amplify DCs via the application of biomaterials are discussed with the aim of inspiring the clinical translation of future DC-mediated cancer immunotherapies.
Collapse
Affiliation(s)
- Heng Dong
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Yu Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
7
|
Wang Y, Zhao Q, Zhao B, Zheng Y, Zhuang Q, Liao N, Wang P, Cai Z, Zhang D, Zeng Y, Liu X. Remodeling Tumor-Associated Neutrophils to Enhance Dendritic Cell-Based HCC Neoantigen Nano-Vaccine Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105631. [PMID: 35142445 PMCID: PMC9009112 DOI: 10.1002/advs.202105631] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/18/2022] [Indexed: 05/04/2023]
Abstract
Hepatocellular carcinoma (HCC) commonly emerges in an immunologically "cold" state, thereafter protects it away from cytolytic attack by tumor-infiltrating lymphocytes, resulting in poor response to immunotherapy. Herein, an acidic/photo-sensitive dendritic cell (DCs)-based neoantigen nano-vaccine has been explored to convert tumor immune "cold" state into "hot", and remodel tumor-associated neutrophils to potentiate anticancer immune response for enhancing immunotherapy efficiency. The nano-vaccine is constructed by SiPCCl2 -hybridized mesoporous silica with coordination of Fe(III)-captopril, and coating with exfoliated membrane of matured DCs by H22-specific neoantigen stimulation. The nano-vaccines actively target H22 tumors and induce immunological cell death to boost tumor-associated antigen release by the generation of excess 1 O2 through photodynamic therapy, which act as in situ tumor vaccination to strengthen antitumor T-cell response against primary H22 tumor growth. Interestingly, the nano-vaccines are also home to lymph nodes to directly induce the activation and proliferation of neoantigen-specific T cells to suppress the primary/distal tumor growth. Moreover, the acidic-triggered captopril release in tumor microenvironment can polarize the protumoral N2 phenotype neutrophils to antitumor N1 phenotype for improving the immune effects to achieve complete tumor regression (83%) in H22-bearing mice and prolong the survival time. This work provides an alternative approach for developing novel HCC immunotherapy strategies.
Collapse
Affiliation(s)
- Yunhao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Qingfu Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Binyu Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Naishun Liao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Peiyuan Wang
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Liver Disease CenterThe First Affiliated Hospital of Fujian Medical UniversityFuzhou350005P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
| |
Collapse
|
8
|
Roufarshbaf M, Esmaeil N, Akbari V. Comparison of four methods of colon cancer cell lysates preparation for ex vivo maturation of dendritic cells. Res Pharm Sci 2021; 17:43-52. [PMID: 34909043 PMCID: PMC8621848 DOI: 10.4103/1735-5362.329925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/16/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background and purpose: One of the most effective methods for the development of dendritic cell (DC)-based cancer immunotherapy is ex vivo pulsing of DCs with tumor cell lysates (TCLs). However, antitumor immune responses of DCs are significantly influenced by how TCLs were prepared. Here, we compared four strategies of TCL preparation derived from colon cancer cells, HT-29, for ex vivo maturation of DCs. Experimental approach: Peripheral blood monocytes were isolated from healthy volunteers and incubated with granulocyte macrophage colony-stimulating factor and interleukin (IL)-4 to differentiate into DCs in 10 days. Morphological properties, phenotype characteristics (i.e. CD83 and CD86), and cytokine production (i.e. IL-10 and interferon gamma) of DCs loaded with four different TCLs (i.e. freeze-thaw, hypochlorous acid (HOCl), hyperthermia, and UV irradiation) were evaluated. Findings/Results: HOCl preparations led to the generation of DCs with higher surface expression of maturation biomarkers (particularly CD83), while UV preparations resulted in DCs with lower levels of surface biomarkers compared to freeze-thawed preparations. The supernatant of DCs pulsed with HOCl preparation showed significantly higher levels of interferon gamma and lower levels of IL-10 compared with the other groups. Conclusion and implications: Our results suggest that pulsing DCs with HOCl preparation may be superior to other TCLs preparation strategies, possibly due to induction of rapid necrotic cell death.
Collapse
Affiliation(s)
- Mohammad Roufarshbaf
- Student Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
9
|
Martins MB, de Assis Batista F, Bufalo NE, Peres KC, Meneghetti M, da Assumpção LVM, Ward LS. Polymorphisms of IL-4 and IL-4R are associated to some demographic characteristics of differentiated thyroid cancer patients but are not determinants of risk in the Brazilian population. Endocrine 2021; 72:470-478. [PMID: 32902809 DOI: 10.1007/s12020-020-02486-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/28/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND IL-4 is known to present abnormal expression in thyroid tumors and SNPs in the IL-4 and its receptor IL-4R genes are associated to risk and mortality of various types of cancer. METHODS In order to evaluate their role in differentiated thyroid cancer (DTC), we investigated genetic frequencies of two IL-4 promoter SNPs (rs2070874 C>T, rs2243250 C>T) and four non-synonymous SNPs of the IL-4R gene (rs1805010 A>G, rs1805012 C>T, rs1805013 C>T, rs1801275 A>G) in 300 DTC patients matched to 300 controls. All patients were managed according to current guidelines and followed-up for a period of 12-252 months (69.20 ± 52.70 months). RESULTS Although none of the six investigated SNPs showed association with risk of DTC, rs1805010 was associated with age of diagnosis and the SNPs rs1805012 and rs1801275 were associated to gender. Further, in-silico analysis showed that all these three SNPs were able to cause decreased stability of the protein. We were not able to demonstrate any other association to clinical features of aggressiveness or to patients' prognosis. CONCLUSIONS These findings indicate that although genetic variants in IL-4 and IL-4R do not influence the risk or outcome of DTC patients, their influence on the behavior of thyroid tumors deserves further investigation.
Collapse
Affiliation(s)
- Mariana Bonjiorno Martins
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences (FCM), University of Campinas (Unicamp), 126, Tessália Vieira de Camargo St., Campinas, SP, Brazil.
| | - Fernando de Assis Batista
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences (FCM), University of Campinas (Unicamp), 126, Tessália Vieira de Camargo St., Campinas, SP, Brazil
| | - Natassia Elena Bufalo
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences (FCM), University of Campinas (Unicamp), 126, Tessália Vieira de Camargo St., Campinas, SP, Brazil
| | - Karina Colombera Peres
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences (FCM), University of Campinas (Unicamp), 126, Tessália Vieira de Camargo St., Campinas, SP, Brazil
| | - Murilo Meneghetti
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences (FCM), University of Campinas (Unicamp), 126, Tessália Vieira de Camargo St., Campinas, SP, Brazil
| | - Ligia Vera Montali da Assumpção
- Division of Endocrinology, Department of Medicine, Faculty of Medical Sciences-University of Campinas (Unicamp), 251, Vital Brazil St., Campinas, SP, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, School of Medical Sciences (FCM), University of Campinas (Unicamp), 126, Tessália Vieira de Camargo St., Campinas, SP, Brazil
| |
Collapse
|
10
|
Ramanathan R, Choudry H, Jones H, Girgis M, Gooding W, Kalinski P, Bartlett DL. Phase II Trial of Adjuvant Dendritic Cell Vaccine in Combination with Celecoxib, Interferon-α, and Rintatolimod in Patients Undergoing Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy for Peritoneal Metastases. Ann Surg Oncol 2021; 28:4637-4646. [PMID: 33400000 PMCID: PMC7784622 DOI: 10.1245/s10434-020-09464-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/25/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Peritoneal metastases portend poor prognosis in the setting of standard chemotherapy. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS/HIPEC) improves outcomes, but relapse is common. We report a phase II trial evaluating the safety and efficacy of adjuvant αDC1 vaccination with chemokine modulation (CKM) after CRS/HIPEC. METHODS Patients undergoing CRS/HIPEC for appendiceal cancer, colorectal cancer, or peritoneal mesothelioma were enrolled. In addition to standard adjuvant chemotherapy, patients received intranodal and intradermal injections of autologous tumor-loaded αDC1 vaccine. After each vaccine booster, patients received CKM over 4 days, consisting of celecoxib, interferon (IFN)-α, and rintatolimod. RESULTS Forty-six patients underwent CRS/HIPEC followed by αDC1 treatment, including 24 appendiceal primaries, 20 colorectal, and 2 mesotheliomas. DC maturation was successful, with 97% expressing HLA-DR and CD86. Tumor cell recovery from peritoneal tumors was challenging, resulting in only 17% of patients receiving the target dose of αDC1. The αDC1 and CKM regimen was well tolerated. CKM successfully modulated serum inflammatory cytokine and chemokine levels. Median progression-free survival (PFS) for appendiceal primaries was 50.4, 34.2, and 8.9 months for grade 1, 2, and 3 tumors, respectively, while median PFS for colorectal cancer was 20.5 and 8.9 months for moderately and poorly differentiated tumors, respectively. CONCLUSIONS Adjuvant autologous tumor antigen-loaded αDC1 vaccine and CKM is well tolerated. The mucinous nature of peritoneal metastases limits the feasibility of obtaining adequate autologous tumor cells. The improvement in median PFS did not meet our predefined thresholds, leading us to conclude that αDC1 vaccination is not appropriate for patients undergoing CRS/HIPEC for peritoneal metastases.
Collapse
Affiliation(s)
- Rajesh Ramanathan
- Division of Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Department of Surgery, Banner MD Anderson Cancer Center, Phoenix, AZ, USA
| | - Haroon Choudry
- Division of Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Heather Jones
- Division of Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Mark Girgis
- Division of Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Department of Surgery, UCLA Health, Los Angeles, CA, USA
| | - William Gooding
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pawel Kalinski
- Medical Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - David L Bartlett
- Division of Surgical Oncology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA. .,Department of Surgery, AHN Cancer Institute, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
De Vito A, Orecchia P, Balza E, Reverberi D, Scaldaferri D, Taramelli R, Noonan DM, Acquati F, Mortara L. Overexpression of Murine Rnaset2 in a Colon Syngeneic Mouse Carcinoma Model Leads to Rebalance of Intra-Tumor M1/M2 Macrophage Ratio, Activation of T Cells, Delayed Tumor Growth, and Rejection. Cancers (Basel) 2020; 12:E717. [PMID: 32197460 PMCID: PMC7140044 DOI: 10.3390/cancers12030717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Human RNASET2 acts as a powerful oncosuppressor protein in in vivo xenograft-based murine models of human cancer. Secretion of RNASET2 in the tumor microenvironment seems involved in tumor suppression, following recruitment of M1-polarized macrophages. Here, we report a murine Rnaset2-based syngeneic in vivo assay. BALB/c mice were injected with parental, empty vector-transfected or murine Rnaset2-overexpressing mouse C51 or TS/A syngeneic cells and tumor growth pattern and immune cells distribution in tumor mass were investigated. Compared to control cells, mouse Rnaset2-expressing C51 cells showed strong delayed tumor growth. CD86+ M1 macrophages were massively recruited in Rnaset2-expressing C51-derived tumors, with concomitant inhibition of MDSCs and CD206+ M2 macrophages recruitment. At later times, a relevant expansion of intra-tumor CD8+ T cells was also observed. After re-challenge with C51 parental cells, most mice previously injected with Rnaset2-expressing C51 cells still rejected C51 tumor cells, suggesting a Rnaset2-mediated T cell adaptive immune memory response. These results point at T2 RNases as evolutionary conserved oncosuppressors endowed with the ability to inhibit cancer growth in vivo through rebalance of intra-tumor M1/M2 macrophage ratio and concomitant recruitment of adaptive anti-tumor CD8+ T cells.
Collapse
Affiliation(s)
- Annarosaria De Vito
- Human Genetics Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.D.V.); (D.S.); (R.T.); (F.A.)
| | - Paola Orecchia
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy (D.R.)
| | - Enrica Balza
- Cell Biology Unit, IRCSS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | - Daniele Reverberi
- Molecular Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy (D.R.)
| | - Debora Scaldaferri
- Human Genetics Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.D.V.); (D.S.); (R.T.); (F.A.)
| | - Roberto Taramelli
- Human Genetics Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.D.V.); (D.S.); (R.T.); (F.A.)
| | - Douglas M. Noonan
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
- Scientific and Technology Pole, IRCCS MultiMedica, 20138 Milan, Italy
| | - Francesco Acquati
- Human Genetics Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (A.D.V.); (D.S.); (R.T.); (F.A.)
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy;
| |
Collapse
|
12
|
Chang H, Zou Z, Wang Q, Li J, Jin H, Yin Q, Xing D. Targeting and Specific Activation of Antigen-Presenting Cells by Endogenous Antigen-Loaded Nanoparticles Elicits Tumor-Specific Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1900069. [PMID: 31921548 PMCID: PMC6947714 DOI: 10.1002/advs.201900069] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 08/03/2019] [Indexed: 05/19/2023]
Abstract
Immunotherapy has shown tremendous promise for improving cancer treatment. Unfortunately, antigen-presenting cells (APCs) in cancer patients cannot effectively recognize and process tumor antigens to activate host immune responses. In this study, an approach is developed to improve cancer immunotherapy that utilizes endogenous antigen-carrying nanoparticles (EAC-NPs), which encompasses a set of antigens isolated from solid tumors and adjuvants. The EAC-NPs specifically target APCs and subsequently result in enhanced T cell responses and improved antitumor efficacy. Mechanistic studies reveal that the EAC-NPs enhance and prolong the presence of immune compounds in APCs, which ensure persistent antigen loading and stimulation, induce a rapid proliferation of CD4+ and CD8+ T cells, and significantly increase the ratios of intratumoral CD4+ T/Treg and CD8+ T/Treg. The work using nanotechnology provides a promising strategy in improving antitumor immunity by enhancing the immunogenicity and presentation of tumor self-antigens for cancer immunotherapy.
Collapse
Affiliation(s)
- Hao‐Cai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhou510631China
- College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| | - Zheng‐Zhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhou510631China
- College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| | - Qiu‐Hong Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhou510631China
- College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| | - Jie Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhou510631China
- College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhou510631China
- College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| | - Qian‐Xia Yin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhou510631China
- College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life ScienceSouth China Normal UniversityGuangzhou510631China
- College of BiophotonicsSouth China Normal UniversityGuangzhou510631China
| |
Collapse
|
13
|
Wildes TJ, Grippin A, Dyson KA, Wummer BM, Damiani DJ, Abraham RS, Flores CT, Mitchell DA. Cross-talk between T Cells and Hematopoietic Stem Cells during Adoptive Cellular Therapy for Malignant Glioma. Clin Cancer Res 2018; 24:3955-3966. [PMID: 29712687 PMCID: PMC6095818 DOI: 10.1158/1078-0432.ccr-17-3061] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 01/05/2023]
Abstract
Purpose: Adoptive T-cell immunotherapy (ACT) has emerged as a viable therapeutic for peripheral and central nervous system (CNS) tumors. In peripheral cancers, optimal efficacy of ACT is reliant on dendritic cells (DCs) in the tumor microenvironment. However, the CNS is largely devoid of resident migratory DCs to function as antigen-presenting cells during immunotherapy. Herein, we demonstrate that cellular interactions between adoptively transferred tumor-reactive T cells and bone marrow-derived hematopoietic stem and progenitor cells (HSPCs) lead to the generation of potent intratumoral DCs within the CNS compartment.Experimental Design: We evaluated HSPC differentiation during ACT in vivo in glioma-bearing hosts and HSPC proliferation and differentiation in vitro using a T-cell coculture system. We utilized FACS, ELISAs, and gene expression profiling to study the phenotype and function of HSPC-derived cells ex vivo and in vivo To demonstrate the impact of HSPC differentiation and function on antitumor efficacy, we performed survival experiments.Results: Transfer of HSPCs with concomitant ACT led to the production of activated CD86+CD11c+MHCII+ cells consistent with DC phenotype and function within the brain tumor microenvironment. These intratumoral DCs largely supplanted abundant host myeloid-derived suppressor cells. We determined that during ACT, HSPC-derived cells in gliomas rely on T-cell-released IFNγ to differentiate into DCs, activate T cells, and reject intracranial tumors.Conclusions: Our data support the use of HSPCs as a novel cellular therapy. Although DC vaccines induce robust immune responses in the periphery, our data demonstrate that HSPC transfer uniquely generates intratumoral DCs that potentiate T-cell responses and promote glioma rejection in situClin Cancer Res; 24(16); 3955-66. ©2018 AACR.
Collapse
Affiliation(s)
- Tyler J Wildes
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Adam Grippin
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Kyle A Dyson
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Brandon M Wummer
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - David J Damiani
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Rebecca S Abraham
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Catherine T Flores
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida.
| | - Duane A Mitchell
- University of Florida Brain Tumor Immunotherapy Program, Preston A. Wells, Jr. Center for Brain Tumor Therapy, Lillian S. Wells Department of Neurosurgery, McKnight Brain Institute, University of Florida, Gainesville, Florida.
| |
Collapse
|
14
|
Jung SH, Lee HJ, Lee YK, Yang DH, Kim HJ, Rhee JH, Emmrich F, Lee JJ. A phase I clinical study of autologous dendritic cell therapy in patients with relapsed or refractory multiple myeloma. Oncotarget 2018; 8:41538-41548. [PMID: 28088784 PMCID: PMC5522196 DOI: 10.18632/oncotarget.14582] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/03/2017] [Indexed: 11/25/2022] Open
Abstract
Cellular immunotherapy is emerging as a potential immunotherapeutic modality in multiple myeloma (MM). We have developed potent immunotherapeutic agent (VAX-DC/MM) generated by dendritic cells (DCs) loaded with autologous myeloma cells irradiated with ultraviolet B. In this study, we evaluated the safety and efficacy of VAX-DC/MM in patients with relapsed or refractory MM. This trial enrolled relapsed or refractory MM patients who had received both thalidomide- and bortezomib-based therapies. Patients received the intradermal VAX-DC/MM injection every week for 4 weeks. Patients were treated with 5 × 106 or 10 × 106 cells, with nine patients treated at a higher dose. The median time from diagnosis to VAX-DC/MM therapy was 56.6 months (range, 28.5–130.5). Patients had received a median of five prior treatments, and 75% had received autologous stem cell transplantation. VAX-DC therapy was well-tolerated, and the most frequent adverse events were local reactions at the injection site and infusion-related reactions. In seven of nine patients who received 10×106 cells, an immunological response (77.8%) was observed by interferon-gamma ELISPOT assay or a mixed lymphocyte reaction assay for T-cell proliferation. The clinical benefit rate was 66.7% including one (11.1%) with minor response and five (55.6%) with stable disease; three (33.3%) patients showed disease progression. In conclusion, VAX-DC/MM therapy was well-tolerated, and had disease-stabilizing activity in heavily pretreated MM cases. Further studies are needed to increase the efficacy of VAX-DC/MM in patients with MM.
Collapse
Affiliation(s)
- Sung-Hoon Jung
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyun-Ju Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Youn-Kyung Lee
- Research Institute, Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| | - Deok-Hwan Yang
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Joon Haeng Rhee
- Research Institute, Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea.,Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Frank Emmrich
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Je-Jung Lee
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Research Institute, Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
15
|
Obermajer N, Urban J, Wieckowski E, Muthuswamy R, Ravindranathan R, Bartlett DL, Kalinski P. Promoting the accumulation of tumor-specific T cells in tumor tissues by dendritic cell vaccines and chemokine-modulating agents. Nat Protoc 2018; 13:335-357. [PMID: 29345636 DOI: 10.1038/nprot.2017.130] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This protocol describes how to induce large numbers of tumor-specific cytotoxic T cells (CTLs) in the spleens and lymph nodes of mice receiving dendritic cell (DC) vaccines and how to modulate tumor microenvironments (TMEs) to ensure effective homing of the vaccination-induced CTLs to tumor tissues. We also describe how to evaluate the numbers of tumor-specific CTLs within tumors. The protocol contains detailed information describing how to generate a specialized DC vaccine with augmented ability to induce tumor-specific CTLs. We also describe methods to modulate the production of chemokines in the TME and show how to quantify tumor-specific CTLs in the lymphoid organs and tumor tissues of mice receiving different treatments. The combined experimental procedure, including tumor implantation, DC vaccine generation, chemokine-modulating (CKM) approaches, and the analyses of tumor-specific systemic and intratumoral immunity is performed over 30-40 d. The presented ELISpot-based ex vivo CTL assay takes 6 h to set up and 5 h to develop. In contrast to other methods of evaluating tumor-specific immunity in tumor tissues, our approach allows detection of intratumoral T-cell responses to nonmanipulated weakly immunogenic cancers. This detection method can be performed using basic laboratory skills, and facilitates the development and preclinical evaluation of new immunotherapies.
Collapse
Affiliation(s)
- Nataša Obermajer
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julie Urban
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eva Wieckowski
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Pawel Kalinski
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Immunotransplantation Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- University of Pittsburgh Cancer Institute, Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
16
|
Francis L, Guo ZS, Liu Z, Ravindranathan R, Urban JA, Sathaiah M, Magge D, Kalinski P, Bartlett DL. Modulation of chemokines in the tumor microenvironment enhances oncolytic virotherapy for colorectal cancer. Oncotarget 2017; 7:22174-85. [PMID: 26956047 PMCID: PMC5008353 DOI: 10.18632/oncotarget.7907] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/20/2016] [Indexed: 12/31/2022] Open
Abstract
An oncolytic poxvirus such as vvDD-CXCL11 can generate potent systemic antitumor immunity as well as targeted oncolysis, yet the antitumor effect is limited probably due to limited homing to and suppressed activity of tumor-specific adaptive immune cells in the tumor microenvironment (TME). We reasoned that a chemokine modulating (CKM) drug cocktail, consisting of IFN-α, poly I:C, and a COX-2 inhibitor, may skew the chemokine (CK) and cytokine profile into a favorable one in the TME, and this pharmaceutical modulation would enhance both the trafficking into and function of antitumor immune cells in the TME, thus increasing therapeutic efficacy of the oncolytic virus. In this study we show for the first time in vivo that the CKM modulates the CK microenvironment but it does not modulate antitumor immunity by itself in a MC38 colon cancer model. Sequential treatment with the virus and then CKM results in the upregulation of Th1-attracting CKs and reduction of Treg-attracting CKs (CCL22 and CXCL12), concurrent with enhanced trafficking of tumor-specific CD8+ T cells and NK cells into the TME, thus resulting in the most significant antitumor activity and long term survival of tumor-bearing mice. This novel combined regimen, with the oncolytic virus (vvDD-CXCL11) inducing direct oncolysis and eliciting potent antitumor immunity, and the CKM inducing a favorable chemokine profile in the TME that promotes the trafficking and function of antitumor Tc1/Th1 and NK cells, may have great utility for oncolytic immunotherapy for cancer.
Collapse
Affiliation(s)
- Lily Francis
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zuqiang Liu
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Roshni Ravindranathan
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Julie A Urban
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Magesh Sathaiah
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Deepa Magge
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pawel Kalinski
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
17
|
Qin T, Ren Z, Huang Y, Song Y, Lin D, Li J, Ma Y, Wu X, Qiu F, Xiao Q. Selenizing Hericium erinaceus polysaccharides induces dendritic cells maturation through MAPK and NF-κB signaling pathways. Int J Biol Macromol 2017; 97:287-298. [DOI: 10.1016/j.ijbiomac.2017.01.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 10/20/2022]
|
18
|
Li J, Valentin A, Beach RK, Alicea C, Felber BK, Pavlakis GN. DNA is an efficient booster of dendritic cell-based vaccine. Hum Vaccin Immunother 2016; 11:1927-35. [PMID: 26125100 PMCID: PMC4635890 DOI: 10.1080/21645515.2015.1020265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DC-based therapeutic vaccines as a promising strategy against chronic infections and cancer have been validated in several clinical trials. However, DC-based vaccines are complex and require many in vitro manipulations, which makes this a personalized and expensive therapeutic approach. In contrast, DNA-based vaccines have many practical advantages including simplicity, low cost of manufacturing and potent immunogenicity already proven in non-human primates and humans. In this study, we explored whether DC-based vaccines can be simplified by the addition of plasmid DNA as prime or boost to achieve robust CD8-mediated immune responses. We compared the cellular immunity induced in BALB/c and C57BL/6 mice by DC vaccines, loaded either with peptides or optimized SIV Env DNA, and plasmid DNA-based vaccines delivered by electroporation (EP). We found that mature DC loaded with peptides (P-mDC) induced the highest CD8(+) T cell responses in both strains of mice, but those responses were significantly higher in the C57BL/6 model. A heterologous prime-boost strategy (P-DC prime-DNA boost) induced CD8(+) T cell responses similar to those obtained by the P-DC vaccine. Importantly, this strategy elicited robust polyfunctional T cells as well as highest antigen-specific central memory CD8+ T cells in C57BL/6 mice, suggesting long-term memory responses. These results indicate that a DC-based vaccine in combination with DNA in a heterologous DC prime-DNA boost strategy has potential as a repeatedly administered vaccine.
Collapse
Affiliation(s)
- Jinyao Li
- a Human Retrovirus Section; Vaccine Branch; Center for Cancer Research; National Cancer Institute ; Frederick , MD USA
| | | | | | | | | | | |
Collapse
|
19
|
Song L, Zhuo M, Tang Y, Chen X, Yu Y, Tang Z, Zang G. Ubiquitin-modified hepatitis B virus core antigen effectively facilitates antigen presentation and enhances cytotoxic T lymphocyte activity via the cytoplasmic transduction peptide in vitro. Mol Med Rep 2015; 12:289-96. [PMID: 25684256 DOI: 10.3892/mmr.2015.3352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 01/22/2015] [Indexed: 11/06/2022] Open
Abstract
Cluster of differentiation (CD)8+ cytotoxic T lymphocytes (CTLs) have a key role in the elimination of hepatitis B virus (HBV)-infected cells. Ubiquitin (Ub) functions as a marker for protein degradation, which may promote the generation of peptides appropriate for major histocompatibility complex class I presentation, while the HBV core antigen (HBcAg) possesses marked immunogenic properties. However, it remains to be elucidated whether Ub-modified HBcAg is able to effectively elicit significant CD8+ CTL activity. In order to address this issue, a prokaryotic vector was constructed to express the Ub-HBcAg-cytoplasmic transduction peptide (CTP). The fusion protein was successfully expressed and subsequently pulsed into bone-marrow-derived dendritic cells (DCs). It was confirmed that with assistance from the cell‑penetrating properties of CTP, the fusion protein was able to directly penetrate into the cytoplasm of DCs. The results revealed that the Ub-HBcAg-CTP fusion protein not only increased the expression of surface molecules in DCs and cytokine secretion from proliferating T cells, but also induced T cells to differentiate into specific CTLs and enhanced their antiviral ability. In conclusion, the Ub-HBcAg-CTP fusion protein promoted DC maturation, enhanced the presentation of targeting antigens and efficiently induced HBcAg‑specific CTL immune responses in vitro.
Collapse
Affiliation(s)
- Linlin Song
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Meng Zhuo
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yuyan Tang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Xiaohua Chen
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
20
|
Rizzo M, Bayo J, Piccioni F, Malvicini M, Fiore E, Peixoto E, García MG, Aquino JB, Gonzalez Campaña A, Podestá G, Terres M, Andriani O, Alaniz L, Mazzolini G. Low molecular weight hyaluronan-pulsed human dendritic cells showed increased migration capacity and induced resistance to tumor chemoattraction. PLoS One 2014; 9:e107944. [PMID: 25238610 PMCID: PMC4169605 DOI: 10.1371/journal.pone.0107944] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/18/2014] [Indexed: 12/12/2022] Open
Abstract
We have shown that ex vivo pre-conditioning of bone marrow-derived dendritic cells (DC) with low molecular weight hyaluronan (LMW HA) induces antitumor immunity against colorectal carcinoma (CRC) in mice. In the present study we investigated the effects of LMW HA priming on human-tumor-pulsed monocytes-derived dendritic cells (DC/TL) obtained from healthy donors and patients with CRC. LMW HA treatment resulted in an improved maturation state of DC/TL and an enhanced mixed leucocyte reaction activity in vivo. Importantly, pre-conditioning of DC/TL with LMW HA increased their ability to migrate and reduced their attraction to human tumor derived supernatants. These effects were associated with increased CCR7 expression levels in DC. Indeed, a significant increase in migratory response toward CCL21 was observed in LMW HA primed tumor-pulsed monocyte-derived dendritic cells (DC/TL/LMW HA) when compared to LWM HA untreated cells (DC/TL). Moreover, LMW HA priming modulated other mechanisms implicated in DC migration toward lymph nodes such as the metalloproteinase activity. Furthermore, it also resulted in a significant reduction in DC migratory capacity toward tumor supernatant and IL8 in vitro. Consistently, LMW HA dramatically enhanced in vivo DC recruitment to tumor-regional lymph nodes and reduced DC migration toward tumor tissue. This study shows that LMW HA--a poorly immunogenic molecule--represents a promising candidate to improve human DC maturation protocols in the context of DC-based vaccines development, due to its ability to enhance their immunogenic properties as well as their migratory capacity toward lymph nodes instead of tumors.
Collapse
Affiliation(s)
- Manglio Rizzo
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Juan Bayo
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Flavia Piccioni
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Mariana Malvicini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
| | - Esteban Fiore
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Estanislao Peixoto
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Mariana G. García
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
| | - Jorge B. Aquino
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
| | - Ariel Gonzalez Campaña
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Gustavo Podestá
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Marcelo Terres
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Oscar Andriani
- Department of Surgery, Hospital Austral, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
| | - Laura Alaniz
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
- CIT NOBA, Universidad Nacional del Noroeste de la Pcia de Bs. As (UNNOBA), Junín, Buenos Aires, Argentina
- * E-mail: (GM); (LA)
| | - Guillermo Mazzolini
- Gene Therapy Laboratory, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui-Pilar, Buenos Aires, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), CABA, Buenos Aires, Argentina
- * E-mail: (GM); (LA)
| |
Collapse
|
21
|
Jeong YJ, Kim JH, Hong JM, Kang JS, Kim HR, Lee WJ, Hwang YI. Vitamin C treatment of mouse bone marrow-derived dendritic cells enhanced CD8(+) memory T cell production capacity of these cells in vivo. Immunobiology 2014; 219:554-64. [PMID: 24698552 DOI: 10.1016/j.imbio.2014.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/16/2013] [Accepted: 03/12/2014] [Indexed: 12/13/2022]
Abstract
Vitamin C has been found to stimulate dendritic cells (DCs) to secrete more IL-12 and thereby drive naïve CD4(+) T cells to differentiate into Th1 cells. In the present study, we evaluated the effect of these vitamin C-treated DCs on CD8(+) T cell differentiation both in vitro and in vivo. Mouse bone marrow-derived DCs were prepared in the presence of GM-CSF and IL-15. With vitamin C treatment, these DCs, when LPS-stimulated, secreted more IL-12p70 and IL-15 than did untreated DCs. And when co-cultured with T cells, they yielded a higher frequency of IFN-γ(+) CD8(+) T cells. Moreover, we found that administering vitamin C-treated and tumor lysate-loaded DCs into mice yielded a higher frequency of CD44(high) CD62L(low) CD8(+) effector and effector memory T cells, which showed an increased ex vivo killing effect of the tumor cells. These DCs also elicited enhanced protective effects against inoculated tumor cells, most probably by way of the increased cytotoxic T cells, as was revealed by the decreased growth of the inoculated tumor cells in these mice. This ex vivo vitamin C treatment effect on DCs can be considered as a strategy for boosting DC vaccination potency against tumors.
Collapse
Affiliation(s)
- Young-Joo Jeong
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jin-Hee Kim
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jun-Man Hong
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Jae Seung Kang
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Hang-Rae Kim
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Wang Jae Lee
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Young-il Hwang
- Department of Anatomy, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea.
| |
Collapse
|
22
|
Huang D, Nie S, Jiang L, Xie M. A novel polysaccharide from the seeds of Plantago asiatica L. induces dendritic cells maturation through toll-like receptor 4. Int Immunopharmacol 2013; 18:236-43. [PMID: 24316254 DOI: 10.1016/j.intimp.2013.11.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/04/2013] [Accepted: 11/24/2013] [Indexed: 11/26/2022]
Abstract
In this study, we investigated the effect of a polysaccharide purified from the seeds of Plantago asiatica L. (PLP-2) on the phenotypic and functional maturation of murine bone marrow-derived dendritic cells (DCs) and relevant mechanisms. The results showed that PLP-2 increased the expression of maturation markers major histocompatibility complex II, CD86, CD80, and CD40 on DCs. Consistent with the changes in the phenotypic markers, functional assay for DCs maturation showed that PLP-2 decreased DCs endocytosis and increased intracellular interleukin (IL)-12 levels and allostimulatory activity. Furthermore, using a syngeneic T cell activation model, we found that PLP-2 treated DCs presented ovalbumin antigen to T cells more efficiently as demonstrated by increased T cell proliferation. In addition, the effects of PLP-2 on DCs were significantly impaired by treating the cells with anti-TLR4 antibody prior to PLP-2 treatment, implying direct interaction between PLP-2 and TLR4 on cell surface. These results suggested that PLP-2 may induce DCs maturation through TLR4. Our results may have important implications for our understanding on the molecular mechanisms of immunopotentiating action of the polysaccharides from plants.
Collapse
Affiliation(s)
- Danfei Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Leming Jiang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
23
|
Spadaro M, Montone M, Arigoni M, Cantarella D, Forni G, Pericle F, Pascolo S, Calogero RA, Cavallo F. Recombinant human lactoferrin induces human and mouse dendritic cell maturation via Toll-like receptors 2 and 4. FASEB J 2013; 28:416-29. [PMID: 24088817 DOI: 10.1096/fj.13-229591] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lactoferrin, a key component of innate immunity, is a cationic monomeric 80-kDa glycoprotein of the transferrin superfamily. Recombinant human lactoferrin, known as talactoferrin (TLF), induces a distinct functional maturation program in human dendritic cells (DCs) derived from peripheral blood monocytes. However, the receptors and molecular mechanisms involved in this induction have not been fully determined. By exploiting genome-wide transcription profiling of immature DCs, TNF-α- and IL-1β-matured DCs (m-DCs), and TLF-matured DCs (TLF-DCs), we have detected a set of transcripts specific for m-DCs and one specific for TLF-DCs. Functional network reconstruction highlighted, as expected, the association of m-DC maturation with IL-1β, TNF-α, and NF-κB, whereas TLF-DC maturation was associated with ERK and NF-κB. This involvement of ERK and NF-κB transduction factors suggests direct involvement of Toll-like receptors (TLRs) in TLF-induced maturation. We have used MyD88 inhibition and siRNA silencing TLRs on human DCs and mouse TLR-2-knockout cells, to show that TLF triggers the maturation of both human and mouse DCs through TLR-2 and TLR-4.
Collapse
Affiliation(s)
- Michela Spadaro
- 1Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza 52, Torino 10126, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kalinski P, Muthuswamy R, Urban J. Dendritic cells in cancer immunotherapy: vaccines and combination immunotherapies. Expert Rev Vaccines 2013; 12:285-95. [PMID: 23496668 DOI: 10.1586/erv.13.22] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Dendritic cells (DCs) are specialized immunostimulatory cells involved in the induction and regulation of immune responses. The feasibility of large-scale ex vivo generation of DCs from patients' monocytes allows for therapeutic application of ex vivo-cultured DCs to bypass the dysfunction of endogenous DCs, restore immune surveillance, induce cancer regression or stabilization or delay or prevent its recurrence. While the most common paradigm of the therapeutic application of DCs reflects their use as cancer 'vaccines', additional and potentially more effective possibilities include the use of patients' autologous DCs as parts of more comprehensive therapies involving in vivo or ex vivo induction of tumor-reactive T cells and the measures to counteract systemic and local immunosuppression in tumor-bearing hosts. Ex vivo-cultured DCs can be instructed to acquire distinct functions relevant for the induction of effective cancer immunity (DC polarization), such as the induction of different effector functions or different homing properties of tumor-specific T cells (delivery of 'signal 3' and 'signal 4'). These considerations highlight the importance of the application of optimized conditions for the ex vivo culture of DCs and the potential combination of DC therapies with additional immune interventions to facilitate the entry of DC-induced T cells to tumor tissues and their local antitumor functions.
Collapse
Affiliation(s)
- Pawel Kalinski
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
25
|
Xu Z, Ramishetti S, Tseng YC, Guo S, Wang Y, Huang L. Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis. J Control Release 2013; 172:259-265. [PMID: 24004885 DOI: 10.1016/j.jconrel.2013.08.021] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 11/19/2022]
Abstract
Immunotherapy has shown the potential to become an essential component of the successful treatment of various malignancies. In many cases, such as in melanoma, however, induction of a potent and specific T-cell response against the endogenous antigen or self-antigen still remains a major challenge. To induce a potent MHC I-restricted cytotoxic T-lymphocyte (CTL) response, cytosol delivery of an exogenous antigen into dendritic cells is preferred, if not required. Lipid-calcium-phosphate (LCP) nanoparticles represent a new class of intracellular delivery systems for impermeable drugs. We are interested in exploring the potential of LCP NPs for use as a peptide vaccine delivery system for cancer therapy. To increase the encapsulation of Trp2 peptide into the calcium phosphate precipitate core of LCP, two phosphor-serine residues were added to the N-terminal of the peptide (p-Trp2). CpG ODN was also co-encapsulated with p-Trp2 as an adjuvant. The NPs were further modified with mannose to enhance and prolong the cargo deposit into the lymph nodes (LNs), which ensured persistent antigen loading and stimulation. Compared with free Trp2 peptide/CpG, vaccination with LCP encapsulating p-Trp2 and CpG resulted in superior inhibition of tumor growth in both B16F10 subcutaneous and lung metastasis models. An IFN-γ production assay and in vivo CTL response study revealed that the improved efficacy was a result of a Trp2-specific immune response. Thus, encapsulation of phospho-peptide antigens into LCP may be a promising strategy for enhancing the immunogenicity of poorly immunogenic self-antigens for cancer therapy.
Collapse
Affiliation(s)
- Zhenghong Xu
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Srinivas Ramishetti
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yu-Cheng Tseng
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shutao Guo
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuhua Wang
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leaf Huang
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
26
|
Nanoparticle mediated co-delivery of paclitaxel and a TLR-4 agonist results in tumor regression and enhanced immune response in the tumor microenvironment of a mouse model. Int J Pharm 2013; 445:171-80. [DOI: 10.1016/j.ijpharm.2013.01.045] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 12/29/2022]
|
27
|
Abstract
Myeloid-derived suppressor cells (MDSCs) were initially reported as suppressor of the adaptive immune responses against cancer and other diseases. However, emerging evidence suggest that MDSCs may also support anti-tumor immune responses under certain conditions or may inhibit tumor growth. In the present mini-review, we suggest that such opposing functions of MDSCs are due to phenotypic plasticity of the myeloid cells, allowing them to produce a diverse form of morphology, physiological state, and function in response to environmental conditions. Therefore, they can be manipulated by means of immune modulators to overcome their immune suppressive function.
Collapse
Affiliation(s)
- Masoud H Manjili
- Department of Microbiology & Immunology, Virginia Commonwealth University, Massey Cancer Center, Richmond, Virginia 232989, USA.
| |
Collapse
|
28
|
Masuda Y, Inoue H, Ohta H, Miyake A, Konishi M, Nanba H. Oral administration of soluble β-glucans extracted from Grifola frondosa induces systemic antitumor immune response and decreases immunosuppression in tumor-bearing mice. Int J Cancer 2013; 133:108-19. [PMID: 23280601 DOI: 10.1002/ijc.27999] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/07/2012] [Accepted: 11/22/2012] [Indexed: 12/26/2022]
Abstract
Maitake D (MD)-Fraction is a highly purified soluble β-glucan derived from Grifola frondosa (an oriental edible mushroom). Intraperitoneal (i.p.) injection of MD-Fraction has been reported to inhibit tumor growth via enhancement of the host immune system. In this study, we demonstrated that oral administration of MD-Fraction as well as i.p. injection significantly inhibited tumor growth in murine tumor models. After oral administration, MD-Fraction was not transferred to the blood in its free form but was captured by antigen-presenting cells such as macrophages and dendritic cells (DCs) present in the Peyer's patch. The captured MD-Fraction was then transported to the spleen, thereby inducing the systemic immune response. Our study showed that MD-Fraction directly induced DC maturation via a C-type lectin receptor dectin-1 pathway. The therapeutic response of orally administered MD-Fraction was associated with (i) induced systemic tumor-antigen specific T cell response via dectin-1-dependent activation of DCs, (ii) increased infiltration of the activated T cells into the tumor and (iii) decreased number of tumor-caused immunosuppressive cells such as regulatory T cells and myeloid-derived suppressor cells. Our preclinical study suggests that MD-Fraction is a useful oral therapeutic agent in the management of patients with cancer.
Collapse
Affiliation(s)
- Yuki Masuda
- Department of Microbial Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyama-kitamachi, Higashinada-ku, Kobe, 658-8558, Japan.
| | | | | | | | | | | |
Collapse
|
29
|
Pandey VK, Shankar BS, Sainis KB. G1-4 A, an arabinogalactan polysaccharide from Tinospora cordifolia increases dendritic cell immunogenicity in a murine lymphoma model. Int Immunopharmacol 2012; 14:641-9. [DOI: 10.1016/j.intimp.2012.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 09/26/2012] [Accepted: 09/30/2012] [Indexed: 10/27/2022]
|
30
|
Budiu RA, Elishaev E, Brozick J, Lee M, Edwards RP, Kalinski P, Vlad AM. Immunobiology of human mucin 1 in a preclinical ovarian tumor model. Oncogene 2012; 32:3664-75. [PMID: 22964632 DOI: 10.1038/onc.2012.397] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 07/20/2012] [Indexed: 01/24/2023]
Abstract
Epithelial ovarian cancer is an aggressive malignancy, with a low 5-year median survival. Continued improvement on the development of more effective therapies depends in part on the availability of adequate preclinical models for in vivo testing of treatment efficacy. Mucin 1 (MUC1) glycoprotein is a tumor-associated antigen overexpressed in ovarian cancer cells, making it a potential target for immune therapy. To create a preclinical mouse model for MUC1-positive ovarian tumors, we generated triple transgenic (Tg) mice that heterozygously express human MUC1(+/-) as a transgene, and carry the conditional K-rasG12D oncoallele (loxP-Stop-loxP-K-ras(G12D/+)) and the floxed Pten gene (Pten/(loxP/loxP)). Injection of Cre recombinase-encoding adenovirus (AdCre) in the ovarian bursa of triple (MUC1KrasPten) Tg mice triggers ovarian tumors that, in analogy to human ovarian cancer, express strongly elevated MUC1 levels. The tumors metastasize loco-regionally and are accompanied by high serum MUC1, closely mimicking the human disease. Compared with the KrasPten mice with tumors, the MUC1KrasPten mice show increased loco-regional metastasis and augmented accumulation of CD4+Foxp3+ immune-suppressive regulatory T cells. Vaccination of MUC1KrasPten mice with type 1 polarized dendritic cells (DC1) loaded with a MUC1 peptide (DC1-MUC1) can circumvent tumor-mediated immune suppression in the host, activate multiple immune effector genes and effectively prolong survival. Our studies report the first human MUC1-expressing, orthotopic ovarian tumor model, reveal novel MUC1 functions in ovarian cancer biology and demonstrate its suitability as a target for immune-based therapies.
Collapse
Affiliation(s)
- R A Budiu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Optimizing dendritic cell-based immunotherapy: tackling the complexity of different arms of the immune system. Mediators Inflamm 2012; 2012:690643. [PMID: 22851815 PMCID: PMC3407661 DOI: 10.1155/2012/690643] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 06/17/2012] [Indexed: 02/08/2023] Open
Abstract
Earlier investigations have revealed a surprising complexity and variety in the range of interaction between cells of the innate and adaptive immune system. Our understanding of the specialized roles of dendritic cell (DC) subsets in innate and adaptive immune responses has been significantly advanced over the years. Because of their immunoregulatory capacities and because very small numbers of activated DC are highly efficient at generating immune responses against antigens, DCs have been vigorously used in clinical trials in order to elicit or amplify immune responses against cancer and chronic infectious diseases. A better insight in DC immunobiology and function has stimulated many new ideas regarding the potential ways forward to improve DC therapy in a more fundamental way. Here, we discuss the continuous search for optimal in vitro conditions in order to generate clinical-grade DC with a potent immunogenic potential. For this, we explore the molecular and cellular mechanisms underlying adequate immune responses and focus on most favourable DC culture regimens and activation stimuli in humans. We envisage that by combining each of the features outlined in the current paper into a unified strategy, DC-based vaccines may advance to a higher level of effectiveness.
Collapse
|
32
|
Nguyen-Pham TN, Lee YK, Lee HJ, Kim MH, Yang DH, Kim HJ, Lee JJ. Cellular immunotherapy using dendritic cells against multiple myeloma. THE KOREAN JOURNAL OF HEMATOLOGY 2012; 47:17-27. [PMID: 22479274 PMCID: PMC3317466 DOI: 10.5045/kjh.2012.47.1.17] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/09/2012] [Accepted: 03/02/2012] [Indexed: 11/17/2022]
Abstract
Cellular therapy with dendritic cells (DCs) is emerging as a useful immunotherapeutic tool to treat multiple myeloma (MM). DC-based idiotype vaccination was recently suggested to induce idiotype-specific immune responses in MM patients. However, the clinical results so far have been largely disappointing, and the clinical effectiveness of such vaccinations in MM still needs to be demonstrated. DC-based therapies against MM may need to be boosted with other sources of tumor-associated antigens, and potent DCs should be recruited to increase the effectiveness of treatment. DCs with both high migratory capacity and high cytokine production are very important for effective DC-based cancer vaccination in order to induce high numbers of Th1-type CD4+ T cells and CD8+ cytotoxic T lymphocytes. The tumor microenvironment is also important in the regulation of tumor cell growth, proliferation, and the development of therapeutic resistance after treatment. In this review, we discuss how the efficacy of DC vaccination in MM can be improved. In addition, novel treatment strategies that target not only myeloma cells but also the tumor microenvironment are urgently needed to improve treatment outcomes.
Collapse
Affiliation(s)
- Thanh-Nhan Nguyen-Pham
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | | | | | | | | | | | | |
Collapse
|
33
|
Chen JH, Yu YS, Chen XH, Liu HH, Zang GQ, Tang ZH. Enhancement of CTLs induced by DCs loaded with ubiquitinated hepatitis B virus core antigen. World J Gastroenterol 2012; 18:1319-27. [PMID: 22493545 PMCID: PMC3319958 DOI: 10.3748/wjg.v18.i12.1319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether hepatitis B virus (HBV) could induce a hepatitis B virus core antigen (HBcAg)-specific cytotoxic T lymphocyte (CTL) response in vitro by dendritic cells (DCs) transduced with lentiviral vector-encoding ubiquitinated hepatitis B virus core antigen (LV-Ub-HBcAg).
METHODS: Recombinant LV-Ub-HBcAg were transfected into highly susceptible 293 T cells to obtain high virus titres. Bone marrow-derived DCs isolated from BALB/c mice were cultured with recombinant granulocyte-macrophage colony-stimulating factor and recombinant interleukin (IL)-4. LV-Ub-HBcAg, lentiviral vector-encoding hepatitis B virus core antigen (LV-HBcAg), lentiviral vector (LV) or lipopolysaccharide were added to induce DC maturation, and the DC phenotypes were analyzed by flow cytometry. The level of IL-12 in the supernatant was detected by enzyme-linked immunosorbent assay (ELISA). T lymphocytes were proliferated using Cell Counting Kit-8. DCs were cultured and induced to mature using different LVs, and co-cultured with allogeneic T cells to detect the secretion levels of IL-2, IL-4, IL-10 and interferon-γ in the supernatants of T cells by ELISA. Intracellular cytokines of proliferative T cells were analyzed by flow cytometry, and specific CTL activity was measured by a lactate dehydrogenase release assay.
RESULTS: LV-Ub-HBcAg-induced DCs secreted more IL-12 and upregulated the expression of CD80, CD86 and major histocompatibility class II. DCs sensitised by different LVs effectively promoted cytokine secretion; the levels of IL-2 and interferon-γ induced by LV-Ub-HBcAg were higher than those induced by LV-HBcAg. Compared with LV-HBcAg-transduced DCs, LV-Ub-HBcAg-transduced DCs more efficiently stimulated the proliferation of T lymphocytes and generated HBcAg-specific cytotoxic T lymphocytes.
CONCLUSION: LV-Ub-HBcAg effectively induced DC maturation. The mature DCs efficiently induced T cell polarisation to Th1 and generated HBcAg-specific CTLs.
Collapse
|
34
|
Spranger S, Frankenberger B, Schendel DJ. NOD/scid IL-2Rg(null) mice: a preclinical model system to evaluate human dendritic cell-based vaccine strategies in vivo. J Transl Med 2012; 10:30. [PMID: 22364226 PMCID: PMC3309948 DOI: 10.1186/1479-5876-10-30] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/25/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND To date very few systems have been described for preclinical investigations of human cellular therapeutics in vivo. However, the ability to carry out comparisons of new cellular vaccines in vivo would be of substantial interest for design of clinical studies. Here we describe a humanized mouse model to assess the efficacy of various human dendritic cell (DC) preparations. Two reconstitution regimes of NOD/scid IL2Rg(null) (NSG) mice with adult human peripheral blood mononuclear cells (PBMC) were evaluated for engraftment using 4-week and 9-week schedules. This led to selection of a simple and rapid protocol for engraftment and vaccine evaluation that encompassed 4 weeks. METHODS NSG recipients of human PBMC were engrafted over 14 days and then vaccinated twice with autologous DC via intravenous injection. Three DC vaccine formulations were compared that varied generation time in vitro (3 days versus 7 days) and signals for maturation (with or without Toll-like receptor (TLR)3 and TLR7/8 agonists) using MART-1 as a surrogate antigen, by electroporating mature DC with in vitro transcribed RNA encoding full length protein. After two weekly vaccinations, the splenocyte populations containing human lymphocytes were recovered 7 days later and assessed for MART-1-specific immune responses using MHC-multimer-binding assays and functional assessment of specific killing of melanoma tumor cell lines. RESULTS Human monocyte-derived DC generated in vitro in 3 days induced better MART-1-specific immune responses in the autologous donor T cells present in the humanized NSG mice. Moreover, consistent with our in vitro observations, vaccination using mature DC activated with TLR3 and TLR7/8 agonists resulted in enhanced immune responses in vivo. These findings led to a ranking of the DC vaccine effects in vivo that reflected the hierarchy previously found for these mature DC variations in vitro. CONCLUSIONS This humanized mouse model system enables comparisons among different DC vaccine types to be rapidly assessed in vivo. In addition, ex vivo analyses of human CD3+ T cells recovered from the spleens of these mice are also possible, including studies on lymphocyte subsets, Th1/Th2 polarization, presence of regulatory T cells and the impact of DC vaccination on their functions.
Collapse
Affiliation(s)
- Stefani Spranger
- Institute of Molecular Immunology, Helmholtz Zentrum München, Marchioninistrasse 25, 81377 Munich, Germany
| | | | | |
Collapse
|
35
|
Kono M, Nakamura Y, Suda T, Uchijima M, Tsujimura K, Nagata T, Giermasz AS, Kalinski P, Nakamura H, Chida K. Enhancement of protective immunity against intracellular bacteria using type-1 polarized dendritic cell (DC) vaccine. Vaccine 2012; 30:2633-9. [PMID: 22365841 DOI: 10.1016/j.vaccine.2012.02.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 11/30/2022]
Abstract
The development of effective vaccine strategies for intracellular bacteria, including tuberculosis, is one of the major frontiers of medical research. Our previous studies showed that dendritic cell (DC) vaccine is a promising approach for eliciting protective immunity against intracellular bacteria. However, it has been reported that standard fully mature DCs show reduced ability to produce IL-12p70 upon subsequent interaction with antigen (Ag)-specific T cells, limiting their in vivo performance for vaccines. Recently, we found that such "DC exhaustion" could be prevented by the presence of IL-4 and IFN-γ during the maturation of mouse DCs (type-1 polarization), resulting in improved induction of anti-tumor immunity in cancer. Here we show that such type-1 polarized DCs promote dramatic enhancement of protective immunity against an intracellular bacterium, Listeria monocytogenes. Murine bone marrow-derived DCs were cultured and matured with LPS, IL-4 and IFN-γ (type-1 polarized DCs), and with LPS alone (non-polarized DCs). DCs were loaded with listeriolysin O (LLO) 91-99, H2-K(d)-restricted epitope of L. monocytogenes, and were injected into naïve BALB/c mice intravenously. Type-1 polarized DCs produced significantly higher levels of IL-12p70 than non-polarized DCs in vitro, and this vaccine strongly enhanced LLO 91-99-specific CD8(+) T cells exhibiting epitope-specific cytotoxic activity and IFN-γ production, leading to significant induction of protective immunity against L. monocytogenes. Type-1 polarized DCs are potential candidates for enhancing protective immunity in the design of effective vaccination strategies against intracellular bacteria.
Collapse
Affiliation(s)
- Masato Kono
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kovalcsik E, Lowe K, Fischer M, Dalgleish A, Bodman-Smith MD. Poly(I:C)-induced tumour cell death leads to DC maturation and Th1 activation. Cancer Immunol Immunother 2011; 60:1609-24. [PMID: 21691724 PMCID: PMC11028976 DOI: 10.1007/s00262-011-1058-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Accepted: 05/30/2011] [Indexed: 01/23/2023]
Abstract
Dendritic cells (DCs) have the ability to generate peptide epitopes for MHC class I molecules derived from apoptotic tumour cells for direct recognition by cytotoxic T cells. This function has lead to DCs being used in vaccine strategies. In this study, we investigate the effect of inducing apoptosis in tumour cell lines using IFN-γ and poly(I:C), the subsequent maturation of the endocytosing DC and its ability to direct the resulting T cell response. We show that uptake of poly(I:C)-induced apoptotic tumour cells leads to DC maturation and activation with a Th1 cell polarising capacity. In contrast, these effects are not seen by DCs loaded with γ-irradiated apoptotic tumour cells. We propose that the manner in which tumour cells are induced to die can have a profound effect on the endocytosing DC and the resulting T cell response.
Collapse
Affiliation(s)
- Edit Kovalcsik
- Systems Immunology Group, Cellular and Molecular Medicine, St George’s University of London, Cranmer Terrace, London, SW17 ORE UK
| | - Katie Lowe
- Systems Immunology Group, Cellular and Molecular Medicine, St George’s University of London, Cranmer Terrace, London, SW17 ORE UK
| | - Mike Fischer
- Systems Immunology Group, Cellular and Molecular Medicine, St George’s University of London, Cranmer Terrace, London, SW17 ORE UK
| | - Angus Dalgleish
- Systems Immunology Group, Cellular and Molecular Medicine, St George’s University of London, Cranmer Terrace, London, SW17 ORE UK
| | - Mark D. Bodman-Smith
- Systems Immunology Group, Cellular and Molecular Medicine, St George’s University of London, Cranmer Terrace, London, SW17 ORE UK
| |
Collapse
|
37
|
Gerdemann U, Katari U, Christin AS, Cruz CR, Tripic T, Rousseau A, Gottschalk SM, Savoldo B, Vera JF, Heslop HE, Brenner MK, Bollard CM, Rooney CM, Leen AM. Cytotoxic T lymphocytes simultaneously targeting multiple tumor-associated antigens to treat EBV negative lymphoma. Mol Ther 2011; 19:2258-68. [PMID: 21915103 DOI: 10.1038/mt.2011.167] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although immunotherapy with Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes (CTLs) can treat EBV-associated Hodgkin and non-Hodgkin lymphoma (HL/NHL), more than 50% of such tumors are EBV negative. We now describe an approach that allows us to consistently generate, in a single line, CTLs that recognize a wide spectrum of nonviral tumor-associated antigens (TAAs) expressed by human HL/NHL, including Survivin, MAGE-A4, Synovial sarcoma X (SSX2), preferentially expressed antigen in melanoma (PRAME) and NY-ESO-1. We could generate these CTLs from nine of nine healthy donors and five of eight lymphoma patients, irrespective of human leukocyte antigen (HLA) type. We reactivated TAA-directed T cells ex vivo, by stimulation with dendritic cells (DCs) pulsed with overlapping peptide libraries spanning the chosen antigens in the presence of an optimized Th1-polarizing, prosurvival/proliferative and Treg inhibitory cytokine combination. The resultant lines of CD4(+) and CD8(+), polycytokine-producing T cells are directed against a multiplicity of epitopes expressed on the selected TAAs, with cytolytic activity against autologous tumor cells. Infusion of such multispecific monocultures may extend the benefits of CTL therapy to treatment even of EBV negative HL and NHL.
Collapse
Affiliation(s)
- Ulrike Gerdemann
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital, Texas Children's Hospital, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schwaab T, Ernstoff MS. Therapeutic vaccines in renal cell carcinoma. THERAPY (LONDON, ENGLAND : 2004) 2011; 4:369-377. [PMID: 21869865 PMCID: PMC3159492 DOI: 10.2217/thy.11.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Metastatic renal cell carcinoma (mRCC) is a lethal disease. The advent of tyrosine kinase inhibitors (TKIs) has changed the disease process, yet the majority of patients will develop treatment-resistant disease. IL-2 based immunotherapy in mRCC is the only US FDA-approved treatment with curative results. Immunotherapeutic vaccine approaches to mRCC have been under investigation for several decades with mixed results. The recent FDA-approval of the first cellular immunotherapy in prostate cancer (Provenge(®)) has reinvigorated the search for similar vaccines approaches in mRCC. This review introduces the concepts and different features required for a successful anticancer vaccine approach.
Collapse
Affiliation(s)
- Thomas Schwaab
- Department of Urology & Department of Immunology, Roswell Park CancerInstitute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Marc S Ernstoff
- Department of Urology & Department of Immunology, Roswell Park CancerInstitute, Elm & Carlton Streets, Buffalo, NY 14263, USA
| |
Collapse
|
39
|
Geary SM, Lemke CD, Lubaroff DM, Salem AK. Tumor immunotherapy using adenovirus vaccines in combination with intratumoral doses of CpG ODN. Cancer Immunol Immunother 2011; 60:1309-17. [PMID: 21626029 DOI: 10.1007/s00262-011-1038-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 05/12/2011] [Indexed: 12/22/2022]
Abstract
The combination of viral vaccination with intratumoral (IT) administration of CpG ODNs is yet to be investigated as an immunotherapeutic treatment for solid tumors. Here, we show that such a treatment regime can benefit survival of tumor-challenged mice. C57BL/6 mice bearing ovalbumin (OVA)-expressing EG.7 thymoma tumors were therapeutically vaccinated with adenovirus type 5 encoding OVA (Ad5-OVA), and the tumors subsequently injected with the immunostimulatory TLR9 agonist, CpG-B ODN 1826 (CpG), 4, 7, 10, and 13 days later. This therapeutic combination resulted in enhanced mean survival times that were more than 3.5× longer than naïve mice, and greater than 40% of mice were cured and capable of resisting subsequent tumor challenge. This suggests that an adaptive immune response was generated. Both Ad5-OVA and Ad5-OVA + CpG IT treatments led to significantly increased levels of H-2 K(b)-OVA-specific CD8+ lymphocytes in the peripheral blood and intratumorally. Lymphocyte depletion studies performed in vivo implicated both NK cells and CD8+ lymphocytes as co-contributors to the therapeutic effect. Analysis of tumor infiltrating lymphocytes (TILs) on day 12 post-tumor challenge revealed that mice treated with Ad5-OVA + CpG IT possessed a significantly reduced percentage of regulatory T lymphocytes (Tregs) within the CD4+ lymphocyte population, compared with TILs isolated from mice treated with Ad5-OVA only. In addition, the proportion of CD8+ TILs that were OVA-specific was reproducibly higher in the mice treated with Ad5-OVA + CpG IT compared with other treatment groups. These findings highlight the therapeutic potential of combining intratumoral CpG and vaccination with virus encoding tumor antigen.
Collapse
Affiliation(s)
- S M Geary
- Division of Pharmaceutics, College of Pharmacy, University of Iowa, S228 PHAR, 115 S. Grand Avenue, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
40
|
Successful cross-presentation of allogeneic myeloma cells by autologous alpha-type 1-polarized dendritic cells as an effective tumor antigen in myeloma patients with matched monoclonal immunoglobulins. Ann Hematol 2011; 90:1419-26. [PMID: 21465188 DOI: 10.1007/s00277-011-1219-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
For wide application of a dendritic cell (DC) vaccination in myeloma patients, easily available tumor antigens should be developed. We investigated the feasibility of cellular immunotherapy using autologous alpha-type 1-polarized dendritic cells (αDC1s) loaded with apoptotic allogeneic myeloma cells, which could generate myeloma-specific cytotoxic T lymphocytes (CTLs) against autologous myeloma cells in myeloma patients. Monocyte-derived DCs were matured by adding the αDC1-polarizing cocktail (TNFα/IL-1β/IFN-α/IFN-γ/poly-I:C) and loaded with apoptotic allogeneic CD138(+) myeloma cells from other patients with matched monoclonal immunoglobulins as a tumor antigen. There were no differences in the phenotypic expression between αDC1s loaded with apoptotic autologous and allogeneic myeloma cells. Autologous αDC1s effectively took up apoptotic allogeneic myeloma cells from other patients with matched subtype. Myeloma-specific CTLs against autologous target cells were successfully induced by αDC1s loaded with allogeneic tumor antigen. The cross-presentation of apoptotic allogeneic myeloma cells to αDC1s could generate CTL responses between myeloma patients with individual matched monoclonal immunoglobulins. There was no difference in CTL responses between αDC1s loaded with autologous tumor antigen and allogeneic tumor antigen against targeting patient's myeloma cells. Our data indicate that autologous DCs loaded with allogeneic myeloma cells with matched immunoglobulin can generate potent myeloma-specific CTL responses against autologous myeloma cells and can be a highly feasible and effective method for cellular immunotherapy in myeloma patients.
Collapse
|
41
|
Nguyen-Pham TN, Lim MS, Nguyen TAT, Lee YK, Jin CJ, Lee HJ, Hong CY, Ahn JS, Yang DH, Kim YK, Chung IJ, Park BC, Kim HJ, Lee JJ. Type I and II interferons enhance dendritic cell maturation and migration capacity by regulating CD38 and CD74 that have synergistic effects with TLR agonists. Cell Mol Immunol 2011; 8:341-7. [PMID: 21423200 DOI: 10.1038/cmi.2011.7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The major limitation for the maturation of dendritic cells (DCs) using Toll-like receptor (TLR) agonists is their decreased ability to migrate into lymph nodes compared with conventional DCs. CD38 can be used as a multifunctional marker to modulate migration, survival and Th1 responses of DCs. CD74 has been shown to negatively regulate DC migration. The goal of this study was to investigate the combinations of TLR agonists and interferons (IFNs) that most effectively regulate CD38 and CD74 expression on DCs. Synergistic TLR agonist stimulation in combination with IFN-α and IFN-γ was the best method for regulating CD38 and CD74 expression and inducing the highest secretion of IL-12p70. An in vitro migration assay showed that DCs treated with this combination had significantly enhanced migratory ability, similar to that observed in cells expressing CD38, CD74 and CCR7. The results of this study suggest that an alternative maturation protocol in which two TLR ligands are combined with type I and II IFNs generates potent DCs that have both a high migratory capacity and high IL-12p70 production.
Collapse
Affiliation(s)
- Thanh-Nhan Nguyen-Pham
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Jeollanamdo, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Palucka K, Ueno H, Banchereau J. Recent developments in cancer vaccines. THE JOURNAL OF IMMUNOLOGY 2011; 186:1325-31. [PMID: 21248270 DOI: 10.4049/jimmunol.0902539] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The adoptive transfer of cancer Ag-specific effector T cells in patients can result in tumor rejection, thereby illustrating the immune system potential for cancer therapy. Ideally, one would like to directly induce efficient tumor-specific effector and memory T cells through vaccination. Therapeutic vaccines have two objectives: priming Ag-specific T cells and reprogramming memory T cells (i.e., a transformation from one type of immunity to another, for example, regulatory to cytotoxic). Recent successful phase III clinical trials showing benefit to the patients revived cancer vaccines. Dendritic cells (DCs) are essential in generation of immune responses, and as such represent targets and vectors for vaccination. We have learned that different DC subsets elicit different T cells. Similarly, different activation methods result in DCs able to elicit distinct T cells. We contend that a careful manipulation of activated DCs will allow cancer immunotherapists to produce the next generation of highly efficient cancer vaccines.
Collapse
Affiliation(s)
- Karolina Palucka
- Baylor Institute for Immunology Research, Baylor University Medical Center, Dallas, TX 75204, USA
| | | | | |
Collapse
|
43
|
Trp-P-1, a carcinogenic heterocyclic amine, inhibits lipopolysaccharide-induced maturation and activation of human dendritic cells. Cancer Lett 2011; 301:63-74. [DOI: 10.1016/j.canlet.2010.10.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 01/19/2023]
|
44
|
Chemokine expression from oncolytic vaccinia virus enhances vaccine therapies of cancer. Mol Ther 2011; 19:650-7. [PMID: 21266959 DOI: 10.1038/mt.2010.312] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumor vaccines can induce robust immune responses targeting tumor antigens in the clinic, but antitumor effects have been disappointing. One reason for this is ineffective tumor infiltration of the cytotoxic T lymphocytes (CTLs) produced. Oncolytic viruses are capable of selectively replicating within tumor tissue and can induce a strong immune response. We therefore sought to determine whether these therapies could be rationally combined such that modulation of the tumor microenvironment by the viral therapy could help direct beneficial CTLs induced by the vaccine. As such, we examined the effects of expressing chemokines from oncolytic vaccinia virus, including CCL5 (RANTES), whose receptors are expressed on CTLs induced by different vaccines, including type-1-polarized dendritic cells (DC1). vvCCL5, an oncolytic vaccinia virus expressing CCL5, induced chemotaxis of lymphocyte populations in vitro and in vivo, and displayed improved safety in vivo. Interestingly, enhanced therapeutic benefits with vvCCL5 in vivo correlated with increased persistence of the viral agent exclusively within the tumor. When tumor-bearing mice were both vaccinated with DC1 and treated with vvCCL5 a further significant enhancement in tumor response was achieved which correlated with increased levels of tumor infiltrating lymphocytes. This approach therefore represents a novel means of combining biological therapies for cancer treatment.
Collapse
|
45
|
Castiello L, Sabatino M, Jin P, Clayberger C, Marincola FM, Krensky AM, Stroncek DF. Monocyte-derived DC maturation strategies and related pathways: a transcriptional view. Cancer Immunol Immunother 2011; 60:457-66. [PMID: 21258790 DOI: 10.1007/s00262-010-0954-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 11/30/2010] [Indexed: 12/17/2022]
Abstract
Ex vivo production of highly stimulator mature dendritic cells (DCs) for cellular therapy has been used to treat different pathological conditions with the aim of inducing a specific immune response. In the last decade, several protocols have been developed to mature monocyte-derived DCs: each one has led to the generation of DCs showing different phenotypes and stimulatory abilities, but it is not yet known which one is the best for inducing effective immune responses. We grouped several different maturation protocols according to the downstream pathways they activated and reviewed the shared features at a transcriptomic level to reveal the potential of DCs matured by each protocol to develop Th-polarized immune responses.
Collapse
Affiliation(s)
- Luciano Castiello
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
T cells can reject established tumours when adoptively transferred into patients, thereby demonstrating the power of the immune system for cancer therapy. However, it has proven difficult to maintain adoptively transferred T cells in the long term. Vaccines have the potential to induce tumour-specific effector and memory T cells. However, clinical efficacy of current vaccines is limited, possibly because tumours skew the immune system by means of myeloid-derived suppressor cells, inflammatory type 2 T cells and regulatory T cells (Tregs), all of which prevent the generation of effector cells. To improve the clinical efficacy of cancer vaccines in patients with metastatic disease, we need to design novel and improved strategies that can boost adaptive immunity to cancer, help overcome Tregs and allow the breakdown of the immunosuppressive tumour microenvironment. This can be achieved by exploiting the fast increasing knowledge about the dendritic cell (DC) system, including the existence of distinct DC subsets that respond differentially to distinct activation signals, (functional plasticity), both contributing to the generation of unique adaptive immune responses. We foresee that these novel cancer vaccines will be used as monotherapy in patients with resected disease and in combination with drugs targeting regulatory/suppressor pathways in patients with metastatic disease.
Collapse
Affiliation(s)
- K Palucka
- Baylor Institute for Immunology Research, Baylor University Medical Center, Dallas, TX, USA.
| | | | | | | |
Collapse
|
47
|
Masuda Y, Ito K, Konishi M, Nanba H. A polysaccharide extracted from Grifola frondosa enhances the anti-tumor activity of bone marrow-derived dendritic cell-based immunotherapy against murine colon cancer. Cancer Immunol Immunother 2010; 59:1531-41. [PMID: 20563803 PMCID: PMC11030989 DOI: 10.1007/s00262-010-0880-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Accepted: 06/07/2010] [Indexed: 12/27/2022]
Abstract
We previously isolated the novel heteropolysaccharide maitake Z-fraction (MZF) from the maitake mushroom (Grifola frondosa), and demonstrated that MZF significantly inhibited tumor growth by inducing cell-mediated immunity. In this study, we demonstrated that MZF upregulated the expression of CD80, CD86, CD83, and MHC II on bone marrow-derived dendritic cells (DCs) and significantly increased interleukin-12 (IL-12) and tumor necrosis factor-alpha production by DCs in a dose-dependent manner. MZF-treated DCs significantly stimulated both allogeneic and antigen-specific syngenic T cell responses and enhanced antigen-specific interferon-gamma (IFN-gamma) production by syngenic CD4(+) T cells; however, MZF-treated DCs did not affect IL-4 production. Furthermore, the enhancement of IFN-gamma production in CD4(+) T cells, which was induced by MZF-treated DCs, was completely inhibited by the addition of an anti-IL-12 antibody. These results indicate that MZF induced DC maturation and antigen-specific Th1 response by enhancing DC-produced IL-12. We also demonstrated that DCs pulsed with colon-26 tumor lysate in the presence of MZF induced both therapeutic and preventive effects on colon-26 tumor development in BALB/c mice. These results suggest that MZF could be a potential effective adjuvant to enhance immunotherapy using DC-based vaccination.
Collapse
Affiliation(s)
- Yuki Masuda
- Department of Microbial Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyama-Kitamachi, Higashinada-ku, Kobe, 658-8558, Japan.
| | | | | | | |
Collapse
|
48
|
Kim HS, Park HM, Park JS, Sohn HJ, Kim SG, Kim HJ, Oh ST, Kim TG. Dendritic cell vaccine in addition to FOLFIRI regimen improve antitumor effects through the inhibition of immunosuppressive cells in murine colorectal cancer model. Vaccine 2010; 28:7787-96. [PMID: 20883737 DOI: 10.1016/j.vaccine.2010.09.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/24/2010] [Accepted: 09/14/2010] [Indexed: 11/19/2022]
Abstract
Although chemotherapy is still one of the best treatments for most cancers, immunotherapies such as dendritic cell (DC) vaccines have emerged as an alternative protocol for destroying residual tumors. In this study, we investigated antitumor effects of the combined therapy using DC vaccine and irinotecan plus infusional 5-fluorouracil and leucovorin (FOLFIRI) which have been clinically used for the treatment of colorectal cancer. A maximum tolerated dose of FOLFIRI was preliminarily determined for MC38/CEA2 colorectal cancer model. Vaccination with DC expressing carcinoembryonic antigen (CEA) enhanced antitumor effect after FOLFIRI treatment. The combined therapy also increased CEA-specific Th1 and cytotoxic T-cell responses. Interestingly, although FOLFIRI treatment rather showed a rebound in the number of myeloid-derived suppressor cells (MDSC) and regulatory T-cells (Treg) after 14 days, additional DC vaccine could inhibit the rebound of these immunosuppressive cells. Furthermore, mice cured by the combined therapy showed antigen-specific T-cell responses and resistance against challenge of MC38/CEA2 compared with mice cured with FOLFIRI. These results demonstrated that DC vaccine in addition to FOLFIRI regimen could improve antitumor effects through the inhibition of immunosuppressive tumor environments in murine colorectal cancer model, and may provide knowledge useful for the design of chemo-immunotherapeutic strategies for the treatment of colorectal carcinoma in clinical trials.
Collapse
Affiliation(s)
- Hye-Sung Kim
- Department of Microbiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Progress in Tumor-Dentritic Cell Hybrid Vaccines*. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2010.00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Mito K, Sugiura K, Ueda K, Hori T, Akazawa T, Yamate J, Nakagawa H, Hatoya S, Inaba M, Inoue N, Ikehara S, Inaba T. IFNγ Markedly Cooperates with Intratumoral Dendritic Cell Vaccine in Dog Tumor Models. Cancer Res 2010; 70:7093-101. [DOI: 10.1158/0008-5472.can-10-0600] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|