1
|
Chiffelle J, Barras D, Pétremand R, Orcurto A, Bobisse S, Arnaud M, Auger A, Rodrigo BN, Ghisoni E, Sauvage C, Saugy D, Michel A, Murgues B, Fahr N, Imbimbo M, Ochoa de Olza M, Latifyan S, Crespo I, Benedetti F, Genolet R, Queiroz L, Schmidt J, Homicsko K, Zimmermann S, Michielin O, Bassani-Sternberg M, Kandalaft LE, Dafni U, Corria-Osorio J, Trueb L, Dangaj Laniti D, Harari A, Coukos G. Tumor-reactive T cell clonotype dynamics underlying clinical response to TIL therapy in melanoma. Immunity 2024; 57:2466-2482.e12. [PMID: 39276771 DOI: 10.1016/j.immuni.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 04/12/2024] [Accepted: 08/22/2024] [Indexed: 09/17/2024]
Abstract
Adoptive cell therapy (ACT) using in vitro expanded tumor-infiltrating lymphocytes (TILs) has inconsistent clinical responses. To better understand determinants of therapeutic success, we tracked TIL clonotypes from baseline tumors to ACT products and post-ACT blood and tumor samples in melanoma patients using single-cell RNA and T cell receptor (TCR) sequencing. Patients with clinical responses had baseline tumors enriched in tumor-reactive TILs, and these were more effectively mobilized upon in vitro expansion, yielding products enriched in tumor-specific CD8+ cells that preferentially infiltrated tumors post-ACT. Conversely, lack of clinical responses was associated with tumors devoid of tumor-reactive resident clonotypes and with cell products mostly composed of blood-borne clonotypes that persisted in blood but not in tumors post-ACT. Upon expansion, tumor-specific TILs lost tumor-associated transcriptional signatures, including exhaustion, and responders exhibited an intermediate exhausted effector state after TIL engraftment in the tumor, suggesting functional reinvigoration. Our findings provide insight into the nature and dynamics of tumor-specific clonotypes associated with clinical response to TIL-ACT, with implications for treatment optimization.
Collapse
Affiliation(s)
- Johanna Chiffelle
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Rémy Pétremand
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Angela Orcurto
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Marion Arnaud
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Aymeric Auger
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Blanca Navarro Rodrigo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Eleonora Ghisoni
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Christophe Sauvage
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Damien Saugy
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Alexandra Michel
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Baptiste Murgues
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Noémie Fahr
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Martina Imbimbo
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Maria Ochoa de Olza
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sofiya Latifyan
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Medical Oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Fabrizio Benedetti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Lise Queiroz
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Krisztian Homicsko
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland; Medical Oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Stefan Zimmermann
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Michielin
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Medical Oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Urania Dafni
- Faculty of Nursing, National and Kapodistrian University of Athens, Athens, Greece
| | - Jesus Corria-Osorio
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Lionel Trueb
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland.
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland; Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland; Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
2
|
Emery MA, Beavers KM, Van Buren EW, Batiste R, Dimos B, Pellegrino MW, Mydlarz LD. Trade-off between photosymbiosis and innate immunity influences cnidarian's response to pathogenic bacteria. Proc Biol Sci 2024; 291:20240428. [PMID: 39353557 PMCID: PMC11444771 DOI: 10.1098/rspb.2024.0428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/18/2024] [Accepted: 08/09/2024] [Indexed: 10/04/2024] Open
Abstract
Mutualistic relationships with photosynthetic organisms are common in cnidarians, which form an intracellular symbiosis with dinoflagellates in the family Symbiodiniaceae. The establishment and maintenance of these symbionts are associated with the suppression of key host immune factors. Because of this, there are potential trade-offs between the nutrition that cnidarian hosts gain from their symbionts and their ability to successfully defend themselves from pathogens. To investigate these potential trade-offs, we utilized the facultatively symbiotic polyps of the upside-down jellyfish Cassiopea xamachana and exposed aposymbiotic and symbiotic polyps to the pathogen Serratia marcescens. Symbiotic polyps had a lower probability of survival following S. marcescens exposure. Gene expression analyses 24 hours following pathogen exposure indicate that symbiotic animals mounted a more damaging immune response, with higher levels of inflammation and oxidative stress likely resulting in more severe disruptions to cellular homeostasis. Underlying this more damaging immune response may be differences in constitutive and pathogen-induced expression of immune transcription factors between aposymbiotic and symbiotic polyps rather than broadscale immune suppression during symbiosis. Our findings indicate that in facultatively symbiotic polyps, hosting symbionts limits C. xamachana's ability to survive pathogen exposure, indicating a trade-off between symbiosis and immunity that has potential implications for coral disease research.
Collapse
Affiliation(s)
- Madison A. Emery
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
- Department of Integrative Biology, Michigan State University, East Lansing, MI48824, USA
| | - Kelsey M. Beavers
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX78758, USA
| | - Emily W. Van Buren
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| | - Renee Batiste
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| | - Bradford Dimos
- Department of Animal Sciences, Washington State University, Pullman, WA99163, USA
| | - Mark W. Pellegrino
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| | - Laura D. Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, TX76019, USA
| |
Collapse
|
3
|
Sundaram L, Kumar A, Zatzman M, Salcedo A, Ravindra N, Shams S, Louie BH, Bagdatli ST, Myers MA, Sarmashghi S, Choi HY, Choi WY, Yost KE, Zhao Y, Granja JM, Hinoue T, Hayes DN, Cherniack A, Felau I, Choudhry H, Zenklusen JC, Farh KKH, McPherson A, Curtis C, Laird PW, Demchok JA, Yang L, Tarnuzzer R, Caesar-Johnson SJ, Wang Z, Doane AS, Khurana E, Castro MAA, Lazar AJ, Broom BM, Weinstein JN, Akbani R, Kumar SV, Raphael BJ, Wong CK, Stuart JM, Safavi R, Benz CC, Johnson BK, Kyi C, Shen H, Corces MR, Chang HY, Greenleaf WJ. Single-cell chromatin accessibility reveals malignant regulatory programs in primary human cancers. Science 2024; 385:eadk9217. [PMID: 39236169 DOI: 10.1126/science.adk9217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/03/2024] [Indexed: 09/07/2024]
Abstract
To identify cancer-associated gene regulatory changes, we generated single-cell chromatin accessibility landscapes across eight tumor types as part of The Cancer Genome Atlas. Tumor chromatin accessibility is strongly influenced by copy number alterations that can be used to identify subclones, yet underlying cis-regulatory landscapes retain cancer type-specific features. Using organ-matched healthy tissues, we identified the "nearest healthy" cell types in diverse cancers, demonstrating that the chromatin signature of basal-like-subtype breast cancer is most similar to secretory-type luminal epithelial cells. Neural network models trained to learn regulatory programs in cancer revealed enrichment of model-prioritized somatic noncoding mutations near cancer-associated genes, suggesting that dispersed, nonrecurrent, noncoding mutations in cancer are functional. Overall, these data and interpretable gene regulatory models for cancer and healthy tissue provide a framework for understanding cancer-specific gene regulation.
Collapse
Affiliation(s)
- Laksshman Sundaram
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Illumina AI laboratory, Illumina Inc, Foster City, CA, USA
- NVIDIA Bio Research, NVIDIA, Santa Clara, CA, USA
| | - Arvind Kumar
- Illumina AI laboratory, Illumina Inc, Foster City, CA, USA
| | - Matthew Zatzman
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Neal Ravindra
- Illumina AI laboratory, Illumina Inc, Foster City, CA, USA
| | - Shadi Shams
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Bryan H Louie
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - S Tansu Bagdatli
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Matthew A Myers
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Hyo Young Choi
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Won-Young Choi
- UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kathryn E Yost
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Yanding Zhao
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey M Granja
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Toshinori Hinoue
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - D Neil Hayes
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- UTHSC Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Ina Felau
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hani Choudhry
- Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jean C Zenklusen
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Andrew McPherson
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christina Curtis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter W Laird
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - John A Demchok
- Center for Cancer Genomics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Liming Yang
- Center for Cancer Genomics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Roy Tarnuzzer
- Center for Cancer Genomics, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Zhining Wang
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, NIH, 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Ashley S Doane
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ekta Khurana
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Mauro A A Castro
- Bioinformatics and Systems Biology Laboratory, Federal University of Paraná, Curitiba 81520-260, Brazil
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bradley M Broom
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030
| | - Rehan Akbani
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shwetha V Kumar
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Benjamin J Raphael
- Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08540
| | - Christopher K Wong
- Biomolecular Engineering Department, School of Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Joshua M Stuart
- Biomolecular Engineering Department, School of Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rojin Safavi
- Biomolecular Engineering Department, School of Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Benjamin K Johnson
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Cindy Kyi
- Center for Cancer Genomics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Hui Shen
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - M Ryan Corces
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Howard Y Chang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Yang J, Yu W, Zhu R, Li S, Gao Y, Chen J, Zhang B, Wang W, Yang X. Maternal immune activation upregulates the AU020206-IRFs-STAT1 axis in modulating cytokine production in the brain. Theranostics 2024; 14:5682-5697. [PMID: 39310110 PMCID: PMC11413792 DOI: 10.7150/thno.96110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Maternal immune activation (MIA) is reported to increase the risk of psychiatric disorders in the offspring. However, the underlying mechanism remains unclear. Methods: We constructed a MIA mouse model by intraperitoneal injection of LPS into pregnant mice and evaluated the behaviors and gene expression profiles in the brains of the female and male offspring, respectively. Results: We found that the MIA female offspring exhibited increased anxiety and a large number of differentially expressed genes (DEGs) in the brain, which were enriched with candidate gene sets of psychiatric disorders and immune functions. In contrast, the MIA male offspring exhibited no significant abnormal behaviors and only a small number of DEGs that were not enriched with disease genes and immune functions. Therefore, we further pursued the downstream study on the molecular mechanism underlying the increased anxiety in the female offspring. We identified the lncRNA AU020206-IRFs-STAT1-cytokine axis by integrating lncRNA-protein interaction data and TF-promoter interaction data, and verified the axis in vitro and in vivo. Conclusion: This study illustrates that MIA upregulates the AU020206-IRFs-STAT1 axis in controlling the brain immunity linked to abnormal behaviors, providing a basis for understanding the role of MIA in psychiatric disorders.
Collapse
Affiliation(s)
- Jing Yang
- Center for Genetics and Developmental Systems Biology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence and Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenjun Yu
- Center for Genetics and Developmental Systems Biology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Runmiao Zhu
- Center for Genetics and Developmental Systems Biology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence and Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuangyan Li
- Center for Genetics and Developmental Systems Biology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yue Gao
- Center for Genetics and Developmental Systems Biology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence and Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jinfa Chen
- Center for Genetics and Developmental Systems Biology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence and Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Wanshan Wang
- Experimental Animal Center, Southern Medical University, Guangzhou 510515, China
| | - Xinping Yang
- Center for Genetics and Developmental Systems Biology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Obstetrics & Gynecology, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory of Organ Failure Research, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence and Guangdong Key Laboratory of Psychiatric Disorders, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Lead contact
| |
Collapse
|
5
|
Li MY, Ye W, Luo KW. Immunotherapies Targeting Tumor-Associated Macrophages (TAMs) in Cancer. Pharmaceutics 2024; 16:865. [PMID: 39065562 PMCID: PMC11280177 DOI: 10.3390/pharmaceutics16070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are one of the most plentiful immune compositions in the tumor microenvironment, which are further divided into anti-tumor M1 subtype and pro-tumor M2 subtype. Recent findings found that TAMs play a vital function in the regulation and progression of tumorigenesis. Moreover, TAMs promote tumor vascularization, and support the survival of tumor cells, causing an impact on tumor growth and patient prognosis. Numerous studies show that reducing the density of TAMs, or modulating the polarization of TAMs, can inhibit tumor growth, indicating that TAMs are a promising target for tumor immunotherapy. Recently, clinical trials have found that treatments targeting TAMs have achieved encouraging results, and the U.S. Food and Drug Administration has approved a number of drugs for use in cancer treatment. In this review, we summarize the origin, polarization, and function of TAMs, and emphasize the therapeutic strategies targeting TAMs in cancer treatment in clinical studies and scientific research, which demonstrate a broad prospect of TAMs-targeted therapies in tumor immunotherapy.
Collapse
Affiliation(s)
- Mei-Ye Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Wei Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
| | - Ke-Wang Luo
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; (M.-Y.L.); (W.Y.)
- People’s Hospital of Longhua, The affiliated hospital of Southern Medical University, Shenzhen 518109, China
| |
Collapse
|
6
|
Perevalova AM, Kononchuk VV, Kalinina TS, Kozlov VV, Gulyaeva LF, Pustylnyak VO. Smoking-Mediated miR-301a/IRF1 Axis Controlling Immunotherapy Response in Lung Squamous Cell Carcinoma Revealed by Bioinformatic Analysis. Cancers (Basel) 2024; 16:2208. [PMID: 38927914 PMCID: PMC11202148 DOI: 10.3390/cancers16122208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Smoking is an established risk factor for a variety of malignant tumors, the most well-known of which is lung cancer. Various molecular interactions are known to link tobacco smoke exposure to lung cancer, but new data are still emerging on the effects of smoking on lung cancer development, progression, and tumor response to therapy. In this study, we reveal in further detail the previously established association between smoking and hsa-mir-301a activity in lung squamous cell carcinoma, LUSC. Using different bioinformatic tools, we identified IRF1 as a key smoking-regulated target of hsa-mir-301a in LUSC. We further confirmed this relationship experimentally using clinical LUSC tissue samples and intact lung tissue samples. Thus, increased hsa-mir-301a levels, decreased IRF1 mRNA levels, and their negative correlation were shown in LUSC tumor samples. Additional bioinformatic investigation for potential pathways impacted by such a mechanism demonstrated IRF1's multifaceted role in controlling the antitumor immune response in LUSC. IRF1 was then shown to affect tumor immune infiltration, the expression of immune checkpoint molecules, and the efficacy of immune checkpoint blockade therapy. As a result, here we suggest a smoking-regulated mir301a/IRF1 molecular axis that could modulate the antitumor immune response and immunotherapy efficacy in LUSC, opening up novel opportunities for future research.
Collapse
Affiliation(s)
- Alina M. Perevalova
- Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Pirogova Street, 1, 630090 Novosibirsk, Russia; (A.M.P.); (L.F.G.)
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (V.V.K.); (T.S.K.); (V.V.K.)
| | - Vladislav V. Kononchuk
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (V.V.K.); (T.S.K.); (V.V.K.)
| | - Tatiana S. Kalinina
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (V.V.K.); (T.S.K.); (V.V.K.)
| | - Vadim V. Kozlov
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (V.V.K.); (T.S.K.); (V.V.K.)
- Novosibirsk Regional Oncology Center, 630108 Novosibirsk, Russia
| | - Lyudmila F. Gulyaeva
- Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Pirogova Street, 1, 630090 Novosibirsk, Russia; (A.M.P.); (L.F.G.)
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (V.V.K.); (T.S.K.); (V.V.K.)
| | - Vladimir O. Pustylnyak
- Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Pirogova Street, 1, 630090 Novosibirsk, Russia; (A.M.P.); (L.F.G.)
- Federal Research Center of Fundamental and Translational Medicine, 630117 Novosibirsk, Russia; (V.V.K.); (T.S.K.); (V.V.K.)
| |
Collapse
|
7
|
Wang L, Yang F, Ye J, Zhang L, Jiang X. Insight into the role of IRF7 in skin and connective tissue diseases. Exp Dermatol 2024; 33:e15083. [PMID: 38794808 DOI: 10.1111/exd.15083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 05/26/2024]
Abstract
Interferons (IFNs) are signalling proteins primarily involved in initiating innate immune responses against pathogens and promoting the maturation of immune cells. Interferon Regulatory Factor 7 (IRF7) plays a pivotal role in the IFNs signalling pathway. The activation process of IRF7 is incited by exogenous or abnormal nucleic acids, which is followed by the identification via pattern recognition receptors (PRRs) and the ensuing signalling cascades. Upon activation, IRF7 modulates the expression of both IFNs and inflammatory gene regulation. As a multifunctional transcription factor, IRF7 is mainly expressed in immune cells, yet its presence is also detected in keratinocytes, fibroblasts, and various dermal cell types. In these cells, IRF7 is critical for skin immunity, inflammation, and fibrosis. IRF7 dysregulation may lead to autoimmune and inflammatory skin conditions, including systemic scleroderma (SSc), systemic lupus erythematosus (SLE), Atopic dermatitis (AD) and Psoriasis. This comprehensive review aims to extensively elucidate the role of IRF7 and its signalling pathways in immune cells and keratinocytes, highlighting its significance in skin-related and connective tissue diseases.
Collapse
Affiliation(s)
- Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Fengjuan Yang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Ye
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Cheng R, Zhou C, Zhao M, Zhang S, Wan W, Yu Y, Wen B, Jiao J, Xiong X, Xu Q, OuYang X. TRIM56-mediated production of type I interferon inhibits intracellular replication of Rickettsia rickettsii. Microbiol Spectr 2024; 12:e0369523. [PMID: 38358243 PMCID: PMC10986528 DOI: 10.1128/spectrum.03695-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/18/2024] [Indexed: 02/16/2024] Open
Abstract
Rickettsia rickettsii (R. rickettsii), the causative agent of Rocky Mountain spotted fever (RMSF), is the most pathogenic member among Rickettsia spp. Previous studies have shown that tripartite motif-containing 56 (TRIM56) E3 ligase-induced ubiquitination of STING is important for cytosolic DNA sensing and type I interferon production to induce anti-DNA viral immunity, but whether it affects intracellular replication of R. rickettsii remains uncharacterized. Here, we investigated the effect of TRIM56 on HeLa and THP-1 cells infected with R. rickettsii. We found that the expression of TRIM56 was upregulated in the R. rickettsii-infected cells, and the overexpression of TRIM56 inhibited the intracellular replication of R. rickettsii, while R. rickettsii replication was enhanced in the TRIM56-silenced host cells with the reduced phosphorylation of IRF3 and STING and the increased production of interferon-β. In addition, the mutation of the TRIM56 E3 ligase catalytic site impairs the inhibitory function against R. rickettsii in HeLa cells. Altogether, our study discovers that TRIM56 is a host restriction factor of R. rickettsii by regulating the cGAS-STING-mediated signaling pathway. This study gives new evidence for the role of TRIM56 in the innate immune response against intracellular bacterial infection and provides new therapeutic targets for RMSF. IMPORTANCE Given that Rickettsia rickettsii (R. rickettsii) is the most pathogenic member within the Rickettsia genus and serves as the causative agent of Rocky Mountain spotted fever, there is a growing need to explore host targets. In this study, we examined the impact of host TRIM56 on R. rickettsii infection in HeLa and THP-1 cells. We observed a significant upregulation of TRIM56 expression in R. rickettsii-infected cells. Remarkably, the overexpression of TRIM56 inhibited the intracellular replication of R. rickettsii, while silencing TRIM56 enhanced bacterial replication accompanied by reduced phosphorylation of IRF3 and STING, along with increased interferon-β production. Notably, the mutation of the TRIM56's E3 ligase catalytic site did not impede R. rickettsii replication in HeLa cells. Collectively, our findings provide novel insights into the role of TRIM56 as a host restriction factor against R. rickettsii through the modulation of the cGAS-STING signaling pathway.
Collapse
Affiliation(s)
- Ruxi Cheng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Chunyu Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Mingliang Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Weiqiang Wan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yonghui Yu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bohai Wen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jun Jiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaolu Xiong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xuan OuYang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
9
|
Kim IK, Diamond MS, Yuan S, Kemp SB, Kahn BM, Li Q, Lin JH, Li J, Norgard RJ, Thomas SK, Merolle M, Katsuda T, Tobias JW, Baslan T, Politi K, Vonderheide RH, Stanger BZ. Plasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy in pancreatic ductal adenocarcinoma. Nat Commun 2024; 15:1532. [PMID: 38378697 PMCID: PMC10879147 DOI: 10.1038/s41467-024-46048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
Acquired resistance to immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we find that resistance is reproducibly associated with an epithelial-to-mesenchymal transition (EMT), with EMT-transcription factors ZEB1 and SNAIL functioning as master genetic and epigenetic regulators of this effect. Acquired resistance in this model is not due to immunosuppression in the tumor immune microenvironment, disruptions in the antigen presentation machinery, or altered expression of immune checkpoints. Rather, resistance is due to a tumor cell-intrinsic defect in T-cell killing. Molecularly, EMT leads to the epigenetic and transcriptional silencing of interferon regulatory factor 6 (Irf6), rendering tumor cells less sensitive to the pro-apoptotic effects of TNF-α. These findings indicate that acquired resistance to immunotherapy may be mediated by programs distinct from those governing primary resistance, including plasticity programs that render tumor cells impervious to T-cell killing.
Collapse
Affiliation(s)
- Il-Kyu Kim
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark S Diamond
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Salina Yuan
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha B Kemp
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin M Kahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qinglan Li
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey H Lin
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinyang Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Norgard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stacy K Thomas
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Merolle
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Takeshi Katsuda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John W Tobias
- Penn Genomic Analysis Core, University of Pennsylvania, Philadelphia, PA, USA
| | - Timour Baslan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katerina Politi
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
- Section of Medical Oncology, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Robert H Vonderheide
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ben Z Stanger
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Perevalova AM, Gulyaeva LF, Pustylnyak VO. Roles of Interferon Regulatory Factor 1 in Tumor Progression and Regression: Two Sides of a Coin. Int J Mol Sci 2024; 25:2153. [PMID: 38396830 PMCID: PMC10889282 DOI: 10.3390/ijms25042153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
IRF1 is a transcription factor well known for its role in IFN signaling. Although IRF1 was initially identified for its involvement in inflammatory processes, there is now evidence that it provides a function in carcinogenesis as well. IRF1 has been shown to affect several important antitumor mechanisms, such as induction of apoptosis, cell cycle arrest, remodeling of tumor immune microenvironment, suppression of telomerase activity, suppression of angiogenesis and others. Nevertheless, the opposite effects of IRF1 on tumor growth have also been demonstrated. In particular, the "immune checkpoint" molecule PD-L1, which is responsible for tumor immune evasion, has IRF1 as a major transcriptional regulator. These and several other properties of IRF1, including its proposed association with response and resistance to immunotherapy and several chemotherapeutic drugs, make it a promising object for further research. Numerous mechanisms of IRF1 regulation in cancer have been identified, including genetic, epigenetic, transcriptional, post-transcriptional, and post-translational mechanisms, although their significance for tumor progression remains to be explored. This review will focus on the established tumor-suppressive and tumor-promoting functions of IRF1, as well as the molecular mechanisms of IRF1 regulation identified in various cancers.
Collapse
Affiliation(s)
- Alina M. Perevalova
- Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Pirogova Street, 1, Novosibirsk 630090, Russia; (A.M.P.)
- Federal Research Center of Fundamental and Translational Medicine, Timakova Street, 2/12, Novosibirsk 630117, Russia
| | - Lyudmila F. Gulyaeva
- Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Pirogova Street, 1, Novosibirsk 630090, Russia; (A.M.P.)
- Federal Research Center of Fundamental and Translational Medicine, Timakova Street, 2/12, Novosibirsk 630117, Russia
| | - Vladimir O. Pustylnyak
- Zelman Institute for the Medicine and Psychology, Novosibirsk State University, Pirogova Street, 1, Novosibirsk 630090, Russia; (A.M.P.)
- Federal Research Center of Fundamental and Translational Medicine, Timakova Street, 2/12, Novosibirsk 630117, Russia
| |
Collapse
|
11
|
Xu H, Chen C, Chen L, Pan S. Pan-cancer analysis identifies the IRF family as a biomarker for survival prognosis and immunotherapy. J Cell Mol Med 2024; 28:e18084. [PMID: 38130025 PMCID: PMC10844690 DOI: 10.1111/jcmm.18084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
IRF family genes have been shown to be crucial in tumorigenesis and tumour immunity. However, information about the role of IRF in the systematic assessment of pan-cancer and in predicting the efficacy of tumour therapy is still unknown. In this work, we performed a systematic analysis of IRF family genes in 33 tumour samples, including expression profiles, genomics and clinical characteristics. We then applied Single-Sample Gene-Set Enrichment Analysis (ssGSEA) to calculate IRF-scores and analysed the impact of IRF-scores on tumour progression, immune infiltration and treatment efficacy. Our results showed that genomic alterations, including SNPs, CNVs and DNA methylation, can lead to dysregulation of IRFs expression in tumours and participate in regulating multiple tumorigenesis. IRF-score expression differed significantly between 12 normal and tumour samples and the impact on tumour prognosis and immune infiltration depended on tumour type. IRF expression was correlated to drug sensitivity and to the expression of immune checkpoints and immune cell infiltration, suggesting that dysregulation of IRF family expression may be a critical factor affecting tumour drug response. Our study comprehensively characterizes the genomic and clinical profile of IRFs in pan-cancer and highlights their reliability and potential value as predictive markers of oncology drug efficacy. This may provide new ideas for future personalized oncology treatment.
Collapse
Affiliation(s)
- Hua‐Guo Xu
- Department of Laboratory MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| | - Can Chen
- Department of Laboratory MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| | - Lin‐Yuan Chen
- Department of Laboratory MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| | - Shiyang Pan
- Department of Laboratory MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
- Branch of National Clinical Research Center for Laboratory MedicineNanjingChina
| |
Collapse
|
12
|
Rahman M, Nguyen TM, Lee GJ, Kim B, Park MK, Lee CH. Unraveling the Role of Ras Homolog Enriched in Brain (Rheb1 and Rheb2): Bridging Neuronal Dynamics and Cancer Pathogenesis through Mechanistic Target of Rapamycin Signaling. Int J Mol Sci 2024; 25:1489. [PMID: 38338768 PMCID: PMC10855792 DOI: 10.3390/ijms25031489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
Ras homolog enriched in brain (Rheb1 and Rheb2), small GTPases, play a crucial role in regulating neuronal activity and have gained attention for their implications in cancer development, particularly in breast cancer. This study delves into the intricate connection between the multifaceted functions of Rheb1 in neurons and cancer, with a specific focus on the mTOR pathway. It aims to elucidate Rheb1's involvement in pivotal cellular processes such as proliferation, apoptosis resistance, migration, invasion, metastasis, and inflammatory responses while acknowledging that Rheb2 has not been extensively studied. Despite the recognized associations, a comprehensive understanding of the intricate interplay between Rheb1 and Rheb2 and their roles in both nerve and cancer remains elusive. This review consolidates current knowledge regarding the impact of Rheb1 on cancer hallmarks and explores the potential of Rheb1 as a therapeutic target in cancer treatment. It emphasizes the necessity for a deeper comprehension of the molecular mechanisms underlying Rheb1-mediated oncogenic processes, underscoring the existing gaps in our understanding. Additionally, the review highlights the exploration of Rheb1 inhibitors as a promising avenue for cancer therapy. By shedding light on the complicated roles between Rheb1/Rheb2 and cancer, this study provides valuable insights to the scientific community. These insights are instrumental in guiding the identification of novel targets and advancing the development of effective therapeutic strategies for treating cancer.
Collapse
Affiliation(s)
- Mostafizur Rahman
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Gi Jeong Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Boram Kim
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea; (M.R.); (G.J.L.)
| |
Collapse
|
13
|
Roberts BK, Collado G, Barnes BJ. Role of interferon regulatory factor 5 (IRF5) in tumor progression: Prognostic and therapeutic potential. Biochim Biophys Acta Rev Cancer 2024; 1879:189061. [PMID: 38141865 DOI: 10.1016/j.bbcan.2023.189061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Canonically, the transcription factor interferon regulatory factor 5 (IRF5) is a key mediator of innate and adaptive immunity downstream of pathogen recognition receptors such as Toll-like receptors (TLRs). Hence, dysregulation of IRF5 function has been widely implicated in inflammatory and autoimmune diseases. Over the last few decades, dysregulation of IRF5 expression has been also reported in hematologic malignancies and solid cancers that support a role for IRF5 in malignant transformation, tumor immune regulation, clinical prognosis, and treatment response. This review will provide an in-depth overview of the current literature regarding the mechanisms by which IRF5 functions as either a tumor suppressor or oncogene, its role in metastasis, regulation of the tumor-immune microenvironment, utility as a prognostic indicator of disease, and new developments in IRF5 therapeutics that may be used to remodel tumor immunity.
Collapse
Affiliation(s)
- Bailey K Roberts
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America; Elmezzi Graduate School of Molecular Medicine, Northwell Health, Manhasset, NY 11030, United States of America
| | - Gilbert Collado
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America
| | - Betsy J Barnes
- Center for Autoimmune Musculoskeletal and Hematopoietic Disease, The Feinstein Institutes for Medical Research, Manhasset, NY 11030, United States of America; Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, United States of America.
| |
Collapse
|
14
|
Mondal S, Sarvari G, Boehr DD. Picornavirus 3C Proteins Intervene in Host Cell Processes through Proteolysis and Interactions with RNA. Viruses 2023; 15:2413. [PMID: 38140654 PMCID: PMC10747604 DOI: 10.3390/v15122413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
The Picornaviridae family comprises a large group of non-enveloped viruses with enormous impact on human and animal health. The picornaviral genome contains one open reading frame encoding a single polyprotein that can be processed by viral proteases. The picornaviral 3C proteases share similar three-dimensional structures and play a significant role in the viral life cycle and virus-host interactions. Picornaviral 3C proteins also have conserved RNA-binding activities that contribute to the assembly of the viral RNA replication complex. The 3C protease is important for regulating the host cell response through the cleavage of critical host cell proteins, acting to selectively 'hijack' host factors involved in gene expression, promoting picornavirus replication, and inactivating key factors in innate immunity signaling pathways. The protease and RNA-binding activities of 3C are involved in viral polyprotein processing and the initiation of viral RNA synthesis. Most importantly, 3C modifies critical molecules in host organelles and maintains virus infection by subtly subverting host cell death through the blocking of transcription, translation, and nucleocytoplasmic trafficking to modulate cell physiology for viral replication. Here, we discuss the molecular mechanisms through which 3C mediates physiological processes involved in promoting virus infection, replication, and release.
Collapse
Affiliation(s)
| | | | - David D. Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
15
|
Wang G, Feng X, Ding J. Molecular basis for the functional roles of the multimorphic T95R mutation of IRF4 causing human autosomal dominant combined immunodeficiency. Structure 2023; 31:1441-1451.e3. [PMID: 37683642 DOI: 10.1016/j.str.2023.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 09/10/2023]
Abstract
Interferon regulatory factor 4 (IRF4) is a transcription factor that regulates the development and function of immune cells. Recently, a new multimorphic mutation T95R was identified in the IRF4 DNA-binding domain (DBD) in patients with autosomal dominant combined immune deficiency. Here, we characterized the interactions of the wild-type IRF4-DBD (IRF4-DBDWT) and T95R mutant (IRF4-DBDT95R) with a canonical DNA sequence and several noncanonical DNA sequences. We found that compared to IRF4-DBDWT, IRF4-DBDT95R exhibits higher binding affinities for both canonical and noncanonical DNAs, with the highest preference for the noncanonical GATA sequence. The crystal structures of IRF4-DBDWT in complex with the GATA sequence and IRF4-DBDT95R in complexes with both canonical and noncanonical DNAs were determined, showing that the T95R mutation enhances the interactions of IRF4-DBDT95R with the canonical and noncanonical DNAs to achieve higher affinity and specificity. Collectively, our data provide the molecular basis for the gain-of-function and new function of IRF4T95R.
Collapse
Affiliation(s)
- Guanchao Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xueqian Feng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China.
| |
Collapse
|
16
|
Bruurs LJM, Müller M, Schipper JG, Rabouw HH, Boersma S, van Kuppeveld FJM, Tanenbaum ME. Antiviral responses are shaped by heterogeneity in viral replication dynamics. Nat Microbiol 2023; 8:2115-2129. [PMID: 37814072 PMCID: PMC10627821 DOI: 10.1038/s41564-023-01501-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/01/2023] [Indexed: 10/11/2023]
Abstract
Antiviral signalling, which can be activated in host cells upon virus infection, restricts virus replication and communicates infection status to neighbouring cells. The antiviral response is heterogeneous, both quantitatively (efficiency of response activation) and qualitatively (transcribed antiviral gene set). To investigate the basis of this heterogeneity, we combined Virus Infection Real-time IMaging (VIRIM), a live-cell single-molecule imaging method, with real-time readouts of the dsRNA sensing pathway to analyse the response of human cells to encephalomyocarditis virus (EMCV) infection. We find that cell-to-cell heterogeneity in viral replication rates early in infection affect the efficiency of antiviral response activation, with lower replication rates leading to more antiviral response activation. Furthermore, we show that qualitatively distinct antiviral responses can be linked to the strength of the antiviral signalling pathway. Our analyses identify variation in early viral replication rates as an important parameter contributing to heterogeneity in antiviral response activation.
Collapse
Grants
- ERC starting grant (EU/ERC-677936 RNAREG), NWO klein-2 grant (OCENW.KLEIN.344), Howard Hughes Medical Institute international research scholar grant (HHMI/IRS 55008747), Oncode Institute
- ERC starting grant (EU/ERC-677936 RNAREG), NWO klein-2 grant (OCENW.KLEIN.344), Oncode Institute
- NWO klein-2 grant (OCENW.KLEIN.344), NWO VICI (91812628)
- NWO VICI (91812628), ERC starting grant (EU/ERC-677936 RNAREG), Oncode Institute
- ERC starting grant (EU/ERC-677936 RNAREG), Howard Hughes Medical Institute international research scholar grant (HHMI/IRS 55008747), Oncode Institute
- Howard Hughes Medical Institute international research scholar grant (HHMI/IRS 55008747), Oncode Institute
Collapse
Affiliation(s)
- Lucas J M Bruurs
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Micha Müller
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jelle G Schipper
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Huib H Rabouw
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Sanne Boersma
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Marvin E Tanenbaum
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands.
- Department of Bionanoscience, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
17
|
Summers JA, Jones KL. Single Cell Transcriptomics Identifies Distinct Choroid Cell Populations Involved in Visually Guided Eye Growth. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1245891. [PMID: 38390290 PMCID: PMC10883300 DOI: 10.3389/fopht.2023.1245891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/06/2023] [Indexed: 02/24/2024]
Abstract
Postnatal ocular growth is regulated by a vision-dependent mechanism, termed emmetropization, which acts to minimize refractive error through coordinated growth of the ocular tissues. Many studies suggest that the ocular choroid participates in the emmetropization process via the production of scleral growth regulators that control ocular elongation and refractive development. To elucidate the role of the choroid in emmetropization, we used single-cell RNA sequencing (scRNA-seq) to characterize the cell populations in the chick choroid and compare gene expression changes in these cell populations during conditions in which the eye is undergoing emmetropization. UMAP clustering analysis identified 24 distinct cell clusters in all chick choroids. 7 clusters were identified as fibroblast subpopulations; 5 clusters represented different populations of endothelial cells; 4 clusters were CD45+ macrophages, T cells and B cells; 3 clusters were Schwann cell subpopulations; and 2 clusters were identified as melanocytes. Additionally, single populations of RBCs, plasma cells and neuronal cells were identified. Significant changes in gene expression between control and treated choroids were identified in 17 cell clusters, representing 95% of total choroidal cells. The majority of significant gene expression changes were relatively small (< 2 fold). The highest changes in gene expression were identified in a rare cell population (0.11% - 0.49% of total choroidal cells). This cell population expressed high levels of neuron-specific genes as well as several opsin genes suggestive of a rare neuronal cell population that is potentially light sensitive. Our results, for the first time, provide a comprehensive profile of the major choroidal cell types and their gene expression changes during the process of emmetropization as well as insights into the canonical pathways and upstream regulators that coordinate postnatal ocular growth.
Collapse
Affiliation(s)
- Jody A Summers
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States
| | - Kenneth L Jones
- Bioinformatic Solutions LLC, Sheridan, Wyoming, 82801, United States
| |
Collapse
|
18
|
Ying J, Hong H, Yu C, Jiang M, Ding D. Identification of TLRs as potential prognostic biomarkers for lung adenocarcinoma. Medicine (Baltimore) 2023; 102:e34954. [PMID: 37746997 PMCID: PMC10519552 DOI: 10.1097/md.0000000000034954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/04/2023] [Accepted: 08/04/2023] [Indexed: 09/26/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common tumors with the highest cancer-related death rate worldwide. Early diagnosis of LUAD can improve survival. Abnormal expression of the Toll-like receptors (TLRs) is related to tumorigenesis and development, inflammation and immune infiltration. However, the role of TLRs as an immunotherapy target and prognostic marker in lung adenocarcinoma is not well understood and needs to be analyzed. Relevant data obtained from databases such as ONCOMINE, UALCAN, GEPIA, and the Kaplan-Meier plotter, GSCALite, GeneMANIA, DAVID 6.8, Metascape, LinkedOmics and TIMER, to compare transcriptional TLRs and survival data of patients with LUAD. The expression levels of TLR1/2/3/4/5/7/8 in LUAD tissues were significantly reduced while the expression levels of TLR6/9/10 were significantly elevated. LUAD patients having low expression of TLR1/2/3/5/8 and high expression of TLR9 had a poor overall survival while patients with low expression of TLR2/3/7 presented with worse first progress. TLR4, TLR7 and TLR8 are the 3 most frequently mutated genes in the TLR family. Correlation suggested a low to moderate correlation among TLR family. TLR family was also involved in the activation or inhibition of the famous cancer related pathways. Analysis of immune infiltrates analysis suggested that TLR1/2/7/8 levels significantly correlated with immune infiltration level. Enrichment analysis revealed that TLRs were involved in TLR signaling pathway, immune response, inflammatory response, primary immunodeficiency, regulation of IL-8 production and PI3K-Akt signaling pathway. Our results provided information on TLRs expression and potential regulatory networks in LUAD. Moreover, our results suggested TLR2/7/8 as a potential prognostic biomarker for lung adenocarcinoma.
Collapse
Affiliation(s)
- Junjie Ying
- Department of Thoracic Surgery, The People’s Hospital of Beilun District, Ningbo, China
| | - Haihua Hong
- Department of Respiratory Medicine, The People’s Hospital of Beilun District, Ningbo, China
| | - Chaoqun Yu
- Department of General Thoracic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Maofen Jiang
- Department of Pathology, The People’s Hospital of Beilun District, Ningbo, China
| | - Dongxiao Ding
- Department of Thoracic Surgery, The People’s Hospital of Beilun District, Ningbo, China
| |
Collapse
|
19
|
Fan T, Xiao C, Liu H, Liu Y, Wang L, Tian H, Li C, He J. CXXC finger protein 1 (CFP1) bridges the reshaping of genomic H3K4me3 signature to the advancement of lung adenocarcinoma. Signal Transduct Target Ther 2023; 8:369. [PMID: 37735441 PMCID: PMC10514036 DOI: 10.1038/s41392-023-01612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/23/2023] Open
Abstract
Histone H3 lysine 4 trimethylation (H3K4me3) is a canonical chromatin modification associated with active gene transcription, playing a pivotal role in regulating various cellular functions. Components of the H3K4me3 methyltransferase complex, known as the proteins associated with SET1 (COMPASS), have been implicated in exerting cancer-protective or cancer-inhibitory effects through inducive H3K4me3 modification. However, the role of the indispensable non-catalytic component of COMPASS CXXC-type zinc finger protein 1 (CFP1) in malignant progression remains unclear. We have unveiled that CFP1 promote lung adenocarcinoma (LUAD) cell proliferation, migration, and invasion while impairing cell apoptosis through in vitro and in vivo models. In addition, high CFP1 expression was identified as emerged as an adverse prognostic indicator across multiple public and in-house LUAD datasets. Notably, CFP1 deficiency led to dual effects on cancer cell transcriptome including extensive inactivation of cancer-promoting as well as activation of cancer repressors. Combining this with the chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we showed that CFP1 ablation reshaped the genomic H3K4me3 distribution signature, with prominent effects on TGF-β and WNT signaling pathways. Collectively, our study proposes that CFP1 mediates tumorigenesis by genomic histone methylation reprogramming, offering insights for future investigations into epigenetic modifications in cancer progression and potential therapeutic advancements.
Collapse
Affiliation(s)
- Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hengchang Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Liu
- Department of Intervention, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
20
|
Kube-Golovin I, Lyndin M, Wiesehöfer M, Wennemuth G. CEACAM expression in an in-vitro prostatitis model. Front Immunol 2023; 14:1236343. [PMID: 37691945 PMCID: PMC10485834 DOI: 10.3389/fimmu.2023.1236343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
Background Prostatitis is an inflammatory disease of the prostate gland, which affects 2-16% of men worldwide and thought to be a cause for prostate cancer (PCa) development. Carcinoembryogenic antigen-related cell adhesion molecules (CEACAMs) are deregulated in inflammation and in PCa. The role of CEACAMs in prostate inflammation and their possible contribution to the malignant transformation of prostate epithelial cells is still elusive. In this study, we investigated the expression of CEACAMs in an in-vitro prostatitis model and their potential role in malignant transformation of prostate epithelial cells. Methods Normal prostate epithelial RWPE-1 cells were treated with pro-inflammatory cytokines to achieve an inflammatory state of the cells. The expression of CEACAMs and their related isoforms were analyzed. Additionally, the expression levels of selected CEACAMs were correlated with the expression of malignancy markers and the migratory properties of the cells. Results This study demonstrates that the pro-inflammatory cytokines, tumor necrosis factor alpha (TNFα) and interferon-gamma (IFNγ), induce synergistically an up-regulation of CEACAM1 expression in RWPE-1 cells, specifically favoring the CEACAM1-L isoform. Furthermore, overexpressed CEACAM1-L is associated with the deregulated expression of JAK/STAT, NFκB, and epithelial-mesenchymal transition (EMT) genes, as well as an increased cell migration. Conclusion We postulate that CEACAM1 isoform CEACAM1-4L may synergistically contribute to inflammation-induced oncogenesis in the prostate.
Collapse
Affiliation(s)
| | - Mykola Lyndin
- University Hospital Essen, Department of Anatomy, Essen, Germany
- Academic and Research Medical Institute, Department of Pathology, Sumy State University, Sumy, Ukraine
| | - Marc Wiesehöfer
- University Hospital Essen, Department of Anatomy, Essen, Germany
| | | |
Collapse
|
21
|
Ma W, Huang G, Wang Z, Wang L, Gao Q. IRF7: role and regulation in immunity and autoimmunity. Front Immunol 2023; 14:1236923. [PMID: 37638030 PMCID: PMC10449649 DOI: 10.3389/fimmu.2023.1236923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Interferon regulatory factor (IRF) 7 was originally identified as master transcriptional factor that produced IFN-I and regulated innate immune response, subsequent studies have revealed that IRF7 performs a multifaceted and versatile functions in multiple biological processes. In this review, we provide a comprehensive overview on the current knowledge of the role of IRF7 in immunity and autoimmunity. We focus on the latest regulatory mechanisms of IRF7 in IFN-I, including signaling pathways, transcription, translation, and post-translational levels, the dimerization and nuclear translocation, and the role of IRF7 in IFN-III and COVID-19. In addition to antiviral immunity, we also discuss the role and mechanism of IRF7 in autoimmunity, and the further research will expand our understanding of IRF7.
Collapse
Affiliation(s)
- Wei Ma
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Wound Infection and Drug, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Gang Huang
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Zhi Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Wang
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qiangguo Gao
- Department of Cell Biology, College of Basic Medical Sciences, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
22
|
Kim IK, Diamond M, Yuan S, Kemp S, Li Q, Lin J, Li J, Norgard R, Thomas S, Merolle M, Katsuda T, Tobias J, Politi K, Vonderheide R, Stanger B. Plasticity-induced repression of Irf6 underlies acquired resistance to cancer immunotherapy. RESEARCH SQUARE 2023:rs.3.rs-2960521. [PMID: 37398248 PMCID: PMC10312946 DOI: 10.21203/rs.3.rs-2960521/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Acquired resistance to immune checkpoint immunotherapy remains a critical yet incompletely understood biological mechanism. Here, using a mouse model of pancreatic ductal adenocarcinoma (PDAC) to study tumor relapse following immunotherapy-induced responses, we found that tumors underwent an epithelial-to-mesenchymal transition (EMT) that resulted in reduced sensitivity to T cell-mediated killing. EMT-transcription factors (EMT-TFs) ZEB1 and SNAIL function as master genetic and epigenetic regulators of this tumor-intrinsic effect. Acquired resistance was not due to immunosuppression in the tumor immune microenvironment, disruptions in the antigen presentation machinery, or altered expression of immune checkpoints. Rather, EMT was associated with epigenetic and transcriptional silencing of interferon regulatory factor 6 (Irf6), which renders tumor cells less sensitive to the pro-apoptotic effects of TNF-α. These findings show how resistance to immunotherapy in PDAC can be acquired through plasticity programs that render tumor cells impervious to T cell killing.
Collapse
|
23
|
Summers JA, Jones KL. Single Cell Transcriptomics Identifies Distinct Choroid Cell Populations Involved in Visually Guided Eye Growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542876. [PMID: 37398381 PMCID: PMC10312561 DOI: 10.1101/2023.05.30.542876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Postnatal ocular growth is regulated by a vision-dependent mechanism, termed emmetropization, which acts to minimize refractive error through coordinated growth of the ocular tissues. Many studies suggest that the ocular choroid participates in the emmetropization process via the production of scleral growth regulators that control ocular elongation and refractive development. To elucidate the role of the choroid in emmetropization, we used single-cell RNA sequencing (scRNA-seq) to characterize the cell populations in the chick choroid and compare gene expression changes in these cell populations during conditions in which the eye is undergoing emmetropization. UMAP clustering analysis identified 24 distinct cell clusters in all chick choroids. 7 clusters were identified as fibroblast subpopulations; 5 clusters represented different populations of endothelial cells; 4 clusters were CD45+ macrophages, T cells and B cells; 3 clusters were Schwann cell subpopulations; and 2 clusters were identified as melanocytes. Additionally, single populations of RBCs, plasma cells and neuronal cells were identified. Significant changes in gene expression between control and treated choroids were identified in 17 cell clusters, representing 95% of total choroidal cells. The majority of significant gene expression changes were relatively small (< 2 fold). The highest changes in gene expression were identified in a rare cell population (0.11% - 0.49% of total choroidal cells). This cell population expressed high levels of neuron-specific genes as well as several opsin genes suggestive of a rare neuronal cell population that is potentially light sensitive. Our results, for the first time, provide a comprehensive profile of the major choroidal cell types and their gene expression changes during the process of emmetropization as well as insights into the canonical pathways and upstream regulators that coordinate postnatal ocular growth.
Collapse
Affiliation(s)
- Jody A Summers
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States
| | - Kenneth L Jones
- Bioinformatic Solutions LLC, Sheridan, Wyoming, 82801, United States
| |
Collapse
|
24
|
Li W, Zhao G, Jiao Z, Xiang C, Liang Y, Huang W, Nie P, Huang B. Nuclear import of IRF11 via the importin α/β pathway is essential for its antiviral activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104649. [PMID: 36716904 DOI: 10.1016/j.dci.2023.104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Interferon regulatory factor 11 (IRF11), an intriguing IRF member found only in fish species, has recently been shown to have antiviral properties that are dependent on its nuclear entry and DNA binding affinity. However, the mechanisms by which IRF11 enters the nucleus are unknown. In the present study, we found orthologs of IRF11 in lamprey and lancelet species by combining positional, phylogenetic and structural comparison data, showing that this gene has an ancient origin. The IRF11 gene (AjIRF11) from the Japanese eel, Anguilla japonica, was subsequently characterized, and it was found that AjIRF11 has antiviral activities against spring viremia of carp virus (SVCV), which are accomplished by regulating the production of type I IFN and IFN-stimulated genes. In addition to its known DNA binding residues in the α3 helix, two residues in Loop 1, His40 and Trp46, are also involved in DNA binding and activation of the IFN promoter. Using immunofluorescence microscopy and site-directed mutagenesis analysis, we confirmed that full nuclear localization of AjIRF11 requires the bipartite nuclear localization sequence (NLS) spanning residues 75 to 101, as well as the monopartite NLS situated between residues 119 and 122. Coimmunoprecipitation assays confirmed that AjIRF11 interacts with importin α via its NLSs and can also bind to importin β directly, implying that IRF11 can be imported to the nucleus by one or more transport receptors.
Collapse
Affiliation(s)
- Wenxing Li
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Gejie Zhao
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Zhiyuan Jiao
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Chao Xiang
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ying Liang
- Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Wenshu Huang
- Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Pin Nie
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| | - Bei Huang
- Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
25
|
Zawiślak A, Woźniak K, Kawala B, Gupta S, Znamirowska-Bajowska A, Janiszewska-Olszowska J, Lubiński J, Calvo-Guirado JL, Grocholewicz K, Jakubowska A. IRF6 and FGF1 polymorphisms in non-syndromic cleft lip with or without cleft palate in the Polish population. Open Med (Wars) 2023; 18:20230677. [PMID: 37020525 PMCID: PMC10068750 DOI: 10.1515/med-2023-0677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/26/2022] [Accepted: 02/06/2023] [Indexed: 04/05/2023] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is the most common developmental defect that significantly affects the morphology and function of the stomatognathic system in children. The etiology of these birth defects is multifactorial, and single nucleotide polymorphisms (SNPs) in IRF6 and FGF1 have been associated with NSCL/P. This study aimed to evaluate whether SNPs in IRF6, namely rs2013162, rs642961, rs2235373, and rs34010 in FGF1, are associated with NSCL/P occurrence in the Polish population. The study included 627 participants: 209 children with NSCL/P and 418 healthy controls. DNA was isolated from saliva in the study group and from umbilical cord blood in controls. Genotyping of polymorphisms was performed using quantitative PCR. There was no statistically significant association of IRF6 gene variants with NSCL/P occurrence, although for rs2013162, AA genotype, odds ratio (OR) = 1.16 and for AC genotype, OR = 0.83; for rs642961, AA genotype, OR = 0.84 and for AG genotype, OR = 1.41; and for rs2235373, AA genotype, OR = 0.79 and for AG, OR = 0.85. In the instance of rs34010 polymorphism in FGF1, the presence of the AA genotype was statistically significant in reducing the risk of NSCL/P (OR = 0.31, p = 0.001). Genetic variation in FGF1 is an important risk marker of NSCL/P in the Polish population, which cannot be stated for the polymorphisms in the IRF6 gene.
Collapse
Affiliation(s)
- Alicja Zawiślak
- Department of Maxillofacial Orthopaedics and Orthodontics, Institute of Mother and Child, 01-211 Warsaw, Poland
- Department of Interdisciplinary Dentistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Krzysztof Woźniak
- Department of Orthodontics, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Beata Kawala
- Department of Dentofacial Orthopaedics and Orthodontics, Wrocław Medical University, 50-425 Wrocław, Poland
| | - Satish Gupta
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Znamirowska-Bajowska
- Department of Dentofacial Orthopaedics and Orthodontics, Wrocław Medical University, 50-425 Wrocław, Poland
| | | | - Jan Lubiński
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - José Luis Calvo-Guirado
- Department of Oral Surgery and Implant Dentistry, Faculty of Health Sciences, Universidad Católica de Murcia, UCAM, 30107, Murcia, Spain
| | - Katarzyna Grocholewicz
- Department of Interdisciplinary Dentistry, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Anna Jakubowska
- Hereditary Cancer Center, Department of Genetics and Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| |
Collapse
|
26
|
Long Y, Guo J, Chen J, Sun J, Wang H, Peng X, Wang Z, Lai W, Liu N, Shu L, Chen L, Shi Y, Xiao D, Liu S, Tao Y. GPR162 activates STING dependent DNA damage pathway as a novel tumor suppressor and radiation sensitizer. Signal Transduct Target Ther 2023; 8:48. [PMID: 36725837 PMCID: PMC9892510 DOI: 10.1038/s41392-022-01224-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/05/2022] [Accepted: 10/09/2022] [Indexed: 02/03/2023] Open
Abstract
In the treatment of most malignancies, radiotherapy plays a significant role. However, the resistance of cancer cells to ionizing radiation (IR) is the main reason for the failure of radiotherapy, which causes tumor recurrence and metastasis. In this study, we confirmed that GPR162, an orphan receptor in the G-protein-coupled receptor family, acted as a novel radiotherapy sensitizer by interacting with the stimulator of interferon genes (STING), which targeted DNA damage responses, activated IRF3, accelerated the activation of type I interferon system, promoted the expression of chemokines including CXCL10 and CXCL4, and inhibited the occurrence and development of tumors. Interestingly, the activation of STING by overexpression of GPR162 was independent of the classical pathway of cGAS. STING inhibitors could resist the antitumor effect of overexpression of GPR162 in IR-induced mouse models. In addition, most solid tumors showed low expression of GPR162. And the higher expression of GPR162 indicated a better prognosis in patients with lung adenocarcinoma, liver cancer, breast cancer, etc. In summary, these results suggested that GPR162 may serve as a potential sensitizer of radiotherapy by promoting radiotherapy-induced STING-IFN production and increasing the expression of chemokines including CXCL10 and CXCL4 in DNA damage response, providing an alternative strategy for improving cancer radiotherapy.
Collapse
Affiliation(s)
- Yao Long
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiaxing Guo
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jielin Chen
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jingyue Sun
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyan Wang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Xin Peng
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zuli Wang
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - WeiWei Lai
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Na Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Long Shu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling Chen
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Shi
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Desheng Xiao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Shuang Liu
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| | - Yongguang Tao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion(Ministry of Education), Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- NHC Key Laboratory of Carcinogenesis of Ministry of Health (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China.
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
27
|
Li J, He Y, Qu Y, Ren C, Wang X, Cheng Y, Sun L, Zhang X, Zhang G. Promotion of BST2 expression by the transcription factor IRF6 affects the progression of endometriosis. Front Immunol 2023; 14:1115504. [PMID: 37143676 PMCID: PMC10151653 DOI: 10.3389/fimmu.2023.1115504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/07/2023] [Indexed: 05/06/2023] Open
Abstract
Background Endometriosis (EM) is a benign, multifactorial, immune-mediated inflammatory disease that is characterized by persistent activation of the NF-κB signaling pathway and some features of malignancies, such as proliferation and lymphangiogenesis. To date, the pathogenesis of EM is still unclear. In this study, we investigated whether BST2 plays a role in the development of EM. Methods Bioinformatic analysis was performed with data from public databases to identify potential candidate targets for drug treatment. Experiments were conducted at the cell, tissue, and mouse EM model levels to characterize the aberrant expression patterns, molecular mechanisms, biological behaviors of endometriosis as well as treatment outcomes. Results BST2 was significantly upregulated in ectopic endometrial tissues and cells compared with control samples. Functional studies indicated that BST2 promoted proliferation, migration, and lymphangiogenesis and inhibited apoptosis in vitro and in vivo. The transcription factor (TF) IRF6 induced high BST2 expression by directly binding the BST2 promoter. The underlying mechanism by which BST2 functions in EM was closely related to the canonical NF-κB signaling pathway. New lymphatic vessels may serve as a channel for the infiltration of immune cells into the endometriotic microenvironment; these immune cells further produce the proinflammatory cytokine IL-1β, which in turn further activates the NF-κB pathway to promote lymphangiogenesis in endometriosis. Conclusion Taken together, our findings provide novel insight into the mechanism by which BST2 participates in a feedback loop with the NF-κB signaling pathway and reveal a novel biomarker and potential therapeutic target for endometriosis.
Collapse
Affiliation(s)
- Jixin Li
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanan He
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanjun Qu
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chengcheng Ren
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaotong Wang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Cheng
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liyuan Sun
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Zhang
- Central Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guangmei Zhang
- Department of Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Guangmei Zhang,
| |
Collapse
|
28
|
Duncan JKS, Xu D, Licursi M, Joyce MA, Saffran HA, Liu K, Gohda J, Tyrrell DL, Kawaguchi Y, Hirasawa K. Interferon regulatory factor 3 mediates effective antiviral responses to human coronavirus 229E and OC43 infection. Front Immunol 2023; 14:930086. [PMID: 37197656 PMCID: PMC10183588 DOI: 10.3389/fimmu.2023.930086] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 03/27/2023] [Indexed: 05/19/2023] Open
Abstract
Interferon regulatory factors (IRFs) are key elements of antiviral innate responses that regulate the transcription of interferons (IFNs) and IFN-stimulated genes (ISGs). While the sensitivity of human coronaviruses to IFNs has been characterized, antiviral roles of IRFs during human coronavirus infection are not fully understood. Type I or II IFN treatment protected MRC5 cells from human coronavirus 229E infection, but not OC43. Cells infected with 229E or OC43 upregulated ISGs, indicating that antiviral transcription is not suppressed. Antiviral IRFs, IRF1, IRF3 and IRF7, were activated in cells infected with 229E, OC43 or severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV-2). RNAi knockdown and overexpression of IRFs demonstrated that IRF1 and IRF3 have antiviral properties against OC43, while IRF3 and IRF7 are effective in restricting 229E infection. IRF3 activation effectively promotes transcription of antiviral genes during OC43 or 229E infection. Our study suggests that IRFs may be effective antiviral regulators against human coronavirus infection.
Collapse
Affiliation(s)
- Joseph K. Sampson Duncan
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Danyang Xu
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Maria Licursi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Michael A. Joyce
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Holly A. Saffran
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Kaiwen Liu
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Jin Gohda
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - D. Lorne Tyrrell
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Yasushi Kawaguchi
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Molecular Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kensuke Hirasawa
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
- *Correspondence: Kensuke Hirasawa,
| |
Collapse
|
29
|
Zhang W, Li Y, Xin S, Yang L, Jiang M, Xin Y, Wang Y, Cao P, Zhang S, Yang Y, Lu J. The emerging roles of IFIT3 in antiviral innate immunity and cellular biology. J Med Virol 2023; 95:e28259. [PMID: 36305096 DOI: 10.1002/jmv.28259] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 01/11/2023]
Abstract
The interferon-inducible protein with tetrapeptide repeats 3 (IFIT3) is one of the most important members in both the IFIT family and interferon-stimulated genes family. IFIT3 has typical features of the IFIT family in terms of gene and protein structures, and is able to be activated through the classical PRRs-IFN-JAK/STAT pathway. A variety of viruses can induce the expression of IFIT3, which in turn inhibits the replication of viruses, with the underlying mechanism showing its crucial role in antiviral innate immunity. Emerging studies have also identified that IFIT3 is involved in cellular biology changes, including cell proliferation, apoptosis, differentiation, and cancer development. In this review, we summarize the characteristics of IFIT3 with respect to molecular structure and regulatory pathways, highlighting the role of IFIT3 in antiviral innate immunity, as well as its diverse biological roles. We also discuss the potential of IFIT3 as a biomarker in disease diagnosis and therapy.
Collapse
Affiliation(s)
- Wentao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Mingjuan Jiang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Yujie Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Yiwei Wang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Pengfei Cao
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China
| | - Senmiao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Yang Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Hunan, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Hunan, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Hunan, Changsha, China.,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Hunan, Changsha, China
| |
Collapse
|
30
|
Liang Y, Liu R, Zhang J, Chen Y, Shan S, Zhu Y, Yang G, Li H. Negative regulation of interferon regulatory factor 6 (IRF6) in interferon and NF-κB signalling pathways of common carp (Cyprinus carpio L.). BMC Vet Res 2022; 18:433. [PMID: 36503433 PMCID: PMC9743528 DOI: 10.1186/s12917-022-03538-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Interferon (IFN) regulatory factors (IRFs) is a kind of transcription factors, which play an important role in regulating the expression of type I IFN and related genes. In mammals, IRF6 is not relevant with IFN expression, while zebrafish IRF6 was reported to be a positive regulator of IFN expression and could be phosphorylated by both MyD88 and TBK1. However, the role of IRF6 in the immune response and IFN transcription of common carp is unknown. RESULTS In the present study, the cDNA of IRF6 gene (CcIRF6) was cloned from common carp using RACE technique, with a total length of 1905 bp, encoding 471 amino acid residues, which possesses two functional domains of DBD and IAD. Similarity analysis showed that CcIRF6 had more than 50% similarity with IRFs of other vertebrates, and had the highest similarity with grass carp and zebrafish, among which the DBD domain was much more conserved. The phylogenetic analysis showed that CcIRF6 is in the branch of Osteichthyes and has the closest relationship with grass carp. In healthy common carp, the CcIRF6 was expressed in all the examined tissues, with the highest level in the oral epithelium, and the lowest level in the head kidney. After intraperitoneal injection of poly(I:C) or Aeromonas hydrophila, the expression of CcIRF6 increased in spleen, head kidney, foregut and hindgut of common carp. Moreover, poly(I:C), LPS, PGN and flagellin induced the expression of CcIRF6 in peripheral leukocytes and head kidney leukocytes of common carp in vitro. In EPC cells, CcIRF6 inhibited the expression of some IFN-related genes and pro-inflammatory cytokines, and dual luciferase reporter assay showed that CcIRF6 reduced the activity of IFN and NF-κB reporter genes. CONCLUSIONS The present study suggests that CcIRF6 is involved in the antiviral and antibacterial immune response of common carp, and negatively regulate the expression of IFN and NF-κB signalling pathways, which provides a theoretical basis for the study and prevention of fish disease pathogenesis.
Collapse
Affiliation(s)
- Yaxin Liang
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Rongrong Liu
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Jiahui Zhang
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Yixin Chen
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Shijuan Shan
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Yaoyao Zhu
- grid.449397.40000 0004 1790 3687College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022 China
| | - Guiwen Yang
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| | - Hua Li
- grid.410585.d0000 0001 0495 1805Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014 China
| |
Collapse
|
31
|
Azab MM, Mostafa FM, Khalil M, Salama M, Abdelrahman AA, Ali AA. Association of TLR7 and TLR9 genes polymorphisms in Egyptian patients with systemic lupus erythematosus. Heliyon 2022; 8:e11680. [DOI: 10.1016/j.heliyon.2022.e11680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/26/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
|
32
|
Lin Z, Wang J, Zhao S, Li Y, Zhang Y, Wang Y, Yan Y, Cheng Y, Sun J. Goose IRF7 is involved in antivirus innate immunity by mediating IFN activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 133:104435. [PMID: 35562079 DOI: 10.1016/j.dci.2022.104435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Interferon regulatory factor (IRF) 3 and IRF7 are the most important nuclear transcription factors regulating type-I interferon (IFN) production in mammals and the IRF3 is missing in birds. Our previous study found that IFR7 is the most important IRF in chickens, however, its functions in geese remain unknown. We cloned goose IRF7 (GoIRF7) and conducted bioinformatics analyses to compare the chromosomal location and protein homology of IRF7 in different species. Overexpression of GoIRF7 in DF-1 cells induced the activation of IFN-β, and this activation correlated positively with the dosage of transfected plasmids. Overexpression of GoIRF7 in goose embryonic fibroblasts (GEFs) induced the expression of IFNs, proinflammatory cytokines, and IFN-stimulated genes (ISGs); it also inhibited replication of Newcastle disease virus (NDV) and vesicular stomatitis virus (VSV). Our results suggest that GoIRF7 is an important regulator of IFNs, proinflammatory cytokines, and ISGs and plays a role in antiviral innate immunity in geese.
Collapse
Affiliation(s)
- Zhenyu Lin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Jie Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Shurui Zhao
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Yanlin Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Yanhe Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yaxian Yan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China
| | - Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China.
| | - Jianhe Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), Shanghai, 200240, China.
| |
Collapse
|
33
|
Alphonse N, Dickenson RE, Alrehaili A, Odendall C. Functions of IFNλs in Anti-Bacterial Immunity at Mucosal Barriers. Front Immunol 2022; 13:857639. [PMID: 35663961 PMCID: PMC9159784 DOI: 10.3389/fimmu.2022.857639] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Type III interferons (IFNs), or IFNλs, are cytokines produced in response to microbial ligands. They signal through the IFNλ receptor complex (IFNLR), which is located on epithelial cells and select immune cells at barrier sites. As well as being induced during bacterial or viral infection, type III IFNs are produced in response to the microbiota in the lung and intestinal epithelium where they cultivate a resting antiviral state. While the multiple anti-viral activities of IFNλs have been extensively studied, their roles in immunity against bacteria are only recently emerging. Type III IFNs increase epithelial barrier integrity and protect from infection in the intestine but were shown to increase susceptibility to bacterial superinfections in the respiratory tract. Therefore, the effects of IFNλ can be beneficial or detrimental to the host during bacterial infections, depending on timing and biological contexts. This duality will affect the potential benefits of IFNλs as therapeutic agents. In this review, we summarize the current knowledge on IFNλ induction and signaling, as well as their roles at different barrier sites in the context of anti-bacterial immunity.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,Immunoregulation Laboratory, Francis Crick Institute, London, United Kingdom
| | - Ruth E Dickenson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Abrar Alrehaili
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
34
|
Zhou L, Fang H, Yin M, Long H, Weng G. Novel immune-related signature based on immune cells for predicting prognosis and immunotherapy response in clear cell renal cell carcinoma. J Clin Lab Anal 2022; 36:e24409. [PMID: 35441741 PMCID: PMC9169179 DOI: 10.1002/jcla.24409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most common malignant tumor of the kidney and is characterized by poor prognosis. We sought to build an immune-related prognostic signature and investigate its relationship with immunotherapy response in ccRCC. METHODS Immune-related genes were identified by ssGSEA and WGCNA. The prognostic signature was conducted via univariate, least absolute shrinkage and selection operator, and multivariable Cox regression analyses. Kaplan-Meier analysis, PCA, t-SNE, and ROC were used to evaluate the risk model. RESULTS A total of 119 immune-related genes associated with prognosis were screened out. Six immune-related genes (CSF1, CD5L, AIM2, TIMP3, IRF6, and HHLA2) were applied to construct a prognostic signature for KIRC. Kaplan-Meier analysis showed that patients in high-risk group had a poorer survival outcome than in low-risk group. The 1-, 3- and 5-year AUC of the prognostic signature was 0.754, 0.715, and 0.739, respectively. Univariate and multivariate Cox regression models demonstrated that the risk signature was an independent prognostic factor for KIRC survival. GSEA analysis suggested that the high-risk group was concentrated on immune-related pathways. The high-risk group with more regulatory T-cell infiltration showed a higher expression of immune negative regulation genes. The risk score had positively relationship with TIDE score and negatively with the response of immunotherapy. The IC50 values of axitinib, sunitinib, sorafenib, and temsirolimus were lower in the high-risk group. CONCLUSION Our study defined a robust signature that may be promising for predicting clinical outcomes and immunotherapy and targeted therapy response in ccRCC patients.
Collapse
Affiliation(s)
- Libin Zhou
- Department of UrologyThe Affiliated Lihuili HospitalNingbo UniversityNingboChina
- Department of UrologyNingbo Medical Centre Lihuili HospitalNingboChina
| | - Hualong Fang
- The First Affiliated Hospital of NanchangNanchangChina
| | - Min Yin
- Department of UrologyNingbo Medical Centre Lihuili HospitalNingboChina
| | - Huimin Long
- Department of UrologyNingbo Medical Centre Lihuili HospitalNingboChina
| | - Guobin Weng
- Department of UrologyThe Affiliated Yinzhou No 2 Hospital, Ningbo UniversityNingboChina
- Department of UrologyNingbo Yinzhou No 2 HospitalNingboChina
| |
Collapse
|
35
|
[Effects of interferon regulatory factor 9 on the biological phenotypes in PML-RARα-induced promyelocytic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2022; 43:370-375. [PMID: 35680593 PMCID: PMC9250956 DOI: 10.3760/cma.j.issn.0253-2727.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Objective: To investigate the prognostic significance of interferon regulatory factor 9 (IRF9) expression and identify its role as a potential therapeutic target in acute promyelocytic leukemia (APL) . Methods: The gene expression profile and survival data applied in the bioinformatic analysis were obtained from The Cancer Genome Atlas and Beat acute myeloid leukemia (AML) cohorts. A dox-induced lentiviral system was used to induce the expression of PML-RARα (PR) in U937 cells, and the expression level of IRF9 in U937 cells treated with or without ATRA was examined. We then induced the expression of IRF9 in NB4, a promyelocytic leukemia cell line. In vitro studies focused on leukemic phenotypes triggered by IRF9 expression. Results: ①Bioinformatic analysis of the public database demonstrated the lowest expression of IRF9 in APL among all subtypes of AML, with lower expression associated with worse prognosis. ②We successfully established a PR-expression-inducible U937 cell line and found that IRF9 was downregulated by the PR fusion gene in APL, with undetectable expression in NB4 promyelocytic cells. ③An IRF9-inducible NB4 cell line was successfully established. The inducible expression of IRF9 promoted the differentiation of NB4 cells and had a synergistic effect with lower doses of ATRA. In addition, the inducible expression of IRF9 significantly reduced the colony formation capacity of NB4 cells. Conclusion: In this study, we found that the inducible expression of PR downregulates IRF9 and can be reversed by ATRA, suggesting a specific regulatory relationship between IRF9 and the PR fusion gene. The induction of IRF9 expression in NB4 cells can promote cell differentiation as well as reduce the colony forming ability of leukemia cells, implying an anti-leukemia effect for IRF9, which lays a biological foundation for IRF9 as a potential target for the treatment of APL.
Collapse
|
36
|
Lin Z, Wang J, Zhang N, Yi J, Wang Z, Ma J, Wang H, Yan Y, Qian K, Sun J, Cheng Y. Functional characterization of goose IRF1 in IFN induction and anti-NDV infection. Vet Res 2022; 53:29. [PMID: 35379320 PMCID: PMC8981851 DOI: 10.1186/s13567-022-01046-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/12/2022] [Indexed: 01/09/2023] Open
Abstract
Interferon regulatory factors (IRFs) play a key role in many aspects of immune response, and IRF1, IRF3, and IRF7 are positive regulators of IFN induction in mammals. However, IRF3, as the most critical regulatory factor in mammals, is naturally absent in birds, which attracts us to study the functions of other members of the avian IRF family. In the present study, we cloned goose IRF1 (GoIRF1) and conducted a series of bioinformatics analyses to compare the protein homology of GoIRF1 with that of IRF1 in other species. The overexpression of GoIRF1 in DF-1 cells induced the activation of IFN-β, and this activation is independent of the dosage of the transfected GoIRF1 plasmids. The overexpression of GoIRF1 in goose embryonic fibroblasts (GEFs) induced the expression of IFNs, proinflammatory cytokines, and IFN-stimulated genes (ISGs); it also inhibited the replication of green fluorescent protein (GFP)-tagged Newcastle disease virus (NDV) (NDV-GFP) and GFP-tagged vesicular stomatitis virus (VSV) (VSV-GFP). Our results suggest that GoIRF1 is an important regulator of IFNs, proinflammatory cytokines, and ISGs and plays a role in antiviral innate immunity in geese.
Collapse
Affiliation(s)
- Zhenyu Lin
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nian Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianshu Yi
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaofei Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingjiao Ma
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hengan Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yaxian Yan
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kun Qian
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
- Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Jianhe Sun
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuqiang Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, Agriculture Ministry Key Laboratory of Urban Agriculture (South), School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
37
|
Zhu Y, Yang G. Molecular identification and functional characterization of IRF4 from common carp (Cyprinus carpio. L) in immune response: a negative regulator in the IFN and NF-κB signalling pathways. BMC Vet Res 2022; 18:106. [PMID: 35300694 PMCID: PMC8928632 DOI: 10.1186/s12917-022-03205-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/07/2022] [Indexed: 12/03/2022] Open
Abstract
Background The interferon (IFN) regulatory factors (IRFs) were originally identified as transcription factors playing critical roles in the regulation of IFN-related genes in the signal pathway. In mammals, IRF4 plays a vital role in both the innate and adaptive immune system. This study aims to reveal the molecular characterization, phylogenetic analysis, expression profiles and the regulatory role in the IFN and NF-κB signalling pathways of IRF4 in common carp (Cyprinus carpio. L) (abbreviation, ccIRF4). Results Here, ccIRF4 was identified and characterized, it contained a DNA binding domain (DBD) which possess five tryptophans and an IRF-associated domain (IAD). The predicted protein sequence of the ccIRF4 showed higher identities with grass carp (Ctenopharyngodon idella) and zebrafish (Danio rerio). Phylogenetic analysis suggested that ccIRF4 has the closest relationship with zebrafish IRF4. Quantitative real-time PCR analysis showed that ccIRF4 was constitutively expressed in all investigated tissues with the highest expression level in the gonad. Polyinosinic:polycytidylic acid (poly I:C) stimulation up-regulated the ccIRF4 expressions in the liver, spleen, head kidney, skin, foregut and hindgut. Upon Aeromonas hydrophila injection, the expression level of ccIRF4 was up-regulated in all tissues with the exception of spleen. In addition, ccIRF4 was induced by lipopolysaccharide (LPS), peptidoglycan (PGN) and Flagellin in head kidney leukocytes (HKLs). Overexpression of the ccIRF4 gene in epithelioma papulosum cyprini cells (EPC) down regulated the expressions of IFN-related genes and proinflammatory factors. Dual-luciferase reporter assay revealed that ccIRF4 decreased the activation of NF-κB through MyD88. Conclusions These results indicate that ccIRF4 participates in both antiviral and antibacterial immune response and negatively regulates the IFN and NF-κB response. Overall, our study on ccIRF4 provides more new insights into the innate immune system of common carp as well as a theoretical basis for investigating the pathogenesis and prevention of fish disease.
Collapse
Affiliation(s)
- Yaoyao Zhu
- Key Laboratory of Tropical Marine Fishery Resources Protection and Utilization of Hainan Province, College of Fisheries and Life Science, Hainan Tropical Ocean University, No. 1 Yucai Road, Sanya, 572022, China. .,Hainan Key Laboratory for Conservation and Utilization of Tropical Marine Fishery Resources, Hainan Tropical Ocean University, Sanya, 572022, China.
| | - Guiwen Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan, 250014, China.
| |
Collapse
|
38
|
Shi P, Song C, Qi H, Ren J, Ren P, Wu J, Xie Y, Zhang M, Sun H, Cao Y. Up-regulation of IRF3 is required for docosahexaenoic acid suppressing ferroptosis of cardiac microvascular endothelial cells in cardiac hypertrophy rat. J Nutr Biochem 2022; 104:108972. [DOI: 10.1016/j.jnutbio.2022.108972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 11/25/2021] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
|
39
|
He T, Yang L, Wu D. Effect of interferon regulatory factor 2 on inflammatory response and oxidative stress in lipopolysaccharide-induced acute kidney injury. Drug Dev Res 2022; 83:940-951. [PMID: 35088417 DOI: 10.1002/ddr.21919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 11/23/2021] [Accepted: 01/13/2022] [Indexed: 12/11/2022]
Abstract
Interferon regulatory factor (IRF) 2 plays an important role in lipopolysaccharide (LPS)-induced acute kidney injury (AKI). In this study, we explored the effects of IRF2 on apoptosis, inflammation, and oxidative stress in AKI C57BL/6 male mouse model and HEK293 cells following LPS treatment. To determine the effect of IRF2, short hairpin RNAs in mice and small interfering RNAs in cells were used to knockdown IRF2 expression. IRF2 expression, apoptosis, and severity of inflammatory and oxidative stress in mice and cells were measured. IRF2 levels were upregulated in LPS-treated mice and cells. IRF2 knockdown suppressed the levels of creatinine, blood urea nitrogen, and kidney injury molecule 1 and decreased the renal injury score in mice. Furthermore, IRF2 knockdown inhibited apoptosis and decreased the levels of inflammatory, reactive oxygen species (ROS), and malondialdehyde (MDA), but increased superoxide dismutase (SOD) levels in mice and cells. Furthermore, we found that the Janus kinase (JAK)/ signal transducer and activator of transcription pathway activated by LPS was inhibited by knockdown of IRF2, and enhanced by IRF2 overexpression. IRF2 overexpression increased cell apoptosis, inflammation, and ROS and MDA levels, and decreased SOD levels. However, the effect of IRF2 overexpression was reversed by the JAK inhibitor tofacitinib. Knockdown of IRF2 reduced LPS-induced renal tissue injury in vivo and in vitro through anti-inflammatory and antioxidant stress effects.
Collapse
Affiliation(s)
- Tianwei He
- Department of Nephrology, The Yantai Yuhuangding Hospital, Yantai, China
| | - Lina Yang
- Department of Nephrology, The Yantai Yuhuangding Hospital, Yantai, China
| | - Daoxu Wu
- Department of Nephrology, The Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
40
|
Zhou H, Tang YD, Zheng C. Revisiting IRF1-mediated antiviral innate immunity. Cytokine Growth Factor Rev 2022; 64:1-6. [DOI: 10.1016/j.cytogfr.2022.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/30/2022]
|
41
|
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6:402. [PMID: 34824210 PMCID: PMC8617206 DOI: 10.1038/s41392-021-00791-1] [Citation(s) in RCA: 842] [Impact Index Per Article: 280.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
42
|
Zhang Z, Trypsteen W, Blaauw M, Chu X, Rutsaert S, Vandekerckhove L, van der Heijden W, Dos Santos JC, Xu CJ, Swertz MA, van der Ven A, Li Y. IRF7 and RNH1 are modifying factors of HIV-1 reservoirs: a genome-wide association analysis. BMC Med 2021; 19:282. [PMID: 34781942 PMCID: PMC8594146 DOI: 10.1186/s12916-021-02156-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/07/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Combination antiretroviral treatment (cART) cannot eradicate HIV-1 from the body due to the establishment of persisting viral reservoirs which are not affected by therapy and reinitiate new rounds of HIV-1 replication after treatment interruption. These HIV-1 reservoirs mainly comprise long-lived resting memory CD4+ T cells and are established early after infection. There is a high variation in the size of these viral reservoirs among virally suppressed individuals. Identification of host factors that contribute to or can explain this observed variation could open avenues for new HIV-1 treatment strategies. METHODS In this study, we conducted a genome-wide quantitative trait locus (QTL) analysis to probe functionally relevant genetic variants linked to levels of cell-associated (CA) HIV-1 DNA, CA HIV-1 RNA, and RNA:DNA ratio in CD4+ T cells isolated from blood from a cohort of 207 (Caucasian) people living with HIV-1 (PLHIV) on long-term suppressive antiretroviral treatment (median = 6.6 years). CA HIV-1 DNA and CA HIV-1 RNA levels were measured with corresponding droplet digital PCR (ddPCR) assays, and genotype information of 522,455 single-nucleotide variants was retrieved via the Infinium Global Screening array platform. RESULTS The analysis resulted in one significant association with CA HIV-1 DNA (rs2613996, P < 5 × 10-8) and two suggestive associations with RNA:DNA ratio (rs7113204 and rs7817589, P < 5 × 10-7). Then, we prioritized PTDSS2, IRF7, RNH1, and DEAF1 as potential HIV-1 reservoir modifiers and validated that higher expressions of IRF7 and RNH1 were accompanied by rs7113204-G. Moreover, RNA:DNA ratio, indicating relative HIV-1 transcription activity, was lower in PLHIV carrying this variant. CONCLUSIONS The presented data suggests that the amount of CA HIV-1 DNA and RNA:DNA ratio can be influenced through PTDSS2, RNH1, and IRF7 that were anchored by our genome-wide association analysis. Further, these observations reveal potential host genetic factors affecting the size and transcriptional activity of HIV-1 reservoirs and could indicate new targets for HIV-1 therapeutic strategies.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525HP, Nijmegen, the Netherlands.,Department of Genetics, University Medical Center Groningen, 9700RB, Groningen, the Netherlands.,Genomics Coordination Center, University Medical Center Groningen, 9700RB, Groningen, the Netherlands.,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, CiiM, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Marc Blaauw
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525HP, Nijmegen, the Netherlands
| | - Xiaojing Chu
- Department of Genetics, University Medical Center Groningen, 9700RB, Groningen, the Netherlands.,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, CiiM, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine, and Pediatrics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Wouter van der Heijden
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525HP, Nijmegen, the Netherlands
| | - Jéssica Cristina Dos Santos
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525HP, Nijmegen, the Netherlands
| | - Cheng-Jian Xu
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, CiiM, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.,TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Morris A Swertz
- Department of Genetics, University Medical Center Groningen, 9700RB, Groningen, the Netherlands.,Genomics Coordination Center, University Medical Center Groningen, 9700RB, Groningen, the Netherlands
| | - Andre van der Ven
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525HP, Nijmegen, the Netherlands.
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6525HP, Nijmegen, the Netherlands. .,Department of Genetics, University Medical Center Groningen, 9700RB, Groningen, the Netherlands. .,Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, CiiM, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany. .,TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.
| |
Collapse
|
43
|
Kim H, Subbannayya Y, Humphries F, Skejsol A, Pinto SM, Giambelluca M, Espevik T, Fitzgerald KA, Kandasamy RK. UMP-CMP kinase 2 gene expression in macrophages is dependent on the IRF3-IFNAR signaling axis. PLoS One 2021; 16:e0258989. [PMID: 34705862 PMCID: PMC8550426 DOI: 10.1371/journal.pone.0258989] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/09/2021] [Indexed: 12/30/2022] Open
Abstract
Toll-like receptors (TLRs) are highly-conserved pattern recognition receptors that mediate innate immune responses to invading pathogens and endogenous danger signals released from damaged and dying cells. Activation of TLRs trigger downstream signaling cascades, that culminate in the activation of interferon regulatory factors (IRFs), which subsequently leads to type I interferon (IFN) response. In the current study, we sought to expand the scope of gene expression changes in THP1-derived macrophages upon TLR4 activation and to identify interferon-stimulated genes. RNA-seq analysis led to the identification of several known and novel differentially expressed genes, including CMPK2, particularly in association with type I IFN signaling. We performed an in-depth characterization of CMPK2 expression, a nucleoside monophosphate kinase that supplies intracellular UTP/CTP for nucleic acid synthesis in response to type I IFN signaling in macrophages. CMPK2 was significantly induced at both RNA and protein levels upon stimulation with TLR4 ligand-LPS and TLR3 ligand-Poly (I:C). Confocal microscopy and subcellular fractionation indicated CMPK2 localization in both cytoplasm and mitochondria of THP-1 macrophages. Furthermore, neutralizing antibody-based inhibition of IFNAR receptor in THP-1 cells and BMDMs derived from IFNAR KO and IRF3 KO knockout mice further revealed that CMPK2 expression is dependent on LPS/Poly (I:C) mediated IRF3- type I interferon signaling. In summary, our findings suggest that CMPK2 is a potential interferon-stimulated gene in THP-1 macrophages and that CMPK2 may facilitate IRF3- type I IFN-dependent anti-bacterial and anti-viral roles.
Collapse
Affiliation(s)
- Hera Kim
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Yashwanth Subbannayya
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Fiachra Humphries
- Program in Innate Immunity, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Astrid Skejsol
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Sneha M. Pinto
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Miriam Giambelluca
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Richard K. Kandasamy
- Centre of Molecular Inflammation Research (CEMIR), and Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, Trondheim, Norway
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| |
Collapse
|
44
|
Li Z, Yang W, Qiu J, Xu H, Fan B, Li K, Zhou J, Li Y. Decreased interferon regulatory factor 6 expression due to DNA hypermethylation predicts an unfavorable prognosis in clear cell renal cell carcinoma. J Cancer 2021; 12:6640-6655. [PMID: 34659554 PMCID: PMC8518015 DOI: 10.7150/jca.62394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Emerging evidences have indicated that IRF6, as a member of the Interferon regulatory factors (IRFs) family, plays important roles in a variety of tumors. However, the expression status of IRF6 and its prognostic value in clear cell renal cell carcinoma (ccRCC) remain unclear. Methods: In this study, we used TCGA-KIRC, GEO and TIP databases and immunohistochemistry staining to determine the expression profile, clinico-pathological features and prognostic value of IRF6 in ccRCC. MSP and demethylation analysis were utilized to verify the regulatory effect of DNA methylation on IRF6 expression. Results: Our results found that IRF6 expression was downregulated in ccRCC tissues and cell lines, and decreased IRF6 expression was associated with worse clinicopathological features and poorer prognosis. Besides, the results of multivariate Cox regression analysis also confirmed that decreased IRF6 expression was an independently risk factor predictor of shorter Overall Survival (OS) (HR: 0.8524, 95%CI: 0.7614-0.9543, P=0.0056) and Disease Free Survival (DFS) (HR: 0.7024, 95%CI: 0.6087-0.8104, P<0.0001) in ccRCC patients. Moreover, the results of MSP and demethylation analysis validated that decreased IRF6 expression was caused by DNA hypermethylation. Furthermore, our results showed that IRF6 expression was associated with the infiltration levels of multiple immune cells in ccRCC. Conclusions: These findings demonstrated that IRF6 expression was significantly reduced in ccRCC and DNA hypermethylation played an important role in decreased IRF6 expression. In addition, the decrease of IRF6 was related to the unfavorable prognosis of ccRCC patients and the alterations of tumor immune cells infiltration.
Collapse
Affiliation(s)
- Zhi Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wuping Yang
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Jianhui Qiu
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Haozhe Xu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Fan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ke Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jingcheng Zhou
- Department of Urology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Yuan Li
- Department of Urology, the Second Xiangya Hospital, Central South University, Changsha, 410011, P.R. China
| |
Collapse
|
45
|
Amparyup P, Charoensapsri W, Soponpong S, Jearaphunt M, Wongpanya R, Tassanakajon A. Stimulator of interferon gene (STING) and interferon regulatory factor (IRF) are crucial for shrimp antiviral defense against WSSV infection. FISH & SHELLFISH IMMUNOLOGY 2021; 117:240-247. [PMID: 34418555 DOI: 10.1016/j.fsi.2021.08.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The cytosolic DNA-sensing immune response is essential for recognizing and establishing an effective host immune response to pathogens. However, the importance of the cytosolic signalling molecules responsible for facilitating an appropriate immune response following infection with a DNA virus in shrimps remains unknown. Here, we report the discovery of the Penaeus monodon stimulator of interferon gene (PmSTING) and interferon regulatory factor (PmIRF) genes and their important roles in the host defense against viral infection. High expression levels of PmSTING transcripts were detected in the midgut, hepatopancreas, and hindgut, with lower levels in foregut, while PmIRF was highly expressed in the hindgut, foregut, and hepatopancreas of P. monodon. The mRNA expression level of both PmSTING and PmIRF was up-regulated in the foregut in response to white spot syndrome virus (WSSV; dsDNA virus) infection. RNA-interference-mediated gene silencing of PmSTING and PmIRF rendered shrimps to be more susceptible to WSSV infection; suppression of PmIRF decreased the mRNA transcript level of PmSTING; and silencing of the cytosolic sensor PmDDX41 suppressed both PmSTING and PmIRF gene transcript levels. Thus, PmSTING and PmIRF are likely to be important for the antiviral innate response against the dsDNA WSSV pathogen and may mediate the antiviral immune defenses via PmDDX41/PmSTING/PmIRF signaling cascade in P. monodon.
Collapse
Affiliation(s)
- Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| | - Walaiporn Charoensapsri
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Suthinee Soponpong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Miti Jearaphunt
- Program in Biology, Faculty of Science and Technology, Suratthani Rajabhat University, 272 Moo 9 Surat-Nasarn Road, Khun Talae, Muang, Surat Thani, 84100, Thailand
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Bangkok, 10900, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| |
Collapse
|
46
|
Wang J, Lu S, Yang F, Guo Y, Chen Z, Yu N, Yao L, Huang J, Fan W, Xu Z, Gong Y. The role of macrophage polarization and associated mechanisms in regulating the anti-inflammatory action of acupuncture: a literature review and perspectives. Chin Med 2021; 16:56. [PMID: 34281592 PMCID: PMC8287695 DOI: 10.1186/s13020-021-00466-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/09/2021] [Indexed: 12/23/2022] Open
Abstract
Acupuncture is used in the treatment of a variety of inflammatory conditions and diseases. However, the mechanisms of its anti-inflammatory action are complex and have not been systematically investigated. Macrophages are key components of the innate immune system, thus, balancing the M1/M2 macrophage ratio and modulating cytokine levels in the inflammatory environment may be desirable therapeutic goals. Evidence has shown that acupuncture has anti-inflammatory actions that affect multiple body systems, including the immune, locomotory, endocrine, nervous, digestive, and respiratory systems, by downregulating pro-inflammatory M1 and upregulating anti-inflammatory M2 macrophages, as well as by modulating associated cytokine secretion. Macrophage polarization is controlled by the interlocking pathways of extrinsic factors, the local tissue microenvironment, and the neural-endocrine-immune systems. It has been suggested that polarization of T lymphocytes and cytokine secretions resulting in modulation of the autonomic nervous system and the hypothalamic–pituitary–adrenal axis, may be upstream mechanisms of acupuncture-induced macrophage polarization. We further propose that macrophage polarization could be the principal pathway involved in acupuncture immune regulation and provide the scientific basis for the clinical application of acupuncture in inflammatory conditions.
Collapse
Affiliation(s)
- Jiaqi Wang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Shanshan Lu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Fuming Yang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China.,School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China.,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China
| | - Nannan Yu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Lin Yao
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Jin Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China
| | - Wen Fan
- Suzuka University of Medical Science, Suzuka, 5100293, Japan
| | - Zhifang Xu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China. .,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China. .,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People's Republic of China.
| | - Yinan Gong
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China. .,School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, No.10 Poyang Lake Road, Tuanbo New Town, Jinghai District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
47
|
Hu G, Zhai S, Yu S, Huang Z, Gao R. Circular RNA circRHOBTB3 is downregulated in hepatocellular carcinoma and suppresses cell proliferation by inhibiting miR-18a maturation. Infect Agent Cancer 2021; 16:48. [PMID: 34187598 PMCID: PMC8243428 DOI: 10.1186/s13027-021-00384-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Circular RNA circRHOBTB3 has been characterized as a tumor suppressor in gastric cancer, while its role in hepatocellular carcinoma (HCC) is unknown. This study was carried out to analyze the role of circRHOBTB3 in HCC. METHODS In this study, circRHOBTB3, mature miR-18a, and miR-18a precursor in HCC and paired non-cancer tissues were detected by RT-qPCR. The role of circRHOBTB3 in the production of mature miR-18a was explored by transfecting circRHOBTB3 expression vector into HCC cells, followed by RT-qPCR to determine the expression of mature miR-18a and miR-18a precursor. The role of circRHOBTB3 and miR-18a in HCC cell proliferation was studied using CCK-8 assay. RESULTS CircRHOBTB3 was under-expressed in HCC compared to normal tissues. In HCC cells, circRHOBTB3 overexpression decreased mature miR-18a level but not miR-18a precursor. Cell proliferation analysis showed that circRHOBTB3 overexpression decreased cell proliferation while miR-18a overexpression increased cell proliferation. Moreover, circRHOBTB3 suppressed the role of miR-18a in cell proliferation. CONCLUSIONS CircRHOBTB3 is downregulated in HCC and may suppress cell proliferation by reducing miR-18a production.
Collapse
Affiliation(s)
- Gang Hu
- Department of General Surgery, Strategic Support Force Characteristic Medical Center, Beijing, 100101, People's Republic of China
| | - Shusen Zhai
- Department of Oncology, Strategic Support Force Characteristic Medical Center, Beijing, 100101, People's Republic of China
| | - Sheng Yu
- Division of Hepatobiliopancreatic Surgery, Department of General Surgery, Nanfang Hospital, Southern Medical University, No. 1838 Guangzhou Avenue North, Guangzhou City, Guangdong Province, 510515, People's Republic of China.
| | - Zhen Huang
- Department of General Surgery, Strategic Support Force Characteristic Medical Center, Beijing, 100101, People's Republic of China
| | - Ran Gao
- Department of General Surgery, Strategic Support Force Characteristic Medical Center, Beijing, 100101, People's Republic of China
| |
Collapse
|
48
|
Gao FX, Lu WJ, Shi Y, Zhou L, Gui JF, Zhao Z. Identification and functional characterization of three irf7 transcript variants in obscure puffer (Takifugu obscurus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104019. [PMID: 33482241 DOI: 10.1016/j.dci.2021.104019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Interferon regulatory factor 7 (IRF7) is a key mediator in regulating the type Ι IFN response. Although irf7 has been identified in more than twenty fish species, alternative splicing has not been found in teleost irf7. Alternative splicing is an important mechanism expanding the transcriptomic and proteomic diversity, and has been found in several IRF family members. Here, three alternative splicing variants of irf7 were identified and characterized in obscure puffer. The first splicing transcript (Toirf7v1) was predicted to encode 428 amino acids with a DNA-binding domain (DBD), an interaction-associated domain (IAD) and a serine-rich domain (SRD). Toirf7v2 encoded 430 amino acids caused by the intron retention, and contained the whole conserved domains. Toirf7v3 encoded a truncated protein with 337 amino acids resulting from the alternative 5' splice-site selection, and lacked part of IAD domain and the entire SRD domain. Functional studies demonstrated that all of the three isoforms could activate the expression of type I IFN and IFN-stimulated genes (ISGs). Nevertheless, the two variants (Toirf7v2 and Toirf7v3) exhibited much less ability to induce transcription of IFN and ISGs compared to the Toirf7v1. Our findings suggest that these splicing variants may have distinct roles in the regulation of immune response. These results will be beneficial to understand the functional characteristics of irf7 variants in fish.
Collapse
Affiliation(s)
- Fan-Xiang Gao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wei-Jia Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yan Shi
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China
| | - Li Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Jian-Fang Gui
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zhe Zhao
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
49
|
Dong Q, Chen K, Xie J, Han H, Feng Y, Lu J, Wang W. Identification of key genes and pathways in discoid lupus skin via bioinformatics analysis. Medicine (Baltimore) 2021; 100:e25433. [PMID: 33879674 PMCID: PMC8078291 DOI: 10.1097/md.0000000000025433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 02/11/2021] [Accepted: 03/13/2021] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT Discoid lupus erythematosus (DLE) is the most common skin manifestation of lupus; however, the molecular mechanisms underlying DLE remain unknown. Therefore, we aimed to identify key differentially expressed genes (DEGs) in discoid lupus skin and investigate their potential pathways.To identify candidate genes involved in the occurrence and development of the disease, we downloaded the microarray datasets GSE52471 and GSE72535 from the Gene Expression Database (GEO). DEGs between discoid lupus skin and normal controls were selected using the GEO2R tool and Venn diagram software (http://bioinformatics.psb.ugent.be/webtools/Venn/). The Database for Annotation, Visualization, and Integrated Discovery (DAVID), Enrichr, and Cytoscape ClueGo were used to analyze the Kyoto Encyclopedia of Gene and Genome pathways and gene ontology. Protein-protein interactions (PPIs) of these DEGs were further assessed using the Search Tool for the Retrieval Interacting Genes version 10.0.Seventy three DEGs were co-expressed in both datasets. DEGs were predominantly upregulated in receptor signaling pathways of the immune response. In the PPI network, 69 upregulated genes were selected. Furthermore, 4 genes (CXCL10, ISG15, IFIH1, and IRF7) were found to be significantly upregulated in the RIG-I-like receptor signaling pathway, from analysis of Enrichr and Cytoscape ClueGo.The results of this study may provide new insights into the potential molecular mechanisms of DLE. However, further experimentation is required to confirm these findings.
Collapse
|
50
|
Jou YC, Lin GL, Lin HY, Huang WH, Chuang YM, Lin RI, Chen PC, Wu SF, Shen CH, Chan MWY. Cyproheptadine, an epigenetic modifier, exhibits anti-tumor activity by reversing the epigenetic silencing of IRF6 in urothelial carcinoma. Cancer Cell Int 2021; 21:226. [PMID: 33874979 PMCID: PMC8054409 DOI: 10.1186/s12935-021-01925-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Urothelial carcinoma (UC) is the second most common malignancy of the urinary system with high rate of recurrence, UC patients therefore needed to be treated with surgery followed by chemotherapy. Development of novel therapeutics with minimal side-effect is an urgent issue. Our previous study showed that cyproheptadine (CPH), an anti-histamine, exhibited antitumor activity in UC in vitro and in an xenograft model. However, the molecular mechanism of how CPH inhibits tumor progression is not fully understood. METHODS Genes that were upregulated after treatment with CPH in UC cells, were examined by RNA-Seq. Real-time quantitative PCR (RT-qPCR) was employed to detect IRF6 expression while COBRA assay and bisulphite pyrosequencing were used to examine promoter methylation of IRF6. Enrichment of total H3K27 acetylation and H3K4 mono-methylation were detected by western blotting. Colony formation and flow cytometry were used to examine proliferation and apoptosis in UC cells overexpressed or depleted with IRF6. Nude mice xenograft model was used to examine the effect of IRF6 in UC. RESULTS Our result showed that several genes, including IRF6 were upregulated after treatment with CPH in BFTC905 UC cells. Further experiments found that treatment of CPH could restore the expression of IRF6 in several other UC cell lines, probably due to promoter hypomethylation and enrichment of H3K27 acetylation and H3K4 mono-methylation. These results may be due to the fact that CPH could alter the activity, but not the expression of epigenetic modifiers. Finally, re-expression of IRF6 in UC inhibited tumor growth in vitro and in an xenograft mouse model, by inducing apoptosis. CONCLUSION In conclusion, our results suggested that CPH may be an epigenetic modifier, modulating the expression of the potential tumor suppressor IRF6, in inhibiting tumor growth in UC.
Collapse
Affiliation(s)
- Yeong-Chin Jou
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Guan-Ling Lin
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Hon-Yi Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi, Taiwan
| | - Wan-Hong Huang
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Yu-Ming Chuang
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Ru-Inn Lin
- Department of Radiation Oncology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin, Chia-Yi, Taiwan
| | - Pie-Che Chen
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan
| | - Shu-Fen Wu
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan
| | - Cheng-Huang Shen
- Department of Urology, Ditmanson Medical Foundation, Chiayi Christian Hospital, Chiayi, Taiwan.
| | - Michael W Y Chan
- Department of Biomedical Sciences, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.
- Epigenomics and Human Disease Research Center, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.
- Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan.
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|