1
|
Oelkrug C. Analysis of physical and biological delivery systems for DNA cancer vaccines and their translation to clinical development. Clin Exp Vaccine Res 2024; 13:73-82. [PMID: 38752006 PMCID: PMC11091436 DOI: 10.7774/cevr.2024.13.2.73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/17/2023] [Accepted: 03/30/2024] [Indexed: 05/18/2024] Open
Abstract
DNA cancer vaccines as an approach in tumor immunotherapy are still being investigated in preclinical and clinical settings. Nevertheless, only a small number of clinical studies have been published so far and are still active. The investigated vaccines show a relatively stable expression in in-vitro transfected cells and may be favorable for developing an immunologic memory in patients. Therefore, DNA vaccines could be suitable as a prophylactic or therapeutic approach against cancer. Due to the low efficiency of these vaccines, the administration technique plays an important role in the vaccine design and its efficacy. These DNA cancer vaccine delivery systems include physical, biological, and non-biological techniques. Although the pre-clinical studies show promising results in the application of the different delivery systems, further studies in clinical trials have not yet been successfully proven.
Collapse
|
2
|
Wang Y, Song W, Xu Q, Liu Y, Liu H, Guo R, Chiou CJ, Gao K, Jin B, Chen C, Li Z, Yan J, Yu J. Adjuvant DNA vaccine pNMM promotes enhanced specific immunity and anti-tumor effects. Hum Vaccin Immunother 2023; 19:2202127. [PMID: 37128699 PMCID: PMC10142307 DOI: 10.1080/21645515.2023.2202127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
DNA vaccines containing only antigenic components have limited efficacy and may fail to induce effective immune responses. Consequently, adjuvant molecules are often added to enhance immunogenicity. In this study, we generated a tumor vaccine using a plasmid encoding NMM (NY-ESO-1/MAGE-A3/MUC1) target antigens and immune-associated molecules. The products of the vaccine were analyzed in 293 T cells by western blotting, flow cytometry, and meso-scale discovery electrochemiluminescence. To assess the immunogenicity obtained, C57BL/6 mice were immunized using the DNA vaccine. The results revealed that following immunization, this DNA vaccine induced cellular immune responses in C57BL/6 mice, as evaluated by the release of IFN-γ, and we also detected increases in the percentages of nonspecific lymphocytes, as well as those of antigen-specific T cells. Furthermore, immunization with the pNMM vaccine was found to significantly inhibit tumor growth and prolonged the survival of mice with B16-NMM+-tumors. Our data revealed that pNMM DNA vaccines not only confer enhanced immunity against tumors but also provide a potentially novel approach for vaccine design. Moreover, our findings provide a basis for further studies on vaccine pharmacodynamics and pharmacology, and lay a solid foundation for clinical application.
Collapse
Affiliation(s)
| | | | | | - Yachao Liu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Hezhong Liu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Runzi Guo
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Chuang-Jiun Chiou
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Kun Gao
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Baofeng Jin
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Changfeng Chen
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Zhongming Li
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Jinqi Yan
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| | - Jiyun Yu
- Gu'an Dingtai Haigui Biotechnology Co., Ltd., Peptide Valley Biomedical Incubation Port, Gu'an County, Hebei, China
| |
Collapse
|
3
|
Mutational burden, MHC-I expression and immune infiltration as limiting factors for in situ vaccination by TNFα and IL-12 gene electrotransfer. Bioelectrochemistry 2021; 140:107831. [PMID: 33991775 DOI: 10.1016/j.bioelechem.2021.107831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
In situ vaccination is a promising immunotherapeutic approach, where various local ablative therapies are used to induce an immune response against tumor antigens that are released from the therapy-killed tumor cells. We recently proposed using intratumoral gene electrotransfer for concomitant transfection of a cytotoxic cytokine tumor necrosis factor-α (TNFα) to induce in situ vaccination, and an immunostimulatory cytokine interleukin 12 (IL-12) to boost the primed immune response. Here, our aim was to test the local and systemic effectiveness of the approach in tree syngeneic mouse tumor models and associate it with tumor immune profiles, characterized by tumor mutational burden, immune infiltration and expression of PD-L1 and MHC-I on tumor cells. While none of the tested characteristic proved predictive for local effectiveness, high tumor mutational burden, immune infiltration and MHC-I expression were associated with higher abscopal effectiveness. Hence, we have confirmed that both the abundance and presentation of tumor antigens as well as the absence of immunosuppressive mechanisms are important for effective in situ vaccination. These findings provide important indications for future development of in situ vaccination based treatments, and for the selection of tumor types that will most likely benefit from it.
Collapse
|
4
|
Liegel J, Weinstock M, Rosenblatt J, Avigan D. Vaccination as Immunotherapy in Hematologic Malignancies. J Clin Oncol 2021; 39:433-443. [PMID: 33434056 DOI: 10.1200/jco.20.01706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Jessica Liegel
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology and Hematologic Malignancies, Harvard Medical School, Boston, MA
| | - Matthew Weinstock
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology and Hematologic Malignancies, Harvard Medical School, Boston, MA
| | - Jacalyn Rosenblatt
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology and Hematologic Malignancies, Harvard Medical School, Boston, MA
| | - David Avigan
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology and Hematologic Malignancies, Harvard Medical School, Boston, MA
| |
Collapse
|
5
|
Ejike UC, Chan CJ, Okechukwu PN, Lim RLH. New advances and potentials of fungal immunomodulatory proteins for therapeutic purposes. Crit Rev Biotechnol 2020; 40:1172-1190. [PMID: 32854547 DOI: 10.1080/07388551.2020.1808581] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fungal immunomodulatory proteins (FIPs) are fascinating small and heat-stable bioactive proteins in a distinct protein family due to similarities in their structures and sequences. They are found in fungi, including the fruiting bodies producing fungi comprised of culinary and medicinal mushrooms. Structurally, most FIPs exist as homodimers; each subunit consisting of an N-terminal α-helix dimerization and a C-terminal fibronectin III domain. Increasing numbers of identified FIPs from either different or same fungal species clearly indicates the growing research interests into its medicinal properties which include immunomodulatory, anti-inflammation, anti-allergy, and anticancer. Most FIPs increased IFN-γ production in peripheral blood mononuclear cells, potentially exerting immunomodulatory and anti-inflammatory effects by inhibiting overproduction of T helper-2 (Th2) cytokines common in an allergy reaction. Recently, FIP from Ganoderma microsporum (FIP-gmi) was shown to promote neurite outgrowth for potential therapeutic applications in neuro-disorders. This review discussed FIPs' structural and protein characteristics, their recombinant protein production for functional studies, and the recent advances in their development and applications as pharmaceutics and functional foods.
Collapse
Affiliation(s)
| | - Chong Joo Chan
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Kuala Lumpur, Malaysia
| | | | - Renee Lay Hong Lim
- Faculty of Applied Sciences, Department of Biotechnology, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Galati D, Zanotta S. Hematologic neoplasms: Dendritic cells vaccines in motion. Clin Immunol 2017; 183:181-190. [PMID: 28870867 DOI: 10.1016/j.clim.2017.08.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/28/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022]
Abstract
Dendritic cells (DCs) are bone-marrow-derived immune cells accounted for a key role in cancer vaccination as potent antigen-presenting cells within the immune system. Cancer microenvironment can modulate DCs maturation resulting in their accumulation into functional states associated with a reduced antitumor immune response. In this regard, a successful cancer vaccine needs to mount a potent antitumor immune response able to overcome the immunosuppressive tumor milieu. As a consequence, DCs-based approaches are a safe and promising strategy for improving the therapeutic efficacy in hematological malignancies, particularly in combinations with additional treatments. This review summarizes the most significant evidence about the immunotherapeutic strategies performed to target hematologic neoplasms including the tumoral associated antigens (TAA) pulsed on DCs, whole tumor cell vaccines or leukemia-derived DCs.
Collapse
Affiliation(s)
- Domenico Galati
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy.
| | - Serena Zanotta
- Hematology-Oncology and Stem-Cell Transplantation Unit, Department of Hematology, National Cancer Institute, Fondazione 'G. Pascale', IRCCS, Via Mariano Semmola 49, 80131 Naples, Italy
| |
Collapse
|
7
|
Leguèbe M, Notarangelo MG, Twarogowska M, Natalini R, Poignard C. Mathematical model for transport of DNA plasmids from the external medium up to the nucleus by electroporation. Math Biosci 2016; 285:1-13. [PMID: 27914928 DOI: 10.1016/j.mbs.2016.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 01/04/2023]
Abstract
We propose a mathematical model for the transport of DNA plasmids from the extracellular matrix up to the cell nucleus. The model couples two phenomena: the electroporation process, describing the cell membrane permeabilization to plasmids and the intracellular transport enhanced by the presence of microtubules. Numerical simulations of cells with arbitrary geometry, in 2D and 3D, and a network of microtubules show numerically the importance of the microtubules and the electroporation on the effectiveness of the DNA transfection, as observed by previous biological data. The paper proposes efficient numerical tools for forthcoming optimized procedures of cell transfection.
Collapse
Affiliation(s)
- M Leguèbe
- Max-Planck-Institut für Sonnensystemforschung, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
| | - M G Notarangelo
- Istituto per le Applicazioni del Calcolo "M. Picone", Consiglio Nazionale delle Ricerche, Via dei Taurini 19, I-00185 Rome, Italy
| | - M Twarogowska
- Dipartimento di Ingegneria e Scienze dell'Informazione e Matematica, Universita degli Studi dell'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| | - R Natalini
- Istituto per le Applicazioni del Calcolo "M. Picone", Consiglio Nazionale delle Ricerche, Via dei Taurini 19, I-00185 Rome, Italy
| | - C Poignard
- Team MONC, INRIA Bordeaux-Sud-Ouest, Institut de Mathématiques de Bordeaux, CNRS UMR 5251 & Université de Bordeaux, 351 cours de la Libération, 33405 Talence Cedex, France.
| |
Collapse
|
8
|
Tiptiri-Kourpeti A, Spyridopoulou K, Pappa A, Chlichlia K. DNA vaccines to attack cancer: Strategies for improving immunogenicity and efficacy. Pharmacol Ther 2016; 165:32-49. [DOI: 10.1016/j.pharmthera.2016.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Cancer immunology and canine malignant melanoma: A comparative review. Vet Immunol Immunopathol 2016; 169:15-26. [DOI: 10.1016/j.vetimm.2015.11.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/28/2015] [Accepted: 11/09/2015] [Indexed: 11/20/2022]
|
10
|
Katz T, Avivi I, Benyamini N, Rosenblatt J, Avigan D. Dendritic cell cancer vaccines: from the bench to the bedside. Rambam Maimonides Med J 2014; 5:e0024. [PMID: 25386340 PMCID: PMC4222413 DOI: 10.5041/rmmj.10158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The recognition that the development of cancer is associated with acquired immunodeficiency, mostly against cancer cells themselves, and understanding pathways inducing this immunosuppression, has led to a tremendous development of new immunological approaches, both vaccines and drugs, which overcome this inhibition. Both "passive" (e.g. strategies relying on the administration of specific T cells) and "active" vaccines (e.g. peptide-directed or whole-cell vaccines) have become attractive immunological approaches, inducing cell death by targeting tumor-associated antigens. Whereas peptide-targeted vaccines are usually directed against a single antigen, whole-cell vaccines (e.g. dendritic cell vaccines) are aimed to induce robust responsiveness by targeting several tumor-related antigens simultaneously. The combination of vaccines with new immuno-stimulating agents which target "immunosuppressive checkpoints" (anti-CTLA-4, PD-1, etc.) is likely to improve and maintain immune response induced by vaccination.
Collapse
Affiliation(s)
- Tamar Katz
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel; ; Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Irit Avivi
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel; ; Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Noam Benyamini
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Jacalyn Rosenblatt
- Hematological Malignancies and Bone Marrow Transplantation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David Avigan
- Hematological Malignancies and Bone Marrow Transplantation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Selective purification of supercoiled p53-encoding pDNA with l-methionine–agarose matrix. Anal Biochem 2014; 459:61-9. [DOI: 10.1016/j.ab.2014.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/05/2014] [Accepted: 05/15/2014] [Indexed: 12/24/2022]
|
12
|
Abstract
Ultrasound-mediated gene delivery with microbubbles has emerged as an attractive nonviral vector system for site-specific and noninvasive gene therapy. Ultrasound promotes intracellular uptake of therapeutic agents, particularly in the presence of microbubbles, by increasing vascular and cell membrane permeability. Several preclinical studies have reported successful gene delivery into solid tumors with significant therapeutic effects using this novel approach. This review provides background information on gene therapy and ultrasound bioeffects and discusses the current progress and overall perspectives on the application of ultrasound and microbubble-mediated gene delivery in cancer.
Collapse
|
13
|
Rosenblatt J, Bar-Natan M, Munshi NC, Avigan DE. Immunotherapy for multiple myeloma. Expert Rev Hematol 2014; 7:91-6. [DOI: 10.1586/17474086.2014.878226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Caramelo-Nunes C, Almeida P, Marcos J, Tomaz C. Aromatic ligands for plasmid deoxyribonucleic acid chromatographic analysis and purification: An overview. J Chromatogr A 2014; 1327:1-13. [DOI: 10.1016/j.chroma.2013.12.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 12/25/2022]
|
15
|
Abstract
The goal of active vaccination is to induce all the immune effector pathways and to establish immunological memory allowing prolonged surveillance against pathogens or cancer cells. DNA vaccination platform is an intriguing strategy owing to its ability to mobilize both branches of the immune system (i.e., innate immunity as well as adaptive immunity). Since plasmids offer several advantages for biotechnological applications due to their modular structure and easy manipulation, a wide range of strategies can be applied to improve DNA vaccine performance. This chapter discusses this topic in detail taking into account antigen/epitope selection and optimization, inclusion of intracellular targeting sequences and genetic adjuvants, and provision of T cell help.
Collapse
|
16
|
Pyzer AR, Avigan DE, Rosenblatt J. Clinical trials of dendritic cell-based cancer vaccines in hematologic malignancies. Hum Vaccin Immunother 2014; 10:3125-31. [PMID: 25625926 PMCID: PMC4514037 DOI: 10.4161/21645515.2014.982993] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/17/2014] [Accepted: 10/05/2014] [Indexed: 11/19/2022] Open
Abstract
The potential for the immune system to target hematological malignancies is demonstrated in the allogeneic transplant setting, where durable responses can be achieved. However, allogeneic transplantation is associated with significant morbidity and mortality related to graft versus host disease. Cancer immunotherapy has the capacity to direct a specific cytotoxic immune response against cancer cells, particularly residual cancer cells, in order to reduce the likelihood of disease relapse in a more targeted and tolerated manner. Ex vivo dendritic cells can be primed in various ways to present tumor associated antigen to the immune system, in the context of co-stimulatory molecules, eliciting a tumor specific cytotoxic response in patients. Several approaches to prime dendritic cells and overcome the immunosuppressive microenvironment have been evaluated in pre-clinical and early clinical trials with promising results. In this review, we summarize the clinical data evaluating dendritic cell based vaccines for the treatment of hematological malignancies.
Collapse
Key Words
- AML, Acute Myeloid Leukemia
- ASCT, Autologous Stem Cell Transplant
- Apo-DC, Apoptotic body loaded- dendritic cells
- CML, Chronic Myeloid Leukemia
- CR, Complete response
- CTLA-4, Cytotoxic T-Lymphocyte Antigen 4
- DC/AML, Dendritic cell Acute Myeloid Leukemia fusion vaccine
- DC/MM, Dendritic cell Multiple Myeloma fusion vaccine
- DNA Deoxyribonucleic acid
- FLT-ITD, Fms-like Tyrosine Kinase with Internal Tandem Duplication
- GMCSF, Granulocyte macrophage colony-stimulating factor
- GVHD, Graft vs Host Disease
- HLA-A*2402, Human Leukocyte antigen A*2402
- IFN, Interferon
- IFNg, Interferon gamma
- IL, Interleukin
- Id, Idiotype
- KLH, Keyhole limpet hemocyanin
- MDS, Myelodysplastic syndrome
- MHC, Major histocompatibility complex
- OS, Overall Survival
- PD-1, Programmed death 1
- PD-L1, Programmed death-ligand 1
- PR, Partial response
- PRR, Pathogen recognition receptor
- RNA, Ribonucleic acid
- SCT, Stem cell transplant
- TGFB, Transforming growth factor β
- TNFα, Tumor necrosis factor α
- VEGF, Vascular endothelial growth factor
- VGPR, Very good partial response
- WT-1, Wilm's tumor suppressor gene 1
- cancer
- dendritic cell
- immunotherapy
- leukemia
- mRNA, mRNA
- myeloma
- pDCs, Plasmacytoid Dendritic cell
- trial
- vaccine
Collapse
Affiliation(s)
- Athalia R Pyzer
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - David E Avigan
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| | - Jacalyn Rosenblatt
- Beth Israel Deaconess Medical Center; Harvard Medical School; Boston, MA USA
| |
Collapse
|
17
|
Chiarella P, Signori E. Intramuscular DNA vaccination protocols mediated by electric fields. Methods Mol Biol 2014; 1121:315-24. [PMID: 24510835 DOI: 10.1007/978-1-4614-9632-8_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vaccination is historically one of the most important methods for preventing infectious diseases in humans and animals. New insights in the biology of the immune system allow a more rational design of vaccines, and new vaccination strategies are emerging. DNA vaccines have been proposed as a promising approach for introducing foreign antigens into the host for inducing protective immunity against infectious and cancer diseases. Nevertheless, because of their poor immunogenicity, plasmid DNA vaccination strategies need further implementations. Recent data suggest electrotransfer as a useful tool to improve DNA-based vaccination protocols, being able to stimulate both the humoral and cellular immune responses. In preclinical trials, gene electrotransfer is successfully used in prime-boost combination protocols and its tolerability and safety has been demonstrated also in Phase I clinical trials. In this chapter, we report a short comment supporting electrotransfer as an effective strategy to improve DNA-based vaccination protocols and describe the vaccination procedures by plasmid DNA in combination with electrotransfer and hyaluronidase pretreatment in use in our laboratory.
Collapse
Affiliation(s)
- Pieranna Chiarella
- Laboratory of Molecular Pathology and Experimental Oncology, CNR-IFT, Rome, Italy
| | | |
Collapse
|
18
|
Liu H, Geng S, Feng C, Xie X, Wu B, Chen X, Zou Q, Wang S, Cui J, Xing R, Li W, Lu Y, Wang B. A DNA vaccine targeting p42.3 induces protective antitumor immunity via eliciting cytotoxic CD8+T lymphocytes in a murine melanoma model. Hum Vaccin Immunother 2013; 9:2196-202. [PMID: 24051432 DOI: 10.4161/hv.25013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The p42.3 gene was recently identified and characterized as having tumor-specific and mitosis phase-dependent expression in many types of cancer. This suggested that p42.3 antigen could be used as a target for vaccines against cancers. In this study, we immunized C57BL/6 mice with a DNA vaccine encoding p42.3. We used intramuscular injection with electroporation, either before or after challenge with tumor B16F10 cells. Vaccination with pcDNA3-p42.3 induced some degree of antitumor effect both therapeutically and prophylactically, as evaluated by the inhibition of tumor growth and decrease in tumor weight. Immunized mice showed a high level of specific cytotoxic activity against the p42.3 protein in vivo and had activated CD8 T cells that secreted IFN-γ, perforin, and granzyme B in response to stimulation with the antigen in vitro. Thus, this study presents the DNA vaccination against novel tumor target p42.3 as a promising antitumor modality.
Collapse
Affiliation(s)
- Hu Liu
- State Key Laboratory for Agro-Biotechnology; College of Biological Science; China Agricultural University; Beijing, P.R. China
| | - Shuang Geng
- Key Laboratory of Medical Molecular Virology of MOH and MOE; Fudan University Shanghai Medical College; Shanghai, P.R. China
| | - Congcong Feng
- State Key Laboratory for Agro-Biotechnology; College of Biological Science; China Agricultural University; Beijing, P.R. China
| | - Xiaoping Xie
- State Key Laboratory for Agro-Biotechnology; College of Biological Science; China Agricultural University; Beijing, P.R. China
| | - Bing Wu
- State Key Laboratory for Agro-Biotechnology; College of Biological Science; China Agricultural University; Beijing, P.R. China
| | - Xuan Chen
- State Key Laboratory for Agro-Biotechnology; College of Biological Science; China Agricultural University; Beijing, P.R. China
| | - Qiang Zou
- State Key Laboratory for Agro-Biotechnology; College of Biological Science; China Agricultural University; Beijing, P.R. China
| | - Shuang Wang
- State Key Laboratory for Agro-Biotechnology; College of Biological Science; China Agricultural University; Beijing, P.R. China
| | - Jiantao Cui
- Laboratory of Molecular Oncology; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); Peking University Cancer Hospital & Institute; Beijing, P.R. China
| | - Rui Xing
- Laboratory of Molecular Oncology; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); Peking University Cancer Hospital & Institute; Beijing, P.R. China
| | - Wenmei Li
- Laboratory of Molecular Oncology; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); Peking University Cancer Hospital & Institute; Beijing, P.R. China
| | - Youyong Lu
- Laboratory of Molecular Oncology; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); Peking University Cancer Hospital & Institute; Beijing, P.R. China
| | - Bin Wang
- State Key Laboratory for Agro-Biotechnology; College of Biological Science; China Agricultural University; Beijing, P.R. China; Key Laboratory of Medical Molecular Virology of MOH and MOE; Fudan University Shanghai Medical College; Shanghai, P.R. China
| |
Collapse
|
19
|
Chiarella P, De Santis S, Fazio VM, Signori E. Hyaluronidase contributes to early inflammatory events induced by electrotransfer in mouse skeletal muscle. Hum Gene Ther 2013; 24:406-16. [PMID: 23360544 DOI: 10.1089/hum.2012.215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Electrotransfer of genes is one of the preferred strategies used to deliver plasmid DNA into skeletal muscle. In our experience, the combination of hyaluronidase (HYA) with electrotransfer (ET) of DNA vaccine enhances transfection of muscular fibers and increases expression of the encoded antigen. However, the contribution of HYA to the inflammatory reaction induced by ET, and its role in supporting ET adjuvancy, has never been investigated. We analyzed the events occurring in the first 2 weeks after electrotransfer to mouse muscle in the presence of HYA, to verify whether HYA contributes to the local inflammatory response induced by ET. Our results demonstrate that HYA amplifies the ET effect in terms of inflammatory cell recruitment enhancing the early release of interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 cytokines. In contrast, HYA does not induce helper T cell type 1 and 2 cytokine production, confirming that the DNA vaccine is indispensable to induce mediators of antigen-specific immune responses. We observed inflammatory cell migration in the muscle treated with HYA plus ET in a time window between days 4 and 7 after cytokine induction. These observations are important in the choice of prime-boost intervals for optimizing ET-based DNA vaccination protocols. Because HYA contributes to vaccine spread and enhances the proinflammatory effect of ET in muscle we strongly support the use of HYA to potentiate DNA vaccine efficacy.
Collapse
Affiliation(s)
- Pieranna Chiarella
- Laboratory of Molecular Pathology and Experimental Oncology, Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy
| | | | | | | |
Collapse
|
20
|
Vaccination for the prevention and treatment of breast cancer with special focus on Her-2/neu peptide vaccines. Breast Cancer Res Treat 2013; 138:1-12. [PMID: 23340862 DOI: 10.1007/s10549-013-2410-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 01/07/2013] [Indexed: 01/18/2023]
Abstract
Immunologic interventions in a subset of breast cancer patients represent a well-established therapeutic approach reflecting individualized treatment modalities. Thus, the therapeutic administration of monoclonal antibodies targeting tumor-associated antigens (TAA), such as Her-2/neu, represents a milestone in cancer treatment. However, passive antibody administration suffers from several drawbacks, including frequency and long duration of treatment. These undesirables may be avoidable in an approach based on generating active immune responses against these same targets. Only recently has the significance of tumors in relation to their microenvironments been understood as essential for creating an effective cancer vaccine. In particular, the immune system plays an important role in suppressing or promoting tumor formation and growth. Therefore, activation of appropriate triggers (such as induction of Th1 cells, CD8+ T cells, and suppression of regulatory cells in combination with generation of antibodies with anti-tumor activity) is a desirable goal. Current vaccination approaches have concentrated on therapeutic vaccines using certain TAA. Many cancer antigens, including breast cancer antigens, have been described and also given priority ranking for use as vaccine antigens by the US National Cancer Institute. One of the TAA antigens which has been thoroughly examined in numerous trials is Her-2/neu. This review will discuss delivery systems for this antigen with special focus on T and B cell peptide vaccines. Attention will be given to their advantages and limitations, as well as the use of certain adjuvants to improve anti-cancer responses.
Collapse
|
21
|
Early Treg suppression by a listeriolysin-O-expressing E. coli vaccine in heterologous prime–boost vaccination against cancer. Vaccine 2012; 30:6903-11. [DOI: 10.1016/j.vaccine.2012.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 08/30/2012] [Accepted: 09/02/2012] [Indexed: 11/30/2022]
|
22
|
Caramelo-Nunes C, Gabriel M, Almeida P, Marcos J, Tomaz C. Purification of plasmid DNA from clarified and non-clarified Escherichia coli lysates by berenil pseudo-affinity chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 904:81-7. [DOI: 10.1016/j.jchromb.2012.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Revised: 07/16/2012] [Accepted: 07/19/2012] [Indexed: 12/20/2022]
|
23
|
Abstract
A promising cancer vaccine involves the fusion of dendritic cells (DCs) with tumor cells such that a broad array of tumor antigens are presented in the context of DC-mediated costimulation and stimulatory cytokines. In diverse animal models, vaccination with DC/tumor fusions results in protection from an otherwise lethal challenge of tumor cells and eradication of established disease. In phase I clinical studies, vaccination with DC/tumor fusions was well tolerated, and induced immunologic responses in the majority of patients and clinical responses in a subset. Vaccine efficacy may be blunted by the immunosuppressive milieu characteristic of patients with malignancy, including the increased presence of regulatory T cells, and inhibitory pathways such as the PD-1/PDL-1 pathway. A current focus of research interest lies in enhancing response to cancer vaccines, by combining vaccination with tumor cytoreduction, regulatory T-cell depletion, and blockade of critical inhibitory pathways.
Collapse
Affiliation(s)
- David Avigan
- Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | |
Collapse
|
24
|
Anderson K, Sizovs A, Cortez M, Waldron C, Haddleton DM, Reineke TM. Effects of trehalose polycation end-group functionalization on plasmid DNA uptake and transfection. Biomacromolecules 2012; 13:2229-39. [PMID: 22616977 DOI: 10.1021/bm300471n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In this study, we have synthesized six analogs of a trehalose-pentaethylenehexamine glycopolymer (Tr4) that contain (1A) adamantane, (1B) carboxy, (1C) alkynyl-oligoethyleneamine, (1D) azido trehalose, (1E) octyl, or (1F) oligoethyleneamine end groups and evaluated the effects of polymer end group chemistry on the ability of these systems to bind, compact, and deliver pDNA to cultured HeLa cells. The polymers were synthesized in one-pot azide-alkyne cycloaddition reactions with an adaptation of the Carothers equation for step-growth polymerization to produce a series of polymers with similar degrees of polymerization. An excess of end-capping monomer was added at the end of the polymerizations to maximize functionalization efficiency, which was evaluated with GPC, NMR, and MALDI-TOF. The polymers were all found to bind and compact pDNA at similarly low N/P ratios and form polyplexes with plasmid DNA. The effects of the different end group structures were most evident in the polyplex internalization and transfection assays in the presence of serum as determined by flow cytometry and luciferase gene expression, respectively. The Tr4 polymers end-capped with carboxyl groups (1B) (N/P = 7), octyne (1E) (N/P = 7), and oligoethyleneamine (1F) (N/P = 7), were taken into cells as polyplex and exhibited the highest levels of fluorescence, resulting from labeled plasmid. Similarly, the polymers end-functionalized with carboxyl groups (1E at N/P = 7), octyl groups (1E at N/P = 15), and in particular oligoethyleneamine groups (1F at N/P = 15) yielded dramatically higher reporter gene expression in the presence of serum. This study yields insight into how very subtle structural changes in polymer chemistry, such as end groups can yield very significant differences in the biological delivery efficiency and transgene expression of polymers used for pDNA delivery.
Collapse
Affiliation(s)
- Kevin Anderson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | | | | | | |
Collapse
|
25
|
Wei Y, Sun Y, Song C, Li H, Li Y, Zhang K, Gong J, Liu F, Liu Z, August JT, Jin B, Yang K. Enhancement of DNA vaccine efficacy by targeting the xenogeneic human chorionic gonadotropin, survivin and vascular endothelial growth factor receptor 2 combined tumor antigen to the major histocompatibility complex class II pathway. J Gene Med 2012; 14:353-62. [PMID: 22438278 DOI: 10.1002/jgm.2624] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A number of strategies have been used to improve the efficacy of the DNA vaccine for the treatment of tumors. These strategies, ranging from activating CD4+ T cell, manipulating antigen presentation and/or processing to anti-angiogenesis, focus on one certain aspect in the functioning of the vaccine. Therefore, their combination is necessary for rational DNA vaccines design by synergizing different regimens and overcoming the limitations of each strategy. METHODS A DNA fragment (HSV) encoding the C terminal 37 amino acids of human chorionic gonadotropin β chain (hCGβ), 5 different HLA-restricted cytotoxic T lymphocyte epitopes from human survivin and the third and fourth extracellular domains of vascular endothelial growth factor receptor 2 (VEGFR2) was inserted into the sequence between the luminal and transmembrane domain of human lysosome-associated membrane protein-1 cDNA for the construction of a novel DNA vaccine. RESULTS This novel vaccine, named p-L/HSV, has a potent antitumor effect on the LL/2 lung carcinoma model in syngeneic C57BL/6 mice. The immunologic mechanism involved in the antitumor effect referred to the activation of both cellular and humoral immune response. In addition, the tumor vasculature was abrogated as observed by immunohistochemistry in p-L/HSV immunized mice. Furthermore, the immunized mice received an additional boost with p-L/HSV 6 months later and showed a strong immune recall response. CONCLUSIONS The present study indicates that the strategies of combining antitumor with antiangiogenesis and targeting the tumor antigen to the major histocompatibility complex class II pathway cooperate well. Such a study may shed new light on designing vaccine for cancer in the future.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/genetics
- CD8-Positive T-Lymphocytes
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/therapy
- Chorionic Gonadotropin, beta Subunit, Human/genetics
- Epitopes/genetics
- Female
- Genetic Vectors/administration & dosage
- HEK293 Cells
- Humans
- Immunity, Active/genetics
- Inhibitor of Apoptosis Proteins/genetics
- Inhibitor of Apoptosis Proteins/immunology
- Lysosomal Membrane Proteins/genetics
- Lysosomal Membrane Proteins/immunology
- Major Histocompatibility Complex/genetics
- Major Histocompatibility Complex/immunology
- Mice
- Mice, Inbred C57BL
- Survivin
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vascular Endothelial Growth Factor Receptor-2/genetics
- Vascular Endothelial Growth Factor Receptor-2/immunology
Collapse
Affiliation(s)
- Yuying Wei
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi Province, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Iurescia S, Fioretti D, Fazio VM, Rinaldi M. Epitope-driven DNA vaccine design employing immunoinformatics against B-cell lymphoma: A biotech's challenge. Biotechnol Adv 2012; 30:372-83. [DOI: 10.1016/j.biotechadv.2011.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/16/2011] [Accepted: 06/23/2011] [Indexed: 12/16/2022]
|
27
|
Chu CL, Chen DC, Lin CC. A novel adjuvant Ling Zhi-8 for cancer DNA vaccines. HUMAN VACCINES 2011; 7:1161-4. [PMID: 22048115 DOI: 10.4161/hv.7.11.17753] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
DNA vaccines have a wide range of applications, with several potential advantages compared to other vaccine technologies for diseases. No DNA vaccine has yet been licensed in humans; however, a lot of effort has been made to enhance their potential as human vaccines and therapeutics. Finding an effective adjuvant is a strategy to improve the efficacy of DNA vaccines. We recently identified a fungal immunomodulatory protein Ling Zhi-8 (LZ-8) with stimulatory activity on dendritic cells (DCs) that significantly increases the efficacy of a cancer DNA vaccine in a preclinical tumor model, suggesting that LZ-8 may be a good candidate adjuvant for vaccine development. Here we discuss the possibility for applying LZ-8 to a cancer DNA vaccine for humans.
Collapse
Affiliation(s)
- Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | | | | |
Collapse
|
28
|
Faham A, Herringson T, Parish C, Suhrbier A, Khromykh AA, Altin JG. pDNA-lipoplexes engrafted with flagellin-related peptide induce potent immunity and anti-tumour effects. Vaccine 2011; 29:6911-9. [PMID: 21798298 DOI: 10.1016/j.vaccine.2011.07.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/17/2011] [Accepted: 07/13/2011] [Indexed: 01/07/2023]
Abstract
Complexes of cationic lipids and DNA (lipoplexes) are widely used for non-viral gene delivery and DNA vaccine development, but cationic lipids are toxic and promote non-specific interactions with cells, leading to poor efficacy. Near-neutral lipoplexes, on the other hand, can obviate toxicity, but a convenient means to target them to specific cells such as dendritic cells (DCs) has been lacking. Here, we show that a His-tagged flagellin-derived peptide (denoted 9Flg), previously reported to promote binding of liposomal antigen to TLR5-expressing cells, can be used to target near-neutral pDNA-lipoplexes incorporating the chelator lipid NTA(3)-DTDA (3(nitrilotriacetic acid)-ditetradecylamine) to DCs and other antigen-presenting cells (APCs). Thus, we show that pDNA-lipoplexes engrafted with 9Flg target pDNA to APCs in vitro and in vivo. Following i.v. administration, radiolabelled 9Flg-lipoplexes exhibited increased accumulation in spleen, lung and liver. Vaccination of C57BL/6 mice with 9Flg-lipoplexes containing either pcDNA3.1-SIIN (pSIIN) or a Kunjin virus replicon-based vector (pKUN), each encoding the epitope OVA(257-264) (SIINFEKL), induced Ag-specific T cell priming, and elicited strong cellular immunity as reflected by a marked increase in the number of Ag-responsive IFN-γ-producing CD8(+) T cells. Importantly, compared to i.m. injection of these SIINFEKL-encoding pDNAs in naked form, the i.v. administration of pSIIN or pKUN in 9Flg-lipoplexes to C57BL/6 mice induced a significantly more potent anti-tumour response in the B16-OVA melanoma tumour model. The targeting of near-neutral 9Flg-lipoplexes bearing pDNA encoding tumour antigens to TLR5 on APCs, therefore, is a powerful approach for developing more effective DNA vaccines and immunotherapies.
Collapse
Affiliation(s)
- Abdus Faham
- Division of Biomedical Science and Biochemistry, Research School of Biology, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Lin CC, Yu YL, Shih CC, Liu KJ, Ou KL, Hong LZ, Chen JDC, Chu CL. A novel adjuvant Ling Zhi-8 enhances the efficacy of DNA cancer vaccine by activating dendritic cells. Cancer Immunol Immunother 2011; 60:1019-27. [PMID: 21499904 PMCID: PMC11029078 DOI: 10.1007/s00262-011-1016-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/04/2011] [Indexed: 02/01/2023]
Abstract
DNA vaccine has been suggested to use in cancer therapy, but the efficacy remains to be improved. The immunostimulatory effect of a fungal immunomodulatory protein Ling Zhi-8 (LZ-8) isolated from Ganoderma lucidum has been reported. In this study, we tested the adjuvanticity of LZ-8 for HER-2/neu DNA vaccine against p185(neu) expressing tumor MBT-2 in mice. We found that recombinant LZ-8 stimulated mouse bone marrow-derived dendritic cells (DCs) via TLR4 and its stimulatory effect was not due to any microbe contaminant. In addition, LZ-8 enhanced the ability of DCs to induce antigen-specific T cell activation in vitro and in a subunit vaccine model in vivo. Surprisingly, LZ-8 cotreatment strongly improved the therapeutic effect of DNA vaccine against MBT-2 tumor in mice. This increase in antitumor activity was attributed to the enhancement of vaccine-induced Th1 and CTL responses. Consistent with the results from DCs, the promoting effect of LZ-8 on DNA vaccine was diminished when the MBT-2 tumor cells were grown in TLR4 mutant mice. Thus, we concluded that LZ-8 may be a promising adjuvant to enhance the efficacy of DNA vaccine by activating DCs via TLR4.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Blotting, Western
- Cancer Vaccines/therapeutic use
- Dendritic Cells/immunology
- Disease Models, Animal
- Fungal Proteins/genetics
- Fungal Proteins/immunology
- Lymphocyte Activation
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- RNA, Messenger/genetics
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Reverse Transcriptase Polymerase Chain Reaction
- T-Lymphocytes, Cytotoxic/immunology
- Transduction, Genetic
- Urinary Bladder Neoplasms/genetics
- Urinary Bladder Neoplasms/immunology
- Urinary Bladder Neoplasms/therapy
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- Chi-Chen Lin
- Institute of Biomedical Sciences, National Chung Hsin University, Taichung, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Matejuk A, Leng Q, Chou ST, Mixson AJ. Vaccines targeting the neovasculature of tumors. Vasc Cell 2011; 3:7. [PMID: 21385454 PMCID: PMC3061948 DOI: 10.1186/2045-824x-3-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 03/08/2011] [Indexed: 01/04/2023] Open
Abstract
Angiogenesis has a critical role in physiologic and disease processes. For the growth of tumors, angiogenesis must occur to carry sufficient nutrients to the tumor. In addition to growth, development of new blood vessels is necessary for invasion and metastases of the tumor. A number of strategies have been developed to inhibit tumor angiogenesis and further understanding of the interplay between tumors and angiogenesis should allow new approaches and advances in angiogenic therapy. One such promising angiogenic approach is to target and inhibit angiogenesis with vaccines. This review will discuss recent advances and future prospects in vaccines targeting aberrant angiogenesis of tumors. The strategies utilized by investigators have included whole endothelial cell vaccines as well as vaccines with defined targets on endothelial cells and pericytes of the developing tumor endothelium. To date, several promising anti-angiogenic vaccine strategies have demonstrated marked inhibition of tumor growth in pre-clinical trials with some showing no observed interference with physiologic angiogenic processes such as wound healing and fertility.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Pathology, University of Maryland Baltimore, MSTF Building, 10 South Pine Street, Baltimore, MD 21201, USA.
| | | | | | | |
Collapse
|