1
|
Adzhiakhmetova SL, Chervonnaya NM, Pozdnyakov DI, Popova OI, Oganisyan ET. Component Composition and Features of Biological Activity of Viscum album (Viscaceae). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 518:116-132. [PMID: 39128961 DOI: 10.1134/s0012496624701072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 08/13/2024]
Abstract
The review summarizes the data on the chemical composition and some features of biological activity of the European mistletoe Viscum album L. (Viscaceae Batsch). Among secondary metabolites, viscotoxins, lectins, carbohydrates, amino acids, flavonoids, triterpene acids, and nitrogenous compounds predominate in V. album. Mistletoe extracts and their indivdiual components exert various biological activities, including antitumor, immunomodulatory, and antidiabetic activities, and improve cognitive functions.
Collapse
Affiliation(s)
- S L Adzhiakhmetova
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia.
| | - N M Chervonnaya
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia
| | - D I Pozdnyakov
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia
| | - O I Popova
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia
| | - E T Oganisyan
- Pyatigorsk Medical and Pharmaceutical Institute, Branch of Volgograd State Medical University, Pyatigorsk, Russia
| |
Collapse
|
2
|
Rahman MM, Grice ID, Ulett GC, Wei MQ. Advances in Bacterial Lysate Immunotherapy for Infectious Diseases and Cancer. J Immunol Res 2024; 2024:4312908. [PMID: 38962577 PMCID: PMC11221958 DOI: 10.1155/2024/4312908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024] Open
Abstract
Antigenic cell fragments, pathogen-associated molecular patterns, and other immunostimulants in bacterial lysates or extracts may induce local and systemic immune responses in specific and nonspecific paradigms. Based on current knowledge, this review aimed to determine whether bacterial lysate has comparable functions in infectious diseases and cancer treatment. In infectious diseases, including respiratory and urinary tract infections, immune system activation by bacterial lysate can identify and combat pathogens. Commercially available bacterial lysates, including OM-85, Ismigen, Lantigen B, and LW 50020, were effective in children and adults in treating respiratory tract infections, chronic obstructive pulmonary disease, rhinitis, and rhinosinusitis with varying degrees of success. Moreover, OM-89, Uromune, Urovac, Urivac, and ExPEC4V showed therapeutic benefits in controlling urinary tract infections in adults, especially women. Bacterial lysate-based therapeutics are safe, well-tolerated, and have few side effects, making them a good alternative for infectious disease management. Furthermore, a nonspecific immunomodulation by bacterial lysates may stimulate innate immunity, benefiting cancer treatment. "Coley's vaccine" has been used to treat sarcomas, carcinomas, lymphomas, melanomas, and myelomas with varying outcomes. Later, several similar bacterial lysate-based therapeutics have been developed to treat cancers, including bladder cancer, non-small cell lung cancer, and myeloma; among them, BCG for in situ bladder cancer is well-known. Proinflammatory cytokines, including IL-1, IL-6, IL-12, and TNF-α, may activate bacterial antigen-specific adaptive responses that could restore tumor antigen recognition and response by tumor-specific type 1 helper cells and cytotoxic T cells; therefore, bacterial lysates are worth investigating as a vaccination adjuvants or add-on therapies for several cancers.
Collapse
Affiliation(s)
- Md. Mijanur Rahman
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| | - I. Darren Grice
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Institute for GlycomicsGriffith University, Gold Coast 4222, QLD, Australia
| | - Glen C. Ulett
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| | - Ming Q. Wei
- School of Pharmacy and Medical SciencesGriffith University, Gold Coast 4222, QLD, Australia
- Menzies Health Institute QueenslandGriffith University, Gold Coast 4222, QLD, Australia
| |
Collapse
|
3
|
Hong J, Meng L, Yu P, Zhou C, Zhang Z, Yu Z, Qin F, Zhao Y. Novel drug isolated from mistletoe (1 E,4 E)-1,7-bis(4-hydroxyphenyl)hepta-1,4-dien-3-one for potential treatment of various cancers: synthesis, pharmacokinetics and pharmacodynamics. RSC Adv 2020; 10:27794-27804. [PMID: 35516963 PMCID: PMC9055608 DOI: 10.1039/d0ra03674a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/09/2020] [Indexed: 11/21/2022] Open
Abstract
(1E,4E)-1,7-Bis(4-hydroxyphenyl)hepta-1,4-dien-3-one (DHDK) is a novel curcuminoid analogue isolated from mistletoe. We report the chemical total synthesis, pharmacokinetics, pharmacodynamics, and toxicity on normal cells, cancer cells, liver and kidney.
Collapse
Affiliation(s)
- Jing Hong
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Lin Meng
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Peipei Yu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Ceng Zhou
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Zhaoyan Zhang
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Zhiguo Yu
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Feng Qin
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| | - Yunli Zhao
- School of Pharmacy
- Shenyang Pharmaceutical University
- Shenyang 110016
- China
| |
Collapse
|
4
|
Beztsinna N, de Matos MBC, Walther J, Heyder C, Hildebrandt E, Leneweit G, Mastrobattista E, Kok RJ. Quantitative analysis of receptor-mediated uptake and pro-apoptotic activity of mistletoe lectin-1 by high content imaging. Sci Rep 2018; 8:2768. [PMID: 29426932 PMCID: PMC5807326 DOI: 10.1038/s41598-018-20915-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022] Open
Abstract
Ribosome inactivating proteins (RIPs) are highly potent cytotoxins that have potential as anticancer therapeutics. Mistletoe lectin 1 (ML1) is a heterodimeric cytotoxic protein isolated from European Mistletoe and belongs to RIP class II. The aim of this project was to systematically study ML1 cell binding, endocytosis pathway(s), subcellular processing and apoptosis activation. For this purpose, state of the art cell imaging equipment and automated image analysis algorithms were used. ML1 displayed very fast binding to sugar residues on the membrane and energy-dependent uptake in CT26 cells. The co-staining with specific antibodies and uptake blocking experiments revealed involvement of both clathrin-dependent and -independent pathways in ML1 endocytosis. Co-localization studies demonstrated the toxin transport from early endocytic vesicles to Golgi network; a retrograde road to the endoplasmic reticulum. The pro-apoptotic and antiproliferative activity of ML1 were shown in time lapse movies and subsequently quantified. ML1 cytotoxicity was less affected in multidrug resistant tumor cell line 4T1 in contrast to commonly used chemotherapeutic drug (ML1 resistance index 6.9 vs 13.4 for doxorubicin; IC50: ML1 1.4 ng/ml vs doxorubicin 24000 ng/ml). This opens new opportunities for the use of ML1 as an alternative treatment in multidrug resistant cancers.
Collapse
Affiliation(s)
- N Beztsinna
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - M B C de Matos
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.,ABNOBA GmbH, Pforzheim, Germany
| | - J Walther
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - E Hildebrandt
- ABNOBA GmbH, Pforzheim, Germany.,Institute for Mechanical Engineering and Mechanics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | - E Mastrobattista
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - R J Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Reuter URM, Oettmeier R, Hobohm U. Safety of Therapeutic Fever Induction in Cancer Patients Using Approved PAMP Drugs. Transl Oncol 2018; 11:330-337. [PMID: 29425952 PMCID: PMC5884214 DOI: 10.1016/j.tranon.2018.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/05/2018] [Accepted: 01/16/2018] [Indexed: 01/04/2023] Open
Abstract
William Coley, between 1895 and 1936, treated hundreds of cancer patients using infusions of fever inducing bacerial extracts. Similar experiments were done by Klyuyeva and co-workers in the 1940ies in Russia using trypanosoma extracts. Many remissions and cures were reported. We have conjectured that pathogen associated molecular pattern substances (PAMP) are the molecular explanation for the beneficial treatments in both groups. We could show that a combination of PAMP can eradicate solid tumours in cancer mice if applied several times. Accordingly, we suggested to combine PAMP containing approved drugs to treat cancer patients using a protocol similar to the old fever induction regimen. In this retrospective phase-1 study we report on the fever induction capacity and safety of applications of bacterial extracts, combinations of bacterial extracts with approved drugs, and combinations of approved drugs in 131 mainly cancer patients. Adverse reactions were those which can be expected during a feverish infection and mild. Over 523 fever inductions, no severe adverse reaction was observed.
Collapse
Affiliation(s)
| | - Ralf Oettmeier
- Ralf Oettmeier (RO), Paracelsusklinik, Battenhusstrasse 12, 9053 Teufen, Switzerland.
| | - Uwe Hobohm
- Uwe Hobohm (UH), THM University of Applied Sciences, Wiesenstrasse 14, 35390 Giessen, Germany.
| |
Collapse
|
6
|
Werthmann PG, Hintze A, Kienle GS. Complete remission and long-term survival of a patient with melanoma metastases treated with high-dose fever-inducing Viscum album extract: A case report. Medicine (Baltimore) 2017; 96:e8731. [PMID: 29145317 PMCID: PMC5704862 DOI: 10.1097/md.0000000000008731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Metastatic malignant cutaneous melanoma (MCM)-a highly immunogenic cancer-typically has a poor prognosis. Viscum album extracts (VAEs) have strong immune-stimulating, apoptogenic, and cytotoxic effects. CASE PRESENTATION A 66-year-old MCM patient with newly diagnosed lymph node metastases opted for sole VAE treatment. VAEs were initially applied subcutaneously, and then later in exceptionally high, fever-inducing doses, both intravenously and intralesionally. The metastases shrunk over the following months, and after 2 years, all lesions had completely remitted (regional and hilar lymph nodes). The patient has been tumor free for 3.5 years at the time of publication (and for 5 years since initiation of intensified VAE treatment). Besides fever and flu-like symptoms, no side effects occurred. DISCUSSION We presume that VAE triggered an increased release of tumor-associated antigens, enhanced immunologic recognition, and increased immune response against the tumor tissue and induced tumor remission.
Collapse
Affiliation(s)
- Paul G. Werthmann
- Institute for Applied Epistemology and Medical Methodology (IFAEMM) at the University of Witten/Herdecke, Freiburg i. Brsg., Germany
| | | | - Gunver S. Kienle
- Institute for Applied Epistemology and Medical Methodology (IFAEMM) at the University of Witten/Herdecke, Freiburg i. Brsg., Germany
- Center for Complementary Medicine, Institute for Environmental Health Sciences and Hospital Infection Control, Medical Center – University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Shi Z, Li WW, Tang Y, Cheng LJ. A Novel Molecular Model of Plant Lectin-Induced Programmed Cell Death in Cancer. Biol Pharm Bull 2017; 40:1625-1629. [PMID: 28768938 DOI: 10.1248/bpb.b17-00363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plant lectin, a class of highly diverse non-immune origin and carbohydrate-binding proteins, has been reported to specially induce cancer cell through programmed cell death (PCD) pathways (apoptosis and/or autophagy), shedding lights on screening promising anti-cancer candidate agent for further therapeutic trials. However, the complicated molecular mechanisms by which plant lectins induced the programmed death of tumor cells, have not yet been fully clarified. Here, we summarized a novel model, based on vast amount of research, by which plant lectins eliminate various types of cancer cells via three major pathways, including a) direct ribosome inactivating, b) endocytosis-dependent mitochondrial dysfunction and c) sugar-containing receptors binding. A better understanding of the role of plant lectins played and further elucidation of the strategies targeting PCD would provide a new clue for the applications and modifications of plant lectin as a potential anti-cancer agent from bench to clinic.
Collapse
Affiliation(s)
- Zheng Shi
- School of Medicine, Chengdu University
| | | | - Yong Tang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine
| | | |
Collapse
|
8
|
Twardziok M, Meierhofer D, Börno S, Timmermann B, Jäger S, Boral S, Eggert A, Delebinski CI, Seifert G. Transcriptomic and proteomic insight into the effects of a defined European mistletoe extract in Ewing sarcoma cells reveals cellular stress responses. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:237. [PMID: 28454538 PMCID: PMC5410041 DOI: 10.1186/s12906-017-1715-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 04/01/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND The hydrophobic triterpenes, oleanolic and betulinic acid as well as the hydrophilic mistletoe lectins and viscotoxins possess anticancer properties. They do all occur in combination in European mistletoe (Viscum album L.). Commercial Viscum album L. extracts are aqueous, excluding the insoluble triterpenes. We have previously shown that mistletoe lectins and triterpene acids are effective against Ewing sarcoma in vitro, ex vivo and in vivo. METHODS We recreated a total mistletoe effect (viscumTT) by combining an aqueous extract (viscum) and a triterpene extract (TT) solubilised with cyclodextrins and analysed the effects of viscumTT and the single extracts on TC-71 Ewing sarcoma cells in vitro by transcriptomic and proteomic profiling. RESULTS Treatment with the extracts strongly impacted Ewing sarcoma cell gene and protein expression. Apoptosis-associated and stress-activated genes were upregulated, proteasomal protein abundance enhanced and ribosomal and spliceosomal proteins downregulated. The mechanism of action of viscum, TT and viscumTT in TC-71 and MHH-ES-1 cells suggests the involvement of the unfolded protein response. While viscum and viscumTT extract treatment indicate response to oxidative stress and activation of stress-mediated MAPK signalling, TT extract treatment suggests the involvement of TLR signalling and autophagy. CONCLUSIONS Since the combinatory extract viscumTT exerts highly effective pro-apoptotic effects on Ewing sarcoma cells in vitro, this phytopolychemotherapy could be a promising adjuvant therapeutic option for paediatric patients with Ewing sarcoma.
Collapse
Affiliation(s)
- M Twardziok
- Department of Paediatric Oncology/Hematology, Otto Heubner Centre for Paediatric and Adolescent Medicine (OHC), Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Institute of Pharmacy, Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
- Department of Paediatrics, Dr. von Haunersches Kinderspital, Klinikum der Universität München, Munich, Germany
| | - D Meierhofer
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - S Börno
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - B Timmermann
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - S Jäger
- Birken AG, Niefern-Oeschelbronn, Germany
| | - Sengül Boral
- Department of Pathology, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - A Eggert
- Department of Paediatric Oncology/Hematology, Otto Heubner Centre for Paediatric and Adolescent Medicine (OHC), Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - C I Delebinski
- Department of Paediatric Oncology/Hematology, Otto Heubner Centre for Paediatric and Adolescent Medicine (OHC), Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - G Seifert
- Department of Paediatric Oncology/Hematology, Otto Heubner Centre for Paediatric and Adolescent Medicine (OHC), Charité, Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
9
|
Twardziok M, Kleinsimon S, Rolff J, Jäger S, Eggert A, Seifert G, Delebinski CI. Multiple Active Compounds from Viscum album L. Synergistically Converge to Promote Apoptosis in Ewing Sarcoma. PLoS One 2016; 11:e0159749. [PMID: 27589063 PMCID: PMC5010293 DOI: 10.1371/journal.pone.0159749] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 07/07/2016] [Indexed: 01/11/2023] Open
Abstract
Ewing sarcoma is the second most common bone cancer in children and adolescents, with poor prognosis and outcome in ~70% of initial diagnoses and 10-15% of relapses. Hydrophobic triterpene acids and hydrophilic lectins and viscotoxins from European mistletoe (Viscum album L.) demonstrate anticancer properties, but have not yet been investigated for Ewing sarcoma. Commercial Viscum album L. extracts are aqueous, excluding the insoluble triterpenes. We recreated a total mistletoe effect by combining an aqueous extract (viscum) and a triterpene extract (TT) solubilized with cyclodextrins. Ewing sarcoma cells were treated with viscum, TT and viscumTT in vitro, ex vivo and in vivo. In vitro and ex vivo treatment of Ewing sarcoma cells with viscum inhibited proliferation and induced apoptosis in a dose-dependent fashion, while viscumTT combination treatment generated a synergistic effect. Apoptosis occurred via intrinsic and extrinsic apoptotic pathways, evidenced by activation of both CASP8 and CASP9. We show that viscumTT treatment shifts the balance of apoptotic regulatory proteins towards apoptosis, mainly via CLSPN, MCL1, BIRC5 and XIAP downregulation. ViscumTT also demonstrated strong antitumor activity in a cell line- and patient-derived mouse model, and may be considered an adjuvant therapy option for pediatric patients with Ewing sarcoma.
Collapse
Affiliation(s)
- Monika Twardziok
- Department of Pediatric Oncology/Hematology, Otto Heubner Centre for Pediatric and Adolescent Medicine (OHC), Charité, Universitätsmedizin Berlin, Germany
- Institute of Pharmacy, Department of Biology, Chemistry, Pharmacy, Freie Universität, Berlin, Germany
| | - Susann Kleinsimon
- Department of Pediatric Oncology/Hematology, Otto Heubner Centre for Pediatric and Adolescent Medicine (OHC), Charité, Universitätsmedizin Berlin, Germany
| | - Jana Rolff
- EPO GmbH, Experimental Pharmacology & Oncology, Berlin, Germany
| | | | - Angelika Eggert
- Department of Pediatric Oncology/Hematology, Otto Heubner Centre for Pediatric and Adolescent Medicine (OHC), Charité, Universitätsmedizin Berlin, Germany
| | - Georg Seifert
- Department of Pediatric Oncology/Hematology, Otto Heubner Centre for Pediatric and Adolescent Medicine (OHC), Charité, Universitätsmedizin Berlin, Germany
- * E-mail:
| | - Catharina I. Delebinski
- Department of Pediatric Oncology/Hematology, Otto Heubner Centre for Pediatric and Adolescent Medicine (OHC), Charité, Universitätsmedizin Berlin, Germany
| |
Collapse
|
10
|
Differential Effects of Viscum album Preparations on the Maturation and Activation of Human Dendritic Cells and CD4⁺ T Cell Responses. Molecules 2016; 21:molecules21070912. [PMID: 27428940 PMCID: PMC6273690 DOI: 10.3390/molecules21070912] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 02/01/2023] Open
Abstract
Extracts of Viscum album (VA); a semi-parasitic plant, are frequently used in the complementary therapy of cancer and other immunological disorders. Various reports show that VA modulates immune system and exerts immune-adjuvant activities that might influence tumor regression. Currently, several therapeutic preparations of VA are available and hence an insight into the mechanisms of action of different VA preparations is necessary. In the present study, we performed a comparative study of five different preparations of VA on maturation and activation of human dendritic cells (DCs) and ensuing CD4+ T cell responses. Monocyte-derived human DCs were treated with VA Qu Spez, VA Qu Frf, VA M Spez, VA P and VA A. Among the five VA preparations tested VA Qu Spez, a fermented extract with a high level of lectins, significantly induced DC maturation markers CD83, CD40, HLA-DR and CD86, and secretion of pro-inflammatory cytokines such as IL-6, IL-8, IL-12 and TNF-α. Furthermore, analysis of T cell cytokines in DC-T cell co-culture revealed that VA Qu Spez significantly stimulated IFN-γ secretion without modulating regulatory T cells and other CD4+ T cytokines IL-4, IL-13 and IL-17A. Our study thus delineates differential effects of VA preparations on DC maturation; function and T cell responses.
Collapse
|
11
|
Orange M, Reuter U, Hobohm U. Coley's Lessons Remembered: Augmenting Mistletoe Therapy. Integr Cancer Ther 2016; 15:502-511. [PMID: 27207233 PMCID: PMC5739169 DOI: 10.1177/1534735416649916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/11/2016] [Accepted: 04/21/2016] [Indexed: 12/18/2022] Open
Abstract
The following four observations point in the same direction, namely that there is an unleveraged potential for stimulating the innate immune system against cancer: (1) experimental treatments with bacterial extracts more than 100 years ago by Coley and contemporaries, (2) a positive correlation between spontaneous regressions and febrile infection, (3) epidemiological data suggesting an inverse correlation between a history of infection and the likelihood of developing cancer, and (4) our recent finding that a cocktail of pattern recognition receptor ligands (PRRLs) can eradicate solid tumors in cancer mice if applied metronomically. Because the main immunostimulating component of mistletoe extract (ME), mistletoe lectin, has been shown to be a PRRL as well, we suggest to apply ME in combination with additional PRRLs. Additional PRRLs can be found in approved drugs already on the market. Therefore, augmentation of ME might be feasible, with the aim of reattaining the old successes using approved drugs rather than bacterial extracts.
Collapse
Affiliation(s)
| | | | - Uwe Hobohm
- THM University of Applied Sciences, Giessen, Germany
| |
Collapse
|
12
|
Brys AK, Gowda R, Loriaux DB, Robertson GP, Mosca PJ. Nanotechnology-based strategies for combating toxicity and resistance in melanoma therapy. Biotechnol Adv 2016; 34:565-577. [PMID: 26826558 DOI: 10.1016/j.biotechadv.2016.01.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/15/2015] [Accepted: 01/16/2016] [Indexed: 12/17/2022]
Abstract
Drug toxicity and resistance remain formidable challenges in cancer treatment and represent an area of increasing attention in the case of melanoma. Nanotechnology represents a paradigm-shifting field with the potential to mitigate drug resistance while improving drug delivery and minimizing toxicity. Recent clinical and pre-clinical studies have demonstrated how a diverse array of nanoparticles may be harnessed to circumvent known mechanisms of drug resistance in melanoma to improve therapeutic efficacy. In this review, we discuss known mechanisms of resistance to various melanoma therapies and possible nanotechnology-based strategies that could be used to overcome these barriers and improve the pharmacologic arsenal available to combat advanced stage melanoma.
Collapse
Affiliation(s)
- Adam K Brys
- Department of Surgery, Division of Surgical Oncology, Duke University Medical Center, Durham, NC 27710, United States
| | - Raghavendra Gowda
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Daniel B Loriaux
- Department of Surgery, Division of Surgical Oncology, Duke University Medical Center, Durham, NC 27710, United States
| | - Gavin P Robertson
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Paul J Mosca
- Department of Surgery, Division of Surgical Oncology, Duke University Medical Center, Durham, NC 27710, United States.
| |
Collapse
|
13
|
Liu B, Ezeogu L, Zellmer L, Yu B, Xu N, Joshua Liao D. Protecting the normal in order to better kill the cancer. Cancer Med 2015; 4:1394-403. [PMID: 26177855 PMCID: PMC4567024 DOI: 10.1002/cam4.488] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/21/2015] [Accepted: 05/27/2015] [Indexed: 12/23/2022] Open
Abstract
Chemotherapy is the only option for oncologists when a cancer has widely spread to different body sites. However, almost all currently available chemotherapeutic drugs will eventually encounter resistance after their initial positive effect, mainly because cancer cells develop genetic alterations, collectively coined herein as mutations, to adapt to the therapy. Some patients may still respond to a second chemo drug, but few cases respond to a third one. Since it takes time for cancer cells to develop new mutations and then select those life-sustaining ones via clonal expansion, "run against time for mutations to emerge" should be a crucial principle for treatment of those currently incurable cancers. Since cancer cells constantly change to adapt to the therapy whereas normal cells are stable, it may be a better strategy to shift our focus from killing cancer cells per se to protecting normal cells from chemotherapeutic toxicity. This new strategy requires the development of new drugs that are nongenotoxic and can quickly, in just hours or days, kill cancer cells without leaving the still-alive cells with time to develop mutations, and that should have their toxicities confined to only one or few organs, so that specific protections can be developed and applied.
Collapse
Affiliation(s)
- Bingya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai, 200025, China
| | - Lewis Ezeogu
- Hormel Institute, University of MinnesotaAustin, Minnesota, 55912
| | - Lucas Zellmer
- Hormel Institute, University of MinnesotaAustin, Minnesota, 55912
| | - Baofa Yu
- Beijing Baofa Cancer Hospital, Shahe Wangzhuang Gong Ye YuanChang Pin Qu, Beijing, 102206, China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical ScienceBeijing, 100021, China
| | | |
Collapse
|
14
|
Raditic DM, Bartges JW. Evidence-based Integrative Medicine in Clinical Veterinary Oncology. Vet Clin North Am Small Anim Pract 2014; 44:831-53. [DOI: 10.1016/j.cvsm.2014.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Marvibaigi M, Supriyanto E, Amini N, Abdul Majid FA, Jaganathan SK. Preclinical and clinical effects of mistletoe against breast cancer. BIOMED RESEARCH INTERNATIONAL 2014; 2014:785479. [PMID: 25136622 PMCID: PMC4127267 DOI: 10.1155/2014/785479] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 06/06/2014] [Accepted: 06/18/2014] [Indexed: 02/04/2023]
Abstract
Breast cancer is among the most frequent types of cancer in women worldwide. Current conventional treatment options are accompanied by side effects. Mistletoe is amongst the important herbal medicines traditionally used as complementary remedies. An increasing number of studies have reported anticancer activity of mistletoe extracts on breast cancer cells and animal models. Some recent evidence suggests that cytotoxic activity of mistletoe may be mediated through different mechanisms. These findings provide a good base for clinical trials. Various studies on mistletoe therapy for breast cancer patients revealed similar findings concerning possible benefits on survival time, health-related quality of life (HRQoL), remission rate, and alleviating adverse reactions to conventional therapy. This review provides an overview of the recent findings on preclinical experiments and clinical trials of mistletoe for its cytotoxic and antitumor activity and its effect on HRQoL in breast cancer patients. Moreover, studies investigating molecular and cellular mechanisms underlying antitumor activity of mistletoe are discussed in this paper. The analyzed trials provided evidence that there might be a combination of pharmacological and motivational aspects mediated by the mistletoe extract application which may contribute to the clinical benefit and positive outcome such as improved HRQoL and self-regulation in breast cancer patients.
Collapse
Affiliation(s)
- Mohsen Marvibaigi
- IJN-UTM Cardiovascular Engineering Center, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Eko Supriyanto
- IJN-UTM Cardiovascular Engineering Center, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Neda Amini
- IJN-UTM Cardiovascular Engineering Center, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Fadzilah Adibah Abdul Majid
- Bioprocess Engineering Department, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Saravana Kumar Jaganathan
- IJN-UTM Cardiovascular Engineering Center, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
16
|
Zhang J, Lou X, Jin L, Zhou R, Liu S, Xu N, Liao DJ. Necrosis, and then stress induced necrosis-like cell death, but not apoptosis, should be the preferred cell death mode for chemotherapy: clearance of a few misconceptions. Oncoscience 2014; 1:407-22. [PMID: 25594039 PMCID: PMC4284620 DOI: 10.18632/oncoscience.61] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/02/2014] [Indexed: 12/13/2022] Open
Abstract
Cell death overarches carcinogenesis and is a center of cancer researches, especially therapy studies. There have been many nomenclatures on cell death, but only three cell death modes are genuine, i.e. apoptosis, necrosis and stress-induced cell death (SICD). Like apoptosis, SICD is programmed. Like necrosis, SICD is a pathological event and may trigger regeneration and scar formation. Therefore, SICD has subtypes of stress-induced apoptosis-like cell death (SIaLCD) and stress-induced necrosis-like cell death (SInLCD). Whereas apoptosis removes redundant but healthy cells, SICD removes useful but ill or damaged cells. Many studies on cell death involve cancer tissues that resemble parasites in the host patients, which is a complicated system as it involves immune clearance of the alien cancer cells by the host. Cancer resembles an evolutionarily lower-level organism having a weaker apoptosis potential and poorer DNA repair mechanisms. Hence, targeting apoptosis for cancer therapy, i.e. killing via SIaLCD, will be less efficacious and more toxic. On the other hand, necrosis of cancer cells releases cellular debris and components to stimulate immune function, thus counteracting therapy-caused immune suppression and making necrosis better than SIaLCD for chemo drug development.
Collapse
Affiliation(s)
- Ju Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xiaomin Lou
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Longyu Jin
- Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Rongjia Zhou
- Department of Genetics & Center for Developmental Biology, College of Life Sciences, Wuhan University, Wuhan, P. R. China
| | - Siqi Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, P.R. China
| | - Ningzhi Xu
- Laboratory of Cell and Molecular Biology, Cancer Institute, Academy of Medical Science, Beijing, P.R. China
| | - D. Joshua Liao
- Hormel Institute, University of Minnesota, Austin, MN, USA
| |
Collapse
|