1
|
Larson AC, Doty KR, Solheim JC. The double life of a chemotherapy drug: Immunomodulatory functions of gemcitabine in cancer. Cancer Med 2024; 13:e7287. [PMID: 38770637 PMCID: PMC11106691 DOI: 10.1002/cam4.7287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 05/22/2024] Open
Abstract
Although the development of immunotherapies has been revolutionary in the treatment of several cancers, many cancer types remain unresponsive to immune-based treatment and are largely managed by chemotherapy drugs. However, chemotherapeutics are not infallible and are frequently rendered ineffective as resistance develops from prolonged exposure. Recent investigations have indicated that some chemotherapy drugs have additional functions beyond their normative cytotoxic capacity and are in fact immune-modifying agents. Of the pharmaceuticals with identified immune-editing properties, gemcitabine is well-studied and of interest to clinicians and scientists alike. Gemcitabine is a chemotherapy drug approved for the treatment of multiple cancers, including breast, lung, pancreatic, and ovarian. Because of its broad applications, relatively low toxicity profile, and history as a favorable combinatory partner, there is promise in the recharacterization of gemcitabine in the context of the immune system. Such efforts may allow the identification of suitable immunotherapeutic combinations, wherein gemcitabine can be used as a priming agent to improve immunotherapy efficacy in traditionally insensitive cancers. This review looks to highlight documented immunomodulatory abilities of one of the most well-known chemotherapy agents, gemcitabine, relating to its influence on cells and proteins of the immune system.
Collapse
Affiliation(s)
- Alaina C. Larson
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Kenadie R. Doty
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Joyce C. Solheim
- Eppley Institute for Research in Cancer & Allied DiseasesUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Fred & Pamela Buffett Cancer CenterUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Biochemistry & Molecular BiologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
- Department of Pathology, Microbiology, & ImmunologyUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
2
|
Gao Z, Kang SW, Erstad D, Azar J, Van Buren G, Fisher W, Sun Z, Rubinstein MP, Lee HS, Camp ER. Pre-treatment inflamed tumor immune microenvironment is associated with FOLFIRINOX response in pancreatic cancer. Front Oncol 2023; 13:1274783. [PMID: 38074633 PMCID: PMC10701674 DOI: 10.3389/fonc.2023.1274783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/31/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction Pancreatic adenocarcinoma (PDAC) is an aggressive tumor with limited response to both chemotherapy and immunotherapy. Pre-treatment tumor features within the tumor immune microenvironment (TiME) may influence treatment response. We hypothesized that the pre-treatment TiME composition differs between metastatic and primary lesions and would be associated with response to modified FOLFIRINOX (mFFX) or gemcitabine-based (Gem-based) therapy. Methods Using RNAseq data from a cohort of treatment-naïve, advanced PDAC patients in the COMPASS trial, differential gene expression analysis of key immunomodulatory genes in were analyzed based on multiple parameters including tumor site, response to mFFX, and response to Gem-based treatment. The relative proportions of immune cell infiltration were defined using CIBERSORTx and Dirichlet regression. Results 145 samples were included in the analysis; 83 received mFFX, 62 received Gem-based therapy. Metastatic liver samples had both increased macrophage (1.2 times more, p < 0.05) and increased eosinophil infiltration (1.4 times more, p < 0.05) compared to primary lesion samples. Further analysis of the specific macrophage phenotypes revealed an increased M2 macrophage fraction in the liver samples. The pre-treatment CD8 T-cell, dendritic cell, and neutrophil infiltration of metastatic samples were associated with therapy response to mFFX (p < 0.05), while mast cell infiltration was associated with response to Gem-based therapy (p < 0.05). Multiple immunoinhibitory genes such as ADORA2A, CSF1R, KDR/VEGFR2, LAG3, PDCD1LG2, and TGFB1 and immunostimulatory genes including C10orf54, CXCL12, and TNFSF14/LIGHT were significantly associated with worse survival in patients who received mFFX (p = 0.01). There were no immunomodulatory genes associated with survival in the Gem-based cohort. Discussion Our evidence implies that essential differences in the PDAC TiME exist between primary and metastatic tumors and an inflamed pretreatment TiME is associated with mFFX response. Defining components of the PDAC TiME that influence therapy response will provide opportunities for targeted therapeutic strategies that may need to be accounted for in designing personalized therapy to improve outcomes.
Collapse
Affiliation(s)
- Zachary Gao
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Sung Wook Kang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Derek Erstad
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
- Department of Surgery, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| | - Joseph Azar
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - George Van Buren
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
| | - William Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
| | - Zequn Sun
- Department of Preventative Medicine, Northwestern University Clinical and Translational Sciences Institute, Chicago, IL, United States
| | - Mark P. Rubinstein
- The Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Hyun-Sung Lee
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
- Systems Onco-Immunology Laboratory, David J. Sugarbaker Division of Thoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
| | - E. Ramsay Camp
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, United States
- Department of Surgery, Dan L. Duncan Comprehensive Cancer Center, Houston, TX, United States
- Department of Surgery, Michael E. DeBakey VA Medical Center, Houston, TX, United States
| |
Collapse
|
3
|
Li Y, Xiang S, Pan W, Wang J, Zhan H, Liu S. Targeting tumor immunosuppressive microenvironment for pancreatic cancer immunotherapy: Current research and future perspective. Front Oncol 2023; 13:1166860. [PMID: 37064113 PMCID: PMC10090519 DOI: 10.3389/fonc.2023.1166860] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with increased incidence rate. The effect of surgery combined with chemoradiotherapy on survival of patients is unsatisfactory. New treatment strategy such as immunotherapy need to be investigated. The accumulation of desmoplastic stroma, infiltration of immunosuppressive cells including myeloid derived suppressor cells (MDSCs), tumor associated macrophages (TAMs), cancer‐associated fibroblasts (CAFs), and regulatory T cells (Tregs), as well as tumor associated cytokine such as TGF-β, IL-10, IL-35, CCL5 and CXCL12 construct an immunosuppressive microenvironment of pancreatic cancer, which presents challenges for immunotherapy. In this review article, we explore the roles and mechanism of immunosuppressive cells and lymphocytes in establishing an immunosuppressive tumor microenvironment in pancreatic cancer. In addition, immunotherapy strategies for pancreatic cancer based on tumor microenvironment including immune checkpoint inhibitors, targeting extracellular matrix (ECM), interfering with stromal cells or cytokines in TME, cancer vaccines and extracellular vesicles (EVs) are also discussed. It is necessary to identify an approach of immunotherapy in combination with other modalities to produce a synergistic effect with increased response rates in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Xiang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjun Pan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| |
Collapse
|
4
|
Shi W, Yang X, Xie S, Zhong D, Lin X, Ding Z, Duan S, Mo F, Liu A, Yin S, Jiang X, Xu ZPG, Lu X. A new PD-1-specific nanobody enhances the antitumor activity of T-cells in synergy with dendritic cell vaccine. Cancer Lett 2021; 522:184-197. [PMID: 34562519 DOI: 10.1016/j.canlet.2021.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022]
Abstract
Despite the many successes and opportunities presented by PD-1 blockade in cancer therapies, anti-PD-1 monoclonal antibodies still face multiple challenges. Herein we report a strategy based on a nanobody (Nb) to circumvent these obstacles. A new PD-1-blocking Nb (PD-1 Nb20) in combination with tumor-specific dendritic cell (DC)/tumor-fusion cell (FC) vaccine that aims to improve the activation, proliferation, cytokine secretion, and tumor cell cytotoxicity of CD8+ T-cells. This combination was found to effectively enhance the in vitro cytotoxicity of CD8+ T-cells to kill human non-small cell lung cancer (NSCLC) HCC827 cells, hepatocellular carcinoma (HCC) HepG2 cells, and tongue squamous cell carcinoma (TSCC) Tca8113 cells. Moreover, CD8+ T-cells pre-treated with PD-1 Nb20 and tumor-specific DC/tumor-FCs significantly suppressed the growth of NSCLC-, HCC- and TSCC-derived xenograft tumors and prolonged the survival of tumor-bearing mice, through promoting T-cell infiltration to kill tumor cells and inhibiting tumor angiogenesis. These data demonstrate that PD-1 Nb20 in synergy with DC/tumor-FC vaccine augment the broad spectrum of antitumor activity of CD8+ T-cells, providing an alternative and promising immunotherapeutic strategy for tumor patients who are T-cell-dysfunctional or not sensitive to anti-PD-1 therapy.
Collapse
Affiliation(s)
- Wei Shi
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xiaomei Yang
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Shenxia Xie
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Dani Zhong
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi, 530021, PR China
| | - Xuandong Lin
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; College of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Ziqiang Ding
- School of Preclinical Medicine, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Siliang Duan
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Fengzhen Mo
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Aiqun Liu
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Guangxi Medical University Affiliated Tumor Hospital, Nanning, Guangxi, 530021, PR China
| | - Shihua Yin
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, PR China.
| | - Zhi Ping Gordon Xu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Xiaoling Lu
- Guangxi Key Laboratory of Nanobody Research, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; College of Stomatology, Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| |
Collapse
|
5
|
Role of targeted immunotherapy for pancreatic ductal adenocarcinoma (PDAC) treatment: An overview. Int Immunopharmacol 2021; 95:107508. [PMID: 33725635 DOI: 10.1016/j.intimp.2021.107508] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors with a high mortality rate and poor survival rate. Depending on the tumor stage, PDAC is either treated by resection surgery, chemotherapies, or radiotherapies. Various chemotherapeutic agents have been used to treat PDAC, alone or in combination. Despite the combinations, chemotherapy exhibits many side-effects leading to an increase in the toxicity profile amongst the PDAC patients. Additionally, these standard chemotherapeutic agents have only a modest impact on patient survival due to their limited efficacy. PDAC was previously considered as an immunologically silent malignancy, but recent findings have demonstrated that effective immune-mediated tumor cell death can be used for its treatment. PDAC is characterized by an immunosuppressive tumor microenvironment accompanied by the major expression of myeloid-derived suppressor cells (MDSC) and M2 tumor-associated macrophages. In contrast, the expression of CD8+ T cells is significantly low. Additionally, infiltration of mast cells in PDAC correlates with the poor prognosis. Immunotherapeutic agents target the immunity mediators and empower them to suppress the tumor and effectively treat PDAC. Different targets are studied and exploited to induce an antitumor immune response in PDAC patients. In recent times, site-specific delivery of immunotherapeutics also gained attention among researchers to effectively treat PDAC. In the present review, existing immunotherapies for PDAC treatment along with their limitations are addressed in detail. The review also includes the pathophysiology, traditional strategies and significance of targeted immunotherapies to combat PDAC effectively. Separately, the identification of ideal targets for the targeted therapy of PDAC is also reviewed exhaustively. Additionally, the review also addresses the applications of targeted immunotherapeutics like checkpoint inhibitors, adoptive T-cell therapy etc.
Collapse
|
6
|
Larghi A, Rimbaș M, Rizzatti G, Carbone C, Gasbarrini A, Costamagna G, Alfieri S, Tortora G. Endoscopic ultrasound-guided therapies for pancreatic solid tumors: An overview. Semin Oncol 2021; 48:95-105. [PMID: 33608132 DOI: 10.1053/j.seminoncol.2021.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 01/16/2021] [Indexed: 12/14/2022]
Abstract
The close proximity of the endoscopic ultrasound (EUS) probe to the pancreas, coupled with the ease with which a needle can be inserted into a pancreatic lesion, have contributed to the development of EUS-guided therapies for both adenocarcinoma and neuroendocrine pancreatic neoplasms. EUS-guided fine needle injection of different types of drugs, implantation of fiducial markers to facilitate stereotactic body radiation therapy or of radioactive seeds to perform brachytherapy, and the use of different thermal and nonthermal ablation devices and techniques have all been tested in preliminary human studies. This manuscript will present the available evidence accumulated thus far in the field of EUS-guided oncological treatment of pancreatic solid tumors, along with a look into possible future applications.
Collapse
Affiliation(s)
- Alberto Larghi
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy.
| | - Mihai Rimbaș
- Gastroenterology Department, Colentina Clinical Hospital, Carol Davila University of Medicine, Bucharest, Romania
| | - Gianenrico Rizzatti
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy; Gastroenterology Division, Fondazione Policlinico Universitario A. Gemelli, Catholic University, IRCCS, Rome, Italy
| | - Carmine Carbone
- Oncological Division, Fondazione Policlinico Universitario A. Gemelli, Catholic University, IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Gastroenterology Division, Fondazione Policlinico Universitario A. Gemelli, Catholic University, IRCCS, Rome, Italy
| | - Guido Costamagna
- Digestive Endoscopy Unit, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University, Rome, Italy; IHU-USIAS, University of Strasbourg, Strasbourg, France
| | - Sergio Alfieri
- Digestive Surgery, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Catholic University, Rome, Italy
| | - Giampaolo Tortora
- Oncological Division, Fondazione Policlinico Universitario A. Gemelli, Catholic University, IRCCS, Rome, Italy
| |
Collapse
|
7
|
Kerr MD, McBride DA, Chumber AK, Shah NJ. Combining therapeutic vaccines with chemo- and immunotherapies in the treatment of cancer. Expert Opin Drug Discov 2020; 16:89-99. [PMID: 32867561 DOI: 10.1080/17460441.2020.1811673] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Breakthroughs in cancer immunotherapy have spurred interest in the development of vaccines to mediate prophylactic protection and therapeutic efficacy against primary tumors or to prevent relapse. However, immunosuppressive mechanisms employed by cancer cells to generate effective resistance have hampered clinical translation of therapeutic cancer vaccines. To enhance vaccine efficacy, the immunomodulatory properties of cytoreductive therapies could amplify a cancer-specific immune response. AREAS COVERED Herein, the authors discuss therapeutic cancer vaccines that harness whole cells and antigen-targeted vaccines. First, recent advancements in both autologous and allogeneic whole-cell vaccines and combinations with checkpoint blockade and chemotherapy are reviewed. Next, tumor antigen-targeted vaccines using peptide-based vaccines and DNA-vaccines are discussed. Finally, combination therapies using antigen-targeted vaccines are reviewed. EXPERT OPINION A deeper understanding of the immunostimulatory properties of cytoreductive therapies has supported their utility in combination therapies involving cancer vaccines as a potential strategy to induce a durable anti-tumor immune response for multiple types of cancers. Based on current evidence, combination therapies may have synergies that depend on the identity of the cytotoxic agent, vaccine target, dosing schedule, and cancer type. Together, these observations suggest that combining cancer vaccines with immunomodulatory cytoreductive therapy is a promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Matthew D Kerr
- Department of NanoEngineering, University of California , San Diego, CA, USA.,Program in Chemical Engineering, University of California , San Diego, CA, USA.,Center for Nano-Immuno Engineering, University of California , San Diego, CA, USA
| | - David A McBride
- Department of NanoEngineering, University of California , San Diego, CA, USA.,Program in Chemical Engineering, University of California , San Diego, CA, USA.,Center for Nano-Immuno Engineering, University of California , San Diego, CA, USA
| | - Arun K Chumber
- Department of NanoEngineering, University of California , San Diego, CA, USA.,Program in Chemical Engineering, University of California , San Diego, CA, USA.,Center for Nano-Immuno Engineering, University of California , San Diego, CA, USA
| | - Nisarg J Shah
- Department of NanoEngineering, University of California , San Diego, CA, USA.,Program in Chemical Engineering, University of California , San Diego, CA, USA.,Center for Nano-Immuno Engineering, University of California , San Diego, CA, USA.,Program in Immunology, University of California , San Diego, CA, USA.,San Diego Center for Precision Immunotherapy, Moores Cancer Center, University of California , San Diego, CA, USA
| |
Collapse
|
8
|
Shangguan A, Shang N, Figini M, Pan L, Yang J, Ma Q, Hu S, Eresen A, Sun C, Wang B, Velichko Y, Yaghmai V, Zhang Z. Prophylactic dendritic cell vaccination controls pancreatic cancer growth in a mouse model. Cytotherapy 2020; 22:6-15. [PMID: 32005355 DOI: 10.1016/j.jcyt.2019.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths with high recurrence after surgery due to a paucity of effective post-surgical adjuvant treatments. DC vaccines can activate multiple anti-tumor immune responses but have not been explored for post-surgery PDAC recurrence. Intraperitoneal (IP) delivery may allow increased DC vaccine dosage and migration to lymph nodes. Here, we investigated the role of prophylactic DC vaccination controlling PDAC tumor growth with IP delivery as an administration route for DC vaccination. METHODS DC vaccines were generated using ex vivo differentiation and maturation of bone marrow-derived precursors. Twenty mice were divided into four groups (n = 5) and treated with DC vaccines, unpulsed mature DCs, Panc02 lysates or no treatment. After tumor induction, mice underwent three magnetic resonance imaging scans to track tumor growth. Apparent diffusion coefficient (ADC), a quantitative magnetic resonance imaging measurement of tumor microstructure, was calculated. Survival was tracked. Tumor tissue was collected after death and stained with hematoxylin and eosin, Masson's trichrome, terminal deoxynucleotidyl transferase dUTP nick end labeling and anti-CD8 stains for histology. RESULTS DC-vaccinated mice demonstrated stronger anti-tumor cytotoxicity compared with control groups on lactate dehydrogenase assay. DC vaccine mice also demonstrated decreased tumor volume, prolonged survival and increased ΔADC compared with control groups. On histology, the DC vaccine group had increased apoptosis, increased CD8+ T cells and decreased collagen. ΔADC negatively correlated with % collagen in tumor tissues. DISCUSSION Prophylactic DC vaccination may inhibit PDAC tumor growth during recurrence and prolong survival. ΔADC may be a potential imaging biomarker that correlates with tumor histological features.
Collapse
Affiliation(s)
- Anna Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Medical Student Training Program, Northwestern University, Chicago, Illinois, USA
| | - Na Shang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Matteo Figini
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Liang Pan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Radiology, The Third Affiliated Hospital of Suzhou University, Changzhou, Jiangsu, China
| | - Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Quanhong Ma
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Su Hu
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Chong Sun
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Orthopaedics, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bin Wang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Yuri Velichko
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Vahid Yaghmai
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA.
| |
Collapse
|
9
|
Yang J, Shangguan J, Eresen A, Li Y, Wang J, Zhang Z. Dendritic cells in pancreatic cancer immunotherapy: Vaccines and combination immunotherapies. Pathol Res Pract 2019; 215:152691. [PMID: 31676092 DOI: 10.1016/j.prp.2019.152691] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/04/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023]
Abstract
Despite significant advances over the past decades of research, pancreatic cancer (PC) continues to have the worst 5-year survival of any malignancy. Dendritic cells (DCs) are the most potent professional antigen-presenting cells and are involved in the induction and regulation of antitumor immune responses. DC-based immunotherapy has been used in clinical trials for PC. Although safety, efficacy, and immune activation were reported in patients with PC, DC vaccines have not yet fulfilled their promise. Additional strategies for combinatorial approaches aimed to augment and sustain the antitumor specific immune response elicited by DC vaccines are currently being investigated. Here, we will discuss DC vaccination immunotherapies that are currently under preclinical and clinical investigation and potential combination approaches for treating and improving the survival of PC patients.
Collapse
Affiliation(s)
- Jia Yang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Junjie Shangguan
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aydin Eresen
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yu Li
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of General Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Chongqing, China.
| | - Zhuoli Zhang
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
10
|
Jang HY, Han BS, Kwon B, Sin JI. Optimized Gemcitabine Therapy in Combination with E7 Peptide Immunization Elicits Tumor Cure by Preventing Ag-Specific CTL Inhibition in Animals with Large Established Tumors. DNA Cell Biol 2018; 37:850-860. [PMID: 30227079 DOI: 10.1089/dna.2018.4319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The role of chemotherapeutic agents in tumor immunotherapy is still controversial. In this study, we test using a TC-1 tumor model whether gemcitabine plus E7 peptide vaccine regimens (E7 peptides+CpG-ODN+anti-4-1BB Abs) may result in tumor cure in mice with large established tumors, with a focus on their effects on Ag-specific cytotoxic T lymphocyte (CTL) and myeloid-derived suppressor cell levels. Gemcitabine inhibited tumor growth by its direct cytotoxicity to tumor cells in vivo. E7 peptide vaccine regimens enhanced Ag-specific CTL lytic and antitumor therapeutic activity. Initial combination therapy using gemcitabine and E7 peptide vaccine regimens resulted in tumor regression with tumor relapse in animals with large established tumors, which appeared to result from the suppression of Ag-specific CTL activity by gemcitabine treatment. However, optimization of gemcitabine therapy by reducing its dose and frequency led to complete tumor regression without any recurring tumors in all tested mice even after discontinuation of therapy, possibly due to Ag-specific CTL responses. Thus, this study shows that the optimal dose and therapy frequency of gemcitabine are critical for achieving tumor cure in tumor-bearing animals undergoing E7 peptide vaccine regimen therapy, mainly by preventing CTL suppression. These findings may have implications for designing peptide-based therapeutic vaccines in cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Ho-Young Jang
- 1 Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, South Korea
| | - Baek-Sang Han
- 2 BK21 Plus Graduate Program, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, South Korea
| | - Byungsuk Kwon
- 3 School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeong-Im Sin
- 1 Department of Microbiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, South Korea.,2 BK21 Plus Graduate Program, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, South Korea
| |
Collapse
|
11
|
Cubas R, Moskalenko M, Cheung J, Yang M, McNamara E, Xiong H, Hoves S, Ries CH, Kim J, Gould S. Chemotherapy Combines Effectively with Anti–PD-L1 Treatment and Can Augment Antitumor Responses. THE JOURNAL OF IMMUNOLOGY 2018; 201:2273-2286. [DOI: 10.4049/jimmunol.1800275] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022]
|
12
|
Dougan M, Ingram JR, Jeong HJ, Mosaheb MM, Bruck PT, Ali L, Pishesha N, Blomberg O, Tyler PM, Servos MM, Rashidian M, Nguyen QD, von Andrian UH, Ploegh HL, Dougan SK. Targeting Cytokine Therapy to the Pancreatic Tumor Microenvironment Using PD-L1-Specific VHHs. Cancer Immunol Res 2018; 6:389-401. [PMID: 29459478 PMCID: PMC6079513 DOI: 10.1158/2326-6066.cir-17-0495] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/13/2017] [Accepted: 02/07/2018] [Indexed: 12/31/2022]
Abstract
Cytokine-based therapies for cancer have not achieved widespread clinical success because of inherent toxicities. Treatment for pancreatic cancer is limited by the dense stroma that surrounds tumors and by an immunosuppressive tumor microenvironment. To overcome these barriers, we developed constructs of single-domain antibodies (VHHs) against PD-L1 fused with IL-2 and IFNγ. Targeting cytokine delivery in this manner reduced pancreatic tumor burden by 50%, whereas cytokines fused to an irrelevant VHH, or blockade of PD-L1 alone, showed little effect. Targeted delivery of IL-2 increased the number of intratumoral CD8+ T cells, whereas IFNγ reduced the number of CD11b+ cells and skewed intratumoral macrophages toward the display of M1-like characteristics. Imaging of fluorescent VHH-IFNγ constructs, as well as transcriptional profiling, demonstrated targeting of IFNγ to the tumor microenvironment. Many tumors and tumor-infiltrating myeloid cells express PD-L1, rendering them potentially susceptible to this form of targeted immunotherapy. Cancer Immunol Res; 6(4); 389-401. ©2018 AACR.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jessica R Ingram
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hee-Jin Jeong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Munir M Mosaheb
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Patrick T Bruck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lestat Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts
| | - Olga Blomberg
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts
| | - Paul M Tyler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mariah M Servos
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mohammad Rashidian
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Li W, Song X, Yu H, Zhang M, Li F, Cao C, Jiang Q. Dendritic cell-based cancer immunotherapy for pancreatic cancer. Arab J Gastroenterol 2018. [PMID: 29526540 DOI: 10.1016/j.ajg.2017.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer (PC) is a lethal disease and remains one of the most resistant cancers to traditional therapies. New therapeutic modalities are urgently needed, particularly immunotherapy, which has shown promise in numerous animal model studies. Dendritic cell (DC)-based immunotherapy has been used in clinical trials for various cancers, including PC, because DCs are the most potent antigen-presenting cell (APC), which are capable of priming naive T cells and stimulating memory T cells to generate antigen-specific responses. In this paper, we review the preclinical and clinical efforts towards the application of DCs for PC.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Xiujun Song
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Huijie Yu
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Manze Zhang
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Fengsheng Li
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing 100850, China.
| | - Qisheng Jiang
- Laboratory of Nuclear and Radiation Damage, The General Hospital of The PLA Rocket Force, Beijing 100088, China.
| |
Collapse
|
14
|
Lin X, Huang M, Xie F, Zhou H, Yang J, Huang Q. Gemcitabine inhibits immune escape of pancreatic cancer by down regulating the soluble ULBP2 protein. Oncotarget 2018; 7:70092-70099. [PMID: 27602753 PMCID: PMC5342537 DOI: 10.18632/oncotarget.11780] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022] Open
Abstract
Due to early onset of local invasion and distant metastasis, pancreatic cancer is the most lethal human malignant tumor, with a 5 year survival rate of less than 5%. As a effective chemotherapy drug for pancreatic cancer patients, gemcitabine is reported to inhibit cell proliferation as a nucleotide analog. In this study, we investigated the role of gemcitabine in immune regulation of pancreatic cancer. Our data showed that the level of soluble ULBP2 (sULBP2), a ligand of NKG2D receptor, decreased in the supernatants of pancreatic cancer cell lines when gemcitabine was added, and sULBP2 level correlated with NK92 cells cytotoxicity to pancreatic cancer cell lines. Importantly, our data showed that gemcitabine promoted PANC-1 cells and MIA PaCa-2 immune evasion by reducing ADAM10 expression, a metalloproteinase involved in sULBP2 shedding from cell membrane. Knockdown of ADAM10 clearly downregulated sULBP2 levels in the culture supernatants and cells became more susceptible to NK92 cytotoxicity. Serum samples and tumor samples were obtained from 45 patients with pancreatic ductal adenocarcinoma (PDAC). Statistical analysis showed a significant correlation between the serum level of sULBP2 with ADAM10 expression in PDAC tissues. In conclusion, our data demostrated that gemcitabine inhibits ULBP2 ectodomain shedding through the suppression of ADAM10 and enhance NK cells cytotoxicity by NKG2D-ULBP2 interaction. The results extends our understanding of gemcitabine in the treatment of pancreatic cancer from cell proliferation inhibition to immune regulation.
Collapse
Affiliation(s)
- Xiansheng Lin
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, China.,Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China
| | - Mei Huang
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, China.,Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China
| | - Fang Xie
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, China
| | - Hangcheng Zhou
- Department of Pathology, Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, China
| | - Ji Yang
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, China
| | - Qiang Huang
- Department of General Surgery, Affiliated Provincial Hospital of Anhui Medical University, Hefei, 230001, China.,Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, China
| |
Collapse
|
15
|
Danishmalik SN, Sin JI. Therapeutic Tumor Control of HER2 DNA Vaccines Is Achieved by an Alteration of Tumor Cells and Tumor Microenvironment by Gemcitabine and Anti-Gr-1 Ab Treatment in a HER2-Expressing Tumor Model. DNA Cell Biol 2017; 36:801-811. [PMID: 28777668 DOI: 10.1089/dna.2017.3810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Therapeutic control of tumors is challenging as they tend to alter their biological functions and microenvironment. In a CT26/HER2 tumor model, HER2 DNA vaccines and even anti-PD-L1 Abs failed to display antitumor therapeutic activity while inducing Ag-specific cytotoxic T lymphocyte (CTL) activity. To clarify this contradictory finding, we selected tumor cells (CT26/HER2-1) from one tumor-bearing animal in the therapeutic model. CT26/HER2-1 cells behaved similar to wild-type CT26/HER2 cells in their HER2 expression, immune cell stimulation for IFN-γ production, and antitumor immune sensitivity. A similar finding was obtained with additional CT26/HER2-2, -3, -4, -5, and -6 cells from the therapeutic model, suggesting that a lack of antitumor therapeutic activity of HER2 DNA vaccines might be ascribed to a factor in the tumor microenvironment, but not to an alteration in tumor cell functions. When tumor-bearing mice were depleted of myeloid-derived suppressor cells (MDSCs) by anti-Gr-1 Ab treatment, they displayed HER2 vaccine-mediated antitumor activity, suggesting a role of MDSCs in blocking antitumor activity. Moreover, when tumor-bearing mice were treated with gemcitabine, they displayed HER2 vaccine-mediated antitumor activity, suggesting that cytotoxic drug treatment makes tumor cells susceptible to lysis by CTLs. Thus, these studies show that therapeutic control of HER2 DNA vaccines can be achieved by anti-Gr-1 Ab treatment through MDSC depletion and by gemcitabine treatment through sensitization of tumor cells to CTL-mediated killing in this model. These findings may have implications for achieving therapeutic control of CTL-resistant tumors in cancer therapy.
Collapse
Affiliation(s)
- Sayyed Nilofar Danishmalik
- BK21 Plus Graduate Program and Department of Microbiology, School of Medicine, Kangwon National University , Chuncheon, Korea
| | - Jeong-Im Sin
- BK21 Plus Graduate Program and Department of Microbiology, School of Medicine, Kangwon National University , Chuncheon, Korea
| |
Collapse
|
16
|
Xiao L, Erb U, Zhao K, Hackert T, Zöller M. Efficacy of vaccination with tumor-exosome loaded dendritic cells combined with cytotoxic drug treatment in pancreatic cancer. Oncoimmunology 2017; 6:e1319044. [PMID: 28680753 DOI: 10.1080/2162402x.2017.1319044] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PaCa) has a dismal prognosis and adjuvant immunotherapy frequently is of low efficacy due to immunosuppressive features of PaCa and PaCa-stroma. We here explored, whether the efficacy of vaccination with tumor-exosome (TEX)-loaded dendritic cells (DC) can be improved by combining with drugs affecting myeloid-derived suppressor cells (MDSC). Experiments were performed with the UNKC6141 PaCa line. UNKC6141 TEX-loaded DC were weekly intravenously injected, mice additionally receiving Gemcitabine (GEM) and/or ATRA and/or Sunitinib (Sun). UNKC6141 grow aggressively after subcutaneous and orthotopic application and are consistently recovered in peripheral blood, bone marrow, lung and frequently liver. Vaccination with DC-TEX significantly prolonged the survival time, the efficacy of DC-TEX exceeding that of the cytotoxic drugs. However, ATRA, Sun and most efficiently GEM, sufficed for a pronounced reduction of MDSC including tumor-infiltrating MDSC, which was accompanied by a decrease in migrating and metastasizing tumor cells. When combined with DC-TEX vaccination, a higher number of activated T cells was recovered in the tumor and the survival time was prolonged compared with only DC-TEX vaccinated mice. As ATRA, GEM and Sun affect MDSC at distinct maturation and activation stages, a stronger support for DC-TEX vaccination was expected by the drug combination. Intrapancreatic tumor growth was prevented beyond the death of control mice. However, tumors developed after a partial breakdown of the immune system by the persisting drug application. Nonetheless, in combination with optimized drug tuning to prevent MDSC maturation and activation, vaccination with TEX-loaded DC appears a most promising option in PaCa therapy.
Collapse
Affiliation(s)
- Li Xiao
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Ulrike Erb
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Kun Zhao
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | - Thilo Hackert
- Section Pancreas Research, University Hospital of Surgery, Heidelberg, Germany
| | - Margot Zöller
- Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| |
Collapse
|
17
|
Tyler PM, Servos MM, de Vries RC, Klebanov B, Kashyap T, Sacham S, Landesman Y, Dougan M, Dougan SK. Clinical Dosing Regimen of Selinexor Maintains Normal Immune Homeostasis and T-cell Effector Function in Mice: Implications for Combination with Immunotherapy. Mol Cancer Ther 2017; 16:428-439. [PMID: 28148714 DOI: 10.1158/1535-7163.mct-16-0496] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 12/03/2016] [Accepted: 12/27/2016] [Indexed: 12/18/2022]
Abstract
Selinexor (KPT-330) is a first-in-class nuclear transport inhibitor currently in clinical trials as an anticancer agent. To determine how selinexor might affect antitumor immunity, we analyzed immune homeostasis in mice treated with selinexor and found disruptions in T-cell development, a progressive loss of CD8 T cells, and increases in inflammatory monocytes. Antibody production in response to immunization was mostly normal. Precursor populations in bone marrow and thymus were unaffected by selinexor, suggesting that normal immune homeostasis could recover. We found that a high dose of selinexor given once per week preserved nearly normal immune functioning, whereas a lower dose given 3 times per week did not restore immune homeostasis. Both naïve and effector CD8 T cells cultured in vitro showed impaired activation in the presence of selinexor. These experiments suggest that nuclear exportins are required for T-cell development and function. We determined the minimum concentration of selinexor required to block T-cell activation and showed that T-cell-inhibitory effects of selinexor occur at levels above 100 nmol/L, corresponding to the first 24 hours post-oral dosing. In a model of implantable melanoma, selinexor treatment at 10 mg/kg with a 4-day drug holiday led to intratumoral IFNγ+, granzyme B+ cytotoxic CD8 T cells that were comparable with vehicle-treated mice. Overall, selinexor treatment leads to transient inhibition of T-cell activation, but clinically relevant once and twice weekly dosing schedules that incorporate sufficient drug holidays allow for normal CD8 T-cell functioning and development of antitumor immunity. Mol Cancer Ther; 16(3); 428-39. ©2017 AACRSee related article by Farren et al., p. 417.
Collapse
Affiliation(s)
- Paul M Tyler
- Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Romy C de Vries
- Dana-Farber Cancer Institute, Boston, Massachusetts.,University of Amsterdam, Program in Biomedical Sciences, Amsterdam, the Netherlands
| | | | | | - Sharon Sacham
- Karyopharm Therapeutics, Inc., Newton, Massachusetts
| | | | | | | |
Collapse
|
18
|
Dysregulation of signaling pathways associated with innate antibacterial immunity in patients with pancreatic cancer. Cent Eur J Immunol 2017; 41:404-418. [PMID: 28450804 PMCID: PMC5382886 DOI: 10.5114/ceji.2016.65140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 09/16/2016] [Indexed: 02/07/2023] Open
Abstract
Disorders of innate antibacterial response are of fundamental importance in the development of gastrointestinal cancers, including pancreatic cancer. Multi-regulatory properties of the Toll-like receptors (TLRs) (e.g., regulation of proliferation, the activity of NF-κB, gene transcription of apoptosis proteins, regulation of angiogenesis, HIF-1α protein expression) are used in experimental studies to better understand the pathogenesis of pancreatic cancer, for early diagnosis, and for more effective therapeutic intervention. There are known numerous examples of TLR agonists (e.g., TLR2/5 ligands, TLR6, TLR9) of antitumor effect. The direction of these studies is promising, but a small number of them does not allow for an accurate assessment of the impact of TLR expression disorders, proteins of these signaling pathways, or attempts to block or stimulate them, on the results of treatment of pancreatic cancer patients. It is known, however, that the expression disorders of proteins of innate antibacterial response signaling pathways occur not only in tumor tissue but also in peripheral blood leukocytes of pancreatic cancer patients (e.g., increased expression of TLR4, NOD1, TRAF6), which is one of the most important factors facilitating further tumor development. This review mainly focuses on the genetic aspects of signaling pathway disorders associated with innate antibacterial response in the pathogenesis and diagnosis of pancreatic cancer.
Collapse
|
19
|
Chang JH, Jiang Y, Pillarisetty VG. Role of immune cells in pancreatic cancer from bench to clinical application: An updated review. Medicine (Baltimore) 2016; 95:e5541. [PMID: 27930550 PMCID: PMC5266022 DOI: 10.1097/md.0000000000005541] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) remains difficult to treat, despite the recent advances in various anticancer therapies. Immuno-inflammatory response is considered to be a major risk factor for the development of PC in addition to a combination of genetic background and environmental factors. Although patients with PC exhibit evidence of systemic immune dysfunction, the PC microenvironment is replete with immune cells. METHODS We searched PubMed for all relevant English language articles published up to March 2016. They included clinical trials, experimental studies, observational studies, and reviews. Trials enrolled at Clinical trial.gov were also searched. RESULTS PC induces an immunosuppressive microenvironment, and intratumoral activation of immunity in PC is attenuated by inhibitory signals that limit immune effector function. Multiple types of immune responses can promote an immunosuppressive microenvironment; key regulators of the host tumor immune response are dendritic cells, natural killer cells, macrophages, myeloid derived suppressor cells, and T cells. The function of these immune cells in PC is also influenced by chemotherapeutic agents and the components in tumor microenvironment such as pancreatic stellate cells. Immunotherapy of PC employs monoclonal antibodies/effector cells generated in vitro or vaccination to stimulate antitumor response. Immune therapy in PC has failed to improve overall survival; however, combination therapies comprising immune checkpoint inhibitors and vaccines have been attempted to increase the response. CONCLUSION A number of studies have begun to elucidate the roles of immune cell subtypes and their capacity to function or dysfunction in the tumor microenvironment of PC. It will not be long before immune therapy for PC becomes a clinical reality.
Collapse
Affiliation(s)
- Jae Hyuck Chang
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongjian Jiang
- Department of Pancreatic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Venu G. Pillarisetty
- Department of Surgery, University of Washington Medical Center, Seattle, University of Washington, Seattle, WA
| |
Collapse
|
20
|
Yu L, Hu T, Zou T, Shi Q, Chen G. Chronic Myelocytic Leukemia (CML) Patient-Derived Dendritic Cells Transfected with Autologous Total RNA Induces CML-Specific Cytotoxicity. Indian J Hematol Blood Transfus 2016; 32:397-404. [PMID: 27812247 DOI: 10.1007/s12288-016-0643-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/12/2016] [Indexed: 01/18/2023] Open
Abstract
The oncogenic bcr/abl1 fusion gene is a chronic myelogenous leukemia (CML)-specific antigen which is absent in normal tissues. This makes bcr/abl1 a perfect target for developing CML vaccines that elicit specific immune responses against minimal residual disease while sparing normal tissue. The aim of this study was to use different methods to induce dendritic cells (DCs) derived from patients with CML (CML-DCs) and analyze them for CML-specific tumor cytotoxicity for immune therapy. Bone marrow-derived mononuclear cells from ten CML patients were studied to induce CML-DC differentiation in the presence of recombinant human interleukin-4, rh-granulocyte-macrophage-colony stimulating factor, and tumor necrosis factor-alpha with either a total RNA-lipofectamine complex, total RNA or CML tumor lysate (freeze-thawed). CML-DC maturation, confirmed by expression of CD1α, CD40, CD80, CD83, CD86 and by real-time polymerase chain reaction, validated the CML-origin of these DC cells. CML-DCs stimulated cytotoxic T-cell (CTL) apoptosis, high levels of IL-12 secretion, and had significant inhibitory effect on K562 tumorigenicity in nude mice. CML-DCs pulsed with total RNA by lipofectamine transfection produced the strongest effect in tumor-specific CTL functions. These results indicate that CML-DCs transfected with total RNA by lipofectamine induce the strongest CTL cytotoxicity and have the greatest potential for CML immune therapy. This study holds promise for a DC-based strategy for inducing anti-leukemia responses and establishes a foundation for developing RNA vaccination against CML.
Collapse
Affiliation(s)
- Li Yu
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Ting Hu
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Tian Zou
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Qingzhi Shi
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Guoan Chen
- Institute of Hematology, The First Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| |
Collapse
|
21
|
Singh P, Black P. Emerging role of checkpoint inhibition in localized bladder cancer. Urol Oncol 2016; 34:548-555. [PMID: 27776977 DOI: 10.1016/j.urolonc.2016.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 08/27/2016] [Accepted: 09/17/2016] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Checkpoint inhibitors have rapidly become a standard treatment option for metastatic urothelial carcinoma. A wave of enthusiasm for these drugs has pushed them also into the setting of localized bladder cancer, including both non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive disease bladder cancer (MIBC). Here, we aimed to review the emerging role of checkpoint inhibition in localized bladder cancer. METHODS We reviewed the current treatment landscape for both NMIBC and MIBC and established a significant unmet clinical need for novel therapies. We have compiled the evidence that supports the investigation of checkpoint blockade in localized bladder cancer and have reviewed the corresponding clinical trial׳s landscape. RESULTS The success of checkpoint inhibitors in metastatic bladder cancer offers the most compelling rationale for testing checkpoint blockade in localized disease. The established benefit of intravesical Bacillus Calmette-Guérin provides precedent for immune therapy in bladder cancer. Immune dysfunction has been described in bladder cancer, and we know that checkpoint molecules are expressed in these tumors. Furthermore, the high neoantigen burden of bladder cancer and results from preclinical studies suggest that checkpoint blockade deserves testing in earlier stage disease. Multiple trials are either planned or underway in almost all bladder cancer disease states. CONCLUSION Ongoing trials would determine in the next several years whether checkpoint inhibitors can have a similar effect in localized disease as they have had in metastatic bladder cancer. They would also determine if patients with earlier disease would tolerate the toxicity of systemic therapy. The future holds promise for predictive biomarkers to guide individualized use of these agents and for effective combination therapies to overcome resistances.
Collapse
Affiliation(s)
- Parminder Singh
- Division of Hematology and Oncology , Mayo clinic, Phoenix, AZ.
| | - Peter Black
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Prevailing over T cell exhaustion: New developments in the immunotherapy of pancreatic cancer. Cancer Lett 2016; 381:259-68. [DOI: 10.1016/j.canlet.2016.02.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/11/2016] [Accepted: 02/29/2016] [Indexed: 11/16/2022]
|
23
|
Middleton G, Greenhalf W, Costello E, Shaw V, Cox T, Ghaneh P, Palmer DH, Neoptolemos JP. Immunobiological effects of gemcitabine and capecitabine combination chemotherapy in advanced pancreatic ductal adenocarcinoma. Br J Cancer 2016; 114:510-8. [PMID: 26931369 PMCID: PMC4782200 DOI: 10.1038/bjc.2015.468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/20/2015] [Accepted: 12/09/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Preclinical studies suggest that chemotherapy may enhance the immune response against pancreatic cancer. METHODS The levels of granulocyte macrophage-colony-stimulating factor (GM-CSF) and interleukin-6 (IL-6) and the associated inflammatory marker C-reactive protein (CRP) were assessed in 38 patients receiving gemcitabine and capecitabine combination chemotherapy for advanced pancreatic cancer within the TeloVac trial. Apoptosis (M30) and total immune response (delayed-type hypersensitivity and/or T-cell response) were also assessed and levels of apoptosis induction correlated with immune response. The telomerase GV1001 vaccine was given either sequentially (n=18) or concomitantly (n=24) with the combination chemotherapy. RESULTS There were no differences between baseline and post-treatment levels of CRP (P=0.19), IL-6 (P=0.19) and GM-CSF (P=0.71). There was a positive correlation between post-chemotherapy CRP and IL-6 levels (r=0.45, P=0.005) and between CRP with carbohydrate antigen-19-9 (CA19-9) levels at baseline (r=0.45, P=0.015) and post treatment (r=0.40, P=0.015). The change in CRP and IL-6 levels was positively correlated (r=0.40, P=0.012). Hazard ratios (95% CI) for baseline CA19-9 (1.30 (1.07-1.59), P=0.009) and CRP (1.55 (1.00-2.39), P=0.049) levels were each independently predictive of survival. The M30 mean matched differences between pre- and post-chemotherapy showed evidence of apoptosis in both the sequential (P=0.058) and concurrent (P=0.0018) chemoimmunotherapy arms. Respectively, 5 of 10 and 9 of 20 patients had a positive immune response but there was no association with apoptosis. CONCLUSIONS Combination gemcitabine and capecitabine chemotherapy did not affect circulating levels of GM-CSF, IL-6 and CRP. Chemotherapy-induced apoptosis was not associated with the immunogenicity induced by the GV1001 vaccine in advanced pancreatic cancer.
Collapse
Affiliation(s)
- Gary Middleton
- Institute of Immunology and Immunotherapy, University of Birmingham B15 2TT and University Hospital Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Birmingham B15 2TH, UK
| | - William Greenhalf
- National Institutes of Health Research Liverpool Pancreas Biomedical Research Unit and Clinical Directorate of General Surgery, Royal Liverpool and Broadgreen University Hospitals NHS Trust and the University of Liverpool, Liverpool L69 3GA, UK
- Cancer Research UK Liverpool Cancer Trials Unit, University of Liverpool, Block C Waterhouse Building, 1-3 Brownlow Street, Liverpool L69 3GA, UK
| | - Eithne Costello
- National Institutes of Health Research Liverpool Pancreas Biomedical Research Unit and Clinical Directorate of General Surgery, Royal Liverpool and Broadgreen University Hospitals NHS Trust and the University of Liverpool, Liverpool L69 3GA, UK
- Cancer Research UK Liverpool Cancer Trials Unit, University of Liverpool, Block C Waterhouse Building, 1-3 Brownlow Street, Liverpool L69 3GA, UK
| | - Victoria Shaw
- National Institutes of Health Research Liverpool Pancreas Biomedical Research Unit and Clinical Directorate of General Surgery, Royal Liverpool and Broadgreen University Hospitals NHS Trust and the University of Liverpool, Liverpool L69 3GA, UK
| | - Trevor Cox
- Cancer Research UK Liverpool Cancer Trials Unit, University of Liverpool, Block C Waterhouse Building, 1-3 Brownlow Street, Liverpool L69 3GA, UK
| | - Paula Ghaneh
- National Institutes of Health Research Liverpool Pancreas Biomedical Research Unit and Clinical Directorate of General Surgery, Royal Liverpool and Broadgreen University Hospitals NHS Trust and the University of Liverpool, Liverpool L69 3GA, UK
- Cancer Research UK Liverpool Cancer Trials Unit, University of Liverpool, Block C Waterhouse Building, 1-3 Brownlow Street, Liverpool L69 3GA, UK
| | - Daniel H Palmer
- National Institutes of Health Research Liverpool Pancreas Biomedical Research Unit and Clinical Directorate of General Surgery, Royal Liverpool and Broadgreen University Hospitals NHS Trust and the University of Liverpool, Liverpool L69 3GA, UK
- Cancer Research UK Liverpool Cancer Trials Unit, University of Liverpool, Block C Waterhouse Building, 1-3 Brownlow Street, Liverpool L69 3GA, UK
| | - John P Neoptolemos
- National Institutes of Health Research Liverpool Pancreas Biomedical Research Unit and Clinical Directorate of General Surgery, Royal Liverpool and Broadgreen University Hospitals NHS Trust and the University of Liverpool, Liverpool L69 3GA, UK
- Cancer Research UK Liverpool Cancer Trials Unit, University of Liverpool, Block C Waterhouse Building, 1-3 Brownlow Street, Liverpool L69 3GA, UK
| |
Collapse
|
24
|
Schnurr M, Duewell P, Bauer C, Rothenfusser S, Lauber K, Endres S, Kobold S. Strategies to relieve immunosuppression in pancreatic cancer. Immunotherapy 2016; 7:363-76. [PMID: 25917628 DOI: 10.2217/imt.15.9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Despite continuous progress in the understanding of deregulated pathways in pancreatic cancer cells and development of targeted therapies, therapeutic advances with clinical benefit have been scarce over the last decades. The recent success of immunotherapy for some solid cancers has fueled optimism that this approach might also work for pancreatic cancer. However, a highly immunosuppressive microenvironment mediated by tumor, stromal and immune cells creates a major hurdle for immunotherapy. Mouse models have helped to unravel critical immunosuppressive mechanisms that could serve as novel therapeutic targets. Here we review new promising strategies that alone or in combination with other modalities, such as chemotherapy or irradiation, have the potential to lead to tumor immune control and finally better clinical outcome.
Collapse
Affiliation(s)
- Max Schnurr
- Division of Clinical Pharmacology & Center for Integrated Protein Science Munich (CIPSM), Klinikum der Universität München, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Emens LA, Middleton G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res 2016; 3:436-43. [PMID: 25941355 DOI: 10.1158/2326-6066.cir-15-0064] [Citation(s) in RCA: 582] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although cancer chemotherapy has historically been considered immune suppressive, it is now accepted that certain chemotherapies can augment tumor immunity. The recent success of immune checkpoint inhibitors has renewed interest in immunotherapies, and in combining them with chemotherapy to achieve additive or synergistic clinical activity. Two major ways that chemotherapy promotes tumor immunity are by inducing immunogenic cell death as part of its intended therapeutic effect and by disrupting strategies that tumors use to evade immune recognition. This second strategy, in particular, is dependent on the drug, its dose, and the schedule of chemotherapy administration in relation to antigen exposure or release. In this Cancer Immunology at the Crossroads article, we focus on cancer vaccines and immune checkpoint blockade as a forum for reviewing preclinical and clinical data demonstrating the interplay between immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Leisha A Emens
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland. Johns Hopkins Kimmel Cancer Center, Baltimore, Maryland.
| | - Gary Middleton
- Cancer Immunology and Immunotherapy Centre, School of Cancer Sciences, University of Birmingham, Birmingham, United Kingdom. Department of Medical Oncology, University Hospital Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
26
|
Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell 2015; 28:690-714. [PMID: 26678337 DOI: 10.1016/j.ccell.2015.10.012] [Citation(s) in RCA: 1112] [Impact Index Per Article: 123.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/05/2015] [Accepted: 10/23/2015] [Indexed: 11/23/2022]
Abstract
The tremendous clinical success of checkpoint blockers illustrates the potential of reestablishing latent immunosurveillance for cancer therapy. Although largely neglected in the clinical practice, accumulating evidence indicates that the efficacy of conventional and targeted anticancer agents does not only involve direct cytostatic/cytotoxic effects, but also relies on the (re)activation of tumor-targeting immune responses. Chemotherapy can promote such responses by increasing the immunogenicity of malignant cells, or by inhibiting immunosuppressive circuitries that are established by developing neoplasms. These immunological "side" effects of chemotherapy are desirable, and their in-depth comprehension will facilitate the design of novel combinatorial regimens with improved clinical efficacy.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Equipe 11 Labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Aitziber Buqué
- Equipe 11 Labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Oliver Kepp
- Equipe 11 Labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; INSERM, U1015, 94805 Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, 94805 Villejuif, France; Université Paris Sud/Paris XI, 94270 Le Kremlin-Bicêtre, France.
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, U1138, 75006 Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 17176 Stockholm, Sweden.
| |
Collapse
|
27
|
Seicean A, Petrusel L, Seicean R. New targeted therapies in pancreatic cancer. World J Gastroenterol 2015; 21:6127-45. [PMID: 26034349 PMCID: PMC4445091 DOI: 10.3748/wjg.v21.i20.6127] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/26/2015] [Accepted: 04/16/2015] [Indexed: 02/06/2023] Open
Abstract
Patients with pancreatic cancer have a poor prognosis with a median survival of 4-6 mo and a 5-year survival of less than 5%. Despite therapy with gemcitabine, patient survival does not exceed 6 mo, likely due to natural resistance to gemcitabine. Therefore, it is hoped that more favorable results can be obtained by using guided immunotherapy against molecular targets. This review summarizes the new leading targeted therapies in pancreatic cancers, focusing on passive and specific immunotherapies. Passive immunotherapy may have a role for treatment in combination with radiochemotherapy, which otherwise destroys the immune system along with tumor cells. It includes mainly therapies targeting against kinases, including epidermal growth factor receptor, Ras/Raf/mitogen-activated protein kinase cascade, human epidermal growth factor receptor 2, insulin growth factor-1 receptor, phosphoinositide 3-kinase/Akt/mTOR and hepatocyte growth factor receptor. Therapies against DNA repair genes, histone deacetylases, microRNA, and pancreatic tumor tissue stromal elements (stromal extracellular matric and stromal pathways) are also discussed. Specific immunotherapies, such as vaccines (whole cell recombinant, peptide, and dendritic cell vaccines), adoptive cell therapy and immunotherapy targeting tumor stem cells, have the role of activating antitumor immune responses. In the future, treatments will likely include personalized medicine, tailored for numerous molecular therapeutic targets of multiple pathogenetic pathways.
Collapse
|
28
|
Staff C, Mozaffari F, Frödin JE, Mellstedt H, Liljefors M. Telomerase (GV1001) vaccination together with gemcitabine in advanced pancreatic cancer patients. Int J Oncol 2014; 45:1293-303. [PMID: 24919654 DOI: 10.3892/ijo.2014.2496] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/21/2014] [Indexed: 12/19/2022] Open
Abstract
Telomerase is expressed in 85-90 % of pancreatic adenocarcinomas and might be a target for active cancer immunotherapy. A study was conducted to investigate safety and immunogenicity in non-resectable pancreatic carcinoma patients using a 16-amino acid telomerase peptide (GV1001) for vaccination in combination with GM-CSF and gemcitabine as first line treatment. Three different vaccine treatment schedules were used; [A (n=6), B (n=6) and C (n=5)]. Groups A/B received GV1001, GM-CSF and gemcitabine concurrently. Group C received initially GV1001 and GM-CSF while gemcitabine was added at disease progression. Group D (n=4) was treated with gemcitabine alone. Adverse events (AE) related to vaccination were mild (grades I-II). Grade III AEs were few and transient. An induced GV 1001‑specific immune response was defined as an increase ≥2 above the baseline value in one of the assays (DTH, proliferation, ELISPOT and cytokine secretion assays, respectively). A telomerase‑specific immune response was noted in 4/6 patients in group A, 4/6 patients in group B and 2/5 patients in group C. An induced ras‑specific immune response (antigenic spreading) was seen in 5 of the 17 patients. The cytokine pattern was that of a Th1-like profile. A treatment induced telomerase or ras response was also noted in group D. All responses were weak and transient. A significant decrease in regulatory T-cells over time was noted in patients in groups A and B (p<0.05). Telomerase vaccination (GV1001) in combination with chemotherapy appeared to be safe but the immune responses were weak and transient. Measures have to be taken to optimize immune responses of GV1001 for it to be considered of clinical interest.
Collapse
Affiliation(s)
- Caroline Staff
- Department of Oncology-Pathology (Radiumhemmet), Karolinska Institutet and Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Fariba Mozaffari
- Immune and Gene Therapy Laboratory, Cancer Center Karolinska, Karolinska Institutet and Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Jan-Erik Frödin
- Department of Oncology-Pathology (Radiumhemmet), Karolinska Institutet and Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Håkan Mellstedt
- Department of Oncology-Pathology (Radiumhemmet), Karolinska Institutet and Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| | - Maria Liljefors
- Department of Oncology-Pathology (Radiumhemmet), Karolinska Institutet and Karolinska University Hospital Solna, SE-17176 Stockholm, Sweden
| |
Collapse
|