1
|
Song PN, Lynch SE, DeMellier CT, Mansur A, Gallegos CA, Wright BD, Hartman YE, Minton LE, Lapi SE, Warram JM, Sorace AG. Dual anti-HER2/EGFR inhibition synergistically increases therapeutic effects and alters tumor oxygenation in HNSCC. Sci Rep 2024; 14:3771. [PMID: 38355949 PMCID: PMC10866896 DOI: 10.1038/s41598-024-52897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
Epidermal growth factor receptor (EGFR), human epidermal growth factor receptor 2 (HER2), and hypoxia are associated with radioresistance. The goal of this study is to study the synergy of anti-HER2, trastuzumab, and anti-EGFR, cetuximab, and characterize the tumor microenvironment components that may lead to increased radiation sensitivity with dual anti-HER2/EGFR therapy in head and neck squamous cell carcinoma (HNSCC). Positron emission tomography (PET) imaging ([89Zr]-panitumumab and [89Zr]-pertuzumab) was used to characterize EGFR and HER2 in HNSCC cell line tumors. HNSCC cells were treated with trastuzumab, cetuximab, or combination followed by radiation to assess for viability and radiosensitivity (colony forming assay, immunofluorescence, and flow cytometry). In vivo, [18F]-FMISO-PET imaging was used to quantify changes in oxygenation during treatment. Bliss Test of Synergy was used to identify combination treatment synergy. Quantifying EGFR and HER2 receptor expression revealed a 50% increase in heterogeneity of HER2 relative to EGFR. In vitro, dual trastuzumab-cetuximab therapy shows significant decreases in DNA damage response and increased response to radiation therapy (p < 0.05). In vivo, tumors treated with dual anti-HER2/EGFR demonstrated decreased tumor hypoxia, when compared to single agent therapies. Dual trastuzumab-cetuximab demonstrates synergy and can affect tumor oxygenation in HNSCC. Combination trastuzumab-cetuximab modulates the tumor microenvironment through reductions in tumor hypoxia and induces sustained treatment synergy.
Collapse
Affiliation(s)
- Patrick N Song
- Department of Radiology, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, 35233, USA
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, USA
| | - Shannon E Lynch
- Department of Radiology, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, 35233, USA
- Graduate Biomedical Sciences, The University of Alabama at Birmingham, Birmingham, USA
| | - Chloe T DeMellier
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA
| | - Ameer Mansur
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA
| | - Carlos A Gallegos
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA
| | - Brian D Wright
- Department of Radiology, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, 35233, USA
| | - Yolanda E Hartman
- Department of Otolaryngology, The University of Alabama at Birmingham, Birmingham, USA
| | - Laura E Minton
- Department of Otolaryngology, The University of Alabama at Birmingham, Birmingham, USA
| | - Suzanne E Lapi
- Department of Radiology, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, 35233, USA
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, USA
| | - Jason M Warram
- Department of Radiology, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, 35233, USA
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA
- Department of Otolaryngology, The University of Alabama at Birmingham, Birmingham, USA
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, USA
| | - Anna G Sorace
- Department of Radiology, The University of Alabama at Birmingham, 1670 University Blvd, Birmingham, AL, 35233, USA.
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, USA.
- O'Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, Birmingham, USA.
| |
Collapse
|
2
|
Wu X, Huang S, He W, Song M. Emerging insights into mechanisms of trastuzumab resistance in HER2-positive cancers. Int Immunopharmacol 2023; 122:110602. [PMID: 37437432 DOI: 10.1016/j.intimp.2023.110602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/19/2023] [Accepted: 07/02/2023] [Indexed: 07/14/2023]
Abstract
HER2 is an established therapeutic target in breast, gastric, and gastroesophageal junction carcinomas with HER2 overexpression or genomic alterations. The humanized monoclonal antibody trastuzumab targeting HER2 has substantially improved the clinical outcomes of HER2-positive patients, yet the inevitable intrinsic or acquired resistance to trastuzumab limits its clinical benefit, necessitating the elucidation of resistance mechanisms to develop alternate therapeutic strategies. This review presents an overview of trastuzumab resistance mechanisms involving signaling pathways, cellular metabolism, cell plasticity, and tumor microenvironment, particularly discussing the prospects of developing rational combinations to improve patient outcomes.
Collapse
Affiliation(s)
- Xiaoxue Wu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Shuting Huang
- School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Department of Gastrointestinal Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China.
| | - Mei Song
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
3
|
Wei G, Wang Y, Yang P, Peng S, Duan S, Hu X, Yuan L, Bao G. Enhancing Vulnerability of Afatinib using Erastin via xCT-mediated ROS/P38MAPK Signaling Feedback Loop in Gastric Cancer Cells. Gene 2023; 873:147468. [PMID: 37169154 DOI: 10.1016/j.gene.2023.147468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Ferroptosis, being classified as a form of regulated cell death, was driven by the oxidative injury induced by lipid peroxidation(LPO). Recently, ferroptosis has been confirmed to exert a critical effect in the pathogenesis and treatment of various tumors, including gastric cancer (GC). Erastin, as a frequently used ferroptosis inducer, caused ferroptosis by downregulating the xCT expression resulting in increasing reactive oxygen species (ROS) and aggravating the LPO. However, the mechanisms of Erastin in ferroptosis regulation, especially in GC, remain largely elusive. This work firstly demonstrated that Erastin inhibited cell growth and promoted apoptosis and ferroptosis in AGS and BGC823 cells. Then, based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of Erastin-related targets screened by using PharmMapper Web, the P38MAPK signaling was explored and validated in AGS and BGC-823 cells. Besides, the Fer-1 and p38 inhibitor were performed to investigate the mechanisms of ferroptosis induced by Erastin in depth. This work revealed a feedback mode among xCT, ROS and the P38MAPK pathway, which affected each other. It meant that Erastin regulated ferroptosis through the xCT-mediated ROS/P38MAPK signaling feedback loop. In addition, it was noticed that in co-operation with Erastin, the cytotoxic effects of Afatinib on cells were aggravated by further strengthening ferroptosis with activation of the P38MAPK pathway. In summary, those works provided evidence that Erastin plays an important role in increasing the cytotoxic effect on GC cells treated with Afitinib. Furthermore, the Erastin-induced ferroptosis via the xCT-mediated ROS/P38MAPK pathway feedback loop provides new strategies for GC comprehensive treatment.
Collapse
Affiliation(s)
- Gang Wei
- Shaanxi University of Traditional Chinese Medicine, Xianyang, Shannxi, China; Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
| | - Yan Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
| | - Ping Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
| | - Shujia Peng
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
| | - Sensen Duan
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
| | - Xi'e Hu
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China
| | - Lijuan Yuan
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China.
| | - Guoqiang Bao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Medical University, Xi'an, Shannxi, China.
| |
Collapse
|
4
|
Blangé D, Stroes CI, Derks S, Bijlsma MF, van Laarhoven HW. Resistance Mechanisms to HER2-Targeted Therapy in Gastroesophageal Adenocarcinoma: A Systematic Review. Cancer Treat Rev 2022; 108:102418. [DOI: 10.1016/j.ctrv.2022.102418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 12/16/2022]
|
5
|
HER2-CDH1 Interaction via Wnt/B-Catenin Is Associated with Patients' Survival in HER2-Positive Metastatic Gastric Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14051266. [PMID: 35267574 PMCID: PMC8909509 DOI: 10.3390/cancers14051266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary A deeper understanding of the molecular mechanisms involved in gastric cacner (GC) pathologenesis would help the identification of prognostic biomarkers and the development of new treatments. Human epidermal growth factor receptor 2 (HER2/ErbB2), a membrane-bound receptor of the EGFR family, may be overexpressed in GC. Trastuzumab is a HER2 inhibitor used to treat HER2+ metastatic gastric cancer (mGC). The present study aims to investigate the relationship between CDH1 mRNA expression and HER2-positivity in mGC using a multiplexed gene expression profile in two series of GC patients: 38 HER2+ and HER2- mGC and 36 HER2- GC with and without metastasis. Our results revealed the relationship between CDH1 and HER2 mRNA expression in mGC via the canonical WNT/β-catenin pathway and identified EGF as an independent prognostic biomarker for survival. Abstract Trastuzumab is a human epidermal growth factor receptor 2 (HER2) inhibitor used to treat HER2+ metastatic gastric cancer (mGC). The present study aims to investigate the relationship between CDH1 mRNA expression and HER2-positivity in mGC using a multiplexed gene expression profile in two series of gastric cancer (GC): Series 1 (n = 38): HER2+ and HER2- mGC; Series 2 (n = 36) HER2- GC with and without metastasis. To confirm the results, the same expression profiles were analyzed in 354 GC from The Cancer Genome Atlas (TCGA) dataset. The difference in gene expression connected HER2 overexpression with canonical wingless-type (Wnt)/β-catenin pathway and immunohistochemical (IHC) expression loss of E-cadherin (E-CAD). CDH1 mRNA expression was simultaneously associated with the rs16260-A variant and an increase in E-CAD expression. Differences in retinoic acid receptor alfa (RARA), RPL19 (coding for the 60S ribosomal L19 protein), catenin delta 1 (CTNND1), and epidermal growth factor (EGF) mRNA levels—all included in the Wnt/β-catenin pathway—were found associated with overall survival (OS). RARA, CTNND1, and EGF resulted in independent OS prognostic factors. EGF was confirmed as an independent factor along with TNM stage in HER2-overpressed mGC from TCGA collection. Our study highlighted factors involved in the WNT/β-catenin pathway that interconnected E-CAD with HER2 overexpression and patient survival.
Collapse
|
6
|
El Gharib K, Khoury M, Kourie HR. HER2 in gastric adenocarcinoma: where do we stand today? Per Med 2021; 19:67-78. [PMID: 34881639 DOI: 10.2217/pme-2021-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: HER2 is a proto-oncogene expressed in 10-30% of gastric adenocarcinomas and is an ideal target for inhibition in malignancy with high recurrence and dismal survival rates. Materials & methods: A systematic search was conducted via PubMed, Google Scholar and the clinicaltrials.gov database to report the results of ongoing and past studies investigating HER2 inhibitors in gastric cancer. Results: Twenty-five studies were included; ToGA trial is the pivotal trial approving the use of trastuzumab in metastatic gastric cancer, followed by more studies investigating other HER2 inhibitors in this setting, as well as in local and locoregional malignancy. Conclusion: Anti-HER2 molecules are proving efficacy and safety in gastric cancer; the evidence is growing and association with other cancer agents is under investigation.
Collapse
Affiliation(s)
- Khalil El Gharib
- Department of Internal Medicine, Staten Island University Hospital, NY 10305, USA
| | - Makram Khoury
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, 17-5208, Lebanon
| | - Hampig Raphael Kourie
- Hematology-Oncology Department, Faculty of Medicine, Saint Joseph University, Beirut, 17-5208, Lebanon
| |
Collapse
|
7
|
Molecular Targets for Gastric Cancer Treatment and Future Perspectives from a Clinical and Translational Point of View. Cancers (Basel) 2021; 13:cancers13205216. [PMID: 34680363 PMCID: PMC8533881 DOI: 10.3390/cancers13205216] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022] Open
Abstract
Gastric cancer is a leading cause of cancer death worldwide. Systemic treatment comprising chemotherapy and targeted therapy is the standard of care in advanced/metastatic gastric cancer. Comprehensive molecular characterization of gastric adenocarcinomas by the TCGA Consortium and ACRG has resulted in the definition of distinct molecular subtypes. These efforts have in parallel built a basis for the development of novel molecularly stratified treatment approaches. Based on this molecular characterization, an increasing number of specific genomic alterations can potentially serve as treatment targets. Consequently, the development of promising compounds is ongoing. In this review, key molecular alterations in gastric and gastroesophageal junction cancers will be addressed. Finally, the current status of the translation of targeted therapy towards clinical applications will be reviewed.
Collapse
|
8
|
Bispecific Antibody Molecule Inhibits Tumor Cell Proliferation More Efficiently Than the Two-Molecule Combination. Drugs R D 2021; 21:157-168. [PMID: 33721246 PMCID: PMC8206453 DOI: 10.1007/s40268-021-00339-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
Background Monoclonal antibodies (mAbs) have proved to be a valuable tool for the treatment of different cancer types. However, clinical use of an increasing number of mAbs, have also highlighted limitations with monotherapy for cancers, in particular for such with more complex mechanisms, requiring action on additional molecules or pathways, or for cancers quickly acquiring resistance following monotherapy. An example for the latter is the mAb trastuzumab, FDA approved for treatment of metastatic gastric carcinoma. To circumvent this, researchers have reported synergistic, anti-proliferative effects by combination targeting of HER2 and EGFR by trastuzumab and the EGFR-targeting mAb Cetuximab overcoming trastuzumab resistance. Methods Maintaining the proven functionality of trastuzumab, we have designed bi-specific antibody molecules, called AffiMabs, by fusing an EGFR-targeting Affibody molecule to trastuzumab’s heavy or light chains. Having confirmed binding to EGFR and Her2 and cytotoxicity of our AffiMabs, we analyzed apoptosis rate, receptor surface levels, phosphorylation levels of receptors and associated signaling pathways as well as differentially expressed genes on transcriptome level with the aim to elucidate the mode of action of our AffiMabs. Results The AffiMabs are able to simultaneously bind HER2 and EGFR and show increased cytotoxic effect compared to the original trastuzumab therapeutic molecule and, more importantly, even to the combination of trastuzumab and EGFR-targeting Affibody molecule. Analyzing the mode of action, we could show that bi-specific AffiMabs lead to reduced surface receptor levels and a downregulation of cell cycle associated genes on transcriptome level. Conclusion Our study shows that transcriptome analysis can be used to validate the choice of receptor targets and guide the design of novel multi-specific molecules. The inherent modularity of the AffiMab format renders it readily applicable to other receptor targets. Supplementary Information The online version contains supplementary material available at 10.1007/s40268-021-00339-2.
Collapse
|
9
|
Nrf2 Inhibitor, Brusatol in Combination with Trastuzumab Exerts Synergistic Antitumor Activity in HER2-Positive Cancers by Inhibiting Nrf2/HO-1 and HER2-AKT/ERK1/2 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9867595. [PMID: 32765809 PMCID: PMC7387975 DOI: 10.1155/2020/9867595] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023]
Abstract
The HER2-targeting antibody trastuzumab has shown effectiveness in treating HER2-positive breast and gastric cancers; however, its responses are limited. Currently, Nrf2 has been deemed as a key transcription factor in promoting cancer progression and resistance by crosstalk with other proliferative signaling pathways. Brusatol as a novel Nrf2 inhibitor has been deemed as an efficacious and safe drug candidate in cancer therapy. In this study, we firstly reported that brusatol exerted the growth-inhibitory effects on HER2-positive cancer cells by regressing Nrf2/HO-1 and HER2-AKT/ERK1/2 signaling pathways in these cells. More importantly, we found that brusatol synergistically enhanced the antitumor activity of trastuzumab against HER2-positive SK-OV-3 and BT-474 cells, which may be attributed to the inhibition of Nrf2/HO-1 and HER2-AKT/ERK1/2 signaling pathways. Furthermore, the synergistic effects were also observed in BT-474 and SK-OV-3 tumor xenografts. In addition, our results showed that trastuzumab markedly enhanced brusatol-induced ROS accumulation and apoptosis level, which could further explain the synergistic effects. To conclude, the study provided a new insight on exploring Nrf2 inhibition in combination with HER2-targeted trastuzumab as a potential clinical treatment regimen in treating HER2-positive cancers.
Collapse
|
10
|
Shu M, Yan H, Xu C, Wu Y, Chi Z, Nian W, He Z, Xiao J, Wei H, Zhou Q, Zhou JX. A novel anti-HER2 antibody GB235 reverses Trastuzumab resistance in HER2-expressing tumor cells in vitro and in vivo. Sci Rep 2020; 10:2986. [PMID: 32076029 PMCID: PMC7031383 DOI: 10.1038/s41598-020-59818-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 02/04/2020] [Indexed: 01/04/2023] Open
Abstract
HER2 overexpression is frequently associated with tumor metastasis and poor prognosis of breast cancer. More evidence indicates that HER3 is involved in HER2-resistant therapies. Combination treatments with two or more different monoclonal antibodies are a promising strategy to overcome resistance to HER2 therapies. We presented a novel fully human HER2-targeted monoclonal antibody, GB235, screened from a phage-display library against the HER2 antigen. GB235 in combination with Trastuzumab overcomes resistance in HER2-positive tumors and results in more sustained inhibition of tumor growth over time. The competition binding assay showed that the epitopes of GB235 do not overlap with those of Pertuzumab and Trastuzumab on HER2. Further HER2 mutagenesis results revealed that the binding epitopes of GB235 were located in the domain III of HER2. The mechanism of action of GB235 in blocking HER2-driven tumors is different from the mechanisms of Trastuzumab or Pertuzumab. GB235 does not affect the heterodimerization of HER2 and HER3, whereas the GB235 combined treatment with Trastuzumab significantly inhibited heregulin-induced HER3 phosphorylation and downstream signaling. Moreover, GB235 in combination with Trastuzumab reversed the resistance to heregulin-induced proliferation in HER2-overexpressing cancer cell lines. GB235 combined with Trastuzumab treatment in xenograft models resulted in improved antitumor activity. Complete tumor suppression was observed in the HER2-positive NCI-N87 xenograft model treated with the combination treatment with GB235 and Trastuzumab. In a Trastuzumab-resistant patient-derived tumor xenograft model GA0060, GB235 plus Trastuzumab reversed the resistance to Trastuzumab monotherapy. Because GB235 showed a different working mechanism with Pertuzumab and Trastuzumab, these agents can be considered complementary therapy against HER2 overexpression tumors.
Collapse
Affiliation(s)
- Mengjun Shu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.,Genor Biopharma Co., Ltd. Building 3, 1690 Zhangheng Rd., Shanghai, 201203, People's Republic of China
| | - Hongbin Yan
- Genor Biopharma Co., Ltd. Building 3, 1690 Zhangheng Rd., Shanghai, 201203, People's Republic of China
| | - Chuanying Xu
- Shanghai Escugen Biotechnology Co., Ltd. 800 Na Xian Rd., Suite 517, Pudong District, Shanghai, 201210, People's Republic of China
| | - Yan Wu
- Genor Biopharma Co., Ltd. Building 3, 1690 Zhangheng Rd., Shanghai, 201203, People's Republic of China
| | - Zhaohua Chi
- Genor Biopharma Co., Ltd. Building 3, 1690 Zhangheng Rd., Shanghai, 201203, People's Republic of China
| | - Weihong Nian
- Shanghai Escugen Biotechnology Co., Ltd. 800 Na Xian Rd., Suite 517, Pudong District, Shanghai, 201210, People's Republic of China
| | - Zhuzi He
- Genor Biopharma Co., Ltd. Building 3, 1690 Zhangheng Rd., Shanghai, 201203, People's Republic of China
| | - Jing Xiao
- Shanghai Escugen Biotechnology Co., Ltd. 800 Na Xian Rd., Suite 517, Pudong District, Shanghai, 201210, People's Republic of China
| | - Hongli Wei
- Genor Biopharma Co., Ltd. Building 3, 1690 Zhangheng Rd., Shanghai, 201203, People's Republic of China
| | - Qing Zhou
- Shanghai Escugen Biotechnology Co., Ltd. 800 Na Xian Rd., Suite 517, Pudong District, Shanghai, 201210, People's Republic of China.
| | - Joe X Zhou
- Genor Biopharma Co., Ltd. Building 3, 1690 Zhangheng Rd., Shanghai, 201203, People's Republic of China.
| |
Collapse
|
11
|
Passariello M, D'Alise AM, Esposito A, Vetrei C, Froechlich G, Scarselli E, Nicosia A, De Lorenzo C. Novel Human Anti-PD-L1 mAbs Inhibit Immune-Independent Tumor Cell Growth and PD-L1 Associated Intracellular Signalling. Sci Rep 2019; 9:13125. [PMID: 31511565 PMCID: PMC6739323 DOI: 10.1038/s41598-019-49485-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023] Open
Abstract
The novel antibody-based immunotherapy in oncology exploits the activation of immune system mediated by immunomodulatory antibodies specific for immune checkpoints. Among them, the programmed death ligand-1 (PD-L1) is of particular interest as it is expressed not only on T-cells, but also on other immune cells and on a large variety of cancer cells, such as breast cancer cells, considering its high expression in both ErbB2-positive and Triple Negative Breast Cancers. We demonstrate here that PD-L1_1, a novel anti-PD-L1 T -cell stimulating antibody, inhibits PD-L1-tumor cell growth also by affecting the intracellular MAPK pathway and by activating caspase 3. Similar in vitro results were obtained for the first time here also with the clinically validated anti-PD-L1 mAb Atezolizumab and in vivo with another validated anti-mouse anti-PD-L1 mAb. Moreover, we found that two high affinity variants of PD-L1_1 inhibited tumor cell viability more efficiently than the parental PD-L1_1 by affecting the same MAPK pathways with a more potent effect. Altogether, these results shed light on the role of PD-L1 in cancer cells and suggest that PD-L1_1 and its high affinity variants could become powerful antitumor weapons to be used alone or in combination with other drugs such as the anti-ErbB2 cAb already successfully tested in in vitro combinatorial treatments.
Collapse
Affiliation(s)
- Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, Italy.,Ceinge - Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy
| | | | - Annachiara Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, Italy.,Ceinge - Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Cinzia Vetrei
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, Italy.,Ceinge - Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy
| | - Guendalina Froechlich
- Ceinge - Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy.,European School of Molecular Medicine, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy
| | | | - Alfredo Nicosia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, Italy.,Ceinge - Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy.,Keires AG Bäumleingasse 18, CH-4051, Basel, Switzerland
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131, Napoli, Italy. .,Ceinge - Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145, Naples, Italy.
| |
Collapse
|
12
|
Sampera A, Sánchez-Martín FJ, Arpí O, Visa L, Iglesias M, Menéndez S, Gaye É, Dalmases A, Clavé S, Gelabert-Baldrich M, Poulsen TT, Kragh M, Bellosillo B, Albanell J, Rovira A, Montagut C. HER-Family Ligands Promote Acquired Resistance to Trastuzumab in Gastric Cancer. Mol Cancer Ther 2019; 18:2135-2145. [DOI: 10.1158/1535-7163.mct-19-0455] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/28/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022]
|
13
|
Passariello M, Camorani S, Vetrei C, Cerchia L, De Lorenzo C. Novel Human Bispecific Aptamer-Antibody Conjugates for Efficient Cancer Cell Killing. Cancers (Basel) 2019; 11:E1268. [PMID: 31470510 PMCID: PMC6770524 DOI: 10.3390/cancers11091268] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/19/2019] [Accepted: 08/23/2019] [Indexed: 12/26/2022] Open
Abstract
Monoclonal antibodies have been approved by the Food and Drug Administration for the treatment of various human cancers. More recently, oligonucleotide aptamers have risen increasing attention for cancer therapy thanks to their low size (efficient tumor penetration) and lack of immunogenicity, even though the short half-life and lack of effector functions still hinder their clinical applications. Here, we demonstrate, for the first time, that two novel bispecific conjugates, consisting of an anti-epidermal growth factor receptor (EGFR) aptamer linked either with an anti-epidermal growth factor receptor 2 (ErbB2) compact antibody or with an immunomodulatory (anti-PD-L1) antibody, were easily and rapidly obtained. These novel aptamer-antibody conjugates retain the targeting ability of both the parental moieties and acquire a more potent cancer cell killing activity by combining their inhibitory properties. Furthermore, the conjugation of the anti-EGFR aptamer with the immunomodulatory antibody allowed for the efficient redirection and activation of T cells against cancer cells, thus dramatically enhancing the cytotoxicity of the two conjugated partners. We think that these bispecific antibody-aptamer conjugates could have optimal biological features for therapeutic applications, such as increased specificity for tumor cells expressing both targets and improved pharmacokinetic and pharmacodynamic properties due to the combined advantages of the aptamer and antibody.
Collapse
Affiliation(s)
- Margherita Passariello
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Napoli, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Simona Camorani
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Via S. Pansini 5, 80131 Napoli, Italy
| | - Cinzia Vetrei
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Napoli, Italy
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Laura Cerchia
- Institute of Experimental Endocrinology and Oncology "Gaetano Salvatore" (IEOS), CNR, Via S. Pansini 5, 80131 Napoli, Italy.
| | - Claudia De Lorenzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Napoli, Italy.
- Ceinge-Biotecnologie Avanzate s.c. a.r.l., via Gaetano Salvatore 486, 80145 Naples, Italy.
| |
Collapse
|
14
|
Dong Q, Yu P, Ye L, Zhang J, Wang H, Zou F, Tian J, Kurihara H. PCC0208027, a novel tyrosine kinase inhibitor, inhibits tumor growth of NSCLC by targeting EGFR and HER2 aberrations. Sci Rep 2019; 9:5692. [PMID: 30952931 PMCID: PMC6451005 DOI: 10.1038/s41598-019-42245-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 03/25/2019] [Indexed: 12/16/2022] Open
Abstract
PCC-0208027 is a novel tyrosine kinase inhibitor that has a strong inhibitory effect on epidermal growth factor receptor (EGFR)- or HER2-driven cancers. The aim is to assess the anti-tumor activity of PCC0208027 and related mechanisms in non-small cell lung cancer (NSCLC). We examined the activity of PCC0208027 on various mutated EGFRs, HER2, and HER4. MTT assays, flow cytometry, and Western blotting were used to examine the effects of PCC0208027 on NSCLC cells with different genetic characteristics and relevant molecular mechanisms. Nude mouse xenograft models with HCC827, NCI-H1975, and Calu-3 cells were used to evaluate the in vivo anti-tumor activity of PCC0208027. Results showed that PCC0208027 effectively inhibited the enzyme activity of EGFR family members, including drug-sensitive EGFR mutations, acquired drug-resistant EGFR T790M and EGFR C797S mutations, and wild-type (WT) HER2. PCC0208027 blocked EGFR phosphorylation, thereby downregulating downstream PI3K/AKT and MAPK/ERK signaling pathways and inducing G0/G1 arrest in NSCLC cells. PCC0208027 inhibited tumor growth in mouse xenograft models of HCC827, NCI-H1975, and Calu-3 cells. In summary, our findings suggest that PCC0208027 has the potential to become an oral antineoplastic drug for NSCLC treatment and is worthy of further development.
Collapse
Affiliation(s)
- Qiuju Dong
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, P.R. China
| | - Pengfei Yu
- School of Pharmacy, Binzhou Medical University, Yantai, P.R. China
| | - Liang Ye
- School of Pharmacy, Binzhou Medical University, Yantai, P.R. China
| | - Jianzhao Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Fangxia Zou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, P.R. China.
| | - Hiroshi Kurihara
- Department of Pharmacology, Life Science and Biopharmaceutics School, Shenyang Pharmaceutical University, Shenyang, P.R. China.
| |
Collapse
|
15
|
Yang Y, Ren F, Tian Z, Song W, Cheng B, Feng Z. Osthole Synergizes With HER2 Inhibitor, Trastuzumab in HER2-Overexpressed N87 Gastric Cancer by Inducing Apoptosis and Inhibition of AKT-MAPK Pathway. Front Pharmacol 2018; 9:1392. [PMID: 30538636 PMCID: PMC6277458 DOI: 10.3389/fphar.2018.01392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/12/2018] [Indexed: 01/10/2023] Open
Abstract
Background and Purpose: Although trastuzumab has shown considerable activity in the treatment of HER2-positive breast and gastric cancers, a significant proportion of patients do not respond to trastuzumab. Recent studies revealed that osthole, an active coumarin isolated from Cnidium monnieri (L.) Cusson possesses potent anti-tumor activity. Here, we for the first time investigated the anti-tumor activity of trastuzumab in combination with osthole in HER2-overexpressing cancers. Materials and Methods: N87 and SK-BR-3 cell lines, which were HER2-overexpressing cancer cells were used in our study. Cell Counting Kit-8 (CCK-8) assay was utilized to test the inhibitory effects of trastuzumab plus osthole. Combination index (CI) values were calculated using the Chou-Talalay method. Fluorescence-Activated Cell Sorter (FACS) assay was used to examine the cell cycle change and apoptosis upon combinatorial treatment. N87 tumor xenografts were established to evaluate in vivo effects of trastuzumab plus osthole. In addition, molecular mechanisms were analyzed by Western blot in vitro and in vivo. Results: As shown in our study, osthole alone exhibited effective anti-tumor activity against HER2-overexpressed N87 gastric cancer cells and SK-BR-3 breast cancer cells, which may be attributed to cell cycle arrest on G2/M phase and apoptosis. More importantly, our data demonstrated that trastuzumab plus osthole was much more potent than either agent alone in inhibiting the growth of N87 cancer cells in vitro and in vivo, which may be partly explained by the enhanced apoptosis upon the combinatorial treatment. Besides these, we also observed a significant decrease on the phosphorylation of AKT and MAPK in N87 cells when treated with trastuzumab plus osthole compared to either agent alone. Further data from N87 tumor xenografts revealed that trastuzumab plus osthole exerted their synergistic effects mainly on AKT signaling pathway. Conclusion: Collectively, these results support the clinical development of combination osthole with trastuzumab for the treatment of HER2-overexpressed gastric cancer.
Collapse
Affiliation(s)
- Yun Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.,State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, China
| | - Feng Ren
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ziyin Tian
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Wei Song
- College of Life Science and Engineering, Henan University of Urban Construction, Pingdingshan, China
| | - Binfeng Cheng
- School of Life Sciences and Technology, Xinxiang Medical University, Xinxiang, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
16
|
Shen M, Zhong XW. Clinical significance of expression of SERPINE1 gene in gastric cancer. Shijie Huaren Xiaohua Zazhi 2018; 26:1818-1824. [DOI: 10.11569/wcjd.v26.i31.1818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM To detect the expression of the SERPINE1 gene and analyze its clinical significance in gastric cancer (GC).
METHODS The patients with GC were selected from the TCGA database. K-M survival curve, COX proportional hazards model, χ2 test and logistic regression were used to analyze the patients' data.
RESULTS COX proportional risk model analysis showed that SERPINE1 expression, age, T stage, N stage, M stage, and TNM stage were prognostic factors for overall survival. Among them, SERPINE1 expression, age and M stage were independent risk factors affecting tumor prognosis. Chi-square test and logistic regression were used to analyze the risk factors affecting the expression of the SERPINE1 gene. The results showed that the age, sex, tumor differentiation and tumor stage in GC patients did not affect the expression of the SERPINE1 gene, while the expression in the gastric antrum was lower than that in other sites. SERPINE1 expression was significantly higher in GC tissues than in adjacent normal tissues.
CONCLUSION The expression of the SERPINE1 gene in GC increases, which is associated with a poor prognosis of GC. SERPINE1 may become a target for GC screening and treatment.
Collapse
Affiliation(s)
- Miao Shen
- Department of Pathology, Deqing County People's Hospital, Huzhou 313200, Zhejiang Province, China
| | - Xing-Wei Zhong
- Department of Gastroenterology, Deqing County People's Hospital, Huzhou 313200, Zhejiang Province, China
| |
Collapse
|
17
|
Huang G, Zhai J, Huang X, Zheng D. Predictive value of soluble ST-2 for changes of cardiac function and structure in breast cancer patients receiving chemotherapy. Medicine (Baltimore) 2018; 97:e12447. [PMID: 30235730 PMCID: PMC6160077 DOI: 10.1097/md.0000000000012447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The current study was to evaluate soluble ST-2 level and left ventricular ejection fraction (LVEF) in patients with breast cancer receiving doxorubicin or trastuzumab treatment for 6 months and determine whether soluble ST-2 level can be used to predictive left ventricular function impairment.Patients who were diagnosed as having breast cancer receiving doxorubicin or trastuzumab or combined therapy were enrolled. Demographic data, prior medical history and related medical therapy, and site and stage of breast cancer information were collected from electronic health record. Fasting blood was used to detect soluble ST-2 and brain natriuretic peptide (BNP) levels before and after 6 months doxorubicin or trastuzumab therapy. Echocardiography was performed before and after 6 months of doxorubicin or trastuzumab therapy.Participants were divided into 3 groups based on tertiary soluble ST-2 level. Compared with 1st tertiary group, patients in the 3rd tertiary group had higher proportion receiving combined therapy (14.3% vs 4.7%, P < .05). Baseline soluble ST-2 level was similar across groups. After 6 months' therapy, soluble ST-2 level was significantly higher in the 3rd tertiary group. Pearson correlation analysis showed that soluble ST-2 level was positively correlated with left ventricular volume and E/e' ratio while negatively correlated with LVEF. Doxorubicin, trastuzumab, combined therapy, soluble ST-2 level, and angiotensin-converting enzyme inhibitor/angiotensin receptor blocker treatment were all independently associated with LVEF change.In breast cancer patients receiving doxorubicin or trastuzumab therapy, soluble ST-2 level can be used to predict cardiac function and structure changes.
Collapse
Affiliation(s)
- Guoding Huang
- Department of Oncology, Hainan Central Western Hospital, Danzhou, Hainan
| | - Jianfeng Zhai
- Department of Oncology, Hainan Central Western Hospital, Danzhou, Hainan
| | - Xinting Huang
- Department of Oncology, Hainan Central Western Hospital, Danzhou, Hainan
| | - Dongdan Zheng
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Raimondi A, Nichetti F, Peverelli G, Di Bartolomeo M, De Braud F, Pietrantonio F. Genomic markers of resistance to targeted treatments in gastric cancer: potential new treatment strategies. Pharmacogenomics 2018; 19:1047-1068. [PMID: 30041572 DOI: 10.2217/pgs-2018-0077] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer is a highly heterogeneous disease, displaying a complex genomic landscape and an unfavorable outcome with standard therapies. Based on distinctive genomic alterations, novel targeted agents have been developed with the aim of personalizing treatments and improving patient outcome. However, a subgroup of patients is primarily treatment-resistant, and even in the initially sensitive population, secondary resistance emerges, thus limiting therapeutic benefit. In this review, we summarize the clinical data about standard targeted agents in gastric cancer, specifically anti-HER2 treatments and antivascular therapies. We also illustrate the available evidence regarding molecular mechanisms of resistance to these agents and we discuss potential strategies for new targeted treatments that could overcome such resistance.
Collapse
Affiliation(s)
- Alessandra Raimondi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Federico Nichetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giorgia Peverelli
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maria Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Filippo De Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Oncology & Hemato-oncology, University of Milan, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Department of Oncology & Hemato-oncology, University of Milan, Italy
| |
Collapse
|
19
|
Li Y, Zhang X, Liu D, Gong J, Wang DD, Li S, Peng Z, Li Y, Wang X, Lin PP, Li M, Shen L. Evolutionary Expression of HER2 Conferred by Chromosome Aneuploidy on Circulating Gastric Cancer Cells Contributes to Developing Targeted and Chemotherapeutic Resistance. Clin Cancer Res 2018; 24:5261-5271. [PMID: 30012565 DOI: 10.1158/1078-0432.ccr-18-1205] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/07/2018] [Accepted: 07/10/2018] [Indexed: 11/16/2022]
MESH Headings
- Aneuploidy
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor
- Cell Line, Tumor
- Chromosomes, Human, Pair 8
- Drug Resistance, Neoplasm/genetics
- Flow Cytometry
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Kaplan-Meier Estimate
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- Prognosis
- Receptor, ErbB-2/genetics
- Stomach Neoplasms/diagnosis
- Stomach Neoplasms/drug therapy
- Stomach Neoplasms/genetics
- Stomach Neoplasms/mortality
- Tomography, X-Ray Computed
- Trastuzumab/pharmacology
- Trastuzumab/therapeutic use
- Treatment Outcome
Collapse
Affiliation(s)
- Yilin Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Dan Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Shan Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Zhi Peng
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yanyan Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaojuan Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | | | - Min Li
- Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China.
| |
Collapse
|
20
|
Díaz-Serrano A, Angulo B, Dominguez C, Pazo-Cid R, Salud A, Jiménez-Fonseca P, Leon A, Galan MC, Alsina M, Rivera F, Plaza JC, Paz-Ares L, Lopez-Rios F, Gómez-Martín C. Genomic Profiling of HER2-Positive Gastric Cancer: PI3K/Akt/mTOR Pathway as Predictor of Outcomes in HER2-Positive Advanced Gastric Cancer Treated with Trastuzumab. Oncologist 2018; 23:1092-1102. [PMID: 29700210 DOI: 10.1634/theoncologist.2017-0379] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 02/22/2018] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND HER2-positive gastric cancer (GC) affects 7%-34% of patients with GC. Trastuzumab-based first-line treatment has become the standard of care for HER2-positive advanced gastric cancer (AGC). However, there are no clinically validated biomarkers for resistance to HER2-targeted therapies. Upregulation of PI3K pathway and tyrosine kinase receptor (TKR) alterations have been noted as molecular mechanisms of resistance in breast cancer. Our study aimed to perform a molecular characterization of HER2-positive AGC and investigate the role of PI3K/Akt/mTOR signaling pathway activation and TKR gene copy number (GCN) gains as predictive biomarkers in HER2-positive AGC treated with trastuzumab. PATIENTS AND METHODS Forty-two HER2-positive GC samples from patients treated with trastuzumab-based first-line chemotherapy were selected. DNA samples were sequenced. PTEN and MET immunohistochemistry were also performed. RESULTS Concurrent genetic alterations were detected in 97.1% of HER2-positive AGC. We found activation of PI3K/Akt/mTOR pathway in 52.4% of patients and TKR GCN gains in 38.1%. TKR GCN gains did not correlate with overall survival (OS) or progression-free survival (PFS). Multivariate Cox models showed that PI3K/Akt/mTOR activation negatively affects the effectiveness of trastuzumab-based chemotherapy in terms of OS and PFS. CONCLUSION Our results provide for the first time a detailed molecular profile of concurrent genetic alterations in HER2-positive AGC. PI3K pathway activation could be used as a predictive marker of worse outcome in this patient population. In addition, gains in copy number of other TKR genes in this subgroup may also influence the survival benefit obtained with trastuzumab. IMPLICATIONS FOR PRACTICE This article reports, for the first time, a detailed molecular profile of genomic alterations in patients with HER2-positive advanced gastric cancer (AGC). PI3K/Akt/mTOR signaling pathway activation seems to have a differentially negative effect on overall survival and progression-free survival in AGC treated with trastuzumab-based chemotherapy. Combining different targeted agents could be a successful therapeutic strategy to improve the prognosis of HER2-positive AGC.
Collapse
Affiliation(s)
| | - Barbara Angulo
- Laboratorio Dianas Terapeuticas. Centro Integral Oncologico Clara Campal, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Carolina Dominguez
- Laboratorio Dianas Terapeuticas. Centro Integral Oncologico Clara Campal, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Roberto Pazo-Cid
- Medical Oncology Department, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Antonieta Salud
- Medical Oncology Unit, Hospital Universitario Arnau de Vilanova, Lérida, Spain
| | - Paula Jiménez-Fonseca
- Medical Oncology Department, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Ana Leon
- Medical Oncology Unit, Fundación Jimenez Diaz, Madrid, Spain
| | - Maria Carmen Galan
- Medical Oncology Department, Institut Català d'Oncologia, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Maria Alsina
- Medical Oncology Department, Hospital Universitari Vall d'Hebrón, Barcelona, Spain
| | - Fernando Rivera
- Medical Oncology Deparment, Hospital Universitario Marques de Valdecilla, Santander, Spain
| | - J Carlos Plaza
- Laboratorio Dianas Terapeuticas. Centro Integral Oncologico Clara Campal, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Luis Paz-Ares
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fernando Lopez-Rios
- Laboratorio Dianas Terapeuticas. Centro Integral Oncologico Clara Campal, Hospital Universitario HM Sanchinarro, Madrid, Spain
| | - Carlos Gómez-Martín
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
21
|
Shi J, Li F, Yao X, Mou T, Xu Z, Han Z, Chen S, Li W, Yu J, Qi X, Liu H, Li G. The HER4-YAP1 axis promotes trastuzumab resistance in HER2-positive gastric cancer by inducing epithelial and mesenchymal transition. Oncogene 2018. [PMID: 29535422 PMCID: PMC5978807 DOI: 10.1038/s41388-018-0204-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Trastuzumab is the only target to be approved as the first-line treatment of HER2 positive metastatic gastric cancer, but ubiquitous resistance decreases its therapeutic benefit. In this study, we found HER4, phosphorylation HER4 (p-HER4) and the mesenchymal marker Vimentin increased in trastuzumab-resistant cells (MKN45TR and NCI-N87TR), while epithelial markers expressions in trastuzumab-resistant cell lines and animal models decreased. Additionally, silencing HER4 prevented the epithelial-mesenchymal transition and led to decreased proliferation and migration in vitro and in vivo. The expression of YAP1, a vital downstream interacted target of HER4, decreased when HER4 was knocked down. Interestingly, stimulation of NRG1 could compromise the inhibitory impact and rescue cell survival; whereas, transfection of siYAP1 sensitized trastuzumab-treated cells. Expression analysis of the proteins in patient-derived xenograft model (PDX) mice showed that HER4, p-HER4, YAP1, and Vimentin were clearly upregulated in the trastuzumab-resistant mice compared to mice without trastuzumab resistance. However, HER2 and E-cadherin were downregulated in response to continuous treatment with trastuzumab. These findings elucidated that the central role of the HER4-YAP1 axis in trastuzumab resistance of HER2-positive gastric cancer cells through induction of EMT. Hence, regulating the HER4-YAP1 axis might be a promising strategy for clinical interventions in patients with HER2-positive gastric cancer.
Collapse
Affiliation(s)
- Jiaolong Shi
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Fengping Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Xingxing Yao
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Tingyu Mou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Zhijun Xu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Zheng Han
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Siyu Chen
- Department of Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Wende Li
- Department of Guangdong Laboratory Animals Monitoring Institute, Guangdong Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Xiaolong Qi
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Hao Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, China.
| |
Collapse
|
22
|
Keller S, Zwingenberger G, Ebert K, Hasenauer J, Wasmuth J, Maier D, Haffner I, Schierle K, Weirich G, Luber B. Effects of trastuzumab and afatinib on kinase activity in gastric cancer cell lines. Mol Oncol 2018; 12:441-462. [PMID: 29325228 PMCID: PMC5891041 DOI: 10.1002/1878-0261.12170] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
The molecular mechanism of action of the HER2‐targeted antibody trastuzumab is only partially understood, and the direct effects of trastuzumab on the gastric cancer signaling network are unknown. In this study, we compared the molecular effect of trastuzumab and the HER kinase inhibitor afatinib on the receptor tyrosine kinase (RTK) network and the downstream‐acting intracellular kinases in gastric cancer cell lines. The molecular effects of trastuzumab and afatinib on the phosphorylation of 49 RTKs and 43 intracellular kinase phosphorylation sites were investigated in three gastric cancer cell lines (NCI‐N87, MKN1, and MKN7) using proteome profiling. To evaluate these effects, data were analyzed using mixed models and clustering. Moreover, proliferation assays were performed. Our comprehensive quantitative analysis of kinase activity in gastric cancer cell lines indicates that trastuzumab and afatinib selectively influenced the HER family RTKs. The effects of trastuzumab differed between cell lines, depending on the presence of activated HER2. The effects of trastuzumab monotherapy were not transduced to the intracellular kinase network. Afatinib alone or in combination with trastuzumab influenced HER kinases in all cell lines; that is, the effects of monotherapy and combination therapy were transduced to the intracellular kinase network. These results were confirmed by proliferation analysis. Additionally, the MET‐amplified cell line Hs746T was identified as afatinib nonresponder. The dependence of the effect of trastuzumab on the presence of activated HER2 might explain the clinical nonresponse of some patients who are routinely tested for HER2 expression and gene amplification in the clinic but not for HER2 activation. The consistent effects of afatinib on HER RTKs and downstream kinase activation suggest that afatinib might be an effective candidate in the future treatment of patients with gastric cancer irrespective of the presence of activated HER2. However, MET amplification should be taken into account as potential resistance factor.
Collapse
Affiliation(s)
- Simone Keller
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Germany
| | - Gwen Zwingenberger
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Germany
| | - Karolin Ebert
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Germany
| | - Jan Hasenauer
- Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Computational Biology, Neuherberg, Germany.,Department of Mathematical Modeling of Biological Systems, Center for Mathematics, Technische Universität München, Garching, Germany
| | - Jacqueline Wasmuth
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Germany
| | | | | | - Katrin Schierle
- Institute of Pathology, Universitätsklinikum Leipzig, Germany
| | - Gregor Weirich
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Germany
| | - Birgit Luber
- Institut für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Germany
| |
Collapse
|
23
|
Yang Y, Liu Y, Guo R, Fu Y, Zhang Z, Zhang P, Zhou P, Wang T, Huang T, Li X, Li C. The novel dithiocarbamate, DpdtC suppresses HER2-overexpressed cancer cells by up-regulating NDRG1 via inactivation of HER2-ERK 1/2 signaling. Sci Rep 2018; 8:3398. [PMID: 29467385 PMCID: PMC5821706 DOI: 10.1038/s41598-018-21768-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/06/2018] [Indexed: 01/03/2023] Open
Abstract
Dithiocarbamate has been tested for its effective anti-tumor activity, but the underlying mechanism remains unclear. We previously prepared a novel diththiocarbamate derivative, DpdtC with an ability of catalase inhibition. Here, we for the first time investigated the growth inhibition effects of DpdtC on HER2-amplified cancer cells and elucidated its mechanism of action. Results showed that DpdtC exerted the potent anti-tumor effects against HER2-overexpressed SK-OV-3 and SK-BR-3 cells, especially on SK-OV-3 cells with a higher NDRG1 level, which was also confirmed in the SK-OV-3 xenograft model. Interestingly, we observed that NDRG1 was up-regulated, while membrane expression of HER2 was regressed in SK-OV-3 cells upon DpdtC treatment. In agreement, silencing endogenous NDRG1 also increased the expression of HER2 in SK-OV-3 cells, while overexpressing NDRG1 decreased HER2 expression in SK-BR-3 cells. Furthermore, our results showed the formation of the EGFR/HER2 heterodimer was attenuated and phosphorylation of ERK1/2 was inhibited in SK-OV-3 cells when treated with DpdtC. Collectively, these observations demonstrated that NDRG1 plays an important role in mediating the inhibition effects of DpdtC in HER2-overexpressed cancer cells via selective targeting of the HER2-ERK1/2 pathway. Hence, our investigation suggests that up-regulation of NDRG1 by DpdtC is a promising therapeutic approach in HER2-overexpressed cancers.
Collapse
Affiliation(s)
- Yun Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| | - Youxun Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Rui Guo
- College of Biomedical Engineering, Xinxiang Medical University, Xinxiang, China
| | - Yun Fu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Ziheng Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Pengfei Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Pingxin Zhou
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Tingting Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Tengfei Huang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xiaotong Li
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Changzheng Li
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
24
|
Chen Z, Liu S, Xia Y, Wu K. MiR-31 Regulates Rho-Associated Kinase-Myosin Light Chain (ROCK-MLC) Pathway and Inhibits Gastric Cancer Invasion: Roles of RhoA. Med Sci Monit 2016; 22:4679-4691. [PMID: 27904131 PMCID: PMC5136369 DOI: 10.12659/msm.898399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background This study evaluated how the expression of miR-31 can be used to detect gastric cancer (GC) to help illuminate the role of miR-31 and RhoA in GC cells. Material/Methods We carried out our experiments using tissue specimens from 70 GC patients. The relative expression of miR-31 and RhoA mRNA in tissues and cells was detected by RT-PCR. The expression level of RhoA protein was detected by immunohistochemistry. GC cell line BGC-823 was transfected with six groups of vectors: blank group, NC (negative control) group, miR-31 mimics group, miR-31 mimics + RhoA group, miR-31 mimics + ROCK group, and miR-31 mimics + MLCK agonist group. AGS cells were also transfected with six groups of vectors: blank group, NC group, miR-31 inhibitor group, miR-31 inhibitor + RhoA siRNA group, miR-31 inhibitor + ROCK siRNA group, and miR-31 inhibitor + MLCK inhibitor group. Transwell assay was performed to detect the invasion and migration of cells. The protein expression in different transfected groups was detected using Western blotting. Results GC tissues exhibited significantly lower levels of miR-31 expression compared to pericarcinous tissues (p<0.01). Moreover, a significantly higher expression of RhoA in GC tissues was observed (p<0.05). MiR-31 inhibited RhoA expression by binding to 3′UTR of mRNA, whereas miR-31 mimics significantly decreased the number of invaded and migrated cells (p<0.05). The activation of RhoA, ROCK, and phosphorylation of MLC remarkably exacerbate the invasion and migration ability of GC cells (p<0.05). Conclusions We found miR-31 could downregulate the ROCK/MLC pathway by inhibiting the expression of RhoA in order to suppress the invasion and migration of GC cells.
Collapse
Affiliation(s)
- Zhuo Chen
- Xuzhou Medical College, Xuzhou, Jiangsu, China (mainland)
| | - Shengnan Liu
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China (mainland)
| | - Yuan Xia
- Xuzhou Medical College, Xuzhou, Jiangsu, China (mainland)
| | - Kejian Wu
- Department of Gastroenterology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China (mainland)
| |
Collapse
|
25
|
Pietrantonio F, Caporale M, Morano F, Scartozzi M, Gloghini A, De Vita F, Giommoni E, Fornaro L, Aprile G, Melisi D, Berenato R, Mennitto A, Volpi CC, Laterza MM, Pusceddu V, Antonuzzo L, Vasile E, Ongaro E, Simionato F, de Braud F, Torri V, Di Bartolomeo M. HER2 loss in HER2-positive gastric or gastroesophageal cancer after trastuzumab therapy: Implication for further clinical research. Int J Cancer 2016; 139:2859-2864. [PMID: 27578417 DOI: 10.1002/ijc.30408] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/18/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022]
Abstract
Mechanisms of acquired resistance to trastuzumab-based treatment in gastric cancer are largely unknown. In this study, we analyzed 22 pairs of tumor samples taken at baseline and post-progression in patients receiving chemotherapy and trastuzumab for advanced HER2-positive [immunohistochemistry (IHC) 3+ or 2+ with in-situ hybridization (ISH) amplification] gastric or gastroesophageal cancers. Strict clinical criteria for defining acquired trastuzumab resistance were adopted. Loss of HER2 positivity and loss of HER2 over-expression were defined as post-trastuzumab IHC score <3+ and absence of ISH amplification, and IHC "downscoring" from 2+/3+ to 0/1+, respectively. HER2 IHC was always performed, while ISH was missing in 3 post-progression samples. Patients with initial HER2 IHC score 3+ and 2+ were 14 (64%) and 8 (36%), respectively. Loss of HER2 positivity and HER2 over-expression was observed in 32 and 32% samples, respectively. The chance of HER2 loss was not associated with any of the baseline clinicopathological variables. The only exception was in patients with initial IHC score 2+ versus 3+, for both endpoints of HER2 positivity (80 vs. 14%; p = 0.008) and HER2 over-expression (63 vs. 14%; p = 0.025). As already shown in breast cancer, loss of HER2 may be observed also in gastric cancers patients treated with trastuzumab-based chemotherapy in the clinical practice. This phenomenon may be one of the biological reasons explaining the failure of anti-HER2 second-line strategies in initially HER2-positive disease.
Collapse
Affiliation(s)
- F Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - M Caporale
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - F Morano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M Scartozzi
- Medical Oncology Department, Azienda Ospedaliera Universitaria Cagliari, Presidio Policlinico Universitario "Duilio Casula", Cagliari, Italy
| | - A Gloghini
- Diagnostic pathology and laboratory medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - F De Vita
- Medical Oncology Department, Seconda Università degli studi di Napoli, Naples, Italy
| | - E Giommoni
- Medical Oncology 1, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - L Fornaro
- U.O. Oncologia Medica 2 Universitaria, Ospedale S. Chiara - Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano, Tumori, Italy
| | - G Aprile
- Medical Oncology Department, University and General Hospital, Udine, Italy
| | - D Melisi
- Medical Oncology, Università degli studi di Verona, Italy
| | - R Berenato
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - A Mennitto
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - C C Volpi
- Diagnostic pathology and laboratory medicine Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - M M Laterza
- Medical Oncology Department, Seconda Università degli studi di Napoli, Naples, Italy
| | - V Pusceddu
- Medical Oncology Department, Azienda Ospedaliera Universitaria Cagliari, Presidio Policlinico Universitario "Duilio Casula", Cagliari, Italy
| | - L Antonuzzo
- Medical Oncology 1, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - E Vasile
- U.O. Oncologia Medica 2 Universitaria, Ospedale S. Chiara - Azienda Ospedaliero-Universitaria Pisana, Istituto Toscano, Tumori, Italy
| | - E Ongaro
- Medical Oncology Department, University and General Hospital, Udine, Italy
| | - F Simionato
- Medical Oncology, Università degli studi di Verona, Italy
| | - F de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Oncology Department, University of Milan, Italy
| | - V Torri
- Oncology Department, IRCCS-Mario Negri Institute for Pharmacological Rresearch, Milan, Italy
| | - M Di Bartolomeo
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
26
|
Iida M, Bahrar H, Brand TM, Pearson HE, Coan JP, Orbuch RA, Flanigan BG, Swick AD, Prabakaran PJ, Lantto J, Horak ID, Kragh M, Salgia R, Kimple RJ, Wheeler DL. Targeting the HER Family with Pan-HER Effectively Overcomes Resistance to Cetuximab. Mol Cancer Ther 2016; 15:2175-86. [PMID: 27422810 PMCID: PMC5010956 DOI: 10.1158/1535-7163.mct-16-0012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/01/2016] [Indexed: 12/31/2022]
Abstract
Cetuximab, an antibody against the EGFR, has shown efficacy in treating head and neck squamous cell carcinoma (HNSCC), metastatic colorectal cancer, and non-small cell lung cancer (NSCLC). Despite the clinical success of cetuximab, many patients do not respond to cetuximab. Furthermore, virtually all patients who do initially respond become refractory, highlighting both intrinsic and acquired resistance to cetuximab as significant clinical problems. To understand mechanistically how cancerous cells acquire resistance, we previously developed models of acquired resistance using the H226 NSCLC and UM-SCC1 HNSCC cell lines. Cetuximab-resistant clones showed a robust upregulation and dependency on the HER family receptors EGFR, HER2, and HER3. Here, we examined pan-HER, a mixture of six antibodies targeting these receptors on cetuximab-resistant clones. In cells exhibiting acquired or intrinsic resistance to cetuximab, pan-HER treatment decreased all three receptors' protein levels and downstream activation of AKT and MAPK. This correlated with decreased cell proliferation in cetuximab-resistant clones. To determine whether pan-HER had a therapeutic benefit in vivo, we established de novo cetuximab-resistant mouse xenografts and treated resistant tumors with pan-HER. This regimen resulted in a superior growth delay of cetuximab-resistant xenografts compared with mice continued on cetuximab. Furthermore, intrinsically cetuximab-resistant HNSCC patient-derived xenograft tumors treated with pan-HER exhibited significant growth delay compared with vehicle/cetuximab controls. These results suggest that targeting multiple HER family receptors simultaneously with pan-HER is a promising treatment strategy for tumors displaying intrinsic or acquired resistance to cetuximab. Mol Cancer Ther; 15(9); 2175-86. ©2016 AACR.
Collapse
Affiliation(s)
- Mari Iida
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Harsh Bahrar
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin. Radboud Department of Radiation Oncology, University Medical Centre Nijmegen, Nijmegen, the Netherlands
| | - Toni M Brand
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Hannah E Pearson
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - John P Coan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Rachel A Orbuch
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Bailey G Flanigan
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Adam D Swick
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Prashanth J Prabakaran
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | | | | - Randy J Kimple
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| |
Collapse
|
27
|
Ellebaek S, Brix S, Grandal M, Lantto J, Horak ID, Kragh M, Poulsen TT. Pan-HER-An antibody mixture targeting EGFR, HER2 and HER3 abrogates preformed and ligand-induced EGFR homo- and heterodimers. Int J Cancer 2016; 139:2095-105. [PMID: 27342948 DOI: 10.1002/ijc.30242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022]
Abstract
The human epidermal growth factor receptor (HER)-family is involved in development of many epithelial cancers. Therefore, HER-family members constitute important targets for anti-cancer therapeutics such as monoclonal antibodies (mAbs). A limitation to the success of single HER-targeting mAbs is development of acquired resistance through mechanisms such as alterted receptor dimerization patterns and dependencies. Pan-HER is a mixture of six mAbs simultaneously targeting epidermal growth factor receptor (EGFR), HER2 and HER3 with two mAbs against each receptor. Pan-HER has previously demonstrated broader efficacy than targeting single or dual receptor combinations also in resistant settings. In light of this broad efficacy, we decided to investigate the effect of Pan-HER compared with single HER-targeting with single and dual mAbs on HER-family cross-talk and dimerization focusing on EGFR. The effect of Pan-HER on cell proliferation and HER-family receptor degradation was superior to treatment with single mAbs targeting either single receptor, and similar to targeting a single receptor with two non-overlapping antibodies. Furthermore, changes in EGFR-dimerization patterns after treatment with Pan-HER were investigated by in situ proximity ligation assay and co-immunoprecipitation, demonstrating that Pan-HER and the EGFR-targeting mAb mixture efficiently down-regulate basal EGFR homo- and heterodimerization in two tested cell lines, whereas single mAbs had limited effects. Pan-HER and the EGFR-targeting mAb mixture also blocked EGF-binding and thereby ligand-induced changes in EGFR-dimerization levels. These results suggest that Pan-HER reduces the cellular capability to switch HER-dependency and dimerization pattern in response to treatment and thus hold promise for future clinical development of Pan-HER in resistant settings.
Collapse
Affiliation(s)
| | - Susanne Brix
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
28
|
Feng R, Yang S. Effects of combining erlotinib and RNA-interfered downregulation of focal adhesion kinase expression on gastric cancer. J Int Med Res 2016; 44:855-64. [PMID: 27278554 PMCID: PMC5536637 DOI: 10.1177/0300060516647550] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/11/2016] [Indexed: 11/21/2022] Open
Abstract
Objective To investigate the synergistic effects of combining erlotinib and RNA-interference downregulation of focal adhesion kinase (FAK) expression on the proliferation, apoptosis, invasion and migration of the human gastric adenocarcinoma cell line AGS. Methods Cells were divided into five experimental groups: Group A, nontransfected control; Group B, transfected with empty vector; Group C, transfected with FAK-shRNA; Group D, erlotinib treatment; Group E, combination erlotinib treatment and transfected with FAK-shRNA. FAK protein levels were confirmed via Western blotting. Cell proliferation (CCK-8 assay, apoptosis (flow cytometry), cell invasion (transwell assay) and migration (scratch assay) were evaluated. Results RNA interference significantly decreased FAK protein levels. Cell proliferation, invasion and migration were significantly lower in Groups C, D and E compared with Group A, and significantly lower in Group E than in Groups C and D. Conclusions RNA interference effectively silences FAK expression and inhibits malignant cell proliferation and invasion in gastric cancer cells. The effect of FAK inhibition is increased by co-treatment with erlotinib.
Collapse
Affiliation(s)
- Rui Feng
- Teaching and Research Department of Oncology, Union Clinical Medical College of Fujian Medical University, Fujian, China
| | - Sheng Yang
- Teaching and Research Department of Oncology, Union Clinical Medical College of Fujian Medical University, Fujian, China Department of Medical Oncology, Fujian Medical University Union Hospital, Fujian, China Fujian Key Laboratory of Translational Cancer Medicine, Fujian, China Fujian Medical University Stem Cell Research Institute, Fuzhou, Fujian, China
| |
Collapse
|
29
|
Jin R, Xia Y, Chen Q, Li W, Chen D, Ye H, Zhao C, Du X, Shi D, Wu J, Liang G. Da0324, an inhibitor of nuclear factor-κB activation, demonstrates selective antitumor activity on human gastric cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:979-95. [PMID: 27042000 PMCID: PMC4780725 DOI: 10.2147/dddt.s90081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background The transcription factor nuclear factor-κB (NF-κB) is constitutively activated in a variety of human cancers, including gastric cancer. NF-κB inhibitors that selectively kill cancer cells are urgently needed for cancer treatment. Curcumin is a potent inhibitor of NF-κB activation. Unfortunately, the therapeutic potential of curcumin is limited by its relatively low potency and poor cellular bioavailability. In this study, we presented a novel NF-κB inhibitor named Da0324, a synthetic asymmetric mono-carbonyl analog of curcumin. The purpose of this study is to research the expression of NF-κB in gastric cancer and the antitumor activity and mechanism of Da0324 on human gastric cancer cells. Methods The expressions between gastric cancer tissues/cells and normal gastric tissues/cells of NF-κB were evaluated by Western blot. The inhibition viability of compounds on human gastric cancer cell lines SGC-7901, BGC-823, MGC-803, and normal gastric mucosa epithelial cell line GES-1 was assessed with the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay. Absorption spectrum method and high-performance liquid chromatography method detected the stability of the compound in vitro. The compound-induced changes of inducible NF-κB activation in the SGC-7901 and BGC-823 cells were examined by Western blot analysis and immunofluorescence methods. The antitumor activity of compound was performed by clonogenic assay, matrigel invasion assay, flow cytometric analysis, Western blot analysis, and Hoechst 33258 staining assay. Results High levels of p65 were found in gastric cancer tissues and cells. Da0324 displayed higher growth inhibition against several types of gastric cancer cell lines and showed relatively low toxicity to GES-1. Moreover, Da0324 was more stable than curcumin in vitro. Western blot analysis and immunofluorescence methods showed that Da0324 blocked NF-κB activation. In addition, Da0324 significantly inhibited tumor proliferation and invasion, arrested the cell cycle, and induced apoptosis in vitro. Conclusion The asymmetric mono-carbonyl analog of curcumin Da0324 exhibited significantly improved antigastric cancer activity. Da0324 may be a promising NF-κB inhibitor for the selective targeting of cancer cells. However, further studies are needed in animals to validate these findings for the therapeutic use of Da0324.
Collapse
Affiliation(s)
- Rong Jin
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China; Department of Epidemiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yiqun Xia
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Qiuxiang Chen
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wulan Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China; College of Information Science and Computer Engineering, Wenzhou Medical College, Wenzhou, People's Republic of China
| | - Dahui Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Hui Ye
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China; School of Basic Medical Sciences, Wenzhou Medical College, Wenzhou, People's Republic of China
| | - Chengguang Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiaojing Du
- Department of Digestive Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dengjian Shi
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jianzhang Wu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, People's Republic of China
| |
Collapse
|
30
|
RETRACTED ARTICLE: Tumor suppressor microRNA-31 inhibits gastric carcinogenesis by targeting Smad4 and SGPP2. Cancer Gene Ther 2015; 22:564-72. [DOI: 10.1038/cgt.2015.41] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/28/2015] [Accepted: 07/02/2015] [Indexed: 12/15/2022]
|
31
|
HNRNPC as a candidate biomarker for chemoresistance in gastric cancer. Tumour Biol 2015; 37:3527-34. [PMID: 26453116 DOI: 10.1007/s13277-015-4144-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/23/2015] [Indexed: 02/06/2023] Open
Abstract
Chemoresistance is a major cause of treatment failure and high mortality in advanced gastric cancer (AGC). Currently, the mechanism of chemoresistance remains unclear, and there is no biomarker to accurately predict the efficacy of chemotherapy. In the present study, we established human gastric cancer (GC) cell lines resistant to 5-fluorouracil (5FU), paclitaxel (TA), or cisplatin (DDP) by gradient drug treatment and generated a novel monoclonal antibody 5B2 targeting heterogeneous nuclear ribonucleoproteins C1/C2 (HNRNPC) overexpressed in chemoresistant GC cells. Overexpressing HNRNPC in GC cells promoted chemoresistance, and knockdown of HNRNPC by small interfering RNA (siRNA) reversed chemoresistance. By utilizing available datasets, we demonstrated that high level of HNRNPC transcript indicated poor overall survival (OS) and free of progression (FP). HNRNPC expression was negatively correlated with OS of GC patients treated with 5FU-based drugs and with time to progression (TTP) of GC patients treated with CF regimen. These data suggest the potential usefulness of HNRNPC as a prognostic and therapeutic marker of GC.
Collapse
|
32
|
The combinational therapy of trastuzumab and cetuximab inhibits tumor growth in a patient-derived tumor xenograft model of gastric cancer. Clin Transl Oncol 2015; 18:507-14. [PMID: 26370419 DOI: 10.1007/s12094-015-1397-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE Gastric cancer (GC) is one of the leading causes of cancer mortality worldwide. Although therapeutic strategies for GC have improved, the prognosis for advanced GC remains poor. Herein, the present study sought to design a personalized cancer therapy specific to a stage III GC patient. METHODS The tumor was surgically removed and was used to establish a patient-derived tumor xenograft (PDTX) model utilizing nude mice. Various molecular-targeted anticancer treatments were tested in the study, including control (no treatment), bevacizumab, cetuximab, bevacizumab + cetuximab, trastuzumab, and trastuzumab + cetuximab. RESULTS Trastuzumab + cetuximab treatment exhibited the best antitumor growth effect, followed by trastuzumab, bevacizumab + cetuximab, cetuximab, and bevacizumab. Similarly, trastuzumab + cetuximab was also the most effective treatment at inducing apoptosis and cell cycle arrest in primary cultures of the patient's gastric cancer cells. Among all treatments tested in the study, trastuzumab + cetuximab showed the most profound effect in reducing the protein expression of proliferation and metastatic markers (VEGF, MMP-7, EGFT, Ki-67 and, PCNA) in tumors obtained from PDTX models, which may be the mechanism underlying the profound antitumor growth effect exerted by trastuzumab + cetuximab. CONCLUSIONS The data indicate that trastuzumab + cetuximab combinational therapy should be the most effective antitumor growth therapy for the GC patient whom we took the cancer cells from.
Collapse
|
33
|
Zhou W, Wang J, Man WY, Zhang QW, Xu WG. siRNA silencing EZH2 reverses cisplatin-resistance of human non-small cell lung and gastric cancer cells. Asian Pac J Cancer Prev 2015; 16:2425-30. [PMID: 25824776 DOI: 10.7314/apjcp.2015.16.6.2425] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Clinical resistance to chemotherapeutic agents is one of the major hindrances in the treatment of human cancers. EHZ2 is involved in drug resistance and is overexpressed in drug-resistant cancer cell lines. In this study, we investigated the effects of EHZ2 on cisplatin -resistance in A549/DDP and AGS/DDP cells. EHZ2 mRNA and protein were found to be significantly overexpressed in A549/DDP and AGS/DDP cells, compared to parental cells. EHZ2 siRNA successfully silenced EHZ2 mRNA and protein expression. Proliferation was inhibited and drug resistance to cisplatin was improved. Flow cytometry showed that silencing of EHZ2 arrested A549/DDP and AGS/DDP cells in the G0/G1 phase, increasing apoptosis, rh-123 fluorescence intensity and caspase-3/8 activities. Silencing of EHZ2 also significantly reduced the mRNA and protein expression levels of cyclin D1 and MDR1,while up-regulating p15, p21, p27 and miR-218 in A549/DPP cells. Furthermore, silencing of EHZ2 also significantly increased the expression level of tumor suppressor factor miR-218. We also found down-regulating EHZ2 expression increased methylation in A549/DDP and AGS/DDP cells. This study demonstrates that drug resistance can be effectively reversed in human cisplatin-resistant lung and gastric cancer cells through delivery of siRNAs targeting EHZ2.
Collapse
Affiliation(s)
- Wen Zhou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China E-mail :
| | | | | | | | | |
Collapse
|
34
|
Dokmanovic M, Wu WJ. Monitoring Trastuzumab Resistance and Cardiotoxicity: A Tale of Personalized Medicine. Adv Clin Chem 2015; 70:95-130. [PMID: 26231486 DOI: 10.1016/bs.acc.2015.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
While approval of trastuzumab, a recombinant monoclonal antibody directed against HER2, along with a diagnostic kit to detect breast cancers which are positive for HER2 overexpression, has advanced a new era of stratified and personalized medicine, it also created several challenges to our scientific and clinical practice. These problems include trastuzumab resistance and trastuzumab-induced cardiotoxicity. In this review, we will summarize data from the literature regarding mechanisms of trastuzumab resistance and trastuzumab-induced cardiotoxicity and present some promising model systems that may advance our understanding of these mechanisms. Our discussion will include development of circulating tumor cells and circulating tumor DNA for monitoring tumor burden, of patient-derived xenograft models for preclinical testing of novel therapies, and of novel therapeutic strategies for trastuzumab-resistance and possible integration of these strategies in the design of co-clinical studies for testing in relevant patient subpopulations.
Collapse
|
35
|
Iida M, Brand TM, Starr MM, Huppert EJ, Luthar N, Bahrar H, Coan JP, Pearson HE, Salgia R, Wheeler DL. Overcoming acquired resistance to cetuximab by dual targeting HER family receptors with antibody-based therapy. Mol Cancer 2014; 13:242. [PMID: 25344208 PMCID: PMC4283113 DOI: 10.1186/1476-4598-13-242] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022] Open
Abstract
Background Cetuximab, an anti-EGFR monoclonal antibody, is used to treat several cancers. However, many patients who initially respond to cetuximab acquire resistance. To examine mechanisms of acquired resistance, we developed a series of cetuximab-resistant (CtxR) clones derived from the cetuximab sensitive (CtxS) non-small cell lung cancer (NSCLC) cell line H226. Previous studies characterizing this model revealed that: 1) EGFR was robustly overexpressed in CtxR clones due to decreased EGFR ubiquitination and degradation and 2) CtxR clones expressed increased HER2 and HER3 activation resulting in constitutive activation of the PI3K/AKT signaling axis. These findings suggest that dual targeting HER family receptors would be highly beneficial in the CtxR setting. Results Since HER3 has been implicated in resistance to EGFR inhibitors, the efficacy of dually targeting both EGFR and HER3 in CtxR models was evaluated. First, EGFR and HER3 expression were knocked down with siRNAs. Compared to the CtxS parental cell line (HP), all CtxR clones exhibited robust decreases in cell proliferation upon dual knockdown. Analysis of CtxR clones indicated that neuregulin-1 was highly overexpressed compared to HP cells. Incubation of HP cells with neuregulin-1 rendered them resistant to cetuximab. Next, dual treatment of CtxR clones with cetuximab and the HER3 neutralizing monoclonal antibody (mAb) U3-1287 led to potent anti-proliferative effects. Blockade of EGFR with cetuximab resulted in inactivation of MAPK, while blockade of HER3 with U3-1287 resulted in the inactivation of AKT. Treatment with both mAbs resulted in knockdown of both signaling pathways simultaneously. HER2 was also strongly inactivated upon dual mAb therapy, suggesting that this treatment regimen can diminish signaling from three HER family receptors. De novo CtxR H226 mouse xenografts were established to determine if dual therapy could overcome acquired resistance to cetuximab in vivo. Tumors that had acquired resistance to cetuximab were significantly growth delayed upon dual treatment of U3-1287 and cetuximab compared to those continued on cetuximab only. Combinatorial-treated xenograft tumors expressed decreased Ki67 and increased cleaved caspase-3 levels compared to tumors treated with either monotherapy. Conclusions These studies demonstrate that dually targeting HER family receptors with antibody-based therapies can overcome acquired resistance to cetuximab.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Deric L Wheeler
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institute for Medical Research, 1111 Highland Ave,, Madison, WI 53705, USA.
| |
Collapse
|