1
|
Gilmour BC, Corthay A, Øynebråten I. High production of IL-12 by human dendritic cells stimulated with combinations of pattern-recognition receptor agonists. NPJ Vaccines 2024; 9:83. [PMID: 38702320 PMCID: PMC11068792 DOI: 10.1038/s41541-024-00869-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/29/2024] [Indexed: 05/06/2024] Open
Abstract
The cytokine IL-12p70 is crucial for T helper 1 (Th1) polarization and the generation of type 1 immunity required to fight cancer and pathogens. Therefore, strategies to optimize the production of IL-12p70 by human dendritic cells (DCs) may significantly improve the efficacy of vaccines and immunotherapies. However, the rules governing the production of IL-12p70 remain obscure. Here, we stimulated pattern recognition receptors (PRRs) representing five families of PRRs, to evaluate their ability to elicit high production of IL-12p70 by monocyte-derived DCs. We used ten well-characterized agonists and stimulated DCs in vitro with either single agonists or 27 different combinations. We found that poly(I:C), which engages the RNA-sensing PRRs TLR3 and MDA5, and LPS which stimulates TLR4, were the only agonists that could elicit notable IL-12p70 production when used as single ligands. We identified six different combinations of PRR agonists, all containing either the TLR3/MDA5 agonist poly(I:C) or the TLR7/8 agonist R848, that could synergize to elicit high production of IL-12p70 by human DCs. Five of the six combinations also triggered high production of the antiviral and antitumor cytokine IFNβ. Overall, the tested PRR ligands could be divided into three groups depending on whether they triggered production of both IL-12p70 and IFNβ, only one of the two, or neither. Thus, combinations of PRR agonists were found to increase the production of IL-12p70 by human DCs in a synergistic manner, and we identified six PRR agonist combinations that may represent strong adjuvant candidates, in particular for therapeutic cancer vaccines.
Collapse
Affiliation(s)
- Brian C Gilmour
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Rikshospitalet, Oslo University Hospital, Oslo, Norway.
- Hybrid Technology Hub - Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
2
|
Fløisand Y, Remberger M, Bigalke I, Josefsen D, Vålerhaugen H, Inderberg EM, Olaussen RW, Gjertsen BT, Goedkoop R, Geiger C, Prinz PU, Schnorfeil FM, Pinkernell K, Schendel DJ, Kvalheim G. WT1 and PRAME RNA-loaded dendritic cell vaccine as maintenance therapy in de novo AML after intensive induction chemotherapy. Leukemia 2023; 37:1842-1849. [PMID: 37507426 DOI: 10.1038/s41375-023-01980-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/07/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Intensive induction chemotherapy achieves complete remissions (CR) in >60% of patients with acute myeloid leukemia (AML) but overall survival (OS) is poor for relapsing patients not eligible for allogeneic hematopoietic stem cell transplantation (allo-HSCT). Oral azacytidine may be used as maintenance treatment in AML in first remission, but can be associated with substantial side effects, and less toxic strategies should be explored. Twenty AML patients in first CR (CR1) ineligible for allo-HSCT were treated with FDC101, an autologous RNA-loaded mature dendritic cell (mDC) vaccine expressing two leukemia-associated antigens (LAAs). Each dose consisted of 2.5-5 × 106 mDCs per antigen, given weekly until week 4, at week 6, and then monthly, during the 2-year study period. Patients were followed for safety and long-term survival. Treatment was well tolerated, with mild and transient injection site reactions. Eleven of 20 patients (55%) remained in CR, while 4 of 6 relapsing patients achieved CR2 after salvage therapy and underwent allo-HSCT. OS at five years was 75% (95% CI: 50-89), with 70% of patients ≥60 years of age being long-term survivors. Maintenance therapy with this DC vaccine was well tolerated in AML patients in CR1 and was accompanied by encouraging 5-year long-term survival.
Collapse
Affiliation(s)
- Yngvar Fløisand
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Mats Remberger
- Department of Hematology, Oslo University Hospital, Oslo, Norway
- Clinical Research and Development Unit, Uppsala University Hospital, Uppsala, Sweden
| | - Iris Bigalke
- Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | - Dag Josefsen
- Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| | | | | | | | - Bjørn Tore Gjertsen
- Department of Clinical Science, University of Bergen; Department of Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| | - Rene Goedkoop
- Medigene Immunotherapies GmbH and Medigene AG, Martinsried, Germany
| | | | - Petra U Prinz
- Medigene Immunotherapies GmbH and Medigene AG, Martinsried, Germany
| | - Frauke M Schnorfeil
- Medigene Immunotherapies GmbH and Medigene AG, Martinsried, Germany
- Bavarian Nordic GmbH, Martinsried, Germany
| | - Kai Pinkernell
- Medigene Immunotherapies GmbH and Medigene AG, Martinsried, Germany
- Dr. Falk Pharma, Freiburg, Germany
| | | | - Gunnar Kvalheim
- Department of Cellular Therapy, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Alimardani V, Rahiminezhad Z, DehghanKhold M, Farahavar G, Jafari M, Abedi M, Moradi L, Niroumand U, Ashfaq M, Abolmaali SS, Yousefi G. Nanotechnology-based cell-mediated delivery systems for cancer therapy and diagnosis. Drug Deliv Transl Res 2023; 13:189-221. [PMID: 36074253 DOI: 10.1007/s13346-022-01211-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
The global prevalence of cancer is increasing, necessitating new additions to traditional treatments and diagnoses to address shortcomings such as ineffectiveness, complications, and high cost. In this context, nano and microparticulate carriers stand out due to their unique properties such as controlled release, higher bioavailability, and lower toxicity. Despite their popularity, they face several challenges including rapid liver uptake, low chemical stability in blood circulation, immunogenicity concerns, and acute adverse effects. Cell-mediated delivery systems are important topics to research because of their biocompatibility, biodegradability, prolonged delivery, high loading capacity, and targeted drug delivery capabilities. To date, a variety of cells including blood, immune, cancer, and stem cells, sperm, and bacteria have been combined with nanoparticles to develop efficient targeted cancer delivery or diagnosis systems. The review paper aimed to provide an overview of the potential applications of cell-based delivery systems in cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahiminezhad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahvash DehghanKhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghazal Farahavar
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Jafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Moradi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Uranous Niroumand
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ashfaq
- University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, 140413, Punjab, India. .,Department of Biotechnology, Chandigarh University, Gharaun, Mohali, 140413, Punjab, India.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Therapeutic targets and biomarkers of tumor immunotherapy: response versus non-response. Signal Transduct Target Ther 2022; 7:331. [PMID: 36123348 PMCID: PMC9485144 DOI: 10.1038/s41392-022-01136-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/25/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Cancers are highly complex diseases that are characterized by not only the overgrowth of malignant cells but also an altered immune response. The inhibition and reprogramming of the immune system play critical roles in tumor initiation and progression. Immunotherapy aims to reactivate antitumor immune cells and overcome the immune escape mechanisms of tumors. Represented by immune checkpoint blockade and adoptive cell transfer, tumor immunotherapy has seen tremendous success in the clinic, with the capability to induce long-term regression of some tumors that are refractory to all other treatments. Among them, immune checkpoint blocking therapy, represented by PD-1/PD-L1 inhibitors (nivolumab) and CTLA-4 inhibitors (ipilimumab), has shown encouraging therapeutic effects in the treatment of various malignant tumors, such as non-small cell lung cancer (NSCLC) and melanoma. In addition, with the advent of CAR-T, CAR-M and other novel immunotherapy methods, immunotherapy has entered a new era. At present, evidence indicates that the combination of multiple immunotherapy methods may be one way to improve the therapeutic effect. However, the overall clinical response rate of tumor immunotherapy still needs improvement, which warrants the development of novel therapeutic designs as well as the discovery of biomarkers that can guide the prescription of these agents. Learning from the past success and failure of both clinical and basic research is critical for the rational design of studies in the future. In this article, we describe the efforts to manipulate the immune system against cancer and discuss different targets and cell types that can be exploited to promote the antitumor immune response.
Collapse
|
5
|
Leukemia derived dendritic cell (DC leu) mediated immune response goes along with reduced (leukemia-specific) regulatory T-cells. Immunobiology 2022; 227:152237. [PMID: 35749805 DOI: 10.1016/j.imbio.2022.152237] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022]
Abstract
The blastmodulatory Kit-M, composed of granulocyte-macrophage colony-stimulating-factor (GM-CSF) and Prostaglandin E1 (PGE1), is known to convert myeloid leukaemic blasts (from AML patients) into leukaemia derived dendritic cells (DCleu), which activate immunoreactive cells to gain antileukemic/leukaemia-specific activity. In this study we had a special focus on the influence of Kit-M treated, DC/DCleu containing patients'whole blood (WB, n = 16) on the provision of immunosuppressive regulatory T-cells. We could confirm that Kit-M significantly increased frequencies of (mature) dendritic cells (DC) and DCleu from leukemic whole blood (WB) without induction of blast proliferation. After mixed lymphocyte culture (MLC) with patients' T-cells we confirmed that DCleu mediated leukemia-specific responses- going along with activated and leukemia-specific T- and NK-cells in an intracellular cytokine staining assay (ICS) and a degranulation assay (Deg)- resulted in an increased anti-leukemic cytotoxicity (Cytotoxicity Fluorolysis Assay = CTX). We could demonstrate that (leukemia-specific) CD4+ and CD8+ regulatory T-cell population (Treg) decreased significantly after MLC compared to controls. We found significant positive correlations of leukemia-specific CD3+CD4+ cells with frequencies of (mature) DCleu. Achieved anti-leukemic cytotoxicity correlated significantly positive with leukemia-specific CD3+CD8+ cells and significantly negatively with (leukemia-specific) Treg. In summary we demonstrate that immunesuppressive (leukemia-specific) regulatory T-cells are significantly downregulated after Kit-M triggered MLC- going along with a (reinstalled) antileukemic reactivity of the immune system (as demonstrated with functional assays ICS, Deg, CTX).
Collapse
|
6
|
Tryggestad AMA, Axcrona K, Axcrona U, Bigalke I, Brennhovd B, Inderberg EM, Hønnåshagen TK, Skoge LJ, Solum G, Saebøe-Larssen S, Josefsen D, Olaussen RW, Aamdal S, Skotheim RI, Myklebust TÅ, Schendel DJ, Lilleby W, Dueland S, Kvalheim G. Long-term first-in-man Phase I/II study of an adjuvant dendritic cell vaccine in patients with high-risk prostate cancer after radical prostatectomy. Prostate 2022; 82:245-253. [PMID: 34762317 DOI: 10.1002/pros.24267] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/02/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Patients with high-risk prostate cancer (PC) can experience biochemical relapse (BCR), despite surgery, and develop noncurative disease. The present study aimed to reduce the risk of BCR with a personalized dendritic cell (DC) vaccine, given as adjuvant therapy, after robot-assisted laparoscopic prostatectomy (RALP). METHODS Twelve weeks after RALP, 20 patients with high-risk PC and undetectable PSA received DC vaccinations for 3 years or until BCR. The primary endpoint was the time to BCR. The immune response was assessed 7 weeks after surgery (baseline) and at one-time point during the vaccination period. RESULTS Among 20 patients, 11 were BCR-free over a median of 96 months (range: 84-99). The median time from the end of vaccinations to the last follow-up was 57 months (range: 45-60). Nine patients developed BCR, either during (n = 4) or after (n = 5) the vaccination period. Among five patients diagnosed with intraductal carcinoma, three experienced early BCR during the vaccination period. All patients that developed BCR remained in stable disease within a median of 99 months (range: 74-99). The baseline immune response was significantly associated with the immune response during the vaccination period (p = 0.015). For patients diagnosed with extraprostatic extension (EPE), time to BCR was longer in vaccine responders than in non-responders (p = 0.09). Among 12 patients with the International Society of Urological Pathology (ISUP) grade 5 PC, five achieved remission after 84 months, and all mounted immune responses. CONCLUSION Patients diagnosed with EPE and ISUP grade 5 PC were at particularly high risk of developing postsurgical BCR. In this subgroup, the vaccine response was related to a reduced BCR incidence. The vaccine was safe, without side effects. This adjuvant first-in-man Phase I/II DC vaccine study showed promising results. DC vaccines after curative surgery should be investigated further in a larger cohort of patients with high-risk PC.
Collapse
Affiliation(s)
| | - Karol Axcrona
- Department of Urology, Oslo University Hospital HF, Oslo, Norway
- Department of Urology, Akershus University Hospital HF, Oslo, Norway
| | - Ulrika Axcrona
- Department of Pathology, Oslo University Hospital HF, Oslo, Norway
| | - Iris Bigalke
- Department of Oncology, Oslo University Hospital HF, Oslo, Norway
- BioNTech IMFS GmbH, Idar-Oberstein, Germany
| | - Bjørn Brennhovd
- Department of Urology, Oslo University Hospital HF, Oslo, Norway
| | - Else M Inderberg
- Department of Oncology, Oslo University Hospital HF, Oslo, Norway
| | | | - Lisbeth J Skoge
- Department of Oncology, Oslo University Hospital HF, Oslo, Norway
| | - Guri Solum
- Department of Oncology, Oslo University Hospital HF, Oslo, Norway
| | | | - Dag Josefsen
- Department of Oncology, Oslo University Hospital HF, Oslo, Norway
| | | | - Steinar Aamdal
- Department for Clinical Research, Oslo University Hospital HF, Oslo, Norway
| | - Rolf I Skotheim
- Department of Molecular Oncology, Oslo University Hospital HF, Oslo, Norway
| | - Tor Å Myklebust
- Department of Registration, Cancer Registry Norway, Oslo, Norway
- Department of Research and Innovation, Møre and Romsdal Hospital Trust, Ålesund, Norway
| | | | - Wolfgang Lilleby
- Department of Oncology, Oslo University Hospital HF, Oslo, Norway
| | - Svein Dueland
- Department for Clinical Research, Oslo University Hospital HF, Oslo, Norway
| | - Gunnar Kvalheim
- Department of Oncology, Oslo University Hospital HF, Oslo, Norway
| |
Collapse
|
7
|
Yu J, Sun H, Cao W, Song Y, Jiang Z. Research progress on dendritic cell vaccines in cancer immunotherapy. Exp Hematol Oncol 2022; 11:3. [PMID: 35074008 PMCID: PMC8784280 DOI: 10.1186/s40164-022-00257-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) vaccines induce specific immune responses that can selectively eliminate target cells. In recent years, many studies have been conducted to explore DC vaccination in the treatment of hematological malignancies, including acute myeloid leukemia and myelodysplastic syndromes, as well as other nonleukemia malignancies. There are at least two different strategies that use DCs to promote antitumor immunity: in situ vaccination and canonical vaccination. Monocyte-derived DCs (mo-DCs) and leukemia-derived DCs (DCleu) are the main types of DCs used in vaccines for AML and MDS thus far. Different cancer-related molecules such as peptides, recombinant proteins, apoptotic leukemic cells, whole tumor cells or lysates and DCs/DCleu containing a vaster antigenic repertoire with RNA electroporation, have been used as antigen sources to load DCs. To enhance DC vaccine efficacy, new strategies, such as combination with conventional chemotherapy, monospecific/bispecific antibodies and immune checkpoint-targeting therapies, have been explored. After a decade of trials and tribulations, much progress has been made and much promise has emerged in the field. In this review we summarize the recent advances in DC vaccine immunotherapy for AML/MDS as well as other nonleukemia malignancies.
Collapse
Affiliation(s)
- Jifeng Yu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Henan International Joint Laboratory of Nuclear Protein Gene Regulation, Henan University College of Medicine, Kaifeng, 475004, Henan, China
| | - Hao Sun
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weijie Cao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongping Song
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China.
| | - Zhongxing Jiang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
8
|
Liu Q, Hua M, Zhang C, Wang R, Liu J, Yang X, Han F, Hou M, Ma D. NLRP3-activated bone marrow dendritic cells play antileukemic roles via IL-1β/Th1/IFN-γ in acute myeloid leukemia. Cancer Lett 2021; 520:109-120. [PMID: 34237408 DOI: 10.1016/j.canlet.2021.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023]
Abstract
The bone marrow microenvironment of acute myeloid leukemia (AML) characterized by immunosuppressive features fosters leukemia immune escape. Elucidating the immunosuppressive mechanism and developing effective immunotherapeutic strategies are necessary. Here, we found that the Th1% and IFN-γ level were downregulated in bone marrow of AML and NLRP3-activated BMDCs promoted CD4+ T cell differentiation into Th1 cells via IL-1β secretion. However, IFN-γ-producing Th1 cells were not induced by NLRP3-activated BMDCs in the presence of the NLRP3 inflammasome inhibitor MCC950 or anti-IL-1β antibody in vitro unless exogenous IL-1β was replenished. This inhibitory effect on Th1 differentiation was also observed in Nlrp3-/- mice or anti-IL-1β antibody-treated mice. Notably, elevated Th1 cell levels promoted apoptosis and inhibited proliferation in leukemia cells via IFN-γ secretion in vitro and in vivo. Thus, NLRP3-activated BMDCs promote the proliferation of IFN-γ-producing Th1 cells with antileukemic effects and may provide insight into the basis for leukemia immunotherapy in patients with AML.
Collapse
Affiliation(s)
- Qinqin Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China; Department of Hematology, Taian Central Hospital, Taian, Shandong, 271000, China
| | - Mingqiang Hua
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Chen Zhang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China; Department of Hematology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, China
| | - Ruiqing Wang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Jinting Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Xinyu Yang
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Fengjiao Han
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, 250012, China.
| |
Collapse
|
9
|
Chevallier P, Saiagh S, Dehame V, Guillaume T, Peterlin P, Bercegeay S, Le Bris Y, Bossard C, Gauvrit I, Dreno B, Juge-Morineau N, Béné MC, Gregoire M. A phase I/II feasibility vaccine study by autologous leukemic apoptotic corpse-pulsed dendritic cells for elderly AML patients. Hum Vaccin Immunother 2021; 17:3511-3514. [PMID: 34152898 DOI: 10.1080/21645515.2021.1943991] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This was a phase I/II study testing the feasibility of a vaccine by autologous leukemic apoptotic corpse-pulsed dendritic cells (DC) in elderly acute myeloid leukemia (AML) patients in first or second complete remission. Pulsed DC were administered at doses of 9 × 106 subcutaneously (1 mL) and 1 × 106 intra-dermally (0.1 mL). Five doses of vaccine were planned on days +1 + 7 + 14 + 21 and +35. Five DC-vaccines were produced and injected for all five patients included in the study. No severe adverse event was documented. Larger Phase 2 studies are now required to precise the role of DC-vaccines with leukemic apoptotic bodies in older as well as younger AML populations. (Clinicaltrials.gov NCT01146262).
Collapse
Affiliation(s)
- Patrice Chevallier
- Hematology Department, Nantes University Hospital, Nantes, France.,CRCINA, INSERM, CNRS, Nantes University, Nantes, France
| | - Soraya Saiagh
- UTCG, Nantes University Hospital & CIC 1413, CRCINA, Nantes University, Nantes, France
| | | | - Thierry Guillaume
- Hematology Department, Nantes University Hospital, Nantes, France.,CRCINA, INSERM, CNRS, Nantes University, Nantes, France
| | - Pierre Peterlin
- Hematology Department, Nantes University Hospital, Nantes, France
| | - Sylvain Bercegeay
- UTCG, Nantes University Hospital & CIC 1413, CRCINA, Nantes University, Nantes, France
| | - Yannick Le Bris
- Hematology Biology Department, Nantes University Hospital, Nantes, France
| | - Céline Bossard
- CHU Nantes, Service d'anatomie et Cytologie Pathologiques, INSERM, CRCINA, Université de Nantes, Nantes, France
| | - Isabelle Gauvrit
- Etablissement Français du sang des Pays de Loire, EFS, Nantes, France
| | - Brigitte Dreno
- UTCG, Nantes University Hospital & CIC 1413, CRCINA, Nantes University, Nantes, France
| | | | - Marie C Béné
- CRCINA, INSERM, CNRS, Nantes University, Nantes, France.,Hematology Biology Department, Nantes University Hospital, Nantes, France
| | - Marc Gregoire
- CRCINA, INSERM, CNRS, Nantes University, Nantes, France
| |
Collapse
|
10
|
Lichtenegger FS, Schnorfeil FM, Rothe M, Deiser K, Altmann T, Bücklein VL, Köhnke T, Augsberger C, Konstandin NP, Spiekermann K, Moosmann A, Boehm S, Boxberg M, Heemskerk MH, Goerlich D, Wittmann G, Wagner B, Hiddemann W, Schendel DJ, Kvalheim G, Bigalke I, Subklewe M. Toll-like receptor 7/8-matured RNA-transduced dendritic cells as post-remission therapy in acute myeloid leukaemia: results of a phase I trial. Clin Transl Immunology 2020; 9:e1117. [PMID: 32153780 PMCID: PMC7053229 DOI: 10.1002/cti2.1117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Objectives Innovative post‐remission therapies are needed to eliminate residual AML cells. DC vaccination is a promising strategy to induce anti‐leukaemic immune responses. Methods We conducted a first‐in‐human phase I study using TLR7/8‐matured DCs transfected with RNA encoding the two AML‐associated antigens WT1 and PRAME as well as CMVpp65. AML patients in CR at high risk of relapse were vaccinated 10× over 26 weeks. Results Despite heavy pretreatment, DCs of sufficient number and quality were generated from a single leukapheresis in 11/12 cases, and 10 patients were vaccinated. Administration was safe and resulted in local inflammatory responses with dense T‐cell infiltration. In peripheral blood, increased antigen‐specific CD8+ T cells were seen for WT1 (2/10), PRAME (4/10) and CMVpp65 (9/10). For CMVpp65, increased CD4+ T cells were detected in 4/7 patients, and an antibody response was induced in 3/7 initially seronegative patients. Median OS was not reached after 1057 days; median RFS was 1084 days. A positive correlation was observed between clinical benefit and younger age as well as mounting of antigen‐specific immune responses. Conclusions Administration of TLR7/8‐matured DCs to AML patients in CR at high risk of relapse was feasible and safe and resulted in induction of antigen‐specific immune responses. Clinical benefit appeared to occur more likely in patients <65 and in patients mounting an immune response. Our observations need to be validated in a larger patient cohort. We hypothesise that TLR7/8 DC vaccination strategies should be combined with hypomethylating agents or checkpoint inhibition to augment immune responses. Trial registration The study was registered at https://clinicaltrials.gov on 17 October 2012 (NCT01734304) and at https://www.clinicaltrialsregister.eu (EudraCT‐Number 2010‐022446‐24) on 10 October 2013.
Collapse
Affiliation(s)
- Felix S Lichtenegger
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany.,Present address: Roche Innovation Center Munich Penzberg Germany
| | - Frauke M Schnorfeil
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg Germany.,Present address: Medigene AG Planegg Germany
| | - Maurine Rothe
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany
| | - Katrin Deiser
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany
| | - Torben Altmann
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany
| | - Veit L Bücklein
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany
| | - Thomas Köhnke
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany
| | - Christian Augsberger
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany
| | | | | | - Andreas Moosmann
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR) Helmholtz Zentrum München Munich Germany
| | - Stephan Boehm
- Max von Pettenkofer Institute LMU Munich Munich Germany
| | - Melanie Boxberg
- Institute of Pathology Technical University of Munich Munich Germany
| | - Mirjam Hm Heemskerk
- Department of Hematology Leiden University Medical Center Leiden The Netherlands
| | - Dennis Goerlich
- Institute of Biostatistics and Clinical Research University of Muenster Muenster Germany
| | - Georg Wittmann
- Department of Transfusion Medicine, Cellular Therapeutics and Hemostaseology University Hospital LMU Munich Munich Germany
| | - Beate Wagner
- Department of Transfusion Medicine, Cellular Therapeutics and Hemostaseology University Hospital LMU Munich Munich Germany
| | - Wolfgang Hiddemann
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg Germany
| | | | - Gunnar Kvalheim
- Department of Cellular Therapy The Norwegian Radium Hospital Oslo University Hospital Oslo Norway
| | - Iris Bigalke
- Department of Cellular Therapy The Norwegian Radium Hospital Oslo University Hospital Oslo Norway.,Present address: BioNTech IMFS Idar-Oberstein Germany
| | - Marion Subklewe
- Department of Medicine III University Hospital, LMU Munich Munich Germany.,Laboratory for Translational Cancer Immunology Gene Center LMU Munich Munich Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg Germany
| |
Collapse
|
11
|
Monocytes reprogrammed with lentiviral vectors co-expressing GM-CSF, IFN-α2 and antigens for personalized immune therapy of acute leukemia pre- or post-stem cell transplantation. Cancer Immunol Immunother 2019; 68:1891-1899. [PMID: 31628525 PMCID: PMC6851032 DOI: 10.1007/s00262-019-02406-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/29/2019] [Indexed: 01/09/2023]
Abstract
Acute myeloid leukemia (AML) is the most common acute leukemia in adults and overall survival remains poor. Chemotherapy is the standard of care for intensive induction therapy. Patients who achieve a complete remission require post-remission therapies to prevent relapse. There is no standard of care for patients with minimal residual disease (MRD), and stem cell transplantation is a salvage therapy. Considering the AML genetic heterogeneity and the leukemia immune-suppressive properties, novel cellular immune therapies to effectively harness immunological responses to prevent relapse are needed. We developed a novel modality of immune therapy consisting of monocytes reprogrammed with lentiviral vectors expressing GM-CSF, IFN-α and antigens. Preclinical studies in humanized mice showed that the reprogrammed monocytes self-differentiated into highly viable induced dendritic cells (iDCs) in vivo which migrated effectively to lymph nodes, producing remarkable effects in the de novo regeneration of T and B cell responses. For the first-in-man clinical trial, the patient’s monocytes will be transduced with an integrase-defective tricistronic lentiviral vector expressing GM-CSF, IFN-α and a truncated WT1 antigen. For transplanted patients, pre-clinical development of iDCs co-expressing cytomegalovirus antigens is ongoing. To simplify the product chain for a de-centralized supply model, we are currently exploring a closed automated system for a short two-day manufacturing of iDCs. A phase I clinical trial study is in preparation for immune therapy of AML patients with MRD. The proposed cell therapy can fill an important gap in the current and foreseeable future immunotherapies of AML.
Collapse
|
12
|
Amberger DC, Doraneh-Gard F, Gunsilius C, Weinmann M, Möbius S, Kugler C, Rogers N, Böck C, Ködel U, Werner JO, Krämer D, Eiz-Vesper B, Rank A, Schmid C, Schmetzer HM. PGE 1-Containing Protocols Generate Mature (Leukemia-Derived) Dendritic Cells Directly from Leukemic Whole Blood. Int J Mol Sci 2019; 20:ijms20184590. [PMID: 31533251 PMCID: PMC6769744 DOI: 10.3390/ijms20184590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) and leukemia-derived DC (DCleu) are potent stimulators of various immunoreactive cells and they play a pivotal role in the (re-) activation of the immune system. As a potential treatment tool for patients with acute myeloid leukemia, we developed and analyzed two new PGE1-containing protocols (Pici-PGE1, Kit M) to generate DC/DCleu ex vivo from leukemic peripheral blood mononuclear cells (PBMCs) or directly from leukemic whole blood (WB) to simulate physiological conditions. Pici-PGE1 generated significantly higher amounts of DCs from leukemic and healthy PBMCs when compared to control and comparable amounts as the already established protocol Pici-PGE2. The proportions of sufficient DC-generation were even higher after DC/DCleu-generation with Pici-PGE1. With Kits, it was possible to generate DCs and DCleu directly from leukemic and healthy WB without induction of blast proliferation. The average amounts of generated DCs and DCleu-subgroups were comparable with all Kits. The PGE1 containing Kit M generated significantly higher amounts of mature DCs when compared to the PGE2-containing Kit K and increased the anti-leukemic-activity. In summary PGE1-containing protocols were suitable for generating DC/DCleu from PBMCs as well as from WB, which reliably (re-) activated immunoreactive cells, improved the overall ex vivo anti-leukemic activity, and influenced cytokine-release-profiles.
Collapse
Affiliation(s)
- Daniel Christoph Amberger
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Fatemeh Doraneh-Gard
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Carina Gunsilius
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Melanie Weinmann
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Sabine Möbius
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Christoph Kugler
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Nicole Rogers
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Corinna Böck
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| | - Uwe Ködel
- Department of Neurology, Klinikum Großhadern, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | - Jan-Ole Werner
- Department of Hematology and Oncology, University Hospital of Tuebingen, 72076 Tuebingen, Germany.
| | - Doris Krämer
- Department for Hematology and Oncology, University Hospital of Oldenburg, 26133 Oldenburg, Germany.
| | - Britta Eiz-Vesper
- Institute for Transfusion Medicine, Hannover Medical School, 30625 Hannover, Germany.
| | - Andreas Rank
- Department of Hematology and Oncology, University Hospital of Augsburg, 86156 Augsburg, Germany.
| | - Christoph Schmid
- Department of Hematology and Oncology, University Hospital of Augsburg, 86156 Augsburg, Germany.
| | - Helga Maria Schmetzer
- Medical Department 3, Working-group: Immune-Modulation, University Hospital Munich, 81377 Munich, Germany.
| |
Collapse
|
13
|
O'Brien LJ, Guillerey C, Radford KJ. Can Dendritic Cell Vaccination Prevent Leukemia Relapse? Cancers (Basel) 2019; 11:cancers11060875. [PMID: 31234526 PMCID: PMC6627518 DOI: 10.3390/cancers11060875] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023] Open
Abstract
Leukemias are clonal proliferative disorders arising from immature leukocytes in the bone marrow. While the advent of targeted therapies has improved survival in certain subtypes, relapse after initial therapy is a major problem. Dendritic cell (DC) vaccination has the potential to induce tumor-specific T cells providing long-lasting, anti-tumor immunity. This approach has demonstrated safety but limited clinical success until recently, as DC vaccination faces several barriers in both solid and hematological malignancies. Importantly, vaccine-mediated stimulation of protective immune responses is hindered by the aberrant production of immunosuppressive factors by cancer cells which impede both DC and T cell function. Leukemias present the additional challenge of severely disrupted hematopoiesis owing to both cytogenic defects in hematopoietic progenitors and an abnormal hematopoietic stem cell niche in the bone marrow; these factors accentuate systemic immunosuppression and DC malfunction. Despite these obstacles, several recent clinical trials have caused great excitement by extending survival in Acute Myeloid Leukemia (AML) patients through DC vaccination. Here, we review the phenotype and functional capacity of DCs in leukemia and approaches to harness DCs in leukemia patients. We describe the recent clinical successes in AML and detail the multiple new strategies that might enhance prognosis in AML and other leukemias.
Collapse
Affiliation(s)
- Liam J O'Brien
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Camille Guillerey
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Kristen J Radford
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
14
|
Buchroithner J, Erhart F, Pichler J, Widhalm G, Preusser M, Stockhammer G, Nowosielski M, Iglseder S, Freyschlag CF, Oberndorfer S, Bordihn K, von Campe G, Hoffermann M, Ruckser R, Rössler K, Spiegl-Kreinecker S, Fischer MB, Czech T, Visus C, Krumpl G, Felzmann T, Marosi C. Audencel Immunotherapy Based on Dendritic Cells Has No Effect on Overall and Progression-Free Survival in Newly Diagnosed Glioblastoma: A Phase II Randomized Trial. Cancers (Basel) 2018; 10:E372. [PMID: 30301187 PMCID: PMC6210090 DOI: 10.3390/cancers10100372] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/22/2018] [Accepted: 09/30/2018] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells that are capable of priming anti-tumor immune responses, thus serving as attractive tools to generate tumor vaccines. In this multicentric randomized open-label phase II study, we investigated the efficacy of vaccination with tumor lysate-charged autologous DCs (Audencel) in newly diagnosed glioblastoma multiforme (GBM). Patients aged 18 to 70 years with histologically proven primary GBM and resection of at least 70% were randomized 1:1 to standard of care (SOC) or SOC plus vaccination (weekly intranodal application in weeks seven to 10, followed by monthly intervals). The primary endpoint was progression-free survival at 12 months. Secondary endpoints were overall survival, safety, and toxicity. Seventy-six adult patients were analyzed in this study. Vaccinations were given for seven (3⁻20) months on average. No severe toxicity was attributable to vaccination. Seven patients showed flu-like symptoms, and six patients developed local skin reactions. Progression-free survival at 12 months did not differ significantly between the control and vaccine groups (28.4% versus 24.5%, p = 0.9975). Median overall survival was similar with 18.3 months (vaccine: 564 days, 95% CI: 436⁻671 versus control: 568 days, 95% CI: 349⁻680; p = 0.89, harzard ratio (HR) 0.99). Hence, in this trial, the clinical outcomes of patients with primary GBM could not be improved by the addition of Audencel to SOC.
Collapse
Affiliation(s)
- Johanna Buchroithner
- University Clinic for Neurosurgery, Kepler University Hospital, Johannes Kepler University, Wagner-Jauregg-Weg 15, 4020 Linz, Austria.
| | - Friedrich Erhart
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Josef Pichler
- Department of Internal Medicine and Neurooncology, Kepler University Hospital, Johannes Kepler University, Wagner-Jauregg-Weg 15, 4020 Linz, Austria.
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Matthias Preusser
- Clinical Division of Medical Oncology, Department for Internal Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Günther Stockhammer
- Department of Neurology, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52, 6020 Innsbruck, Austria.
| | - Martha Nowosielski
- Department of Neurology, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52, 6020 Innsbruck, Austria.
| | - Sarah Iglseder
- Department of Neurology, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52, 6020 Innsbruck, Austria.
| | - Christian F Freyschlag
- Department of Neurosurgery, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52, 6020 Innsbruck, Austria.
| | - Stefan Oberndorfer
- Department of Neurology, University Clinic St. Pölten, Karl Landsteiner Privat Universität, Dunant-Platz 1, 3100 St. Pölten, Austria.
| | - Karin Bordihn
- Department of Neurosurgery, Landeskrankenhaus Salzburg, University Clinic of the Paracelsus Private Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria.
| | - Gord von Campe
- Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria.
| | - Markus Hoffermann
- Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria.
| | - Reinhard Ruckser
- Department of Internal Medicine 2, Donauspital, Langobardenstraße 122, 1220 Vienna, Austria.
| | - Karl Rössler
- Department of Neurosurgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Sabine Spiegl-Kreinecker
- University Clinic for Neurosurgery, Kepler University Hospital, Johannes Kepler University, Wagner-Jauregg-Weg 15, 4020 Linz, Austria.
| | - Michael B Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Carmen Visus
- Activartis Biotech GmbH, Wilhelminenstraße 91/IIf, 1160 Vienna, Austria.
| | - Günther Krumpl
- Activartis Biotech GmbH, Wilhelminenstraße 91/IIf, 1160 Vienna, Austria.
| | - Thomas Felzmann
- Activartis Biotech GmbH, Wilhelminenstraße 91/IIf, 1160 Vienna, Austria.
| | - Christine Marosi
- Clinical Division of Medical Oncology, Department for Internal Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
15
|
Beyar-Katz O, Gill S. Novel Approaches to Acute Myeloid Leukemia Immunotherapy. Clin Cancer Res 2018; 24:5502-5515. [PMID: 29903894 DOI: 10.1158/1078-0432.ccr-17-3016] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/12/2018] [Accepted: 06/12/2018] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) is a rapidly progressive, poor-prognosis malignancy arising from hematopoietic stem/progenitor cells. The long history of successful use of allogeneic hematopoietic cell transplantation (alloHCT) in AML indicates that this disease is immunoresponsive, leading to optimism that novel immunotherapies such as bispecific antibodies, chimeric antigen receptor T cells, and immune checkpoint inhibitors will generate meaningful disease control. However, emerging data on the immunoevasive tactics employed by AML blasts at diagnosis and at relapse indicate that optimism must be tempered by an understanding of this essential paradox. Furthermore, AML has a low mutational burden, thus presenting few neoantigens for attack by autologous T cells, even after attempted reversal of inhibitory receptor/ligand interactions. In this review, we outline the known AML targets, explore immune evasion mechanisms, and describe recent data and current clinical trials of single and combination immunotherapies. Clin Cancer Res; 24(22); 5502-15. ©2018 AACR.
Collapse
Affiliation(s)
- Ofrat Beyar-Katz
- Hematology and Bone Marrow Transplantation. Rambam Health Care Campus, Haifa, Israel
| | - Saar Gill
- Division of Hematology-Oncology and Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
16
|
Cornel AM, van Til NP, Boelens JJ, Nierkens S. Strategies to Genetically Modulate Dendritic Cells to Potentiate Anti-Tumor Responses in Hematologic Malignancies. Front Immunol 2018; 9:982. [PMID: 29867960 PMCID: PMC5968097 DOI: 10.3389/fimmu.2018.00982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022] Open
Abstract
Dendritic cell (DC) vaccination has been investigated as a potential strategy to target hematologic malignancies, while generating sustained immunological responses to control potential future relapse. Nonetheless, few clinical trials have shown robust long-term efficacy. It has been suggested that a combination of surmountable shortcomings, such as selection of utilized DC subsets, DC loading and maturation strategies, as well as tumor-induced immunosuppression may be targeted to maximize anti-tumor responses of DC vaccines. Generation of DC from CD34+ hematopoietic stem and progenitor cells (HSPCs) may provide potential in patients undergoing allogeneic HSPC transplantations for hematologic malignancies. CD34+ HSPC from the graft can be genetically modified to optimize antigen presentation and to provide sufficient T cell stimulatory signals. We here describe beneficial (gene)-modifications that can be implemented in various processes in T cell activation by DC, among which major histocompatibility complex (MHC) class I and MHC class II presentation, DC maturation and migration, cross-presentation, co-stimulation, and immunosuppression to improve anti-tumor responses.
Collapse
Affiliation(s)
- Annelisa M Cornel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niek P van Til
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jaap Jan Boelens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Pediatric Blood and Marrow Transplantation Program, University Medical Center Utrecht, Utrecht, Netherlands.,Blood and Marrow Transplantation Program, Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Stefan Nierkens
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
17
|
Abstract
Acute myeloid leukemia (AML) is one of the best studied malignancies, and significant progress has been made in understanding the clinical implications of its disease biology. Unfortunately, drug development has not kept pace, as the '7+3' induction regimen remains the standard of care for patients fit for intensive therapy 40 years after its first use. Temporal improvements in overall survival were mostly confined to younger patients and driven by improvements in supportive care and use of hematopoietic stem cell transplantation. Multiple forms of novel therapy are currently in clinical trials and are attempting to bring bench discoveries to the bedside to benefit patients. These novel therapies include improved chemotherapeutic agents, targeted molecular inhibitors, cell cycle regulators, pro-apoptotic agents, epigenetic modifiers, and metabolic therapies. Immunotherapies in the form of vaccines; naked, conjugated and bispecific monoclonal antibodies; cell-based therapy; and immune checkpoint inhibitors are also being evaluated in an effort to replicate the success seen in other malignancies. Herein, we review the scientific basis of these novel therapeutic approaches, summarize the currently available evidence, and look into the future of AML therapy by highlighting key clinical studies and the challenges the field continues to face.
Collapse
|
18
|
Lichtenegger FS, Rothe M, Schnorfeil FM, Deiser K, Krupka C, Augsberger C, Schlüter M, Neitz J, Subklewe M. Targeting LAG-3 and PD-1 to Enhance T Cell Activation by Antigen-Presenting Cells. Front Immunol 2018; 9:385. [PMID: 29535740 PMCID: PMC5835137 DOI: 10.3389/fimmu.2018.00385] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibition has been shown to successfully reactivate endogenous T cell responses directed against tumor-associated antigens, resulting in significantly prolonged overall survival in patients with various tumor entities. For malignancies with low endogenous immune responses, this approach has not shown a clear clinical benefit so far. Therapeutic vaccination, particularly dendritic cell (DC) vaccination, is a strategy to induce T cell responses. Interaction of DCs and T cells is dependent on receptor-ligand interactions of various immune checkpoints. In this study, we analyzed the influence of blocking antibodies targeting programmed cell death protein 1 (PD-1), HVEM, CD244, TIM-3, and lymphocyte activation gene 3 (LAG-3) on the proliferation and cytokine secretion of T cells after stimulation with autologous TLR-matured DCs. In this context, we found that LAG-3 blockade resulted in superior T cell activation compared to inhibition of other pathways, including PD-1/PD-L1. This result was consistent across different methods to measure T cell stimulation (proliferation, IFN-γ secretion), various stimulatory antigens (viral and bacterial peptide pool, specific viral antigen, specific tumor antigen), and seen for both CD4+ and CD8+ T cells. Only under conditions with a weak antigenic stimulus, particularly when combining antigen presentation by peripheral blood mononuclear cells with low concentrations of peptides, we observed the highest T cell stimulation with dual blockade of LAG-3 and PD-1 blockade. We conclude that priming of novel immune responses can be strongly enhanced by blockade of LAG-3 or dual blockade of LAG-3 and PD-1, depending on the strength of the antigenic stimulus.
Collapse
Affiliation(s)
- Felix S. Lichtenegger
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany,Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Maurine Rothe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany,Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Frauke M. Schnorfeil
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany,Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katrin Deiser
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany,Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Christina Krupka
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany,Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Christian Augsberger
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany,Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Miriam Schlüter
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany,Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Julia Neitz
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany,Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany,Laboratory for Translational Cancer Immunology, Gene Center, LMU Munich, Munich, Germany,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany,*Correspondence: Marion Subklewe,
| |
Collapse
|
19
|
Rosenblatt J, Stone RM, Uhl L, Neuberg D, Joyce R, Levine JD, Arnason J, McMasters M, Luptakova K, Jain S, Zwicker JI, Hamdan A, Boussiotis V, Steensma DP, DeAngelo DJ, Galinsky I, Dutt PS, Logan E, Bryant MP, Stroopinsky D, Werner L, Palmer K, Coll M, Washington A, Cole L, Kufe D, Avigan D. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci Transl Med 2017; 8:368ra171. [PMID: 27928025 DOI: 10.1126/scitranslmed.aag1298] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/30/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022]
Abstract
We developed a personalized cancer vaccine in which patient-derived acute myeloid leukemia (AML) cells are fused with autologous dendritic cells, generating a hybridoma that potently stimulates broad antitumor responses. We report results obtained from the first 17 AML patients, who achieved remission after chemotherapy and were then serially vaccinated to target minimal residual disease and prevent relapse. Vaccination was well tolerated and induced inflammatory responses at the site of administration, characterized by the dense infiltration of T cells. Vaccination was also associated with a marked rise in circulating T cells recognizing whole AML cells and leukemia-specific antigens that persisted for more than 6 months. Twelve of 17 vaccinated patients (71%; 90% confidence interval, 52 to 89%) remain alive without recurrence at a median follow-up of 57 months. The results demonstrate that personalized vaccination of AML patients in remission induces the expansion of leukemia-specific T cells and may be protective against disease relapse.
Collapse
Affiliation(s)
| | | | - Lynne Uhl
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | - Robin Joyce
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - James D Levine
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jon Arnason
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | - Salvia Jain
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | - Ayad Hamdan
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | - Emma Logan
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | - Kristen Palmer
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Max Coll
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | - Leandra Cole
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David Avigan
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
20
|
Yang D, Zhang X, Zhang X, Xu Y. The progress and current status of immunotherapy in acute myeloid leukemia. Ann Hematol 2017; 96:1965-1982. [PMID: 29080982 DOI: 10.1007/s00277-017-3148-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/02/2017] [Indexed: 02/08/2023]
Abstract
Recently, there has been remarkable progress in basic and preclinical studies of acute myeloid leukemia (AML). The improved outcomes of AML can largely be attributed to advances in supportive care and hematopoietic cell transplantation as opposed to conventional chemotherapy. However, as the 5-year survival rate remains low due to a high incidence of relapse, novel and effective treatments are urgently needed. Increasing attention is focusing on identifying suitable immunotherapeutic strategies for AML. Here, we describe the immunological features, mechanisms of immune escape, and recent progress in immunotherapy for AML. Problems encountered in the clinic will also be discussed. Although current outcomes may be limited, ongoing preclinical or clinical efforts are aimed at improving immunotherapy modalities and designing novel therapies, such as vaccines, monoclonal antibody therapy, chimeric antibody receptor-engineered T cells (CAR-T), TCR-engineered T cells (TCR-T), and checkpoint inhibitors, which may provide promising and effective therapies with higher specificity and efficacy for AML.
Collapse
Affiliation(s)
- Dan Yang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xiuqun Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xuezhong Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Yanli Xu
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Lichtenegger FS, Krupka C, Haubner S, Köhnke T, Subklewe M. Recent developments in immunotherapy of acute myeloid leukemia. J Hematol Oncol 2017; 10:142. [PMID: 28743264 PMCID: PMC5526264 DOI: 10.1186/s13045-017-0505-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023] Open
Abstract
The advent of new immunotherapeutic agents in clinical practice has revolutionized cancer treatment in the past decade, both in oncology and hematology. The transfer of the immunotherapeutic concepts to the treatment of acute myeloid leukemia (AML) is hampered by various characteristics of the disease, including non-leukemia-restricted target antigen expression profile, low endogenous immune responses, and intrinsic resistance mechanisms of the leukemic blasts against immune responses. However, considerable progress has been made in this field in the past few years.Within this manuscript, we review the recent developments and the current status of the five currently most prominent immunotherapeutic concepts: (1) antibody-drug conjugates, (2) T cell-recruiting antibody constructs, (3) chimeric antigen receptor (CAR) T cells, (4) checkpoint inhibitors, and (5) dendritic cell vaccination. We focus on the clinical data that has been published so far, both for newly diagnosed and refractory/relapsed AML, but omitting immunotherapeutic concepts in conjunction with hematopoietic stem cell transplantation. Besides, we have included important clinical trials that are currently running or have recently been completed but are still lacking full publication of their results.While each of the concepts has its particular merits and inherent problems, the field of immunotherapy of AML seems to have taken some significant steps forward. Results of currently running trials will reveal the direction of further development including approaches combining two or more of these concepts.
Collapse
Affiliation(s)
- Felix S Lichtenegger
- Department of Medicine III, University Hospital, LMU Munich, Germany
- Laboratory of Translational Cancer Immunology, Gene Center, Munich, Germany
| | - Christina Krupka
- Department of Medicine III, University Hospital, LMU Munich, Germany
- Laboratory of Translational Cancer Immunology, Gene Center, Munich, Germany
| | - Sascha Haubner
- Department of Medicine III, University Hospital, LMU Munich, Germany
- Laboratory of Translational Cancer Immunology, Gene Center, Munich, Germany
| | - Thomas Köhnke
- Department of Medicine III, University Hospital, LMU Munich, Germany
- Laboratory of Translational Cancer Immunology, Gene Center, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU Munich, Germany.
- Laboratory of Translational Cancer Immunology, Gene Center, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site, Munich, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
22
|
Hoffmann JM, Schmitt M, Ni M, Schmitt A. Next-generation dendritic cell-based vaccines for leukemia patients. Immunotherapy 2017; 9:173-181. [PMID: 28128712 DOI: 10.2217/imt-2016-0116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Up to today treatment of leukemia patients remains challenging and different therapies have been developed, among them the generation of dendritic cell (DC) vaccines. DCs, highly specific for immunogenic cancer antigens, are generated either ex vivo or in vivo and boost the immune response against leukemic cells. Nevertheless, response rates are still heterogeneous and DC vaccines need improvement. New methods for generating DC vaccines have been summed up under the term 'next-generation DC vaccines'. They range from the analysis of human leukocyte antigen-ligandomes to immunogenic cell death inducers, from the production of viral vectors to mRNA transfection and finally from delivering peptides to DCs in vivo through either antibodies or cell-penetrating peptides. This review gives an overview of the latest developments in this still evolving field.
Collapse
Affiliation(s)
- Jean-Marc Hoffmann
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Michael Schmitt
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ming Ni
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Anita Schmitt
- Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V, University Hospital of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
23
|
Mehrotra S, Britten CD, Chin S, Garrett-Mayer E, Cloud CA, Li M, Scurti G, Salem ML, Nelson MH, Thomas MB, Paulos CM, Salazar AM, Nishimura MI, Rubinstein MP, Li Z, Cole DJ. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer. J Hematol Oncol 2017; 10:82. [PMID: 28388966 PMCID: PMC5384142 DOI: 10.1186/s13045-017-0459-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dendritic cells (DCs) enhance the quality of anti-tumor immune response in patients with cancer. Thus, we posit that DC-based immunotherapy, in conjunction with toll-like receptor (TLR)-3 agonist poly-ICLC, is a promising approach for harnessing immunity against metastatic or locally advanced unresectable pancreatic cancer (PC). METHODS We generated autologous DCs from the peripheral blood of HLA-A2+ patients with PC. DCs were pulsed with three distinct A2-restricted peptides: 1) human telomerase reverse transcriptase (hTERT, TERT572Y), 2) carcinoembryonic antigen (CEA; Cap1-6D), and 3) survivin (SRV.A2). Patients received four intradermal injections of 1 × 107 peptide-pulsed DC vaccines every 2 weeks (Day 0, 14, 28, and 42). Concurrently, patients received intramuscular administration of Poly-ICLC at 30 μg/Kg on vaccination days (i.e., day 0, 14, 28, and 42), as well as on days 3, 17, 21, 31, 37, and 45. Our key objective was to assess safety and feasibility. The effect of DC vaccination on immune response was measured at each DC injection time point by enumerating the phenotype and function of patient T cells. RESULTS Twelve patients underwent apheresis: nine patients with metastatic disease, and three patients with locally advanced unresectable disease. Vaccines were successfully manufactured from all individuals. We found that this treatment was well-tolerated, with the most common symptoms being fatigue and/or self-limiting flu-like symptoms. Among the eight patients who underwent imaging on day 56, four patients experienced stable disease while four patients had disease progression. The median overall survival was 7.7 months. One patient survived for 28 months post leukapheresis. MHC class I -tetramer analysis before and after vaccination revealed effective generation of antigen-specific T cells in three patients with stable disease. CONCLUSION Vaccination with peptide-pulsed DCs in combination with poly-ICLC is safe and induces a measurable tumor specific T cell population in patients with advanced PC. TRIAL REGISTRATION NCT01410968 ; Name of registry: clinicaltrials.gov; Date of registration: 08/04/2011).
Collapse
Affiliation(s)
- Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Present address: Gibbs Cancer Center and Research Institute, 380 Serpentine Drive, Spartanburg, SC, 29303, USA.
| | - Carolyn D Britten
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Steve Chin
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Present address: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Elizabeth Garrett-Mayer
- Departmet of Population Sciences, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Colleen A Cloud
- Department of Surgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Mingli Li
- Department of Surgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Gina Scurti
- Department of Surgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Mohamed L Salem
- Center of Excellence in Cancer Research and Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Michelle H Nelson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Melanie B Thomas
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Present address: Gibbs Cancer Center and Research Institute, 380 Serpentine Drive, Spartanburg, SC, 29303, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Andres M Salazar
- Oncovir Inc., 3202 Cleaveland Avenue NW, Washington, DC, 20008, USA
| | - Michael I Nishimura
- Department of Surgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - David J Cole
- Department of Surgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
24
|
Van den Bergh J, Willemen Y, Lion E, Van Acker H, De Reu H, Anguille S, Goossens H, Berneman Z, Van Tendeloo V, Smits E. Transpresentation of interleukin-15 by IL-15/IL-15Rα mRNA-engineered human dendritic cells boosts antitumoral natural killer cell activity. Oncotarget 2016; 6:44123-33. [PMID: 26675759 DOI: 10.18632/oncotarget.6536] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/28/2015] [Indexed: 01/20/2023] Open
Abstract
In cancer immunotherapy, the use of dendritic cell (DC)-based vaccination strategies can improve overall survival, but until now durable clinical responses remain scarce. To date, DC vaccines are designed primarily to induce effective T-cell responses, ignoring the antitumor activity potential of natural killer (NK) cells. Aiming to further improve current DC vaccination outcome, we engineered monocyte-derived DC to produce interleukin (IL)-15 and/or IL-15 receptor alpha (IL-15Rα) using mRNA electroporation. The addition of IL-15Rα to the protocol, enabling IL-15 transpresentation to neighboring NK cells, resulted in significantly better NK-cell activation compared to IL-15 alone. Next to upregulation of NK-cell membrane activation markers, IL-15 transpresentation resulted in increased NK-cell secretion of IFN-γ, granzyme B and perforin. Moreover, IL-15-transpresenting DC/NK cell cocultures from both healthy donors and acute myeloid leukemia (AML) patients in remission showed markedly enhanced cytotoxic activity against NK cell sensitive and resistant tumor cells. Blocking IL-15 transpresentation abrogated NK cell-mediated cytotoxicity against tumor cells, pointing to a pivotal role of IL-15 transpresentation by IL-15Rα to exert its NK cell-activating effects. In conclusion, we report an attractive approach to improve antitumoral NK-cell activity in DC-based vaccine strategies through the use of IL-15/IL-15Rα mRNA-engineered designer DC.
Collapse
Affiliation(s)
- Johan Van den Bergh
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Yannick Willemen
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Eva Lion
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Heleen Van Acker
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Sébastien Anguille
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Zwi Berneman
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo Van Tendeloo
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Evelien Smits
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.,Center for Oncological Research Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
25
|
Seyfizadeh N, Muthuswamy R, Mitchell DA, Nierkens S, Seyfizadeh N. Migration of dendritic cells to the lymph nodes and its enhancement to drive anti-tumor responses. Crit Rev Oncol Hematol 2016; 107:100-110. [PMID: 27823637 DOI: 10.1016/j.critrevonc.2016.09.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 12/29/2022] Open
Abstract
Better prognoses associated with increased T cell infiltration of tumors, as seen with chimeric antigen receptor (CAR) T cell therapies and immune checkpoint inhibitors, portray the importance and potential of the immune system in controlling tumors. This has rejuvenated the field of cancer immunotherapy leading to an increasing number of immunotherapies developed for cancer patients. Dendritic Cells (DCs) vaccines represent an appealing option for cancer immunotherapy since DCs have the ability to circumvent tolerance to tumors by its adjuvant properties and to induce memory T cells that can become persistent after initial tumor clearance to engage potential metastatic tumors. In the past, DC-based cancer vaccines have elicited only poor clinical response in cancer patients, which can be attributed to complex and a multitude of issues associated with generation, implementing, delivery of DC vaccine and their potential interaction with effector cells. The current review mainly focuses on migration/trafficking of DCs, as one of the key issues that affect the success of DC-based cancer vaccines, and discusses strategies to enhance it for cancer immunotherapy. Additionally, impact of maturation, route of DC delivery and negative effects of tumor microenvironment (TME) on DC homing to LN are reviewed. Moreover, strategies to increase the expression of genes involved in Lymph node homing, preconditioning of the vaccination site, enhancing lymph node ability to attract and receive DCs, while limiting negative impact of TME on DC migration are discussed.
Collapse
Affiliation(s)
- Narges Seyfizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Duane A Mitchell
- Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Stefan Nierkens
- Laboratory of Translational Immunology, U-DAIR, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nayer Seyfizadeh
- Umbilical Cord Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
26
|
Ni M, Hoffmann JM, Schmitt M, Schmitt A. Progress of dendritic cell-based cancer vaccines for patients with hematological malignancies. Expert Opin Biol Ther 2016; 16:1113-23. [PMID: 27238400 DOI: 10.1080/14712598.2016.1196181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Dendritic cells (DCs) are the most professional antigen-presenting cells eliciting cellular and humoral immune responses against cancer cells by expressing these antigens on MHC class I/II complexes to T cells. Therefore, they have been employed in many clinical trials as cancer vaccines for patients with cancer. This review focuses on the use of DCs in leukemia patients expressing leukemia-associated antigens (LAAs). AREAS COVERED The contribution of both stimulating vs. tolerogenic DCs as well as of other factors to the milieu of anti-leukemia immune responses are discussed. Several DC vaccination strategies like leukemia lysate, proteins and peptides have been developed. Next generation DC vaccines comprise transduction of DCs with retroviral vectors encoding for LAAs, cytokines and costimulatory molecules as well as transfection of DCs with naked RNA encoding for LAAs. Published as well as ongoing clinical trials are reported and critically reviewed. EXPERT OPINION Future results will demonstrate whether next-generation DCs are really superior to conventional pulsing with peptide, protein or tumor lysate. However, currently available methods based on nucleic acid transfection/transduction are tempting in terms of material production costs and time for clinical application according to good manufacturing practice (GMP).
Collapse
Affiliation(s)
- Ming Ni
- a Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V , Heidelberg University Hospital , Heidelberg , Germany
| | - Jean-Marc Hoffmann
- a Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V , Heidelberg University Hospital , Heidelberg , Germany
| | - Michael Schmitt
- a Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V , Heidelberg University Hospital , Heidelberg , Germany
| | - Anita Schmitt
- a Cellular Immunotherapy, GMP Core Facility, Department of Internal Medicine V , Heidelberg University Hospital , Heidelberg , Germany
| |
Collapse
|
27
|
Immune Cells in Cancer Therapy and Drug Delivery. Mediators Inflamm 2016; 2016:5230219. [PMID: 27212807 PMCID: PMC4860248 DOI: 10.1155/2016/5230219] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/23/2016] [Accepted: 03/24/2016] [Indexed: 12/13/2022] Open
Abstract
Recent studies indicate the critical role of tumour associated macrophages, tumour associated neutrophils, dendritic cells, T lymphocytes, and natural killer cells in tumourigenesis. These cells can have a significant impact on the tumour microenvironment via their production of cytokines and chemokines. Additionally, products secreted from all these cells have defined specific roles in regulating tumour cell proliferation, angiogenesis, and metastasis. They act in a protumour capacity in vivo as evidenced by the recent studies indicating that macrophages, T cells, and neutrophils may be manipulated to exhibit cytotoxic activity against tumours. Therefore therapy targeting these cells may be promising, or they may constitute drug or anticancer particles delivery systems to the tumours. Herein, we discussed all these possibilities that may be used in cancer treatment.
Collapse
|
28
|
Hofmann S, Mead A, Malinovskis A, Hardwick NR, Guinn BA. Analogue peptides for the immunotherapy of human acute myeloid leukemia. Cancer Immunol Immunother 2015; 64:1357-67. [PMID: 26438084 PMCID: PMC11029593 DOI: 10.1007/s00262-015-1762-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 09/27/2015] [Indexed: 12/14/2022]
Abstract
The use of peptide vaccines, enhanced by adjuvants, has shown some efficacy in clinical trials. However, responses are often short-lived and rarely induce notable memory responses. The reason is that self-antigens have already been presented to the immune system as the tumor develops, leading to tolerance or some degree of host tumor cell destruction. To try to break tolerance against self-antigens, one of the methods employed has been to modify peptides at the anchor residues to enhance their ability to bind major histocompatibility complex molecules, extending their exposure to the T-cell receptor. These modified or analogue peptides have been investigated as stimulators of the immune system in patients with different cancers with variable but sometimes notable success. In this review we describe the background and recent developments in the use of analogue peptides for the immunotherapy of acute myeloid leukemia describing knowledge useful for the application of analogue peptide treatments for other malignancies.
Collapse
Affiliation(s)
- Susanne Hofmann
- Third Clinic for Internal Medicine, University of Ulm, Ulm, Germany
| | - Andrew Mead
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK
| | - Aleksandrs Malinovskis
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK
| | - Nicola R Hardwick
- Division of Translational Vaccine Research, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA
- Department of Haematological Medicine, Guy's, King's & St. Thomas' School of Medicine, The Rayne Institute, King's College London, 123 Coldharbour Lane, London, UK
| | - Barbara-Ann Guinn
- Department of Life Sciences, University of Bedfordshire, Park Square, Luton, LU1 3JU, UK.
- Department of Haematological Medicine, Guy's, King's & St. Thomas' School of Medicine, The Rayne Institute, King's College London, 123 Coldharbour Lane, London, UK.
- Cancer Sciences Unit, Southampton University Hospitals Trust, University of Southampton, Southampton, UK.
| |
Collapse
|
29
|
Li X, Liu X, Zhao Y, Zhong R, Song A, Sun L. Effect of thymosin α₁ on the phenotypic and functional maturation of dendritic cells from children with acute lymphoblastic leukemia. Mol Med Rep 2015; 12:6093-7. [PMID: 26239360 DOI: 10.3892/mmr.2015.4153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 06/15/2015] [Indexed: 11/06/2022] Open
Abstract
To determine the effect of thymosin α1 (Tα1) on the phenotypic and functional maturation of HL‑60 cells, freeze‑thaw antigen‑loaded dendritic cells (DCs) were derived from peripheral blood mononuclear cells (PBMCs) of children with acute lymphoblastic leukemia (ALL). The DCs were generated from the PBMC samples that were collected from the PB of 10 consecutive ALL children. On day 3 of culturing, the cells in the antigen + no Tα1 (AN) and antigen + Tα1 (AT) groups were incubated with 100 µl lysates obtained from freeze‑thaw cycling. After 5 days of incubation, the AT group was administered with 100 ng/ml Tα1. On day 8, the DCs were stained with fluorescein isothiocyanate‑conjugated cluster of differentiation (CD)1a, CD83 and HLA‑DR antibodies and analyzed by flow cytometry. In addition, the killing activity of cytotoxic T lymphocytes (CTLs) from the different groups on wild‑type leukemia cells was measured. The DCs in the AT group exhibited more apparent, characteristic dendritic morphologies than the control and AN group DCs. Furthermore, the lowest expression level of CD1a, and the highest expression of CD83 and HLA‑DR were observed in the AT group when compared with the AN and control groups (P<0.05). The lactate dehydrogenase release assay demonstrated that the killing rate of CTL in the AT group was significantly higher than that in the control and AN groups (P<0.01). Thus, Tα1 may markedly promote the phenotypic and functional maturation of DCs, and may serve as a suitable immunomodulator of DC‑based immunotherapy for treatment of hematological malignancies.
Collapse
Affiliation(s)
- Xuerong Li
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Xiaodan Liu
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yanxia Zhao
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Ren Zhong
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Aiqin Song
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Lirong Sun
- Department of Pediatric Hematology and Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
30
|
Anguille S, Smits EL, Bryant C, Van Acker HH, Goossens H, Lion E, Fromm PD, Hart DN, Van Tendeloo VF, Berneman ZN. Dendritic Cells as Pharmacological Tools for Cancer Immunotherapy. Pharmacol Rev 2015; 67:731-53. [DOI: 10.1124/pr.114.009456] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
31
|
Abstract
Despite longstanding efforts in basic research and clinical studies, the prognosis for patients with acute myeloid leukemia (AML) remains poor. About half of the patients are not medically fit for intensive induction therapy to induce a complete remission and are treated with palliative treatment concepts. The patients medically fit for intensive induction therapy have a high complete remission rate but the majority suffers from relapse due to chemo-refractory leukemic cells. Allogeneic stem cell transplantation as post-remission therapy can significantly reduce the likelihood of relapse, but it is associated with a high rate of morbidity and mortality. Novel therapeutic concepts are therefore urgently sought after. During recent years, the focus has shifted towards the development of novel immunotherapeutic strategies. Some of the most promising are drug-conjugated monoclonal antibodies, T-cell engaging antibody constructs, adoptive transfer with chimeric antigen receptor (CAR) T cells, and dendritic cell vaccination. Here, we review recent progress in these four fields and speculate about the optimal time points during the course of AML treatment for their application.
Collapse
Affiliation(s)
- Felix S Lichtenegger
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany
| | - Christina Krupka
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany
| | - Thomas Köhnke
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany
| | - Marion Subklewe
- Department of Internal Medicine III, Klinikum der Universität München, Munich, Germany; Clinical Cooperation Group Immunotherapy at the Helmholtz Institute Munich, Munich, Germany.
| |
Collapse
|