1
|
Saha S, Mukherjee B, Banerjee P, Das D. The 'Not-So-Famous Five' in tumorigenesis: tRNAs, tRNA fragments, and tRNA epitranscriptome in concert with AARSs and AIMPs. Biochimie 2024; 222:45-62. [PMID: 38401639 DOI: 10.1016/j.biochi.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
RNA profiling studies have revealed that ∼75% of the human genome is transcribed to RNA but only a meagre fraction of it is translated to proteins. Majority of transcribed RNA constitute a specialized pool of non-coding RNAs. Human genome contains approximately 506 genes encoding a set of 51 different tRNAs, constituting a unique class of non-coding RNAs that not only have essential housekeeping functions as translator molecules during protein synthesis, but have numerous uncharted regulatory functions. Intriguing findings regarding a variety of non-canonical functions of tRNAs, tRNA derived fragments (tRFs), esoteric epitranscriptomic modifications of tRNAs, along with aminoacyl-tRNA synthetases (AARSs) and ARS-interacting multifunctional proteins (AIMPs), envision a 'peripheral dogma' controlling the flow of genetic information in the backdrop of qualitative information wrung out of the long-live central dogma of molecular biology, to drive cells towards either proliferation or differentiation programs. Our review will substantiate intriguing peculiarities of tRNA gene clusters, atypical tRNA-transcription from internal promoters catalysed by another distinct RNA polymerase enzyme, dynamically diverse tRNA epitranscriptome, intricate mechanism of tRNA-charging by AARSs governing translation fidelity, epigenetic regulation of gene expression by tRNA fragments, and the role of tRNAs and tRNA derived/associated molecules as quantitative determinants of the functional proteome, covertly orchestrating the process of tumorigenesis, through a deregulated tRNA-ome mediating selective codon-biased translation of cancer related gene transcripts.
Collapse
Affiliation(s)
- Sutapa Saha
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India.
| | - Biyas Mukherjee
- Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata, 700064, India
| | - Proma Banerjee
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India
| | - Debadrita Das
- Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, WB, India
| |
Collapse
|
2
|
T helper cell-mediated epitranscriptomic regulation via m6A RNA methylation bridges link between coronary artery disease and invasive ductal carcinoma. J Cancer Res Clin Oncol 2022; 148:3421-3436. [PMID: 35776197 DOI: 10.1007/s00432-022-04130-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE Invasive ductal carcinoma (IDC) and coronary artery disease (CAD), remains the greatest cause of death annually in women, driven by complex signalling pathways and shared several predisposing risk factors together. Therefore, it is important to find out the common epigenetic modifications which are responsible for possible disease progression from CAD to IDC. METHODS CD4+T cell isolation by MACS, RT2 profiler PCR array, Gene ontology study, m6A RNA methylation, ChIP-qPCR, Q-PCR, CRISPR/Cas9-mediated knockout/overexpression, Lactate dehydrogenase release assay, RDIP-qPCR. RESULTS We have identified several epigenetic regulators (e.g., VEGFA, AIMP1, etc.) which are mainly involved in inflammatory pathways in both the diseased conditions. Epitranscriptomic alterations such as m6A RNA methylation found abnormal in CD4+T helper cells in both IDC as well as CAD. CRISPR-Cas9 mediated knockout/overexpression of specific gene (BRCA1) are promising therapeutic approaches in diseased conditions by regulating m6A RNA methylation and also tumor suppressor gene P53. It also affected the R-loop formation which is vulnerable to DNA damage and BRCA1 can also induce CTL mediated cytotoxicity in breast cancer cells. CONCLUSIONS Therefore, by understanding the modifications of epigenetic mechanisms, their alterations and interactions will aid in the development of newer therapeutic approaches to stop the possible spread from one disease to another.
Collapse
|
3
|
Khan K, Gogonea V, Fox PL. Aminoacyl-tRNA synthetases of the multi-tRNA synthetase complex and their role in tumorigenesis. Transl Oncol 2022; 19:101392. [PMID: 35278792 PMCID: PMC8914993 DOI: 10.1016/j.tranon.2022.101392] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
In mammalian cells, 20 aminoacyl-tRNA synthetases (AARS) catalyze the ligation of amino acids to their cognate tRNAs to generate aminoacylated-tRNAs. In higher eukaryotes, 9 of the 20 AARSs, along with 3 auxiliary proteins, join to form the cytoplasmic multi-tRNA synthetase complex (MSC). The complex is absent in prokaryotes, but evolutionary expansion of MSC constituents, primarily by addition of novel interacting domains, facilitates formation of subcomplexes that join to establish the holo-MSC. In some cases, environmental cues direct the release of constituents from the MSC which enables the execution of non-canonical, i.e., "moonlighting", functions distinct from their essential activities in protein translation. These activities are generally beneficial, but can also be deleterious to the cell. Elucidation of the non-canonical activities of several AARSs residing in the MSC suggest they are potential therapeutic targets for cancer, as well as metabolic and neurologic diseases. Here, we describe the role of MSC-resident AARSs in cancer progression, and the factors that regulate their release from the MSC. Also, we highlight recent developments in therapeutic modalities that target MSC AARSs for cancer prevention and treatment.
Collapse
Affiliation(s)
- Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| | - Valentin Gogonea
- Department of Chemistry, Cleveland State University, Cleveland, OH 44115, United States of America
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
4
|
Zhou Z, Sun B, Nie A, Yu D, Bian M. Roles of Aminoacyl-tRNA Synthetases in Cancer. Front Cell Dev Biol 2020; 8:599765. [PMID: 33330488 PMCID: PMC7729087 DOI: 10.3389/fcell.2020.599765] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) catalyze the ligation of amino acids to their cognate transfer RNAs (tRNAs), thus playing an important role in protein synthesis. In eukaryotic cells, these enzymes exist in free form or in the form of multi-tRNA synthetase complex (MSC). The latter contains nine cytoplasmic ARSs and three ARS-interacting multifunctional proteins (AIMPs). Normally, ARSs and AIMPs are regarded as housekeeping molecules without additional functions. However, a growing number of studies indicate that ARSs are involved in a variety of physiological and pathological processes, especially tumorigenesis. Here, we introduce the roles of ARSs and AIMPs in certain cancers, such as colon cancer, lung cancer, breast cancer, gastric cancer and pancreatic cancer. Furthermore, we particularly focus on their potential clinical applications in cancer, aiming at providing new insights into the pathogenesis and treatment of cancer.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bao Sun
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institution of Clinical Pharmacy, Central South University, Changsha, China
| | - Anzheng Nie
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Bian
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Wang J, Yang XL. Novel functions of cytoplasmic aminoacyl-tRNA synthetases shaping the hallmarks of cancer. Enzymes 2020; 48:397-423. [PMID: 33837711 DOI: 10.1016/bs.enz.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
With the intense protein synthesis demands of cancer, the classical enzymatic role of aminoacyl-tRNA synthetases (aaRSs) is required to sustain tumor growth. However, many if not all aaRSs also possess regulatory functions outside of the domain of catalytic tRNA aminoacylation, which can further contribute to or even antagonize cancers in non-translational ways. These regulatory functions of aaRS are likely to be manipulated in cancer to ensure uncontrolled growth and survival. This review will largely focus on the unique capacities of individual and sometimes collaborating synthetases to influence the hallmarks of cancer, which represent the principles and characteristics of tumorigenesis. An interesting feature of cytoplasmic aaRSs in higher eukaryotes is the formation of a large multi-synthetase complex (MSC) with nine aaRSs held together by three non-enzymatic scaffolding proteins (AIMPs). The MSC-associated aaRSs, when released from the complex in response to certain stimulations, often participate in pathways that promote tumorigenesis. In contrast, the freestanding aaRSs are associated with activities in both directions-some promoting while others inhibiting cancer. The AIMPs have emerged as potent tumor suppressors through their own distinct mechanisms. We propose that the tumor-suppressive roles of AIMPs may also be a consequence of keeping the cancer-promoting aaRSs within the MSC. The rich connections between cancer and the synthetases have inspired the development of innovative cancer treatments that target or take advantage of these novel functions of aaRSs.
Collapse
Affiliation(s)
- Justin Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
6
|
Roles of aminoacyl-tRNA synthetase-interacting multi-functional proteins in physiology and cancer. Cell Death Dis 2020; 11:579. [PMID: 32709848 PMCID: PMC7382500 DOI: 10.1038/s41419-020-02794-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Aminoacyl-tRNA synthetases (ARSs) are an important class of enzymes with an evolutionarily conserved mechanism for protein synthesis. In higher eukaryotic systems, eight ARSs and three ARS-interacting multi-functional proteins (AIMPs) form a multi-tRNA synthetase complex (MSC), which seems to contribute to cellular homeostasis. Of these, AIMPs are generally considered as non-enzyme factors, playing a scaffolding role during MSC assembly. Although the functions of AIMPs are not fully understood, increasing evidence indicates that these scaffold proteins usually exert tumor-suppressive activities. In addition, endothelial monocyte-activating polypeptide II (EMAP II), as a cleavage product of AIMP1, and AIMP2-DX2, as a splice variant of AIMP2 lacking exon 2, also have a pivotal role in regulating tumorigenesis. In this review, we summarize the biological functions of AIMP1, EMAP II, AIMP2, AIMP2-DX2, and AIMP3. Also, we systematically introduce their emerging roles in cancer, aiming to provide new ideas for the treatment of cancer.
Collapse
|
7
|
Understanding the Differentiation, Expansion, Recruitment and Suppressive Activities of Myeloid-Derived Suppressor Cells in Cancers. Int J Mol Sci 2020; 21:ijms21103599. [PMID: 32443699 PMCID: PMC7279333 DOI: 10.3390/ijms21103599] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 02/28/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
There has been a great interest in myeloid-derived suppressor cells (MDSCs) due to their biological functions in tumor-mediated immune escape by suppressing antitumor immune responses. These cells arise from altered myelopoiesis in response to the tumor-derived factors. The most recognized function of MDSCs is suppressing anti-tumor immune responses by impairing T cell functions, and these cells are the most important players in cancer dissemination and metastasis. Therefore, understanding the factors and the mechanism of MDSC differentiation, expansion, and recruitment into the tumor microenvironment can lead to its control. However, most of the studies only defined MDSCs with no further characterization of granulocytic and monocytic subsets. In this review, we discuss the mechanisms by which specific MDSC subsets contribute to cancers. A better understanding of MDSC subset development and the specific molecular mechanism is needed to identify treatment targets. The understanding of the specific molecular mechanisms responsible for MDSC accumulation would enable more precise therapeutic targeting of these cells.
Collapse
|
8
|
Gao W, An C, Xue X, Zheng X, Niu M, Zhang Y, Liu H, Zhang C, Lu Y, Cui J, Zhao Q, Wen S, Thorne RF, Zhang X, Wu Y, Wang B. Mass Spectrometric Analysis Identifies AIMP1 and LTA4H as FSCN1-Binding Proteins in Laryngeal Squamous Cell Carcinoma. Proteomics 2019; 19:e1900059. [PMID: 31287215 DOI: 10.1002/pmic.201900059] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 06/29/2019] [Indexed: 12/24/2022]
Abstract
Dysregulation of fascin actin-bundling protein 1 (FSCN1) enhances cell proliferation, invasion, and motility in laryngeal squamous cell carcinoma (LSCC), while the mechanism remains unclear. Here, co-immunoprecipitation and mass spectrometry is utilized to identify potential FSCN1-binding proteins. Functional annotation of FSCN1-binding proteins are performed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Furthermore, the protein-protein interaction network of FSNC1-binding proteins is constructed and the interactions between FSCN1 and novel identified interacting proteins AIMP1 and LTA4H are validated. Moreover, the expression and functional role of AIMP1 and LTA4H in LSCC are investigated. A total of 123 proteins are identified as potential FSCN1-binding proteins, and functional annotation shows that FSCN1-binding proteins are significantly enriched in carcinogenic processes, such as filopodium assembly-regulation and GTPase activity. Co-IP/western blotting and immunofluorescence confirm that AIMP1 and LTA4H bind and colocalize with FSCN1. Furthermore, both AIMP1 and LTA4H are upregulated in LSCC tissues, and knockdown of AIMP1 or LTA4H inhibits LSCC cell proliferation, migration, and invasion. Collectively, the identification of FSCN1-binding partners enhances understanding of the mechanism of FSCN1-mediated malignant phenotypes, and these findings indicate that FSCN1 binds to AIMP1 and LTA4H might promote the progression of LSCC.
Collapse
Affiliation(s)
- Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Changming An
- Department of Head and Neck Surgery Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Chunming Zhang
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Jiajia Cui
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Qinli Zhao
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Shuxin Wen
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Rick F Thorne
- Translational Research Institute, Henan Provincial People's Hospital, School of Medicine, Henan University, Zhengzhou, 450053, Henan, China.,School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xudong Zhang
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| | - Binquan Wang
- Shanxi Key Laboratory of Otorhinolaryngology, Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,Otolaryngology Head & Neck Surgery Research Institute, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.,The Key Scientific and Technological Innovation Platform for Precision Diagnosis and Treatment of Head and Neck Cancer, Taiyuan, 030001, Shanxi, China
| |
Collapse
|
9
|
Salaroglio IC, Mungo E, Gazzano E, Kopecka J, Riganti C. ERK is a Pivotal Player of Chemo-Immune-Resistance in Cancer. Int J Mol Sci 2019; 20:ijms20102505. [PMID: 31117237 PMCID: PMC6566596 DOI: 10.3390/ijms20102505] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/08/2019] [Accepted: 05/18/2019] [Indexed: 12/16/2022] Open
Abstract
The extracellular signal-related kinases (ERKs) act as pleiotropic molecules in tumors, where they activate pro-survival pathways leading to cell proliferation and migration, as well as modulate apoptosis, differentiation, and senescence. Given its central role as sensor of extracellular signals, ERK transduction system is widely exploited by cancer cells subjected to environmental stresses, such as chemotherapy and anti-tumor activity of the host immune system. Aggressive tumors have a tremendous ability to adapt and survive in stressing and unfavorable conditions. The simultaneous resistance to chemotherapy and immune system responses is common, and ERK signaling plays a key role in both types of resistance. In this review, we dissect the main ERK-dependent mechanisms and feedback circuitries that simultaneously determine chemoresistance and immune-resistance/immune-escape in cancer cells. We discuss the pros and cons of targeting ERK signaling to induce chemo-immune-sensitization in refractory tumors.
Collapse
Affiliation(s)
- Iris C Salaroglio
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Eleonora Mungo
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Elena Gazzano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| |
Collapse
|
10
|
Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019; 11:E628. [PMID: 31060337 PMCID: PMC6562626 DOI: 10.3390/cancers11050628] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has altered the management of human malignancies, improving outcomes in an expanding list of diseases. Breast cancer - presumably due to its perceived low immunogenicity - is a late addition to this list. Furthermore, most of the focus has been on the triple negative subtype because of its higher tumor mutational load and lymphocyte-enriched stroma, although emerging data show promise on the other breast cancer subtypes as well. To this point the clinical use of immunotherapy is limited to the inhibition of two immune checkpoints, Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4). Consistent with the complexity of the regulation of the tumor - host interactions and their lack of reliance on a single regulatory pathway, combinatory approaches have shown improved efficacy albeit at the cost of increased toxicity. Beyond those two checkpoints though, a large number of co-stimulatory or co-inhibitory molecules play major roles on tumor evasion from immunosurveillance. These molecules likely represent future targets of immunotherapy provided that the promise shown in early data is translated into improved patient survival in randomized trials. The biological role, prognostic and predictive implications regarding breast cancer and early clinical efforts on exploiting these immune-related therapeutic targets are herein reviewed.
Collapse
Affiliation(s)
- Sebastian Chrétien
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Ioannis Zerdes
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Jonas Bergh
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Alexios Matikas
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Theodoros Foukakis
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| |
Collapse
|
11
|
Kim J, Kang S, Kwon H, Moon H, Park MC. Dual functional bioactive-peptide, AIMP1-derived peptide (AdP), for anti-aging. J Cosmet Dermatol 2018; 18:251-257. [PMID: 29921010 DOI: 10.1111/jocd.12671] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2018] [Indexed: 11/27/2022]
Abstract
BACKGROUND Human skin aging is caused by several factors, such as UV irradiation, stress, hormone, and pollution. Wrinkle formation and skin pigmentation are representative features of skin aging. Although EGF and arbutin are used as anti-wrinkle and skin whitening agents, respectively, they have adverse effects on skin. When more cosmeceutical ingredients are added to cosmetic product, adverse effects are also accumulated. For these reasons, multifunctional and safe cosmetic ingredients are in demand. The aim of the present study is to investigate the novel anti-aging agents, AIMP1-derived peptide (AdP, INCI name: sh-oligopeptide-5/sh-oligopeptide SP) for cosmetic products. METHODS To assess the anti-wrinkle effect of AdP, collagen type I synthesis and fibroblast proliferation were determined on human fibroblasts. The anti-wrinkle effect of AdP was examined by ELISA and cell titer glo assay. To assess the whitening, melanin content and tyrosinase activity were determined on melanocytes. The whitening effect of AdP was examined by melanin measurement and enzyme activity assay. The safety of AdP was determined by cytotoxicity and immunogenicity, CCK-8 and TNF-α ELISA assay, respectively. RESULTS AdP treatment induced the collagen type I synthesis and fibroblast proliferation. Also, AdP treatment inhibited melanin synthesis by regulating tyrosinase activity. The anti-aging effect of AdP is more potent than EGF and albutin. AdP did not show adverse effects. CONCLUSION These results show that AdP can be dual functional and safe cosmeceutical agent to prevent skin aging.
Collapse
Affiliation(s)
- Jina Kim
- Cure Bio Co., Ltd. Research Center, Suwon-si, Korea
| | - Sujin Kang
- Cure Bio Co., Ltd. Research Center, Suwon-si, Korea
| | - HanJin Kwon
- UltraV Co., Ltd. Research Center, Seoul, Korea
| | - HoSang Moon
- UltraV Co., Ltd. Research Center, Seoul, Korea
| | | |
Collapse
|
12
|
Liang D, Tian L, You R, Halpert MM, Konduri V, Baig YC, Paust S, Kim D, Kim S, Jia F, Huang S, Zhang X, Kheradmand F, Corry DB, Gilbert BE, Levitt JM, Decker WK. AIMp1 Potentiates T H1 Polarization and Is Critical for Effective Antitumor and Antiviral Immunity. Front Immunol 2018; 8:1801. [PMID: 29379495 PMCID: PMC5775236 DOI: 10.3389/fimmu.2017.01801] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/30/2017] [Indexed: 12/30/2022] Open
Abstract
Dendritic cells (DCs) must integrate a broad array of environmental cues to exact control over downstream immune responses including TH polarization. The multienzyme aminoacyl-tRNA synthetase complex component AIMp1/p43 responds to cellular stress and exerts pro-inflammatory functions; however, a role for DC-expressed AIMp1 in TH polarization has not previously been shown. Here, we demonstrate that the absence of AIMp1 in bone marrow-derived DC (BMDC) significantly impairs cytokine and costimulatory molecule expression, p38 MAPK signaling, and TH1 polarization of cocultured T-cells while significantly dysregulating immune-related gene expression. These deficits resulted in significantly compromised BMDC vaccine-mediated protection against melanoma. AIMp1 within the host was also critical for innate and adaptive antiviral immunity against influenza virus infection in vivo. Cancer patients with AIMp1 expression levels in the highest tertiles exhibited a 70% survival advantage at 15-year postdiagnosis as determined by bioinformatics analysis of nearly 9,000 primary human tumor samples in The Cancer Genome Atlas database. These data establish the importance of AIMp1 for the effective governance of antitumor and antiviral immune responses.
Collapse
Affiliation(s)
- Dan Liang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Lin Tian
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States
| | - Ran You
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Matthew M Halpert
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Vanaja Konduri
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Yunyu C Baig
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Silke Paust
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Pediatrics, Texas Children's Hospital, Houston, TX, United States.,Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States.,Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Doyeun Kim
- Medicinal Bioconvergence Research Center, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sunghoon Kim
- Medicinal Bioconvergence Research Center, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Fuli Jia
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Antibody-based Proteomics Core, Baylor College of Medicine, Houston, TX, United States
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Antibody-based Proteomics Core, Baylor College of Medicine, Houston, TX, United States
| | - Xiang Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States
| | - Farrah Kheradmand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Division of Pulmonary, Critical Care, and Sleep Medicine, Baylor College of Medicine, Houston, TX, United States
| | - David B Corry
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, TX, United States
| | - Brian E Gilbert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Jonathan M Levitt
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Scott Department of Urology, Baylor College of Medicine, Houston, TX, United States
| | - William K Decker
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
13
|
Kim MS, Song JH, Cohen EP, Cho D, Kim TS. Aminoacyl tRNA Synthetase–Interacting Multifunctional Protein 1 Activates NK Cells via Macrophages In Vitro and In Vivo. THE JOURNAL OF IMMUNOLOGY 2017; 198:4140-4147. [DOI: 10.4049/jimmunol.1601558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 03/09/2017] [Indexed: 11/19/2022]
|
14
|
Liu W, Zhang J, Wu C, Cai S, Huang W, Chen J, Xi X, Liang Z, Hou Q, Zhou B, Qin N, Zhang H. Unique Features of Ethnic Mongolian Gut Microbiome revealed by metagenomic analysis. Sci Rep 2016; 6:34826. [PMID: 27708392 PMCID: PMC5052615 DOI: 10.1038/srep34826] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/19/2016] [Indexed: 01/08/2023] Open
Abstract
The human gut microbiota varies considerably among world populations due to a variety of factors including genetic background, diet, cultural habits and socioeconomic status. Here we characterized 110 healthy Mongolian adults gut microbiota by shotgun metagenomic sequencing and compared the intestinal microbiome among Mongolians, the Hans and European cohorts. The results showed that the taxonomic profile of intestinal microbiome among cohorts revealed the Actinobaceria and Bifidobacterium were the key microbes contributing to the differences among Mongolians, the Hans and Europeans at the phylum level and genus level, respectively. Metagenomic species analysis indicated that Faecalibacterium prausnitzii and Coprococcus comeswere enrich in Mongolian people which might contribute to gut health through anti-inflammatory properties and butyrate production, respectively. On the other hand, the enriched genus Collinsella, biomarker in symptomatic atherosclerosis patients, might be associated with the high morbidity of cardiovascular and cerebrovascular diseases in Mongolian adults. At the functional level, a unique microbial metabolic pathway profile was present in Mongolian’s gut which mainly distributed in amino acid metabolism, carbohydrate metabolism, energy metabolism, lipid metabolism, glycan biosynthesis and metabolism. We can attribute the specific signatures of Mongolian gut microbiome to their unique genotype, dietary habits and living environment.
Collapse
Affiliation(s)
- Wenjun Liu
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jiachao Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chunyan Wu
- RealBio Genomic Institute, Shanghai 200050, China
| | - Shunfeng Cai
- RealBio Genomic Institute, Shanghai 200050, China
| | - Weiqiang Huang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jing Chen
- RealBio Genomic Institute, Shanghai 200050, China
| | - Xiaoxia Xi
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zebin Liang
- RealBio Genomic Institute, Shanghai 200050, China
| | - Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bin Zhou
- RealBio Genomic Institute, Shanghai 200050, China
| | - Nan Qin
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Education Ministry of P. R. China, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|