1
|
Saleh RO, Ibrahim FM, Pallathadka H, Kaur I, Ahmad I, Ali SHJ, Redhee AH, Ghildiyal P, Jawad MA, Alsaadi SB. Nucleic acid vaccines-based therapy for triple-negative breast cancer: A new paradigm in tumor immunotherapy arena. Cell Biochem Funct 2024; 42:e3992. [PMID: 38551221 DOI: 10.1002/cbf.3992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Nucleic acid vaccines (NAVs) have the potential to be economical, safe, and efficacious. Furthermore, just the chosen antigen in the pathogen is the target of the immune responses brought on by NAVs. Triple-negative breast cancer (TNBC) treatment shows great promise for nucleic acid-based vaccines, such as DNA (as plasmids) and RNA (as messenger RNA [mRNA]). Moreover, cancer vaccines offer a compelling approach that can elicit targeted and long-lasting immune responses against tumor antigens. Bacterial plasmids that encode antigens and immunostimulatory molecules serve as the foundation for DNA vaccines. In the 1990s, plasmid DNA encoding the influenza A nucleoprotein triggered a protective and targeted cytotoxic T lymphocyte (CTL) response, marking the first instance of DNA vaccine-mediated immunity. Similarly, in vitro transcribed mRNA was first successfully used in animals in 1990. At that point, mice were given an injection of the gene encoding the mRNA sequence, and the researchers saw the production of a protein. We begin this review by summarizing our existing knowledge of NAVs. Next, we addressed NAV delivery, emphasizing the need to increase efficacy in TNBC.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq
| | - Fatma M Ibrahim
- Community Health Nursing, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
- Geriatric Nursing, Mansoura University, Mansoura, Egypt
| | | | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, Iraq
| |
Collapse
|
2
|
Meci A, Goyal N, Slonimsky G. Mechanisms of Resistance and Therapeutic Perspectives in Immunotherapy for Advanced Head and Neck Cancers. Cancers (Basel) 2024; 16:703. [PMID: 38398094 PMCID: PMC10887076 DOI: 10.3390/cancers16040703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Immunotherapy is emerging as an effective treatment for advanced head and neck cancers and interest in this treatment modality has led to rapid expansion of this research. Pembrolizumab and nivolumab, monoclonal antibodies directed against the programmed cell death-1 (PD-1) receptor, are US Food and Drug Administration (FDA)- and European Medical Agency (EMA)-approved immunotherapies for head and neck squamous cell carcinoma (HNSCC). Resistance to immunotherapy is common, with about 60% of patients with recurrent or metastatic HNSCC not responding to immunotherapy and only 20-30% of patients without disease progression in the long term. Overcoming resistance to immunotherapy is therefore essential for augmenting the effectiveness of immunotherapy in HNSCC. This review details the innate and adaptive mechanisms by which head and neck cancers can become resistant to immunotherapeutic agents, biomarkers that can be used for immunotherapy patient selection, as well as other factors of the tumor microenvironment correlated with therapeutic response and prognosis. Numerous combinations and novel immunotherapies are currently being trialed, based on better understood immune evasion mechanisms. These potential treatments hold the promise of overcoming resistance to immunotherapy in head and neck cancers.
Collapse
Affiliation(s)
- Andrew Meci
- The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Neerav Goyal
- Department of Otolaryngology-Head and Neck Surgery, Penn State Health, Milton S. Hershey Medical Center, 500 University Dr, Hershey, PA 17033, USA;
| | - Guy Slonimsky
- Department of Otolaryngology-Head and Neck Surgery, Penn State Health, Milton S. Hershey Medical Center, 500 University Dr, Hershey, PA 17033, USA;
| |
Collapse
|
3
|
Eljilany I, Castellano E, Tarhini AA. Adjuvant Therapy for High-Risk Melanoma: An In-Depth Examination of the State of the Field. Cancers (Basel) 2023; 15:4125. [PMID: 37627153 PMCID: PMC10453009 DOI: 10.3390/cancers15164125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The consideration of systemic adjuvant therapy is recommended for patients with stage IIB-IV melanoma who have undergone surgical resection due to a heightened risk of experiencing melanoma relapse and mortality from melanoma. Adjuvant therapy options tested over the past three decades include high-dose interferon-α, immune checkpoint inhibitors (pembrolizumab, nivolumab), targeted therapy (dabrafenib-trametinib for BRAF mutant melanoma), radiotherapy and chemotherapy. Most of these therapies have been demonstrated to enhance relapse-free survival (RFS) but with limited to no impact on overall survival (OS), as reported in randomized trials. In contemporary clinical practice, the adjuvant treatment approach for surgically resected stage III-IV melanoma has undergone a notable shift towards the utilization of nivolumab, pembrolizumab, and BRAF-MEK inhibitors, such as dabrafenib plus trametinib (specifically for BRAF mutant melanoma) due to the significant enhancements in RFS observed with these treatments. Pembrolizumab has obtained regulatory approval in the United States to treat resected stage IIB-IIC melanoma, while nivolumab is currently under review for the same indication. This review comprehensively analyzes completed phase III adjuvant therapy trials in adjuvant therapy. Additionally, it provides a summary of ongoing trials and an overview of the main challenges and future directions with adjuvant therapy.
Collapse
Affiliation(s)
- Islam Eljilany
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Ella Castellano
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Emory College of Arts and Sciences, Emory University, Atlanta, GA 30322, USA
| | - Ahmad A. Tarhini
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Therapeutic Vaccination in Head and Neck Squamous Cell Carcinoma—A Review. Vaccines (Basel) 2023; 11:vaccines11030634. [PMID: 36992219 DOI: 10.3390/vaccines11030634] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Therapeutic vaccination is one of the most effective immunotherapeutic approaches, second only to immune checkpoint inhibitors (ICIs), which have already been approved for clinical use. Head and neck squamous cell carcinomas (HNSCCs) are heterogenous epithelial tumors of the upper aerodigestive tract, and a significant proportion of these tumors tend to exhibit unfavorable therapeutic responses to the existing treatment options. Comprehending the immunopathology of these tumors and choosing an appropriate immunotherapeutic maneuver seems to be a promising avenue for solving this problem. The current review provides a detailed overview of the strategies, targets, and candidates for therapeutic vaccination in HNSCC. The classical principle of inducing a potent, antigen-specific, cell-mediated cytotoxicity targeting a specific tumor antigen seems to be the most effective mechanism of therapeutic vaccination, particularly against the human papilloma virus positive subset of HNSCC. However, approaches such as countering the immunosuppressive tumor microenvironment of HNSCC and immune co-stimulatory mechanisms have also been explored recently, with encouraging results.
Collapse
|
5
|
Adamik J, Butterfield LH. What’s next for cancer vaccines. Sci Transl Med 2022; 14:eabo4632. [DOI: 10.1126/scitranslmed.abo4632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cancer vaccines have been shown clinically to drive tumor-reactive cell activation, proliferation, and effector function. Unfortunately, tumor eradication by treatment with cancer vaccines has been unsuccessful in many patients. Critical steps are under way to improve vaccine efficacy and combine them with immunotherapy and standard-of-care treatments.
Collapse
Affiliation(s)
- Juraj Adamik
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, Suite D3500, 1 Letterman Drive, San Francisco, CA 94129, USA
| | - Lisa H. Butterfield
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, Suite D3500, 1 Letterman Drive, San Francisco, CA 94129, USA
| |
Collapse
|
6
|
Zhao J, Du G, Sun X. Tumor Antigen-Based Nanovaccines for Cancer Immunotherapy: A Review. J Biomed Nanotechnol 2021; 17:2099-2113. [PMID: 34906272 DOI: 10.1166/jbn.2021.3178] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As an important means of tumor immunotherapy, tumor vaccines have achieved exciting results in the past few decades. However, there are still many obstacles that hinder tumor vaccines from achieving maximum efficacy, including lack of tumor antigens, low antigen immunogenicity and poor delivery efficiency. To overcome these challenges, researchers have developed and investigated various new types of tumor antigens with higher antigenic specificity and broader antigen spectrum, such as tumor-specific peptide antigens, tumor lysates, tumor cell membrane, tumor associated exosomes, etc. At the same time, different nanoparticulate delivery platforms have been developed to increase the immunogenicity of the tumor antigens, for example by increasing their targeting efficiency of antigen-presenting cells and lymph nodes, and by co-delivering antigens with adjuvants. In this review, we summarized different types of the tumor antigens that have been reported, and introduced several nanovaccine strategies for increasing the immunogenicity of tumor antigens. The review of recent progress in these fields may provide reference for the follow-up studies of tumor antigen-based cancer immunotherapy.
Collapse
Affiliation(s)
- Jiaxuan Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
7
|
Kubo T, Shinkawa T, Kikuchi Y, Murata K, Kanaseki T, Tsukahara T, Hirohashi Y, Torigoe T. Fundamental and Essential Knowledge for Pathologists Engaged in the Research and Practice of Immune Checkpoint Inhibitor-Based Cancer Immunotherapy. Front Oncol 2021; 11:679095. [PMID: 34290982 PMCID: PMC8289279 DOI: 10.3389/fonc.2021.679095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022] Open
Abstract
Extensive research over 100 years has demonstrated that tumors can be eliminated by the autologous immune system. Without doubt, immunotherapy is now a standard treatment along with surgery, chemotherapy, and radiotherapy; however, the field of cancer immunotherapy is continuing to develop. The current challenges for the use of immunotherapy are to enhance its clinical efficacy, reduce side effects, and develop predictive biomarkers. Given that histopathological analysis provides molecular and morphological information on humans in vivo, its importance will continue to grow. This review article outlines the basic knowledge that is essential for the research and daily practice of immune checkpoint inhibitor-based cancer immunotherapy from the perspective of histopathology.
Collapse
Affiliation(s)
- Terufumi Kubo
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Tomoyo Shinkawa
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yasuhiro Kikuchi
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Kenji Murata
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Tomohide Tsukahara
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, School of Medicine, Sapporo Medical University, Sapporo, Japan
| |
Collapse
|
8
|
Georgantzoglou N, Kokkali S, Tsourouflis G, Theocharis S. Tumor Microenvironment in Adrenocortical Carcinoma: Barrier to Immunotherapy Success? Cancers (Basel) 2021; 13:1798. [PMID: 33918733 PMCID: PMC8069982 DOI: 10.3390/cancers13081798] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Adrenocortical carcinoma is a rare malignancy with aggressive behavior, with up to 40% of patients presenting with metastases at the time of diagnosis. Both conventional chemotherapeutic regimens and novel immunotherapeutic agents, many of which are currently being tested in ongoing clinical trials, have yielded modest results so far, bringing the need for a deeper understanding of adrenal cancer behavior to the forefront. In the recent years, the tumor microenvironment has emerged as a major determinant of cancer response to immunotherapy and an increasing number of studies on other solid tumors have focused on manipulating the microenvironment in the favor of the host and discovering new potential target molecules. In the present review we aim to explore the characteristics of adrenocortical cancer's microenvironment, highlighting the mechanisms of immune evasion responsible for the modest immunotherapeutic results, and identify novel potential strategies.
Collapse
Affiliation(s)
- Natalia Georgantzoglou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (N.G.); (S.K.)
| | - Stefania Kokkali
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (N.G.); (S.K.)
- First Medical Oncology Clinic, Saint-Savvas Anti Cancer Hospital, 115 27 Athens, Greece
| | - Gerasimos Tsourouflis
- Second Department of Propedeutic Surgery, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece; (N.G.); (S.K.)
| |
Collapse
|
9
|
Schijns V, Majhen D, van der Ley P, Thakur A, Summerfield A, Berisio R, Nativi C, Fernández-Tejada A, Alvarez-Dominguez C, Gizurarson S, Zamyatina A, Molinaro A, Rosano C, Jakopin Ž, Gursel I, McClean S. Rational Vaccine Design in Times of Emerging Diseases: The Critical Choices of Immunological Correlates of Protection, Vaccine Antigen and Immunomodulation. Pharmaceutics 2021; 13:501. [PMID: 33917629 PMCID: PMC8067490 DOI: 10.3390/pharmaceutics13040501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 01/21/2023] Open
Abstract
Vaccines are the most effective medical intervention due to their continual success in preventing infections and improving mortality worldwide. Early vaccines were developed empirically however, rational design of vaccines can allow us to optimise their efficacy, by tailoring the immune response. Establishing the immune correlates of protection greatly informs the rational design of vaccines. This facilitates the selection of the best vaccine antigens and the most appropriate vaccine adjuvant to generate optimal memory immune T cell and B cell responses. This review outlines the range of vaccine types that are currently authorised and those under development. We outline the optimal immunological correlates of protection that can be targeted. Finally we review approaches to rational antigen selection and rational vaccine adjuvant design. Harnessing current knowledge on protective immune responses in combination with critical vaccine components is imperative to the prevention of future life-threatening diseases.
Collapse
Affiliation(s)
- Virgil Schijns
- Intravacc, Institute for Translational Vaccinology (Intravacc), Utrecht Science Park, 3721 MA Bilthoven, The Netherlands;
- Epitopoietic Research Corporation (ERC), 5374 RE Schaijk, The Netherlands
| | - Dragomira Majhen
- Laboratory for Cell Biology and Signalling, Division of Molecular Biology, Ruđer Bošković Instiute, HR-10000 Zagreb, Croatia;
| | - Peter van der Ley
- Intravacc, Institute for Translational Vaccinology (Intravacc), Utrecht Science Park, 3721 MA Bilthoven, The Netherlands;
| | - Aneesh Thakur
- Department of Pharmacy, University of Copenhagen, 2100 Copenhagen, Denmark;
| | - Artur Summerfield
- Institute of Virology and Immunology, 3147 Mittelhausern, Switzerland;
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, I-80134 Naples, Italy;
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Alberto Fernández-Tejada
- Chemical Immunology Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Biscay Science and Technology Park, 48160 Derio-Bilbao, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Carmen Alvarez-Dominguez
- Facultativo en plantilla (Research Faculty), Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, University of Iceland, 107 Reykjavik, Iceland;
- Department of Pharmacy, College of Medicine, University of Malawi, Blantyre 3, Malawi
| | - Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria;
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, I-80126 Napoli, Italy;
- Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Policlinico San Martino, 16132 Genova-1, Italy;
| | - Žiga Jakopin
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubiljana, Slovenia;
| | - Ihsan Gursel
- Molecular Biology and Genetics Department, Science Faculty, Bilkent University, Bilkent, 06800 Ankara, Turkey;
| | - Siobhán McClean
- School of Biomolecular and Biomedical Sciences, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
10
|
Talty R, Olino K. Metabolism of Innate Immune Cells in Cancer. Cancers (Basel) 2021; 13:cancers13040904. [PMID: 33670082 PMCID: PMC7927092 DOI: 10.3390/cancers13040904] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Both cancer cells and immune cells depend on specific metabolic programs for their survival and function. Depending on which metabolic changes occur, immune cells can either promote or suppress the antitumor immune response. This review summarizes the metabolic pathways that polarize innate immune cells for immune activation or suppression and describes the current clinical applications of these findings. Abstract Cancer cells possess specific metabolic requirements for their survival, proliferation, and progression. Within a shared microenvironment, immune cells depend on competing metabolic pathways for their development and effector function. As a result, local acidification, hypoxia, and nutrient depletion in the tumor microenvironment can alter the antitumor immune response and even promote resistance to immunotherapies such as immune checkpoint blockade and adoptive cell transfer. Although T cells are the primary effectors of the antitumor response, growing evidence demonstrates that innate immune cells are critical to successful tumor clearance. This review aims to summarize current research related to the innate immune system, metabolism, and cancer. We first discuss the specific metabolic requirements of innate immune cells for immune activation and suppression and conclude by highlighting ongoing clinical applications of these findings.
Collapse
Affiliation(s)
- Ronan Talty
- Department of Pathology, Yale University, New Haven, CT 06520, USA;
| | - Kelly Olino
- Department of Surgery, Yale University, New Haven, CT 06520, USA
- Correspondence:
| |
Collapse
|
11
|
Lu L, Jiang J, Zhan M, Zhang H, Wang QT, Sun SN, Guo XK, Yin H, Wei Y, Li SY, Liu JO, Li Y, He YW. Targeting Tumor-Associated Antigens in Hepatocellular Carcinoma for Immunotherapy: Past Pitfalls and Future Strategies. Hepatology 2021; 73:821-832. [PMID: 32767586 DOI: 10.1002/hep.31502] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/23/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Ligong Lu
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong ProvinceP.R. China
| | - Jun Jiang
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Meixiao Zhan
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong ProvinceP.R. China
| | - Hui Zhang
- First Affiliated HospitalChina Medical UniversityShenyangChina
| | - Qian-Ting Wang
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Sheng-Nan Sun
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Xiao-Kai Guo
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Hua Yin
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong ProvinceP.R. China
| | - Yadong Wei
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD
| | - Shi-You Li
- Tricision Biotherapeutic Inc. Jinwan DistrictZhuhaiChina
| | - Jun O Liu
- Department of Pharmacology and Molecular SciencesJohns Hopkins University School of MedicineBaltimoreMD
| | - Yong Li
- Zhuhai Interventional Medical CenterZhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong ProvinceP.R. China
| | - You-Wen He
- Department of ImmunologyDuke University Medical University Medical CenterDurhamNC
| |
Collapse
|
12
|
Chen H, Yang G, Xiao J, Zheng L, You L, Zhang T. Neoantigen-based immunotherapy in pancreatic ductal adenocarcinoma (PDAC). Cancer Lett 2020; 490:12-19. [PMID: 32590021 DOI: 10.1016/j.canlet.2020.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 02/08/2023]
Abstract
Neoantigens generated in neoplasms are a type of protein completely absent in healthy tissues. Therefore, anti-tumor immunity targeting neoantigens is highly specific, which provides an optional approach to boost tumor immunotherapy. Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies in humans, with few efficient treatments to improve its prognosis. Therefore, immunotherapies reinforced by neoantigen-based strategies should be considered. In PDAC, the mutational burden is intermediate compared with other common malignancies, while the naturally formed tumor immunity is significantly inferior. Moreover, the high mutation load in PDAC correlates with a poor clinical prognosis, although the combination of a large mutation repertoire and competent T cell population is indispensable for long-term survival. In clinical practice, three strategies have been mainly used: peptide or tumor cell vaccines, neo-epitope-coding nucleotide vaccines, and dendritic cell vaccines. However, three major problems remain to be addressed, including (1) highly personalized protocols after sampling, (2) insufficient neoantigen quantity, and (3) ineffective immunotherapy of PDAC. In summary, neoantigen-based therapy of PDAC is increasing and the treatment methods are accompanied by great challenges. Currently, extensive development is needed for effective neoantigen-based therapy.
Collapse
Affiliation(s)
- Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; School of Medicine, Tsinghua University, 1 Tsinghua Yuan Haidian District, Beijing, 100084, China.
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
13
|
Liu X, Song C, Yang S, Ji Q, Chen F, Li W. IFI30 expression is an independent unfavourable prognostic factor in glioma. J Cell Mol Med 2020; 24:12433-12443. [PMID: 32969157 PMCID: PMC7686962 DOI: 10.1111/jcmm.15758] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/24/2019] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Gamma-interferon-inducible lysosomal thiol reductase, the only known lysosomal thiol reductase, is encoded by gene IFI30 and expressed constitutively in antigen-presenting cells. Our comprehensive study on IFI30 in gliomas found its expression to be high in glioblastomas and in gliomas with a mesenchymal subtype or wild-type isocitrate dehydrogenase, all of which indicated the malignancy and poor outcomes of gliomas. Kaplan-Meier survival analysis ascertained that high IFI30 expression conferred poor outcomes. The IFI30 expression levels also showed high efficiency in predicting 1-, 3- and 5-year overall survival. Univariable and multivariable Cox regression analyses were performed to define IFI30 as an independent prognostic marker. Biological process analysis suggested that IFI30 was involved in immune responses. ESTIMATE and CIBERSORT were applied to evaluate immune cell infiltration, with results indicating that samples with higher IFI30 expression had higher infiltration of immune cells, including regulatory T cells and M0 macrophages. Correlation analysis showed that IFI30 was significantly positively correlated with immune checkpoints that suppress effective antitumour immune responses. Immunohistochemical staining was also performed to confirm the association between IFI30 expression and the immune phenotype. The suggested correlation between high IFI30 expression and an immunosuppressive phenotype contributes to our knowledge about the glioma microenvironment and might provide clues for the development of novel therapeutic targets.
Collapse
Affiliation(s)
- Xiu Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunyan Song
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shoubo Yang
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qiang Ji
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Feng Chen
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Neurosurgery Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Wang QT, Nie Y, Sun SN, Lin T, Han RJ, Jiang J, Li Z, Li JQ, Xiao YP, Fan YY, Yuan XH, Zhang H, Zhao BB, Zeng M, Li SY, Liao HX, Zhang J, He YW. Tumor-associated antigen-based personalized dendritic cell vaccine in solid tumor patients. Cancer Immunol Immunother 2020; 69:1375-1387. [PMID: 32078016 DOI: 10.1007/s00262-020-02496-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
Tumor-associated antigens (TAAs) have been tested in various clinical trials in cancer treatment but the patterns of specific T cell response to personalized TAA immunization remains to be fully understood. We report antigen-specific T cell responses in patients immunized with dendritic cell vaccines pulsed with personalized TAA panels. Tumor samples from patients were first analyzed to identify overexpressed TAAs. Autologous DCs were then transfected with pre-manufactured mRNAs encoding the full-length TAAs, overexpressed in the patients' tumors. Patients with glioblastoma multiforme (GBM) or advanced lung cancer received DC vaccines transfected with personalized TAA panels, in combination with low-dose cyclophosphamide, poly I:C, imiquimod and anti-PD-1 antibody. Antigen-specific T cell responses were measured. Safety and efficacy were evaluated. A total of ten patients were treated with DC vaccines transfected with personalized TAA panels containing 3-13 different TAAs. Among the seven patients tested for anti-TAA T cell responses, most of the TAAs induced antigen-specific CD4+ and/or CD8+ T cell responses, regardless of their expression levels in the tumor tissues. No Grade III/IV adverse events were observed among these patients. Furthermore, the treated patients were associated with favorable overall survival when compared to patients who received standard treatment in the same institution. Personalized TAA immunization-induced-specific CD4+ and CD8+ T cell responses without obvious autoimmune adverse events and was associated with favorable overall survival. These results support further studies on DC immunization with personalized TAA panels for combined immunotherapeutic regimens in solid tumor patients.Trial registration ClinicalTrials.gov, NCT02709616 (March, 2016), NCT02808364 (June 2016), NCT02808416 (June, 2016).
Collapse
Affiliation(s)
- Qian-Ting Wang
- College of Life Science and Technology, Jinan University, Guangzhou, People's Republic of China.,Jinan University Affiliated Guangdong 999 Brain Hospital, Guangzhou, People's Republic of China
| | - Ying Nie
- Jinan University Affiliated Guangdong 999 Brain Hospital, Guangzhou, People's Republic of China
| | - Sheng-Nan Sun
- Beijing Tricision Biotherapeutics Corporation, Beijing, People's Republic of China
| | - Tao Lin
- Jinan University Affiliated Guangdong 999 Brain Hospital, Guangzhou, People's Republic of China
| | - Ru-Jin Han
- Jinan University Affiliated Guangdong 999 Brain Hospital, Guangzhou, People's Republic of China
| | - Jun Jiang
- Beijing Tricision Biotherapeutics Corporation, Beijing, People's Republic of China
| | - Zhe Li
- Jinan University Affiliated Guangdong 999 Brain Hospital, Guangzhou, People's Republic of China
| | - Jun-Qi Li
- College of Life Science and Technology, Jinan University, Guangzhou, People's Republic of China
| | - Yun-Peng Xiao
- Guangzhou Trinomab Biotechnology Corporation, Guangzhou, People's Republic of China
| | - Yu-Ying Fan
- Jinan University Affiliated Guangdong 999 Brain Hospital, Guangzhou, People's Republic of China
| | - Xiao-Hui Yuan
- College of Life Science and Technology, Jinan University, Guangzhou, People's Republic of China
| | - Hui Zhang
- First Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Bin-Bin Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Ming Zeng
- The Cancer Center, Sichuan Provincial People's Hospital, Chengdu, People's Republic of China
| | - Shi-You Li
- Beijing Tricision Biotherapeutics Corporation, Beijing, People's Republic of China
| | - Hua-Xin Liao
- College of Life Science and Technology, Jinan University, Guangzhou, People's Republic of China.
| | - Jian Zhang
- Jinan University Affiliated Guangdong 999 Brain Hospital, Guangzhou, People's Republic of China.
| | - You-Wen He
- Department of Immunology, Duke University Medical Center, Box 3010, Durham, NC, 27710, USA.
| |
Collapse
|
15
|
Hanna E, Dany M, Abbas O, Kreidieh F, Kurban M. Updates on the use of vaccines in dermatological conditions. Indian J Dermatol Venereol Leprol 2018; 84:388-402. [PMID: 29794355 DOI: 10.4103/ijdvl.ijdvl_1036_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Numerous vaccines are being actively developed for use in dermatologic diseases. Advances in the fields of immunotherapy, genetics and molecular medicine have allowed for the design of prophylactic and therapeutic vaccines with immense potential in managing infections and malignancies of the skin. This review addresses the different vaccines available for use in dermatological diseases and those under development for future potential use. The major limitation of our review is its complete reliance on published data. Our review is strictly limited to the availability of published research online through available databases. We do not cite any of the authors' previous publications nor have we conducted previous original research studies regarding vaccines in dermatology. Strength would have been added to our paper had we conducted original studies by our research team regarding the candidate vaccines delineated in the paper.
Collapse
Affiliation(s)
- Edith Hanna
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mohammed Dany
- Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ossama Abbas
- Department of Dermatology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Firas Kreidieh
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mazen Kurban
- Department of Dermatology, American University of Beirut Medical Center; Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon; Department of Dermatology, Columbia University, New York, USA
| |
Collapse
|
16
|
MHC class I presented antigens from malignancies: A perspective on analytical characterization & immunogenicity. J Proteomics 2018; 191:48-57. [PMID: 29698800 DOI: 10.1016/j.jprot.2018.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/10/2018] [Accepted: 04/14/2018] [Indexed: 12/17/2022]
Abstract
The field of cancer immunotherapy has expanded rapidly in the past few years, with many new approaches entering the clinic for T cell mediated killing of tumors. Several of these clinical approaches involve the exploitation of a CD8 + T cell response against MHC I presented tumor antigens. Here, we describe the types of tumor antigens which are considered as targets in the design of T cell based therapeutic approaches, the rationale for targeting MHC I antigens and the analytical tools commonly employed for the discovery of MHC I presented peptides. The advantages and disadvantages of each approach are discussed and a perspective on the future directions of the MHC I peptide exploration field and biotherapeutic strategies is given. SIGNIFICANCE: This work is the first time a review article has been written to summarize all the various types of tumor antigens, and the analytical tools employed to discover and characterize them.
Collapse
|
17
|
Doytchinova IA, Flower DR. In silico prediction of cancer immunogens: current state of the art. BMC Immunol 2018; 19:11. [PMID: 29544447 PMCID: PMC5856276 DOI: 10.1186/s12865-018-0248-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/06/2018] [Indexed: 01/22/2023] Open
Abstract
Cancer kills 8 million annually worldwide. Although survival rates in prevalent cancers continue to increase, many cancers have no effective treatment, prompting the search for new and improved protocols. Immunotherapy is a new and exciting addition to the anti-cancer arsenal. The successful and accurate identification of aberrant host proteins acting as antigens for vaccination and immunotherapy is a key aspiration for both experimental and computational research. Here we describe key elements of in silico prediction, including databases of cancer antigens and bleeding-edge methodology for their prediction. We also highlight the role dendritic cell vaccines can play and how they can act as delivery mechanisms for epitope ensemble vaccines. Immunoinformatics can help streamline the discovery and utility of Cancer Immunogens.
Collapse
Affiliation(s)
- Irini A. Doytchinova
- Faculty of Pharmacy, Medical University of Sofia, 2 Dunav st, 1000 Sofia, Bulgaria
| | - Darren R. Flower
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET UK
| |
Collapse
|
18
|
Müller M, Gfeller D, Coukos G, Bassani-Sternberg M. 'Hotspots' of Antigen Presentation Revealed by Human Leukocyte Antigen Ligandomics for Neoantigen Prioritization. Front Immunol 2017; 8:1367. [PMID: 29104575 PMCID: PMC5654951 DOI: 10.3389/fimmu.2017.01367] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/05/2017] [Indexed: 12/30/2022] Open
Abstract
The remarkable clinical efficacy of the immune checkpoint blockade therapies has motivated researchers to discover immunogenic epitopes and exploit them for personalized vaccines. Human leukocyte antigen (HLA)-binding peptides derived from processing and presentation of mutated proteins are one of the leading targets for T-cell recognition of cancer cells. Currently, most studies attempt to identify neoantigens based on predicted affinity to HLA molecules, but the performance of such prediction algorithms is rather poor for rare HLA class I alleles and for HLA class II. Direct identification of neoantigens by mass spectrometry (MS) is becoming feasible; however, it is not yet applicable to most patients and lacks sensitivity. In an attempt to capitalize on existing immunopeptidomics data and extract information that could complement HLA-binding prediction, we first compiled a large HLA class I and class II immunopeptidomics database across dozens of cell types and HLA allotypes and detected hotspots that are subsequences of proteins frequently presented. About 3% of the peptidome was detected in both class I and class II. Based on the gene ontology of their source proteins and the peptide's length, we propose that their processing may partake by the cellular class II presentation machinery. Our database captures the global nature of the in vivo peptidome averaged over many HLA alleles, and therefore, reflects the propensity of peptides to be presented on HLA complexes, which is complementary to the existing neoantigen prediction features such as binding affinity and stability or RNA abundance. We further introduce two immunopeptidomics MS-based features to guide prioritization of neoantigens: the number of peptides matching a protein in our database and the overlap of the predicted wild-type peptide with other peptides in our database. We show as a proof of concept that our immunopeptidomics MS-based features improved neoantigen prioritization by up to 50%. Overall, our work shows that, in addition to providing huge training data to improve the HLA binding prediction, immunopeptidomics also captures other aspects of the natural in vivo presentation that significantly improve prediction of clinically relevant neoantigens.
Collapse
Affiliation(s)
- Markus Müller
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - David Gfeller
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Ludwig Cancer Research Center, University of Lausanne, Epalinges, Switzerland
| | - George Coukos
- Ludwig Cancer Research Center, University of Lausanne, Epalinges, Switzerland.,Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Cancer Research Center, University of Lausanne, Epalinges, Switzerland.,Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
19
|
Stern PL. Is immunity in cancer the key to improving clinical outcome?: Report on the International Symposium on Immunotherapy, The Royal Society, London, UK, 12-13 May 2017. THERAPEUTIC ADVANCES IN VACCINES 2017; 5:55-68. [PMID: 28794878 DOI: 10.1177/2051013617720659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Peter L Stern
- Division of Molecular & Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Paterson Building, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
20
|
Turbocharging vaccines: emerging adjuvants for dendritic cell based therapeutic cancer vaccines. Curr Opin Immunol 2017; 47:35-43. [PMID: 28732279 DOI: 10.1016/j.coi.2017.06.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/22/2017] [Indexed: 12/19/2022]
Abstract
Development of therapeutic cancer vaccines has been hindered by the many pro-tumorigenic mechanisms at play in cancer patients that serve to suppress both antigen presenting cells and T cells. In face of these obstacles, cancer vaccines are most likely to promote anti-tumorigenic immune responses only when formulated with strong adjuvants, and in combination with new immune interventions designed to reverse immune suppression and exhaustion of T cells in the tumor microenvironment. Dendritic cells (DCs) are often termed 'nature's adjuvant' due to their exceptional capacity for initiating both innate and adaptive immune responses. Hence, the past decade has witnessed a flurry of activity in testing DC based immunotherapies for cancer intervention. In this review we will discuss advances in conventional adjuvants and provide insight into new adjuvants as they pertain to DC cancer therapy.
Collapse
|
21
|
Mehrotra S, Britten CD, Chin S, Garrett-Mayer E, Cloud CA, Li M, Scurti G, Salem ML, Nelson MH, Thomas MB, Paulos CM, Salazar AM, Nishimura MI, Rubinstein MP, Li Z, Cole DJ. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer. J Hematol Oncol 2017; 10:82. [PMID: 28388966 PMCID: PMC5384142 DOI: 10.1186/s13045-017-0459-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 03/30/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dendritic cells (DCs) enhance the quality of anti-tumor immune response in patients with cancer. Thus, we posit that DC-based immunotherapy, in conjunction with toll-like receptor (TLR)-3 agonist poly-ICLC, is a promising approach for harnessing immunity against metastatic or locally advanced unresectable pancreatic cancer (PC). METHODS We generated autologous DCs from the peripheral blood of HLA-A2+ patients with PC. DCs were pulsed with three distinct A2-restricted peptides: 1) human telomerase reverse transcriptase (hTERT, TERT572Y), 2) carcinoembryonic antigen (CEA; Cap1-6D), and 3) survivin (SRV.A2). Patients received four intradermal injections of 1 × 107 peptide-pulsed DC vaccines every 2 weeks (Day 0, 14, 28, and 42). Concurrently, patients received intramuscular administration of Poly-ICLC at 30 μg/Kg on vaccination days (i.e., day 0, 14, 28, and 42), as well as on days 3, 17, 21, 31, 37, and 45. Our key objective was to assess safety and feasibility. The effect of DC vaccination on immune response was measured at each DC injection time point by enumerating the phenotype and function of patient T cells. RESULTS Twelve patients underwent apheresis: nine patients with metastatic disease, and three patients with locally advanced unresectable disease. Vaccines were successfully manufactured from all individuals. We found that this treatment was well-tolerated, with the most common symptoms being fatigue and/or self-limiting flu-like symptoms. Among the eight patients who underwent imaging on day 56, four patients experienced stable disease while four patients had disease progression. The median overall survival was 7.7 months. One patient survived for 28 months post leukapheresis. MHC class I -tetramer analysis before and after vaccination revealed effective generation of antigen-specific T cells in three patients with stable disease. CONCLUSION Vaccination with peptide-pulsed DCs in combination with poly-ICLC is safe and induces a measurable tumor specific T cell population in patients with advanced PC. TRIAL REGISTRATION NCT01410968 ; Name of registry: clinicaltrials.gov; Date of registration: 08/04/2011).
Collapse
Affiliation(s)
- Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
- Present address: Gibbs Cancer Center and Research Institute, 380 Serpentine Drive, Spartanburg, SC, 29303, USA.
| | - Carolyn D Britten
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Steve Chin
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Present address: Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Elizabeth Garrett-Mayer
- Departmet of Population Sciences, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Colleen A Cloud
- Department of Surgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Mingli Li
- Department of Surgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
| | - Gina Scurti
- Department of Surgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Mohamed L Salem
- Center of Excellence in Cancer Research and Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Michelle H Nelson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Melanie B Thomas
- Division of Hematology/Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
- Present address: Gibbs Cancer Center and Research Institute, 380 Serpentine Drive, Spartanburg, SC, 29303, USA
| | - Chrystal M Paulos
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Andres M Salazar
- Oncovir Inc., 3202 Cleaveland Avenue NW, Washington, DC, 20008, USA
| | - Michael I Nishimura
- Department of Surgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
- Department of Surgery, Loyola University Medical Center, Maywood, IL, 60153, USA
| | - Mark P Rubinstein
- Department of Surgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Zihai Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - David J Cole
- Department of Surgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC, 29425, USA.
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, 29425, USA.
| |
Collapse
|
22
|
Dany M, Nganga R, Chidiac A, Hanna E, Matar S, Elston D. Advances in immunotherapy for melanoma management. Hum Vaccin Immunother 2016; 12:2501-2511. [PMID: 27454404 PMCID: PMC5085014 DOI: 10.1080/21645515.2016.1190889] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/26/2016] [Accepted: 05/13/2016] [Indexed: 12/31/2022] Open
Abstract
Melanoma remains a leading cause of death among young adults. Evidence that melanoma tumor cells are highly immunogenic and a better understanding of T-cell immune checkpoints have changed the therapeutic approach to advanced melanoma. Instead of targeting the tumor directly, immunotherapy targets and activates the immune response using checkpoint inhibitors, monoclonal antibodies, vaccines, and adoptive T cell therapy. This review focuses on the immune signaling and biological mechanisms of action of recent immune-based melanoma therapies as well as their clinical benefits.
Collapse
Affiliation(s)
- Mohammed Dany
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Rose Nganga
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Alissar Chidiac
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Edith Hanna
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Sara Matar
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Dirk Elston
- Department of Dermatology and Dermatologic Surgery, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|