1
|
Hsu CY, Pallathadka H, Jasim SA, Rizaev J, Olegovich Bokov D, Hjazi A, Mahajan S, Mustafa YF, Husseen B, Jawad MA. Innovations in cancer immunotherapy: A comprehensive overview of recent breakthroughs and future directions. Crit Rev Oncol Hematol 2025; 206:104588. [PMID: 39667718 DOI: 10.1016/j.critrevonc.2024.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/14/2024] Open
Abstract
A major advance in cancer treatment has been the development and refinement of cancer immunotherapy. The discovery of immunotherapies for a wide range of cancers has revolutionized cancer treatment paradigms. Despite relapse or refractory disease, immunotherapy approaches can prolong the life expectancy of metastatic cancer patients. Multiple therapeutic approaches and agents are currently being developed to manipulate various aspects of the immune system. Oncolytic viruses, cancer vaccines, adoptive cell therapies, monoclonal antibodies, cytokine therapies, and inhibitors of immune checkpoints have all proven successful in clinical trials. There are several types of immunotherapeutic approaches available for treating cancer, and others are being tested in preclinical and clinical settings. Immunotherapy has proven successful, and many agents and strategies have been developed to improve its effectiveness. The purpose of this article is to present a comprehensive overview of current immunotherapy approaches used to treat cancer. Cancer immunotherapy advancements, emerging patterns, constraints, and potential future breakthroughs are also discussed.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, AZ 85004, USA
| | | | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and medical technology, University of Al-maarif, Anbar, Iraq.
| | - Jasur Rizaev
- Department of Public health and Healthcare management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, Russia; Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Beneen Husseen
- Medical laboratory technique college, the Islamic University, Najaf, Iraq; Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | | |
Collapse
|
2
|
Hufbauer M, Rattay S, Hagen C, Quaas A, Pfister H, Hartmann G, Coch C, Akgül B. Poly(I:C) Treatment Prevents Skin Tumor Formation in the Preclinical HPV8 Transgenic Mouse Model. J Invest Dermatol 2023; 143:1197-1207.e3. [PMID: 36584911 DOI: 10.1016/j.jid.2022.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/21/2022] [Accepted: 12/09/2022] [Indexed: 12/28/2022]
Abstract
Actinic keratoses and cutaneous squamous cell carcinomas are associated with infections with human papillomavirus of genus beta (betaHPV) in immunosuppressed patients. To date, targeted therapy against betaHPV-associated skin cancer does not exist because of the large number of betaHPV without defined high-risk types. In this study, we hypothesized that the activation of innate antiviral immunity in the skin, asymptomatically infected with betaHPV, induces an antitumor response by in situ autovaccination and prevents the formation of betaHPV-associated skin cancer. To test this, we used the preclinical keratin-14-HPV8 transgenic mouse model, which develops skin tumors after mechanical wounding. Remarkably, treatment with the antiviral immune response activating polyinosinic-polycytidylic acid (poly[I:C]) completely prevented cutaneous tumor growth. The induction of the IFN-induced genes Cxcl10 and Ifit1 by poly(I:C) depended on MDA5 activation. Increased numbers of total and activated CD4 and CD8 T cells were detected in poly(I:C)-treated skin. T cells were found in the skin of poly(I:C)-treated mice but not in the skin tumors of untreated mice. T-cell depletion showed a predominant role of CD4 T cells in poly(I:C)-mediated tumor prevention. Our findings identify the MDA5 ligand poly(I:C) as a promising candidate for in situ autovaccination approaches, which might serve as a treatment strategy against betaHPV-related skin diseases.
Collapse
Affiliation(s)
- Martin Hufbauer
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Stephanie Rattay
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Christian Hagen
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany
| | - Alexander Quaas
- Institute of Pathology, University Hospital Cologne, Cologne, Germany
| | - Herbert Pfister
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
| | - Gunther Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany
| | - Christoph Coch
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany; nextevidence GmbH, Munich, Germany
| | - Baki Akgül
- Institute of Virology, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Seya T, Shingai M, Kawakita T, Matsumoto M. Two Modes of Th1 Polarization Induced by Dendritic-Cell-Priming Adjuvant in Vaccination. Cells 2023; 12:1504. [PMID: 37296625 PMCID: PMC10252737 DOI: 10.3390/cells12111504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Viral infections are usually accompanied by systemic cytokinemia. Vaccines need not necessarily mimic infection by inducing cytokinemia, but must induce antiviral-acquired immunity. Virus-derived nucleic acids are potential immune-enhancers and particularly good candidates as adjuvants in vaccines in mouse models. The most important nucleic-acid-sensing process involves the dendritic cell (DC) Toll-like receptor (TLR), which participates in the pattern recognition of foreign DNA/RNA structures. Human CD141+ DCs preferentially express TLR3 in endosomes and recognize double-stranded RNA. Antigen cross-presentation occurs preferentially in this subset of DCs (cDCs) via the TLR3-TICAM-1-IRF3 axis. Another subset, plasmacytoid DCs (pDCs), specifically expresses TLR7/9 in endosomes. They then recruit the MyD88 adaptor, and potently induce type I interferon (IFN-I) and proinflammatory cytokines to eliminate the virus. Notably, this inflammation leads to the secondary activation of antigen-presenting cDCs. Hence, the activation of cDCs via nucleic acids involves two modes: (i) with bystander effect of inflammation and (ii) without inflammation. In either case, the acquired immune response finally occurs with Th1 polarity. The level of inflammation and adverse events depend on the TLR repertoire and the mode of response to their agonists in the relevant DC subsets, and could be predicted by assessing the levels of cytokines/chemokines and T cell proliferation in vaccinated subjects. The main differences in the mode of vaccine sought in infectious diseases and cancer are defined by whether it is prophylactic or therapeutic, whether it can deliver sufficient antigens to cDCs, and how it behaves in the microenvironment of the lesion. Adjuvant can be selected on a case-to-case basis.
Collapse
Affiliation(s)
- Tsukasa Seya
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan;
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
| | - Masashi Shingai
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
- Division of Biologics Development, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- International Collaboration Unit, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Tomomi Kawakita
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
- Institute for Vaccine Research and Development (HU-IVReD), Hokkaido University, Sapporo 001-0021, Japan
| | - Misako Matsumoto
- Nebuta Research Institute for Life Sciences, Aomori University, Aomori 030-0943, Japan;
- Department of Vaccine Immunology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
- Division of Vaccine Immunology, Hokkaido University International Institute for Zoonosis Control, Sapporo 001-0020, Japan; (M.S.); (T.K.)
| |
Collapse
|
4
|
Yamaki H, Kono M, Wakisaka R, Komatsuda H, Kumai T, Hayashi R, Sato R, Nagato T, Ohkuri T, Kosaka A, Ohara K, Kishibe K, Takahara M, Hayashi T, Kobayashi H, Katada A. Brachyury-targeted immunotherapy combined with gemcitabine against head and neck cancer. Cancer Immunol Immunother 2023:10.1007/s00262-023-03460-0. [PMID: 37173455 DOI: 10.1007/s00262-023-03460-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Brachyury is a transcription factor belonging to the T-box gene family and is involved in the posterior formation of the mesoderm and differentiation of chordates. As the overexpression of Brachyury is a poor prognostic factor in a variety of cancers, the establishment of Brachyury-targeted therapy would be beneficial for the treatment of aggressive tumors. Because transcription factors are difficult to treat with a therapeutic antibody, peptide vaccines are a feasible approach for targeting Brachyury. In this study, we identified Brachyury-derived epitopes that elicit antigen-specific and tumor-reactive CD4+ T cells that directly kill tumors. T cells recognizing Brachyury epitopes were present in patients with head and neck squamous cell carcinoma. Next, we focused on gemcitabine (GEM) as an immunoadjuvant to augment the efficacy of antitumor responses by T cells. Interestingly, GEM upregulated HLA class I and HLA-DR expression in tumor, followed by the upregulation of anti-tumor T cell responses. As tumoral PD-L1 expression was also augmented by GEM, PD-1/PD-L1 blockade and GEM synergistically enhanced the tumor-reactivity of Brachyury-reactive T cells. The synergy between the PD-1/PD-L1 blockade and GEM was also confirmed in a mouse model of head and neck squamous cell carcinoma. These results suggest that the combined treatment of Brachyury peptide with GEM and immune checkpoint blockade could be a promising immunotherapy against head and neck cancer.
Collapse
Affiliation(s)
- Hidekiyo Yamaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan.
- Department of Innovative Head and Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan.
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Ryosuke Sato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
- Department of Innovative Head and Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa, 078-8510, Japan
| |
Collapse
|
5
|
Kciuk M, Yahya EB, Mohamed Ibrahim Mohamed M, Rashid S, Iqbal MO, Kontek R, Abdulsamad MA, Allaq AA. Recent Advances in Molecular Mechanisms of Cancer Immunotherapy. Cancers (Basel) 2023; 15:2721. [PMID: 37345057 DOI: 10.3390/cancers15102721] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 06/23/2023] Open
Abstract
Cancer is among the current leading causes of death worldwide, despite the novel advances that have been made toward its treatment, it is still considered a major public health concern. Considering both the serious impact of cancer on public health and the significant side effects and complications of conventional therapeutic options, the current strategies towards targeted cancer therapy must be enhanced to avoid undesired toxicity. Cancer immunotherapy has become preferable among researchers in recent years compared to conventional therapeutic options, such as chemotherapy, surgery, and radiotherapy. The understanding of how to control immune checkpoints, develop therapeutic cancer vaccines, genetically modify immune cells as well as enhance the activation of antitumor immune response led to the development of novel cancer treatments. In this review, we address recent advances in cancer immunotherapy molecular mechanisms. Different immunotherapeutic approaches are critically discussed, focusing on the challenges, potential risks, and prospects involving their use.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Esam Bashir Yahya
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | | | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muhammad Omer Iqbal
- Shandong Provincial Key Laboratory of Glycoscience and Glycoengineering, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Muhanad A Abdulsamad
- Department of Molecular Biology, Faculty of Science, Sabratha University, Sabratha 00218, Libya
| | - Abdulmutalib A Allaq
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam 40450, Malaysia
| |
Collapse
|
6
|
Komatsuda H, Wakisaka R, Kono M, Kumai T, Hayashi R, Yamaki H, Sato R, Nagato T, Ohkuri T, Kosaka A, Ohara K, Takahara M, Katada A, Kobayashi H. Mitogen-activated protein kinase inhibition augments the T cell response against HOXB7-expressing tumor through human leukocyte antigen upregulation. Cancer Sci 2022; 114:399-409. [PMID: 36285482 PMCID: PMC9899601 DOI: 10.1111/cas.15619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 01/07/2023] Open
Abstract
Homeobox B7 (HOXB7) is a master regulatory gene that regulates cell proliferation and activates oncogenic pathways. Overexpression of HOXB7 correlates with aggressive behavior and poor prognosis in patients with cancer. However, the expression and role of HOXB7 in head and neck squamous cell carcinoma (HNSCC) remain unclear. In this study, we observed that most samples from patients with oropharyngeal cancer and HNSCC expressed HOXB7. As no direct inhibitor has been reported, we identified a potent peptide epitope to target HOXB7-expressing tumors through immune cells. A novel HOXB7-derived peptide epitope (HOXB78-25 ) elicited antigen-specific and tumor-reactive promiscuous CD4+ T cell responses. These CD4+ T cells produced γ-interferon (IFN-γ) and had the direct ability to kill tumors through granzyme B. Notably, downregulation of HOXB7 using siRNA enhanced human leukocyte antigen class II expression on tumor cells by decreasing the phosphorylation of MAPK. Mitogen-activated protein kinase inhibition augmented IFN-γ production by HOXB7-reactive CD4+ T cell responses without decreasing the expression of HOXB7. These results suggest that combining HOXB7 peptide-based vaccine with MAPK inhibitors could be an effective immunological strategy for cancer treatment.
Collapse
Affiliation(s)
- Hiroki Komatsuda
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Risa Wakisaka
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Michihisa Kono
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Takumi Kumai
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan,Department of Innovative Head and Neck Cancer Research and TreatmentAsahikawa Medical UniversityAsahikawaJapan
| | - Ryusuke Hayashi
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Hidekiyo Yamaki
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Ryosuke Sato
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Toshihiro Nagato
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Takayuki Ohkuri
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Akemi Kosaka
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| | - Kenzo Ohara
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Miki Takahara
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan,Department of Innovative Head and Neck Cancer Research and TreatmentAsahikawa Medical UniversityAsahikawaJapan
| | - Akihiro Katada
- Department of Otolaryngology‐Head and Neck SurgeryAsahikawa Medical UniversityAsahikawaJapan
| | - Hiroya Kobayashi
- Department of PathologyAsahikawa Medical UniversityAsahikawaJapan
| |
Collapse
|
7
|
Jiang C, Li J, Zhang W, Zhuang Z, Liu G, Hong W, Li B, Zhang X, Chao CC. Potential association factors for developing effective peptide-based cancer vaccines. Front Immunol 2022; 13:931612. [PMID: 35967400 PMCID: PMC9364268 DOI: 10.3389/fimmu.2022.931612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 11/26/2022] Open
Abstract
Peptide-based cancer vaccines have been shown to boost immune systems to kill tumor cells in cancer patients. However, designing an effective T cell epitope peptide-based cancer vaccine still remains a challenge and is a major hurdle for the application of cancer vaccines. In this study, we constructed for the first time a library of peptide-based cancer vaccines and their clinical attributes, named CancerVaccine (https://peptidecancervaccine.weebly.com/). To investigate the association factors that influence the effectiveness of cancer vaccines, these peptide-based cancer vaccines were classified into high (HCR) and low (LCR) clinical responses based on their clinical efficacy. Our study highlights that modified peptides derived from artificially modified proteins are suitable as cancer vaccines, especially for melanoma. It may be possible to advance cancer vaccines by screening for HLA class II affinity peptides may be an effective therapeutic strategy. In addition, the treatment regimen has the potential to influence the clinical response of a cancer vaccine, and Montanide ISA-51 might be an effective adjuvant. Finally, we constructed a high sensitivity and specificity machine learning model to assist in designing peptide-based cancer vaccines capable of providing high clinical responses. Together, our findings illustrate that a high clinical response following peptide-based cancer vaccination is correlated with the right type of peptide, the appropriate adjuvant, and a matched HLA allele, as well as an appropriate treatment regimen. This study would allow for enhanced development of cancer vaccines.
Collapse
Affiliation(s)
- Chongming Jiang
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Chongming Jiang, ; Cheng-Chi Chao,
| | - Jianrong Li
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Wei Zhang
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | | | - Geng Liu
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Wei Hong
- Department of Medicine, Baylor College of Medicine, Houston TX, United States
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, United States
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, United States
| | - Bo Li
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Xiuqing Zhang
- Institute of Super Cell, BGI-Shenzhen, Shenzhen, China
| | - Cheng-Chi Chao
- Department of Pipeline Development, Biomap, Inc, San Francisco, CA, United States
- *Correspondence: Chongming Jiang, ; Cheng-Chi Chao,
| |
Collapse
|
8
|
Investigating the role of peptides in effective therapies against cancer. Cancer Cell Int 2022; 22:139. [PMID: 35346211 PMCID: PMC8962089 DOI: 10.1186/s12935-022-02553-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 12/03/2022] Open
Abstract
Early diagnosis and effective treatment of cancer are challenging. To diagnose and treat cancer effectively and to overcome these challenges, fundamental innovations in traditional diagnosis and therapy are necessary. Peptides can be very helpful in this regard due to their potential and diversity. To enhance the therapeutic potential of peptides, their limitations must be properly identified and their structures engineered and modified for higher efficiency. Promoting the bioavailability and stability of peptides is one of the main concerns. Peptides can also be effective in different areas of targeting, alone or with the help of other therapeutic agents. There has been a lot of research in this area, and the potential for variability of peptides will continue to improve this process. Another promising area in which peptides can help treat cancer is peptide vaccines, which are undergoing promising research, and high throughput technologies can lead to fundamental changes in this area. Peptides have been effective in almost all areas of cancer treatment, and some have even gone through clinical phases. However, many barriers need to be overcome to reach the desired point. The purpose of this review is to evaluate the mechanisms associated with peptides in the diagnosis and treatment of cancer. Therefore, related studies in this area will be discussed.
Collapse
|
9
|
Kumai T, Yamaki H, Kono M, Hayashi R, Wakisaka R, Komatsuda H. Antitumor Peptide-Based Vaccine in the Limelight. Vaccines (Basel) 2022; 10:vaccines10010070. [PMID: 35062731 PMCID: PMC8778374 DOI: 10.3390/vaccines10010070] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/07/2023] Open
Abstract
The success of the immune checkpoint blockade has provided a proof of concept that immune cells are capable of attacking tumors in the clinic. However, clinical benefit is only observed in less than 20% of the patients due to the non-specific activation of immune cells by the immune checkpoint blockade. Developing tumor-specific immune responses is a challenging task that can be achieved by targeting tumor antigens to generate tumor-specific T-cell responses. The recent advancements in peptide-based immunotherapy have encouraged clinicians and patients who are struggling with cancer that is otherwise non-treatable with current therapeutics. By selecting appropriate epitopes from tumor antigens with suitable adjuvants, peptides can elicit robust antitumor responses in both mice and humans. Although recent experimental data and clinical trials suggest the potency of tumor reduction by peptide-based vaccines, earlier clinical trials based on the inadequate hypothesis have misled that peptide vaccines are not efficient in eliminating tumor cells. In this review, we highlighted the recent evidence that supports the rationale of peptide-based antitumor vaccines. We also discussed the strategies to select the optimal epitope for vaccines and the mechanism of how adjuvants increase the efficacy of this promising approach to treat cancer.
Collapse
Affiliation(s)
- Takumi Kumai
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
- Correspondence: ; Tel.: +81-166-68-2554; Fax: +81-166-68-2559
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Midorigaoka-Higashi 2-1-1-1, Asahikawa 078-8510, Japan; (H.Y.); (M.K.); (R.H.); (R.W.); (H.K.)
| |
Collapse
|
10
|
Lauterbach H, Schmidt S, Katchar K, Qing X, Iacobucci C, Hwang A, Schlienger K, Berka U, Raguz J, Ahmadi-Erber S, Schippers T, Stemeseder F, Pinschewer DD, Matushansky I, Orlinger KK. Development and Characterization of a Novel Non-Lytic Cancer Immunotherapy Using a Recombinant Arenavirus Vector Platform. Front Oncol 2021; 11:732166. [PMID: 34722273 PMCID: PMC8551556 DOI: 10.3389/fonc.2021.732166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
Engineered viral vectors represent a promising strategy to trigger antigen-specific antitumor T cell responses. Arenaviruses have been widely studied because of their ability to elicit potent and protective T cell responses. Here, we provide an overview of a novel intravenously administered, replication-competent, non-lytic arenavirus-based vector technology that delivers tumor antigens to induce antigen-specific anti-cancer T cell responses. Preclinical studies in mice and cell culture experiments with human peripheral blood mononuclear cells demonstrate that arenavirus vectors preferentially infect antigen-presenting cells. This, in conjunction with a non-lytic functional activation of the infected antigen-presenting cells, leads to a robust antigen-specific CD8+ T cell response. T cell migration to, and infiltration of, the tumor microenvironment has been demonstrated in various preclinical tumor models with vectors encoding self- and non-self-antigens. The available data also suggest that arenavirus-based vector therapy can induce immunological memory protecting from tumor rechallenge. Based on promising preclinical data, a phase 1/2 clinical trial was initiated and is currently ongoing to test the activity and safety of arenavirus vectors, HB-201 and HB-202, created using lymphocytic choriomeningitis virus and Pichinde virus, respectively. Both vectors have been engineered to deliver non-oncogenic versions of the human papilloma virus 16 (HPV16) antigens E7 and E6 and will be injected intravenously with or without an initial intratumoral dose. This dose escalation/expansion study is being conducted in patients with recurrent or metastatic HPV16+ cancers. Promising preliminary data from this ongoing clinical study have been reported. Immunogenicity data from several patients demonstrate that a single injection of HB-201 or HB-202 monotherapy is highly immunogenic, as evidenced by an increase in inflammatory cytokines/chemokines and the expansion of antigen-specific CD8+ T cell responses. This response can be further enhanced by alternating injections of HB-202 and HB-201, which has resulted in frequencies of circulating HPV16 E7/E6-specific CD8+ T cells of up to 40% of the total CD8+ T cell compartment in peripheral blood in analyses to date. Treatment with intravenous administration also resulted in a disease control rate of 73% among 11 evaluable patients with head and neck cancer dosed every three weeks, including 2 patients with a partial response.
Collapse
Affiliation(s)
| | | | - Kia Katchar
- Hookipa Pharma Inc., New York, NY, United States
| | | | | | - Andy Hwang
- Hookipa Pharma Inc., New York, NY, United States
| | | | - Ursula Berka
- Hookipa Pharma Inc., New York, NY, United States
| | - Josipa Raguz
- Hookipa Pharma Inc., New York, NY, United States
| | | | | | | | - Daniel D Pinschewer
- Department of Biomedicine - Haus Petersplatz, Division of Experimental Virology, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
11
|
Veatch JR, Singhi N, Srivastava S, Szeto JL, Jesernig B, Stull SM, Fitzgibbon M, Sarvothama M, Yechan-Gunja S, James SE, Riddell SR. A therapeutic cancer vaccine delivers antigens and adjuvants to lymphoid tissues using genetically modified T cells. J Clin Invest 2021; 131:e144195. [PMID: 34396986 PMCID: PMC8363286 DOI: 10.1172/jci144195] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 07/01/2021] [Indexed: 12/13/2022] Open
Abstract
Therapeutic vaccines that augment T cell responses to tumor antigens have been limited by poor potency in clinical trials. In contrast, the transfer of T cells modified with foreign transgenes frequently induces potent endogenous T cell responses to epitopes in the transgene product, and these responses are undesirable, because they lead to rejection of the transferred T cells. We sought to harness gene-modified T cells as a vaccine platform and developed cancer vaccines composed of autologous T cells modified with tumor antigens and additional adjuvant signals (Tvax). T cells expressing model antigens and a broad range of tumor neoantigens induced robust and durable T cell responses through cross-presentation of antigens by host DCs. Providing Tvax with signals such as CD80, CD137L, IFN-β, IL-12, GM-CSF, and FLT3L enhanced T cell priming. Coexpression of IL-12 and GM-CSF induced the strongest CD4+ and CD8+ T cell responses through complimentary effects on the recruitment and activation of DCs, mediated by autocrine IL-12 receptor signaling in the Tvax. Therapeutic vaccination with Tvax and adjuvants showed antitumor activity in subcutaneous and metastatic preclinical mouse models. Human T cells modified with neoantigens readily activated specific T cells derived from patients, providing a path for clinical translation of this therapeutic platform in cancer.
Collapse
Affiliation(s)
- Joshua R Veatch
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Naina Singhi
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Shivani Srivastava
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Julia L Szeto
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Brenda Jesernig
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Sylvia M Stull
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | | | - Megha Sarvothama
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Sushma Yechan-Gunja
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA
| | - Scott E James
- Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Stanley R Riddell
- Clinical Research Division and Immunotherapy Integrated Research Center, Fred Hutchinson Cancer Research Center (FHCRC), Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Kono M, Kumai T, Hayashi R, Yamaki H, Komatsuda H, Wakisaka R, Nagato T, Ohkuri T, Kosaka A, Ohara K, Kishibe K, Takahara M, Katada A, Hayashi T, Celis E, Kobayashi H, Harabuchi Y. Interruption of MDM2 signaling augments MDM2-targeted T cell-based antitumor immunotherapy through antigen-presenting machinery. Cancer Immunol Immunother 2021; 70:3421-3434. [PMID: 33866408 DOI: 10.1007/s00262-021-02940-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Identification of immunogenic tumor antigens, their corresponding T cell epitopes and the selection of effective adjuvants are prerequisites for developing effective cancer immunotherapies such as therapeutic vaccines. Murine double minute 2 (MDM2) is an E3 ubiquitin-protein ligase that negatively regulates tumor suppressor p53. Because MDM2 overexpression serves as a poor prognosis factor in various types of tumors, it would be beneficial to develop MDM2-targeted cancer vaccines. In this report, we identified an MDM2-derived peptide epitope (MDM232-46) that elicited antigen-specific and tumor-reactive CD4+ T cell responses. These CD4+ T cells directly killed tumor cells via granzyme B. MDM2 is expressed in head and neck cancer patients with poor prognosis, and the T cells that recognize this MDM2 peptide were present in these patients. Notably, Nutlin-3 (MDM2-p53 blocker), inhibited tumor cell proliferation, was shown to augment antitumor T cell responses by increasing MDM2 expression, HLA-class I and HLA-DR through class II transactivator (CIITA). These results suggest that the use of this MDM2 peptide as a therapeutic vaccine combined with MDM2 inhibitors could represent an effective immunologic strategy to treat cancer.
Collapse
Affiliation(s)
- Michihisa Kono
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Takumi Kumai
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan. .,Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan.
| | - Ryusuke Hayashi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Hidekiyo Yamaki
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Hiroki Komatsuda
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Risa Wakisaka
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Toshihiro Nagato
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Takayuki Ohkuri
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Akemi Kosaka
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kenzo Ohara
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Kan Kishibe
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Akihiro Katada
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Tatsuya Hayashi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan.,Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University, Georgia Cancer Center, Augusta, GA, USA
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology-Head & Neck Surgery, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| |
Collapse
|
13
|
Tewary P, Brooks AD, Xu YM, Wijeratne EMK, Babyak AL, Back TC, Chari R, Evans CN, Henrich CJ, Meyer TJ, Edmondson EF, de Aquino MTP, Kanagasabai T, Shanker A, Gunatilaka AAL, Sayers TJ. Small-Molecule Natural Product Physachenolide C Potentiates Immunotherapy Efficacy by Targeting BET Proteins. Cancer Res 2021; 81:3374-3386. [PMID: 33837043 DOI: 10.1158/0008-5472.can-20-2634] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
Screening for sensitizers of cancer cells to TRAIL-mediated apoptosis identified a natural product of the 17β-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), as a promising hit. In this study, we show that PCC was also able to sensitize melanoma and renal carcinoma cells to apoptosis in response not only to TRAIL, but also to the synthetic polynucleotide poly I:C, a viral mimetic and immune activator, by reducing levels of antiapoptotic proteins cFLIP and Livin. Both death receptor and TLR3 signaling elicited subsequent increased assembly of a proapoptotic ripoptosome signaling complex. Administration of a combination of PCC and poly I:C in human M14 melanoma xenograft and a syngeneic B16 melanoma model provided significant therapeutic benefit as compared with individual agents. In addition, PCC enhanced melanoma cell death in response to activated human T cells in vitro and in vivo in a death ligand-dependent manner. Biochemical mechanism-of-action studies established bromo and extraterminal domain (BET) proteins as major cellular targets of PCC. Thus, by targeting of BET proteins to reduce antiapoptotic proteins and enhance caspase-8-dependent apoptosis of cancer cells, PCC represents a unique agent that can potentially be used in combination with various immunotherapeutic approaches to promote tumor regression and improve outcome. SIGNIFICANCE: These findings demonstrate that PCC selectively sensitizes cancer cells to immune-mediated cell death, potentially improving the efficacy of cancer immunotherapies. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3374/F1.large.jpg.
Collapse
Affiliation(s)
- Poonam Tewary
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Alan D Brooks
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona
| | | | - Timothy C Back
- Cancer and Inflammation Program, NCI, Frederick, Maryland
| | - Raj Chari
- Genome Modification Core Laboratory Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Christine N Evans
- Genome Modification Core Laboratory Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Curtis J Henrich
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas J Meyer
- CCR Collaborative Bioinformatics Resource, NCI, NIH, Bethesda, Maryland.,Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Elijah F Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Maria T Prudente de Aquino
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee
| | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee.,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee.,Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, The University of Arizona, Tucson, Arizona.
| | - Thomas J Sayers
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
14
|
Lin D, He H, Sun J, He X, Long W, Cui X, Sun Y, Zhao S, Zheng X, Zeng Z, Zhang K, Wang H. Co-delivery of PSMA antigen epitope and mGM-CSF with a cholera toxin-like chimeric protein suppressed prostate tumor growth via activating dendritic cells and promoting CTL responses. Vaccine 2021; 39:1609-1620. [PMID: 33612342 DOI: 10.1016/j.vaccine.2021.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 01/22/2023]
Abstract
Subunit vaccines derived from tumor antigens play a role in tumor therapy because of their unique advantages. However, because of the weak immunogenicity of peptides in subunit vaccines, it is difficult to trigger an effective cytotoxic T lymphocyte (CTL) response, which is critical for cancer therapy. A requirement for the activation of CTL cells by exogenous antigens is the stimulation of antigen presenting cells (APC) with the help of adjuvants and cross-presentation to T lymphocytes. Standard nonconjugated adjuvant-peptide mixtures do not ensure co-targeting of the antigen and the adjuvant to the same APC, which limits the effects of adjuvants. In this study, a fusion protein consisting of murine granulocyte-macrophage colony stimulating factor (mGM-CSF) fused with CTA2 (A2 subunit of cholera toxin) was generated and assembled with CTB-PSMA624-632 (prostate specific membrane antigen (PSMA) peptide 624-632 fused to CTB) to obtain a cholera toxin-like protein. The chimeric protein retained the biological activity of mGM-CSF and had stronger GM1 binding activity than (CTB-PSMA624-632)5. C57BL/6J mice immunized with the CT-like chimeric protein exhibited delayed tumor growth following challenge with human PSMA-EGFP-expressing RM-1 cells. Experiment results showed that the CT-like chimeric protein could induce the maturation of DC cells and improve CTL responses. Overall, these results indicate that the nasal administration of a CT-like chimeric protein vaccine results in the development of effective immunity against prostate tumor cells and might be useful for future clinical anti-tumoral applications.
Collapse
Affiliation(s)
- Danmin Lin
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Huafeng He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Jiajie Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xianying He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Wei Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiping Cui
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yunxiao Sun
- Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, PR China
| | - Suqing Zhao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xi Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zheng Zeng
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, PR China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China; School of Biotechnology and Health, Wuyi University, Jiangmen 529020, PR China
| | - Huaqian Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
15
|
Salazar AM, Celis E. Double-Stranded RNA Immunomodulators in Prostate Cancer. Urol Clin North Am 2021; 47:e1-e8. [PMID: 33446322 DOI: 10.1016/j.ucl.2020.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Relatively simple, synthetic, double-stranded RNAs can be powerful viral pathogen-associated molecular pattern (PAMP) mimics, inducing a panoply of antiviral and antitumor responses that act at multiple stages of host defense. Their mechanisms of action and uses are beginning to be understood, alone, in combination with other therapeutics, or as novel PAMP-adjuvants providing the critical danger signal that has been missing from most cancer and other modern vaccines. Dose, timing, route of administration combinations, and other clinical variables can have a critical impact on immunogenicity. This article reviews advances in the use of polyinosinic-polycytidylic acid and derivatives, in particular poly-ICLC.
Collapse
Affiliation(s)
- Andres M Salazar
- Oncovir, Inc, 3203 Cleveland Avenue Northwest, Washington, DC 20008, USA.
| | - Esteban Celis
- Department of Medicine, Medical College of Georgia, Oncovir, Inc, 1410 Laney Walker Boulevard, CN4121, Augusta, GA 30912, USA
| |
Collapse
|
16
|
Piazza SM, Reynolds MR, Chiaramonte J, Xu P, Chapa-Villarreal FA, Trant JF. Efficient and reproducible synthesis of an Fmoc-protected Tn antigen. NEW J CHEM 2021. [DOI: 10.1039/d1nj01173a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glycoconjugate ready for solid-phase-peptide synthesis is scalably accessible using a palladium-mediated glycosylation.
Collapse
Affiliation(s)
- Sabrina M. Piazza
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Michael R. Reynolds
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Jonathan Chiaramonte
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Peihan Xu
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Fabiola A. Chapa-Villarreal
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - John F. Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
17
|
Lynn GM, Sedlik C, Baharom F, Zhu Y, Ramirez-Valdez RA, Coble VL, Tobin K, Nichols SR, Itzkowitz Y, Zaidi N, Gammon JM, Blobel NJ, Denizeau J, de la Rochere P, Francica BJ, Decker B, Maciejewski M, Cheung J, Yamane H, Smelkinson MG, Francica JR, Laga R, Bernstock JD, Seymour LW, Drake CG, Jewell CM, Lantz O, Piaggio E, Ishizuka AS, Seder RA. Peptide-TLR-7/8a conjugate vaccines chemically programmed for nanoparticle self-assembly enhance CD8 T-cell immunity to tumor antigens. Nat Biotechnol 2020; 38:320-332. [PMID: 31932728 PMCID: PMC7065950 DOI: 10.1038/s41587-019-0390-x] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 12/10/2019] [Indexed: 12/16/2022]
Abstract
Personalized cancer vaccines targeting patient-specific neoantigens are a promising cancer treatment modality; however, neoantigen physicochemical variability can present challenges to manufacturing personalized cancer vaccines in an optimal format for inducing anticancer T cells. Here, we developed a vaccine platform (SNP-7/8a) based on charge-modified peptide-TLR-7/8a conjugates that are chemically programmed to self-assemble into nanoparticles of uniform size (~20 nm) irrespective of the peptide antigen composition. This approach provided precise loading of diverse peptide neoantigens linked to TLR-7/8a (adjuvant) in nanoparticles, which increased uptake by and activation of antigen-presenting cells that promote T-cell immunity. Vaccination of mice with SNP-7/8a using predicted neoantigens (n = 179) from three tumor models induced CD8 T cells against ~50% of neoantigens with high predicted MHC-I binding affinity and led to enhanced tumor clearance. SNP-7/8a delivering in silico-designed mock neoantigens also induced CD8 T cells in nonhuman primates. Altogether, SNP-7/8a is a generalizable approach for codelivering peptide antigens and adjuvants in nanoparticles for inducing anticancer T-cell immunity.
Collapse
Affiliation(s)
- Geoffrey M Lynn
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
- Avidea Technologies, Inc, Baltimore, MD, USA.
| | - Christine Sedlik
- Institut Curie, PSL Research University, Paris, France
- Centre d'Investigation Clinique Biothérapie, Institut Curie, Paris, France
| | - Faezzah Baharom
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Yaling Zhu
- Avidea Technologies, Inc, Baltimore, MD, USA
| | - Ramiro A Ramirez-Valdez
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Kennedy Tobin
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | | | - Neeha Zaidi
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Joshua M Gammon
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Nicolas J Blobel
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jordan Denizeau
- Institut Curie, PSL Research University, Paris, France
- Centre d'Investigation Clinique Biothérapie, Institut Curie, Paris, France
| | - Philippe de la Rochere
- Institut Curie, PSL Research University, Paris, France
- Centre d'Investigation Clinique Biothérapie, Institut Curie, Paris, France
| | - Brian J Francica
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Tempest Therapeutics, San Francisco, CA, USA
| | | | | | - Justin Cheung
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Hidehiro Yamane
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Margery G Smelkinson
- Biological Imaging Section, Research Technologies Branch, NIAID, NIH, Bethesda, MD, USA
| | - Joseph R Francica
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Richard Laga
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Joshua D Bernstock
- Avidea Technologies, Inc, Baltimore, MD, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard University, Boston, MA, USA
| | | | - Charles G Drake
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Christopher M Jewell
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Olivier Lantz
- Institut Curie, PSL Research University, Paris, France
- Centre d'Investigation Clinique Biothérapie, Institut Curie, Paris, France
| | - Eliane Piaggio
- Institut Curie, PSL Research University, Paris, France
- Centre d'Investigation Clinique Biothérapie, Institut Curie, Paris, France
| | - Andrew S Ishizuka
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
- Avidea Technologies, Inc, Baltimore, MD, USA
| | - Robert A Seder
- Vaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
18
|
Boettcher AN, Usman A, Morgans A, VanderWeele DJ, Sosman J, Wu JD. Past, Current, and Future of Immunotherapies for Prostate Cancer. Front Oncol 2019; 9:884. [PMID: 31572678 PMCID: PMC6749031 DOI: 10.3389/fonc.2019.00884] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men, and the second leading cause of cancer related death in men in Western countries. The standard therapy for metastatic PCa is androgen suppression therapy (AST). Men undergoing AST eventually develop metastatic castration-resistant prostate cancer (mCRPC), of which there are limited treatment options available. Immunotherapy has presented substantial benefits for many types of cancer, but only a marginal benefit for mCRPC, at least in part, due to the immunosuppressive tumor microenvironment (TME). Current clinical trials are investigating monotherapies or combination therapies involving adoptive cellular therapy, viral, DNA vaccines, oncolytic viruses, and immune checkpoint inhibitors (ICI). Immunotherapies are also being combined with chemotherapy, radiation, and AST. Additionally, preclinical investigations show promise with the recent description of alternative ways to circumvent the immunosuppressive nature of the prostate tumor microenvironment, including harnessing the immune stimulatory NKG2D pathway, inhibiting myeloid derived suppressor cells, and utilizing immunomodulatory oncolytic viruses. Herein we provide an overview of recent preclinical and clinical developments in cancer immunotherapies and discuss the perspectives for future immunotherapies in PCa.
Collapse
Affiliation(s)
- Adeline N. Boettcher
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ahmed Usman
- Department of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alicia Morgans
- Department of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - David J. VanderWeele
- Department of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeffrey Sosman
- Department of Hematology and Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jennifer D. Wu
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
19
|
Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines. NPJ Vaccines 2019; 4:7. [PMID: 30774998 PMCID: PMC6368616 DOI: 10.1038/s41541-019-0103-y] [Citation(s) in RCA: 467] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Recent advances in several areas are rekindling interest and enabling progress in the development of therapeutic cancer vaccines. These advances have been made in target selection, vaccine technology, and methods for reversing the immunosuppressive mechanisms exploited by cancers. Studies testing different tumor antigens have revealed target properties that yield high tumor versus normal cell specificity and adequate immunogenicity to affect clinical efficacy. A few tumor-associated antigens, normal host proteins that are abnormally expressed in cancer cells, have been demonstrated to serve as good targets for immunotherapies, although many do not possess the needed specificity or immunogenicity. Neoantigens, which arise from mutated proteins in cancer cells, are truly cancer-specific and can be highly immunogenic, though the vast majority are unique to each patient's cancer and thus require development of personalized therapies. Lessons from previous cancer vaccine expeditions are teaching us the type and magnitude of immune responses needed, as well as vaccine technologies that can achieve these responses. For example, we are learning which vaccine approaches elicit the potent, balanced, and durable CD4 plus CD8 T cell expansion necessary for clinical efficacy. Exploration of interactions between the immune system and cancer has elucidated the adaptations that enable cancer cells to suppress and evade immune attack. This has led to breakthroughs in the development of new drugs, and, subsequently, to opportunities to combine these with cancer vaccines and dramatically increase patient responses. Here we review this recent progress, highlighting key steps that are bringing the promise of therapeutic cancer vaccines within reach.
Collapse
Affiliation(s)
| | - Kathrin Jansen
- Vaccines Research and Development, Pfizer, Pearl River, NY 10965 USA
| |
Collapse
|
20
|
Cordeiro AS, Crecente-Campo J, Bouzo BL, González SF, de la Fuente M, Alonso MJ. Engineering polymeric nanocapsules for an efficient drainage and biodistribution in the lymphatic system. J Drug Target 2019; 27:646-658. [DOI: 10.1080/1061186x.2018.1561886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ana Sara Cordeiro
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS) Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - José Crecente-Campo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS) Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| | - Belén L. Bouzo
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS) Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), CIBERONC, Santiago de Compostela, Spain
| | - Santiago F. González
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - María de la Fuente
- Nano-Oncology Unit, Translational Medical Oncology Group, Health Research Institute of Santiago de Compostela (IDIS), Clinical University Hospital of Santiago de Compostela (CHUS), CIBERONC, Santiago de Compostela, Spain
| | - María José Alonso
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS) Health Research Institute of Santiago de Compostela (IDIS), School of Pharmacy, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, Spain
| |
Collapse
|
21
|
The route of administration dictates the immunogenicity of peptide-based cancer vaccines in mice. Cancer Immunol Immunother 2019; 68:455-466. [PMID: 30604041 DOI: 10.1007/s00262-018-02294-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/24/2018] [Indexed: 12/26/2022]
Abstract
Vaccines consisting of synthetic peptides representing cytotoxic T-lymphocyte (CTL) epitopes have long been considered as a simple and cost-effective approach to treat cancer. However, the efficacy of these vaccines in the clinic in patients with measurable disease remains questionable. We believe that the poor performance of peptide vaccines is due to their inability to generate sufficiently large CTL responses that are required to have a positive impact against established tumors. Peptide vaccines to elicit CTLs in the clinic have routinely been administered in the same manner as vaccines designed to induce antibody responses: injected subcutaneously and in many instances using Freund's adjuvant. We report here that peptide vaccines and poly-ICLC adjuvant administered via the unconventional intravenous route of immunization generate substantially higher CTL responses as compared to conventional subcutaneous injections, resulting in more successful antitumor effects in mice. Furthermore, amphiphilic antigen constructs such as palmitoylated peptides were shown to be better immunogens than long peptide constructs, which now are in vogue in the clinic. The present findings if translated into the clinical setting could help dissipate the wide-spread skepticism of whether peptide vaccines will ever work to treat cancer.
Collapse
|
22
|
Paßlick D, Piradashvili K, Bamberger D, Li M, Jiang S, Strand D, R. Wich P, Landfester K, Bros M, Grabbe S, Mailänder V. Delivering all in one: Antigen-nanocapsule loaded with dual adjuvant yields superadditive effects by DC-directed T cell stimulation. J Control Release 2018; 289:23-34. [DOI: 10.1016/j.jconrel.2018.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/13/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
|
23
|
Pardi N, Hogan MJ, Naradikian MS, Parkhouse K, Cain DW, Jones L, Moody MA, Verkerke HP, Myles A, Willis E, LaBranche CC, Montefiori DC, Lobby JL, Saunders KO, Liao HX, Korber BT, Sutherland LL, Scearce RM, Hraber PT, Tombácz I, Muramatsu H, Ni H, Balikov DA, Li C, Mui BL, Tam YK, Krammer F, Karikó K, Polacino P, Eisenlohr LC, Madden TD, Hope MJ, Lewis MG, Lee KK, Hu SL, Hensley SE, Cancro MP, Haynes BF, Weissman D. Nucleoside-modified mRNA vaccines induce potent T follicular helper and germinal center B cell responses. J Exp Med 2018; 215:1571-1588. [PMID: 29739835 PMCID: PMC5987916 DOI: 10.1084/jem.20171450] [Citation(s) in RCA: 366] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/25/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022] Open
Abstract
T follicular helper (Tfh) cells are required to develop germinal center (GC) responses and drive immunoglobulin class switch, affinity maturation, and long-term B cell memory. In this study, we characterize a recently developed vaccine platform, nucleoside-modified, purified mRNA encapsulated in lipid nanoparticles (mRNA-LNPs), that induces high levels of Tfh and GC B cells. Intradermal vaccination with nucleoside-modified mRNA-LNPs encoding various viral surface antigens elicited polyfunctional, antigen-specific, CD4+ T cell responses and potent neutralizing antibody responses in mice and nonhuman primates. Importantly, the strong antigen-specific Tfh cell response and high numbers of GC B cells and plasma cells were associated with long-lived and high-affinity neutralizing antibodies and durable protection. Comparative studies demonstrated that nucleoside-modified mRNA-LNP vaccines outperformed adjuvanted protein and inactivated virus vaccines and pathogen infection. The incorporation of noninflammatory, modified nucleosides in the mRNA is required for the production of large amounts of antigen and for robust immune responses.
Collapse
Affiliation(s)
- Norbert Pardi
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael J Hogan
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Martin S Naradikian
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kaela Parkhouse
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Letitia Jones
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - M Anthony Moody
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Hans P Verkerke
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Arpita Myles
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Elinor Willis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | - Jenna L Lobby
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kevin O Saunders
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | | | - Laura L Sutherland
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Richard M Scearce
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | | | - István Tombácz
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Hiromi Muramatsu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Houping Ni
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel A Balikov
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, Canada
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Patricia Polacino
- Washington National Primate Research Center, University of Washington, Seattle, WA
| | - Laurence C Eisenlohr
- Department of Pathology, The Children's Hospital of Philadelphia, Philadelphia, PA
| | | | | | | | - Kelly K Lee
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Shiu-Lok Hu
- Washington National Primate Research Center, University of Washington, Seattle, WA.,Department of Pharmaceutics, University of Washington, Seattle, WA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael P Cancro
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
24
|
Rodríguez-Ruiz M, Perez-Gracia J, Rodríguez I, Alfaro C, Oñate C, Pérez G, Gil-Bazo I, Benito A, Inogés S, López-Diaz de Cerio A, Ponz-Sarvise M, Resano L, Berraondo P, Barbés B, Martin-Algarra S, Gúrpide A, Sanmamed M, de Andrea C, Salazar A, Melero I. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann Oncol 2018; 29:1312-1319. [DOI: 10.1093/annonc/mdy089] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
25
|
Role of MDA5 and interferon-I in dendritic cells for T cell expansion by anti-tumor peptide vaccines in mice. Cancer Immunol Immunother 2018; 67:1091-1103. [PMID: 29696308 DOI: 10.1007/s00262-018-2164-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/20/2018] [Indexed: 11/26/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) are effective components of the immune system capable of destroying tumor cells. Generation of CTLs using peptide vaccines is a practical approach to treat cancer. We have previously described a peptide vaccination strategy that generates vast numbers of endogenous tumor-reactive CTLs after two sequential immunizations (prime-boost) using poly-ICLC adjuvant, which stimulates endosomal toll-like receptor 3 (TLR3) and cytoplasmic melanoma differentiation antigen 5 (MDA5). Dendritic cells (DCs) play an important role not only in antigen presentation but are critical in generating costimulatory cytokines that promote CTL expansion. Poly-ICLC was shown to be more effective than poly-IC in generating type-I interferon (IFN-I) in various DC subsets, through its enhanced ability to escape the endosomal compartment and stimulate MDA5. In our system, IFN-I did not directly function as a T cell costimulatory cytokine, but enhanced CTL expansion through the induction of IL15. With palmitoylated peptide vaccines, CD8α+ DCs were essential for peptide crosspresentation. For vaccine boosts, non-professional antigen-presenting cells were able to present minimal epitope peptides, but DCs were still required for CTL expansions through the production of IFN-I mediated by poly-ICLC. Overall, these results clarify the roles of DCs, TLR3, MDA5, IFN-I and IL15 in the generation of vast and effective antitumor CTL responses using peptide and poly-IC vaccines.
Collapse
|
26
|
Knuschke T, Rotan O, Bayer W, Kollenda S, Dickow J, Sutter K, Hansen W, Dittmer U, Lang KS, Epple M, Buer J, Westendorf AM. Induction of Type I Interferons by Therapeutic Nanoparticle-Based Vaccination Is Indispensable to Reinforce Cytotoxic CD8 + T Cell Responses During Chronic Retroviral Infection. Front Immunol 2018; 9:614. [PMID: 29740425 PMCID: PMC5924795 DOI: 10.3389/fimmu.2018.00614] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/12/2018] [Indexed: 11/29/2022] Open
Abstract
T cell dysfunction and immunosuppression are characteristic for chronic viral infections and contribute to viral persistence. Overcoming these burdens is the goal of new therapeutic strategies to cure chronic infectious diseases. We recently described that therapeutic vaccination of chronic retrovirus infected mice with a calcium phosphate (CaP) nanoparticle (NP)-based vaccine carrier, functionalized with CpG and viral peptides is able to efficiently reactivate the CD8+ T cell response and improve the eradication of virus infected cells. However, the mechanisms underlying this effect were largely unclear. While type I interferons (IFNs I) are considered to drive T cell exhaustion by persistent immune activation during chronic viral infection, we here describe an indispensable role of IFN I induced by therapeutic vaccination to efficiently reinforce cytotoxic CD8+ T cells (CTL) and improve control of chronic retroviral infection. The induction of IFN I is CpG dependent and leads to significant IFN signaling indicated by upregulation of IFN stimulated genes. By vaccinating chronically retrovirus-infected mice lacking the IFN I receptor (IFNAR−/−) or by blocking IFN I signaling in vivo during therapeutic vaccination, we demonstrate that IFN I signaling is necessary to drive full reactivation of CTLs. Surprisingly, we also identified an impaired suppressive capability of regulatory T cells in the presence of IFNα, which implicates an important role for vaccine-induced IFNα in the regulation of the T cell response during chronic retroviral infection. Our data suggest that inducing IFN I signaling in conjunction with the presentation of viral antigens can reactivate immune functions and reduce viral loads in chronic infections. Therefore, we propose CaP NPs as potential therapeutic tool to treat chronic infections.
Collapse
Affiliation(s)
- Torben Knuschke
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Olga Rotan
- Institute of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Wibke Bayer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Kollenda
- Institute of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Julia Dickow
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karl S Lang
- Institute for Immunology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Matthias Epple
- Institute of Inorganic Chemistry, Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Essen, Germany
| | - Jan Buer
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
27
|
Sultan H, Kumai T, Fesenkova VI, Fan AE, Wu J, Cho HI, Kobayashi H, Harabuchi Y, Celis E. Sustained Persistence of IL2 Signaling Enhances the Antitumor Effect of Peptide Vaccines through T-cell Expansion and Preventing PD-1 Inhibition. Cancer Immunol Res 2018; 6:617-627. [PMID: 29483127 DOI: 10.1158/2326-6066.cir-17-0549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/09/2018] [Accepted: 02/22/2018] [Indexed: 12/26/2022]
Abstract
Peptide vaccines can be a successful and cost-effective way of generating T-cell responses against defined tumor antigens, especially when combined with immune adjuvants such as poly-IC. However, strong immune adjuvants can induce a collateral increase in numbers of irrelevant, nonspecific T cells, which limits the effectiveness of the peptide vaccines. Here, we report that providing prolonged IL2 signaling in the form of either IL2/anti-IL2 complexes or pegylated IL2 overcomes the competitive suppressive effect of irrelevant T cells, allowing the preferential expansion of antigen-specific T cells. In addition to increasing the number of tumor-reactive T cells, sustained IL2 enhanced the ability of T cells to resist PD-1-induced negative signals, increasing the therapeutic effectiveness of the vaccines against established tumors. This vaccination strategy using peptides and sustained IL2 could be taken into the clinic for the treatment of cancer. Cancer Immunol Res; 6(5); 617-27. ©2018 AACR.
Collapse
Affiliation(s)
- Hussein Sultan
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University Georgia Cancer Center, Augusta, Georgia
| | - Takumi Kumai
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.,Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan.,Department of Innovative Research for Diagnosis and Treatment of Head and Neck Cancer, Asahikawa Medical University, Asahikawa, Japan
| | - Valentyna I Fesenkova
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University Georgia Cancer Center, Augusta, Georgia
| | - Aaron E Fan
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University Georgia Cancer Center, Augusta, Georgia
| | - Juan Wu
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University Georgia Cancer Center, Augusta, Georgia
| | - Hyun-Il Cho
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Augusta University Georgia Cancer Center, Augusta, Georgia.
| |
Collapse
|
28
|
Bedke J, Stenzl A, Rausch S. AGS-003 combined with sunitinib for the precision treatment of metastatic renal cell carcinoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017. [DOI: 10.1080/23808993.2017.1375852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jens Bedke
- Department of Urology, Eberhard Karls University, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, Eberhard Karls University, Tübingen, Germany
| | - Steffen Rausch
- Department of Urology, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
29
|
Johnson V, Webb T, Norman A, Coy J, Kurihara J, Regan D, Dow S. Activated Mesenchymal Stem Cells Interact with Antibiotics and Host Innate Immune Responses to Control Chronic Bacterial Infections. Sci Rep 2017; 7:9575. [PMID: 28851894 PMCID: PMC5575141 DOI: 10.1038/s41598-017-08311-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022] Open
Abstract
Chronic bacterial infections associated with biofilm formation are often difficult to resolve without extended courses of antibiotic therapy. Mesenchymal stem cells (MSC) exert antibacterial activity in vitro and in acute bacterial infection models, but their activity in chronic infection with biofilm models has not been previously investigated. Therefore, we studied the effects of MSC administration in mouse and dog models of chronic infections associated with biofilms. Mice with chronic Staphylococcus aureus implant infections were treated by i.v. administration of activated or non-activated MSC, with or without antibiotic therapy. The most effective treatment protocol was identified as activated MSC co-administered with antibiotic therapy. Activated MSC were found to accumulate in the wound margins several days after i.v. administration. Macrophages in infected tissues assumed an M2 phenotype, compared to untreated infections which contained predominately M1 macrophages. Bacterial killing by MSC was found to be mediated in part by secretion of cathelicidin and was significantly increased by antibiotics. Studies in pet dogs with spontaneous chronic multi drug-resistant wound infections demonstrated clearance of bacteria and wound healing following repeated i.v. administration of activated allogeneic canine MSC. Thus, systemic therapy with activated MSC may be an effective new, non-antimicrobial approach to treatment of chronic, drug-resistant infections.
Collapse
Affiliation(s)
- Valerie Johnson
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Tracy Webb
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Annalis Norman
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Jonathan Coy
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Jade Kurihara
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Daniel Regan
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Steven Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA.
| |
Collapse
|
30
|
New Insights in the Design of Bioactive Peptides and Chelating Agents for Imaging and Therapy in Oncology. Molecules 2017; 22:molecules22081282. [PMID: 28767081 PMCID: PMC6152110 DOI: 10.3390/molecules22081282] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022] Open
Abstract
Many synthetic peptides have been developed for diagnosis and therapy of human cancers based on their ability to target specific receptors on cancer cell surface or to penetrate the cell membrane. Chemical modifications of amino acid chains have significantly improved the biological activity, the stability and efficacy of peptide analogues currently employed as anticancer drugs or as molecular imaging tracers. The stability of somatostatin, integrins and bombesin analogues in the human body have been significantly increased by cyclization and/or insertion of non-natural amino acids in the peptide sequences. Moreover, the overall pharmacokinetic properties of such analogues and others (including cholecystokinin, vasoactive intestinal peptide and neurotensin analogues) have been improved by PEGylation and glycosylation. Furthermore, conjugation of those peptide analogues to new linkers and bifunctional chelators (such as AAZTA, TETA, TRAP, NOPO etc.), produced radiolabeled moieties with increased half life and higher binding affinity to the cognate receptors. This review describes the most important and recent chemical modifications introduced in the amino acid sequences as well as linkers and new bifunctional chelators which have significantly improved the specificity and sensitivity of peptides used in oncologic diagnosis and therapy.
Collapse
|
31
|
Effective antitumor peptide vaccines can induce severe autoimmune pathology. Oncotarget 2017; 8:70317-70331. [PMID: 29050282 PMCID: PMC5642557 DOI: 10.18632/oncotarget.19688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
Immunotherapy has shown a tremendous success in treating cancer. Unfortunately, this success is frequently associated with severe autoimmune pathology. In this study, we used the transgenic RIP-gp mouse model to assess the antitumor therapeutic benefit of peptide vaccination while evaluating the possible associated autoimmune pathology. We report that palmitoylated gp33-41 peptide and poly-IC adjuvant vaccine (BiVax) generated ∼ 5-10 % of antigen specific T cell responses in wild type and supposedly immune tolerant RIP-gp mice. Boosting with BiVax in combination with αCD40 antibody (TriVax) or BiVax in combination with IL-2/αIL-2 antibody complexes (IL2Cx) significantly increased the immune responses (∼30-50%). Interestingly, although both boosts were equally effective in generating vast T cell responses, BiVax/IL2Cx showed better control of tumor growth than TriVax. However, this effect was associated with high incidence of diabetes in an antigen and CD8 dependent fashion. T cell responses generated by BiVax/IL2Cx, but not those generated by TriVax were highly resistant to PD-1/PD-L1 inhibitory signals. Nevertheless, PD-1 blockade enhanced the ability of TriVax to control tumor growth but increased the incidence of diabetes. Finally, we show that severe autoimmunity by BiVax/IL2Cx was prevented while preserving outstanding antitumor responses by utilizing a tumor antigen not expressed in the pancreas. Our data provides a clear evidence that peptide based vaccines can expand vast endogenous T cell responses which effectively control tumor growth but with high potential of autoimmune pathology.
Collapse
|
32
|
Kumai T, Kobayashi H, Harabuchi Y, Celis E. Peptide vaccines in cancer-old concept revisited. Curr Opin Immunol 2016; 45:1-7. [PMID: 27940327 DOI: 10.1016/j.coi.2016.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/15/2016] [Accepted: 11/21/2016] [Indexed: 02/04/2023]
Abstract
Synthetic peptide vaccines aim to elicit and expand tumor-specific T cells capable of controlling or eradicating the tumor. Despite the high expectations based on preclinical studies, the results of clinical trials using peptide vaccines have been disappointing. Thus, many researchers in the field have considered peptide vaccines as outdated and no longer viable for cancer therapy. However, recent progress in understanding the critical roles of immune adjuvants, modes of vaccine administration and T cell dynamics has lead to a rebirth of this approach and reconsidering the use of peptide vaccines for treating malignant disorders.
Collapse
Affiliation(s)
- Takumi Kumai
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States; Department of Pathology, Asahikawa Medical University, Asahikawa, Japan; Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan; Department of Innovative Research for Diagnosis and Treatment of Head & Neck Cancer, Japan
| | - Hiroya Kobayashi
- Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuaki Harabuchi
- Department of Otolaryngology, Head and Neck Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Esteban Celis
- Cancer Immunology, Inflammation and Tolerance Program, Georgia Cancer Center, Augusta University, Augusta, GA, United States.
| |
Collapse
|
33
|
Is There Still Room for Cancer Vaccines at the Era of Checkpoint Inhibitors. Vaccines (Basel) 2016; 4:vaccines4040037. [PMID: 27827885 PMCID: PMC5192357 DOI: 10.3390/vaccines4040037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Checkpoint inhibitor (CPI) blockade is considered to be a revolution in cancer therapy, although most patients (70%–80%) remain resistant to this therapy. It has been hypothesized that only tumors with high mutation rates generate a natural antitumor T cell response, which could be revigorated by this therapy. In patients with no pre-existing antitumor T cells, a vaccine-induced T cell response is a rational option to counteract clinical resistance. This hypothesis has been validated in preclinical models using various cancer vaccines combined with inhibitory pathway blockade (PD-1-PDL1-2, CTLA-4-CD80-CD86). Enhanced T cell infiltration of various tumors has been demonstrated following this combination therapy. The timing of this combination appears to be critical to the success of this therapy and multiple combinations of immunomodulating antibodies (CPI antagonists or costimulatory pathway agonists) have reinforced the synergy with cancer vaccines. Only limited results are available in humans and this combined approach has yet to be validated. Comprehensive monitoring of the regulation of CPI and costimulatory molecules after administration of immunomodulatory antibodies (anti-PD1/PD-L1, anti-CTLA-4, anti-OX40, etc.) and cancer vaccines should help to guide the selection of the best combination and timing of this therapy.
Collapse
|