1
|
Nigen B, Bodergat T, Vaugier L, Pons-Tostivint E. [First-line immunotherapy in non-small cell lung cancer diagnosed with brain metastases]. Rev Mal Respir 2024; 41:571-582. [PMID: 38926022 DOI: 10.1016/j.rmr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Up to 30% patients newly diagnosed with advanced non-small cell lung cancer (NSCLC) present with brain metastases. In the absence of oncogenic addiction, first-line immunotherapy, alone or in combination with chemotherapy, is the current standard of care. This review aims to synthesize the available data regarding the efficacy of immunotherapy in these patients, and to discuss the possibility of its being coordinated with local treatments such as radiotherapy. STATE OF THE ART NSCLC patients with brain metastases appear to have survival benefits with immunotherapy similar to those of NSCLC patients without brain metastases. However, this finding is based on mainly prospective studies having included highly selected patients with pre-treated and stable brain metastases. Several retrospective studies and two prospective single-arm studies have confirmed the intracranial efficacy of immunotherapy, either alone or in combination with chemotherapy. PERSPECTIVES The indications and optimal timing for cerebral radiotherapy remain subjects of debate. To date, there exists no randomized study assessing the addition of brain radiotherapy to first-line immunotherapy. That said, a recent meta-analysis showed increased intracerebral response when radiotherapy complemented immunotherapy. CONCLUSIONS For NSCLC patients with brain metastases, the available data suggest a clear benefit of first-line immunotherapy, whether alone or combined with chemotherapy. However, most of these data are drawn from retrospective, non-randomized studies with small sample sizes.
Collapse
Affiliation(s)
- B Nigen
- Service de pneumologie, centre hospitalier Les Sables-d'Olonne, Les Sables-d'Olonne, France
| | - T Bodergat
- Oncologie médicale, centre hospitalier universitaire Nantes, Nantes université, Nantes, France
| | - L Vaugier
- Département de radiothérapie, institut de cancérologie de l'Ouest, Saint-Herblain, France
| | - E Pons-Tostivint
- Oncologie médicale, centre hospitalier universitaire Nantes, Nantes université, Nantes, France; Nantes université, Inserm UMR 1307, CNRS UMR 6075, université d'Angers, CRCI2NA, Nantes, France.
| |
Collapse
|
2
|
Wang B, Hu S, Teng Y, Chen J, Wang H, Xu Y, Wang K, Xu J, Cheng Y, Gao X. Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduct Target Ther 2024; 9:200. [PMID: 39128942 PMCID: PMC11323968 DOI: 10.1038/s41392-024-01889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/04/2024] [Accepted: 06/02/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer remains a significant risk to human health. Nanomedicine is a new multidisciplinary field that is garnering a lot of interest and investigation. Nanomedicine shows great potential for cancer diagnosis and treatment. Specifically engineered nanoparticles can be employed as contrast agents in cancer diagnostics to enable high sensitivity and high-resolution tumor detection by imaging examinations. Novel approaches for tumor labeling and detection are also made possible by the use of nanoprobes and nanobiosensors. The achievement of targeted medication delivery in cancer therapy can be accomplished through the rational design and manufacture of nanodrug carriers. Nanoparticles have the capability to effectively transport medications or gene fragments to tumor tissues via passive or active targeting processes, thus enhancing treatment outcomes while minimizing harm to healthy tissues. Simultaneously, nanoparticles can be employed in the context of radiation sensitization and photothermal therapy to enhance the therapeutic efficacy of malignant tumors. This review presents a literature overview and summary of how nanotechnology is used in the diagnosis and treatment of malignant tumors. According to oncological diseases originating from different systems of the body and combining the pathophysiological features of cancers at different sites, we review the most recent developments in nanotechnology applications. Finally, we briefly discuss the prospects and challenges of nanotechnology in cancer.
Collapse
Affiliation(s)
- Bilan Wang
- Department of Pharmacy, Evidence-based Pharmacy Center, Children's Medicine Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Shiqi Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Yan Teng
- Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, P.R. China
| | - Junli Chen
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Haoyuan Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yezhen Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Kaiyu Wang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yongzhong Cheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
3
|
Noureldine MHA, Shimony N, Jallo GI. Malignant Spinal Tumors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:565-581. [PMID: 37452954 DOI: 10.1007/978-3-031-23705-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Malignant spinal tumors constitute around 22% of all primary spinal tumors. The most common location of metastases to the spinal region is the extradural compartment. The molecular and genetic characterization of these tumors was the basis for the updated WHO classification of CNS tumors in 2016, where many CNS tumors are now diagnosed according to their genetic profile rather than relying solely on the histopathological appearance. Magnetic resonance imaging (MRI) is the current gold standard for the initial evaluation and subsequent follow-up on intradural spinal cord tumors, and the imaging sequences must include T2-weighted images (WI), short time inversion recovery (STIR), and pre- and post-contrast T1-WI in the axial, sagittal, and coronal planes. The clinical presentation is highly variable and depends on the tumor size, growth rate, type, infiltrative, necrotic and hemorrhagic potential as well as the exact location within the spinal compartment. Surgical intervention remains the mainstay of management of symptomatic and radiographically enlarging spinal tumors, where the goal is to achieve maximal safe resection. Tumor recurrences are managed with repeat surgical resection (preferred whenever possible and safe), radiotherapy, chemotherapy, or any combination of these therapies.
Collapse
Affiliation(s)
- Mohammad Hassan A Noureldine
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
- Johns Hopkins University School of Medicine, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, USA
| | - Nir Shimony
- Johns Hopkins University School of Medicine, Institute for Brain Protection Sciences, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, USA
- Geisinger Medical Center, Institute of Neuroscience, Geisinger Commonwealth School of Medicine, Danville, PA, USA
| | - George I Jallo
- Institute for Brain Protections Sciences, Johns Hopkins All Children's Hospital, Saint Petersburg, FL, USA.
| |
Collapse
|
4
|
Differentiation of Intracerebral Tumor Entities with Quantitative Contrast Attenuation and Iodine Mapping in Dual-Layer Computed Tomography. Diagnostics (Basel) 2022; 12:diagnostics12102494. [PMID: 36292183 PMCID: PMC9601196 DOI: 10.3390/diagnostics12102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: To investigate if quantitative contrast enhancement and iodine mapping of common brain tumor (BT) entities may correctly differentiate between tumor etiologies in standardized stereotactic CT protocols. Material and Methods: A retrospective monocentric study of 139 consecutive standardized dual-layer dual-energy CT (dlDECT) scans conducted prior to the stereotactic needle biopsy of untreated primary brain tumor lesions. Attenuation of contrast-enhancing BT was derived from polyenergetic images as well as spectral iodine density maps (IDM) and their contrast-to-noise-ratios (CNR) were determined using ROI measures in contrast-enhancing BT and healthy contralateral white matter. The measures were correlated to histopathology regarding tumor entity, isocitrate dehydrogenase (IDH) and MGMT mutation status. Results: The cohort included 52 female and 76 male patients, mean age of 59.4 (±17.1) years. Brain lymphomas showed the highest attenuation (IDM CNR 3.28 ± 1,23), significantly higher than glioblastoma (2.37 ± 1.55, p < 0.005) and metastases (1.95 ± 1.14, p < 0.02), while the differences between glioblastomas and metastases were not significant. These strongly enhancing lesions differed from oligodendroglioma and astrocytoma (Grade II and III) that showed IDM CNR in the range of 1.22−1.27 (±0.45−0.82). Conventional attenuation measurements in DLCT data performed equally or slightly superior to iodine density measurements. Conclusion: Quantitative attenuation and iodine density measurements of contrast-enhancing brain tumors are feasible imaging biomarkers for the discrimination of cerebral tumor lesions but not specifically for single tumor entities. CNR based on simple HU measurements performed equally or slightly superior to iodine quantification.
Collapse
|
5
|
Chen R, Wu W, Liu T, Zhao Y, Wang Y, Zhang H, Wang Z, Dai Z, Zhou X, Luo P, Zhang J, Liu Z, Zhang LY, Cheng Q. Large-scale bulk RNA-seq analysis defines immune evasion mechanism related to mast cell in gliomas. Front Immunol 2022; 13:914001. [PMID: 36159780 PMCID: PMC9492887 DOI: 10.3389/fimmu.2022.914001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence has demonstrated that the immune cells have an emerging role in controlling anti-tumor immune responses and tumor progression. The comprehensive role of mast cell in glioma has not been illustrated yet. In this study, 1,991 diffuse glioma samples were collected from The Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA). xCell algorithm was employed to define the mast cell-related genes. Based on mast cell-related genes, gliomas were divided into two clusters with distinct clinical and immunological characteristics. The survival probability of cluster 1 was significantly lower than that of cluster 2 in the TCGA dataset, three CGGA datasets, and the Xiangya cohort. Meanwhile, the hypoxic and metabolic pathways were active in cluster 1, which were beneficial to the proliferation of tumor cells. A potent prognostic model based on mast cell was constructed. Via machine learning, DRG2 was screened out as a characteristic gene, which was demonstrated to predict treatment response and predict survival outcome in the Xiangya cohort. In conclusion, mast cells could be used as a potential effective prognostic factor for gliomas.
Collapse
Affiliation(s)
- Rui Chen
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Liu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yihan Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yifan Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Hao Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxi Zhou
- Department of Neurosurgery, Affiliated Nanhua Hospital, University of South China, Hengyang, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, China
| | - Li-Yang Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Quan Cheng, ; Liyang Zhang,
| | - Quan Cheng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
- *Correspondence: Quan Cheng, ; Liyang Zhang,
| |
Collapse
|
6
|
Ullah MA, Tabassum T, Farzana M, Moin AT, Zohora US, Rahman MS. Expression analysis, molecular characterization and prognostic evaluation on TMED4 and TMED9 gene expression in glioma. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Agarwal P, Beale OM, Zhang X, Sandlesh P, Jaman E, Amankulor N. Machine Learning Identification of Immunotherapy Targets in Low-Grade Glioma using RNA Sequencing Expression Data. World Neurosurg 2022; 163:e349-e362. [PMID: 35390499 DOI: 10.1016/j.wneu.2022.03.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/28/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Immunotherapy has revolutionized cancer treatment in the past decade, but significant hurdles remain. Human studies with immune checkpoint inhibitors (ICIs) targeting programmed cell death protein have demonstrated suboptimal efficacy in the setting of low-grade gliomas (LGG). Identification of mechanisms leading to inadequate anti-tumor immunity is paramount. The current study evaluates and validates barriers to immunotherapy using a novel machine learning algorithm. METHODS We utilized The Cancer Genome Atlas (TCGA) to generate expression levels of 28 immune genes related to known immunotherapeutic targets or lymphocyte cytolytic activity. We created training and testing groups and three machine learning models to determine the genes most highly correlated to cytolytic activity (CYT). The three models were multiple regression by exhaustive selection, LASSO, and random forest. We validated computational results by comparing expression of pertinent genes in patient-derived glioma samples. RESULTS Our models demonstrated linearity, a low mean-squared error, and consistent results with respect to the most important variables. Expression of ICOS, IDO1, and CD40 were the most important variables in all models and demonstrated positive correlation with CYT. Other variables included TIGIT and CD137. Genetic analysis from three IDH-mutants (IDHm) and three IDH-wild type (IDHwt) patient-derived glioma samples validated TCGA data and demonstrated lower levels of CYT in IDHm gliomas compared to IDHwt. CONCLUSION This novel methodology has elucidated three potential targets for immunotherapy development in LGG. We also demonstrated a novel method of analyzing data using advanced statistical techniques that can be further employed in developing treatments for other diseases as well.
Collapse
Affiliation(s)
- Prateek Agarwal
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA
| | - Oliver M Beale
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA
| | - Xiaoran Zhang
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA
| | - Poorva Sandlesh
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA
| | - Emade Jaman
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA
| | - Nduka Amankulor
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA.
| |
Collapse
|
8
|
RFC2: a prognosis biomarker correlated with the immune signature in diffuse lower-grade gliomas. Sci Rep 2022; 12:3122. [PMID: 35210438 PMCID: PMC8873322 DOI: 10.1038/s41598-022-06197-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022] Open
Abstract
Diffuse lower-grade gliomas (LGG) represent the highly heterogeneous and infiltrative neoplasms in the central nervous system (CNS). Replication factor C 2 (RFC2) is a subunit of the RFC complex that modulates DNA replication and repair. However, the prognosis value of RFC2 and its association with the immune signature of tumor microenvironment (TME) in LGG remains unknown. Based on Oncomine, TCGA, GTEx, TIMER, GEPIA, and HPA databases, we evaluated RFC2 expression levels and its clinical prognostic value in LGG and other cancers. Then we analyzed the correlations between RFC2 expression and tumor mutation burden (TMB), tumor microsatellite instability (MSI), and mismatch repair (MMR) genes across cancers. And CIBERSORT and ESTIMATE algorithms were conducted to estimate the association of RFC2 with immune cell infiltration of LGG. Additionally, we performed the functional enrichment analyses of RFC2 in LGG. Then functional experiments were employed to further validate the oncogenic role of RFC2 in LGG. Our results showed that RFC2 was widely highly expressed in most types of cancer. And its expression was closely related to the clinicopathological features and prognosis in LGG and other cancer types. RFC2 levels were also correlated with TMB and MSI across various cancers. Furthermore, RFC2 was positively associated with the infiltration levels of immune cells and immune checkpoint genes in LGG. Additionally, in vitro experiments revealed that RFC2 played an oncogenic role in LGG progression. In conclusion, our findings revealed that RFC2 could serve as a reliable biomarker to predict the prognosis and immune signature for LGG.
Collapse
|
9
|
Ullah MA, Alam S, Farzana M, Tayab Moin A, Binte Sayed Prapty CN, Zohora US, Rahman MS. Prognostic and therapeutic value of LSM5 gene in human brain cancer Glioma: An omics database exploration approach. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
10
|
Chen Z, Wu H, Yang H, Fan Y, Zhao S, Zhang M. Identification and validation of RNA-binding protein-related gene signature revealed potential associations with immunosuppression and drug sensitivity in glioma. Cancer Med 2021; 10:7418-7439. [PMID: 34482648 PMCID: PMC8525098 DOI: 10.1002/cam4.4248] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/31/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022] Open
Abstract
Background Glioma is the most common central nervous system tumor in adults, and a considerable part of them are high‐degree ones with high malignancy and poor prognosis. At present, the classification and treatment of glioma are mainly based on its histological characteristics, so studies at the molecular level are needed. Methods RNA‐seq data from The Cancer Genome Atlas (TCGA) datasets (n = 703) and Chinese Glioma Genome Atlas (CGGA) were utilized to find out the differentially expressed RNA‐binding proteins (RBPs) between normal cerebral tissue and glioma. A prediction system for the prognosis of glioma patients based on 11 RBPs was established and validated using uni‐ and multi‐variate Cox regression analyses. STITCH and CMap databases were exploited to identify putative drugs and their targets. Single sample gene set enrichment analysis (ssGSEA) was used to calculate scores of specific immune‐related gene sets. IC50 of over 20,000 compounds in 60 cancer cell lines was collected from the CellMiner database to test the drug sensitivity prediction value of the RBP‐based signature. Results We established a reliable prediction system for the prognosis of glioma patients based on 11 RBPs including THOC3, LSM11, SARNP, PABPC1L2B, SMN1, BRCA1, ZC3H8, DZIP1L, HEXIM2, LARP4B, and ZC3H12B. These RBPs were primarily associated with ribosome and post‐transcriptional regulation. RBP‐based risk scores were closely related to immune cells and immune function. We also confirmed the potential of the signature to predict the drug sensitivity of currently approved or evaluated drugs. Conclusions Differentially expressed RBPs in glioma can be used as a basis for prognosis prediction, new drugs screening and drug sensitivity prediction. As RBP‐based glioma risk scores were associated with immunity, immunotherapy may become an important treatment for glioma in the future.
Collapse
Affiliation(s)
- Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haiyue Wu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Haojun Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Songfeng Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
11
|
Liu D, Cheng G, Ma X, Wang S, Zhao X, Zhang W, Yang W, Wang J. PET/CT using 68 Ga-PSMA-617 versus 18 F-fluorodeoxyglucose to differentiate low- and high-grade gliomas. J Neuroimaging 2021; 31:733-742. [PMID: 34021667 DOI: 10.1111/jon.12856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND AND PURPOSE To compare and characterize metabolic features of high- and low-grade glioma tumors using 68 Ga-PSMA-617 and 18 F-FDG positron emission tomography/computed tomography (PET/CT). METHODS Thirty patients who underwent both 68 Ga-PSMA-617 and 18 F-FDG PET/CT over 2 consecutive days and then underwent surgical treatment were retrospectively identified. All tumors were diagnosed histologically. This report includes 16 high-grade glioma (HGG) and 14 low-grade glioma (LGG) tumors. Standard uptake value (SUV) and target to nontarget (T/NT) were quantitatively investigated through the entire tumor region. Statistical analyses were performed using area under the curve (AUC) and comparison of two means. RESULTS SUVmax and SUVmean were the most effective (AUC, 0.96 and 0.94 for PSMA PET; AUC, 0.79 and 0.74 for FDG PET, respectively) for differentiating HGGs from LGGs. These methods distinguished between HGG and LGG effectively (PSMA PET: SUVmax , 5.766 ± 3.945 vs. 0.7364 ± 0.5295, p < 0.0001; SUVmean , 1.666 ± 1.680 and 0.1514 ± 0.1534, p < 0.0001, respectively) (FDG PET: SUVmax , 11.67 ± 3.639 and 9.118 ± 6.612; SUVmean , 5.648 ± 2.114 and 4.435 ± 2.872; p = 0.0083, 0.0262, respectively). The Youden index for SUVmax and SUVmean of 68 Ga-PSMA-617 and 18 F-FDG were 0.82 and 0.79 and 0.54 and 0.61, separately. T/NTmax was helpful for visual inspection of 68 Ga-PSMA-617-PET images (T/NTmax : 1.291 ± 0.9553 in grade II, 5.25 ± 2.435 in grade III, and 13.61 ± 13.84 in grade IV). T/NTmax differed significantly between LGG and HGG and between subtypes of LGG. CONCLUSION PET/CT with 68 Ga-PSMA-617 and 18 F-FDG may help distinguish between HGG and LGG, and 68 Ga-PSMA-617 PET/CT is superior to18 F-FDG in differentiating HGG and LGG.
Collapse
Affiliation(s)
- Daliang Liu
- Department of Nuclear Medicine, The first affiliated Hospital of Fourth Military Medical University, Xi'an, Shannxi Province, China
| | - Guang Cheng
- Department of Neurosurgery, The first affiliated Hospital of Fourth Military Medical University, Xi'an, Shannxi Province, China
| | - Xiaowei Ma
- Department of Nuclear Medicine, The first affiliated Hospital of Fourth Military Medical University, Xi'an, Shannxi Province, China
| | - Shuailiang Wang
- Department of Nuclear Medicine, The first affiliated Hospital of Fourth Military Medical University, Xi'an, Shannxi Province, China
| | - Xiaohu Zhao
- Department of Nuclear Medicine, The first affiliated Hospital of Fourth Military Medical University, Xi'an, Shannxi Province, China
| | - Wei Zhang
- Department of Health Statistics, Fourth Military Medical University, Xi'an, Shannxi Province, China
| | - Weidong Yang
- Department of Nuclear Medicine, The first affiliated Hospital of Fourth Military Medical University, Xi'an, Shannxi Province, China
| | - Jing Wang
- Department of Nuclear Medicine, The first affiliated Hospital of Fourth Military Medical University, Xi'an, Shannxi Province, China
| |
Collapse
|
12
|
Zhou Z, Wen L, Lai M, Shan C, Wang J, Wang R, Li H, Chen L, Cai L, Zhou M, Zhou C. Increased M1 Macrophages Infiltration Correlated With Poor Survival Outcomes and Radiation Response in Gliomas. Dose Response 2020; 18:1559325820964991. [PMID: 33117094 PMCID: PMC7573741 DOI: 10.1177/1559325820964991] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/09/2020] [Accepted: 09/20/2020] [Indexed: 11/18/2022] Open
Abstract
Background: Gliomas are the malignance of a poor prognosis. The current WHO classification remains unable to predict survival outcomes accurately. Novel surrogates are highly required for improved stratification of patients and hence, allowing to delivery of the most appropriate treatment. Methods: Transcriptional profiles of 301 glioma cases on the platform of Chinese Glioma Genome Atlas (CGGA) were retrospectively studied. Results: Extracellular matrix (ECM) scores were established by integrating a panel of most featured gene-signatures, correlating well with pathological tumor stages. Linear regression analysis revealed that the ECM score corroborated with the infiltration status of monocytes, M0 and M1 macrophages. Furthermore, the WHO stage II-IV dependent abundance of those 3 immune cells was determined. Univariate and multivariate analysis of clinicopathological characteristics in the GBM cohort identified M1 enrichment score as an independent risk factor. A high abundance of M1 macrophages was associated with poor survival outcomes and radiotherapy response in IDH-wildtype GBM. Conclusions: Our study demonstrated that M1 macrophages correlated with WHO grades and predicted robustly for the survival performance for GBM patients. Increased infiltration of M1 macrophages was associated with a poor radiation response for IDH-wildtype GBM. Together, it will facilitate more precise stratifications of glioma patients based on molecular and immunological surrogates.
Collapse
Affiliation(s)
- Zhaoming Zhou
- Department of Radiation Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Lei Wen
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Mingyao Lai
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Changguo Shan
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Jian Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Rong Wang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hainan Li
- Department of Pathology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Longhua Chen
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Linbo Cai
- Department of Oncology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Meijuan Zhou
- Department of Radiation Medicine, School of Public Health, Southern Medical University, Guangzhou, China
| | - Cheng Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
13
|
Song Z, Wang Y, Du Y, Zhang Z, Yuan Y. Identification of integrative molecular and clinical profiles of Fibrinogen-like protein 2 in gliomas using 1323 samples. Int Immunopharmacol 2020; 88:106894. [PMID: 32858440 DOI: 10.1016/j.intimp.2020.106894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Fibrinogen-like protein 2 (FGL2), a member of the fibrinogen superfamily, has been described to augment immunosuppression in gliomas. However, the precise clinical molecular features and the prognostic relevance of FGL2 in gliomas remain unclear. Therefore, a comprehensive analysis of the role of FGL2 in gliomas would provide insights into the therapeutic implications for this disease. METHODS Totally, 1323 glioma samples with RNA-seq and microarray data from TCGA and CGGA databases were used to clarify the clinical significance and molecular profile of FGL2 in glioma. The findings were further validated through immunohistochemistry (IHC). RESULTS The transcriptional level of FGL2 was positively associated with tumor grade in gliomas, which was confirmed at the protein level through IHC staining. Consistently, FGL2 was significantly enriched in isocitrate dehydrogenase wild-type tumors and the mesenchymal subtype of gliomas. We also demonstrated FGL2 expression correlated with high immune scores and infiltration of immune cell populations, including T cells, macrophages and B cells. Pearson's correlation analysis revealed that FGL2-related genes correlated with inflammatory-immune responses, particularly T cell-mediated immune response. Additionally, FGL2 expression was found tightly associated with immune checkpoints PD-L1 and PD-L2. Clinically, patients with high FGL2 expression exhibited unfavorable overall survival. CONCLUSION Our results provide the integrative molecular and clinical profiles of FGL2 in gliomas and emphasize the importance of prospective studies on the FGL2-related immune-inflammatory network.
Collapse
Affiliation(s)
- Zhizhen Song
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China; Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Yongliang Yuan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China.
| |
Collapse
|
14
|
Immunotherapy Approaches for Pediatric CNS Tumors and Associated Neurotoxicity. Pediatr Neurol 2020; 107:7-15. [PMID: 32113728 DOI: 10.1016/j.pediatrneurol.2020.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/07/2019] [Accepted: 01/15/2020] [Indexed: 12/24/2022]
Abstract
Treatment for brain tumors has recently shifted to using the power of the immune system to destroy cancer cells with promising results. Many immunotherapeutic approaches that have been used in adults, including checkpoint inhibitors, vaccine therapy, adoptive immunotherapy, such as chimeric antigen receptor T cell therapy, and viral therapy, are now being evaluated in children. Although these treatments work through different mechanisms, they all activate the immune system and can result in inflammation at the site of disease. This can be especially problematic in the confined area of the brain causing potentially severe neurological side effects, which are of special concern in children with central nervous system malignancies. Steroids can be helpful in the management of neurological complications but carry the risk of making immunotherapeutic approaches less effective. Alternative therapeutic interventions to mitigate side effects are being evaluated. This review describes the most common immunotherapeutic modalities that are now under study for the treatment of pediatric brain tumors, their rationale, associated neurotoxicities, and current management.
Collapse
|
15
|
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor. In spite of the rigorous multimodal treatment involving surgery and radiochemotherapy, GBM has a dismal prognosis and rapid relapsing potential. Hence, search for novel therapeutic agents still continues. Neoantigens are the tumor-specific antigens which arise due to somatic mutations in the tumor genome. In recent years, personalized vaccine approach targeting neoantigens has been explored widely in cancer immunotherapy and several efforts have also been made to revolutionize the immunotherapy of cold tumors such as GBM using neoantigen targeted vaccines. AREAS COVERED In this review, we discuss the clinical application of personalized neoantigen targeted vaccine strategy in GBM immunotherapy. While discussing this strategy, we brief about the current challenges faced in GBM treatment by the novel immunotherapeutics. EXPERT OPINION To date, very few vaccines developed for GBM have reached till phase III clinical development. Early-phase clinical trials of GBM neoantigen vaccines have shown promising clinical outcomes and therefore, its rapid clinical development is warranted. Advent of newer and faster techniques such as next-generation sequencing will drive the faster clinical development of multiplex neoantigen vaccines and hence, increase in the clinical trials is expected.
Collapse
Affiliation(s)
- Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy &, Technology Management, SVKM's NMIMS University , Mumbai, India
| | - Varada Date
- Shobhaben Pratapbhai Patel School of Pharmacy &, Technology Management, SVKM's NMIMS University , Mumbai, India
| |
Collapse
|
16
|
Affiliation(s)
- Michael Platten
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University and German Cancer Consortium Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
17
|
Mishchenko TA, Mitroshina EV, Smyshlyaeva AS, Guryev EL, Vedunova MV. Comparative Analysis of the Effects of Upconversion Nanoparticles on Normal and Tumor Brain Cells. Acta Naturae 2020; 12:86-94. [PMID: 32742731 PMCID: PMC7385096 DOI: 10.32607/actanaturae.11033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/16/2020] [Indexed: 12/26/2022] Open
Abstract
Glioma is the most aggressive type of brain tumors encountered in medical practice. The high frequency of diagnosed cases and risk of metastasis, the low efficiency of traditional therapy, and the usually unfavorable prognosis for patients dictate the need to develop alternative or combined approaches for an early diagnosis and treatment of this pathology. High expectations are placed on the use of upconversion nanoparticles (UCNPs). In this study, we have produced and characterized UCNPs doped with the rare-earth elements ytterbium and thulium. Our UCNPs had photoluminescence emission maxima in the visible and infrared spectral regions, which allow for deep optical imaging of tumor cells in the brain. Moreover, we evaluated the toxicity effects of our UCNPs on a normal brain and glioma cells. It was revealed that our UCNPs are non-toxic to glioma cells but have a moderate cytotoxic effect on primary neuronal cultures at high concentrations, a condition that is characterized by a decreased cellular viability and changes in the functional metabolic activity of neuron-glial networks. Despite the great potential associated with the use of these UCNPs as fluorescent markers, there is a need for further studies on the rate of the UCNPs accumulation and excretion in normal and tumor brain cells, and the use of their surface modifications in order to reduce their cytotoxic effects.
Collapse
Affiliation(s)
- T. A. Mishchenko
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950 Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, 603005 Russia
| | - E. V. Mitroshina
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950 Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, 603005 Russia
| | - A. S. Smyshlyaeva
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950 Russia
| | - E. L. Guryev
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950 Russia
- Privolzhsky Research Medical University, Nizhny Novgorod, 603005 Russia
| | - M. V. Vedunova
- National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603950 Russia
| |
Collapse
|
18
|
Novel insights into astrocyte-mediated signaling of proliferation, invasion and tumor immune microenvironment in glioblastoma. Biomed Pharmacother 2020; 126:110086. [PMID: 32172060 DOI: 10.1016/j.biopha.2020.110086] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/29/2020] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) continues to be the most aggressive cancer of the brain. The dismal prognosis is largely attributed to the microenvironment surrounding tumor cells. Astrocytes, the main component of the GBM microenvironment, play several fundamental physiological roles in the central nervous system. During the development of GBM, tumor-associated astrocytes (TAAs) directly contact GBM cells, which activate astrocytes to form reactive astrocytes, facilitating tumor progression, proliferation and migration through multiple well-understood signaling pathways. Notably, TAAs also influence GBM cell behaviors via suppressing immune responses and enhancing the chemoradiotherapy resistance of tumor cells. These new activities are closely linked with the treatment and prognosis of GBM. In this review, we discuss recent advances regarding new functions of reactive astrocytes, including TAA-cancer cell interactions, mechanisms involved in immunosuppressive regulation, and chemoradiotherapy resistance. It is expected that these updated experimental or clinical studies of TAAs may provide a promising approach for GBM treatment in the near future.
Collapse
|
19
|
Fu W, Wang W, Li H, Jiao Y, Weng J, Huo R, Yan Z, Wang J, Xu H, Wang S, Wang J, Chen D, Cao Y, Zhao J. High Dimensional Mass Cytometry Analysis Reveals Characteristics of the Immunosuppressive Microenvironment in Diffuse Astrocytomas. Front Oncol 2020; 10:78. [PMID: 32117733 PMCID: PMC7010913 DOI: 10.3389/fonc.2020.00078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/16/2020] [Indexed: 01/01/2023] Open
Abstract
The tumor immune microenvironment (TIME) plays a pivotal role in tumor development, progression, and prognosis. However, the characteristics of the TIME in diffuse astrocytoma (DA) are still unclear. Leveraging mass cytometry with a panel of 33 markers, we analyzed the infiltrating immune cells from 10 DA and 4 oligodendroglioma (OG) tissues and provided a single cell-resolution landscape of the intricate immune microenvironment. Our study profiled the composition of the TIME in DA and confirmed the presence of immune cells, such as glioma-associated microglia/macrophages (GAMs), CD8+ T cells, CD4+ T cells, regulatory T cells (Tregs), and natural killer cells. Increased percentages of PD-1+ CD8+ T cells, TIM-3+ CD4+ T cell subpopulations, Tregs and pro-tumor phenotype GAMs substantially contribute to the local immunosuppressive microenvironment in DA. DAs and OGs share similar compositions in terms of immune cells, while GAMs in DA exhibit more inhibitory characteristics than those in OG.
Collapse
Affiliation(s)
- Weilun Fu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenjing Wang
- Institute of Hepatology, Capital Medical University Affiliated Beijing You'an Hospital, Beijing, China
| | - Hao Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yuming Jiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiancong Weng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zihan Yan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jie Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Hongyuan Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jiangfei Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dexi Chen
- Institute of Hepatology, Capital Medical University Affiliated Beijing You'an Hospital, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
20
|
Abstract
Non-invasive magnetic resonance imaging (MRI) techniques are increasingly applied in the clinic with a fast growing body of evidence regarding its value for clinical decision making. In contrast to biochemical or histological markers, the key advantages of imaging biomarkers are the non-invasive nature and the spatial and temporal resolution of these approaches. The following chapter focuses on clinical applications of novel MR biomarkers in humans with a strong focus on oncologic diseases. These include both clinically established biomarkers (part 1-4) and novel MRI techniques that recently demonstrated high potential for clinical utility (part 5-7).
Collapse
Affiliation(s)
- Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
21
|
Paech D, Windschuh J, Oberhollenzer J, Dreher C, Sahm F, Meissner JE, Goerke S, Schuenke P, Zaiss M, Regnery S, Bickelhaupt S, Bäumer P, Bendszus M, Wick W, Unterberg A, Bachert P, Ladd ME, Schlemmer HP, Radbruch A. Assessing the predictability of IDH mutation and MGMT methylation status in glioma patients using relaxation-compensated multipool CEST MRI at 7.0 T. Neuro Oncol 2019; 20:1661-1671. [PMID: 29733378 DOI: 10.1093/neuonc/noy073] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background Early identification of prognostic superior characteristics in glioma patients such as isocitrate dehydrogenase (IDH) mutation and O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation status is of great clinical importance. The study purpose was to investigate the non-invasive predictability of IDH mutation status, MGMT promoter methylation, and differentiation of low-grade versus high-grade glioma (LGG vs HGG) in newly diagnosed patients employing relaxation-compensated multipool chemical exchange saturation transfer (CEST) MRI at 7.0 Tesla. Methods Thirty-one patients with newly diagnosed glioma were included in this prospective study. CEST MRI was performed at a 7T whole-body scanner. Nuclear Overhauser effect (NOE) and isolated amide proton transfer (APT; downfield NOE-suppressed APT = dns-APT) CEST signals (mean value and 90th signal percentile) were quantitatively investigated in the whole tumor area with regard to predictability of IDH mutation, MGMT promoter methylation status, and differentiation of LGG versus HGG. Statistics were performed using receiver operating characteristic (ROC) and area under the curve (AUC) analysis. Results were compared with advanced MRI methods (apparent diffusion coefficient and relative cerebral blood volume ROC/AUC analysis) obtained at 3T. Results dns-APT CEST yielded highest AUCs in IDH mutation status prediction (dns-APTmean = 91.84%, P < 0.01; dns-APT90 = 97.96%, P < 0.001). Furthermore, dns-APT metrics enabled significant differentiation of LGG versus HGG (AUC: dns-APTmean = 0.78, P < 0.05; dns-APT90 = 0.83, P < 0.05). There was no significant difference regarding MGMT promoter methylation status at any contrast (P > 0.05). Conclusions Relaxation-compensated multipool CEST MRI, particularly dns-APT imaging, enabled prediction of IDH mutation status and differentiation of LGG versus HGG and should therefore be considered as a non-invasive MR biomarker in the diagnostic workup.
Collapse
Affiliation(s)
- Daniel Paech
- German Cancer Research Center, Division of Radiology, Heidelberg, Germany
| | - Johannes Windschuh
- German Cancer Research Center, Division of Medical Physics in Radiology, Heidelberg, Germany.,Department of Radiology, New York University Langone Medical Center, New York, New York, USA
| | | | - Constantin Dreher
- German Cancer Research Center, Division of Radiology, Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,CCU Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center, Heidelberg, Germany
| | - Jan-Eric Meissner
- German Cancer Research Center, Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Steffen Goerke
- German Cancer Research Center, Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Patrick Schuenke
- German Cancer Research Center, Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Moritz Zaiss
- Max-Planck-Institute for Biological Cybernetics, Magnetic Resonance Center, Tuebingen, Germany
| | - Sebastian Regnery
- Department of Radiooncology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Philipp Bäumer
- German Cancer Research Center, Division of Radiology, Heidelberg, Germany.,German Cancer Research Center, Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Mark Edward Ladd
- German Cancer Research Center, Division of Medical Physics in Radiology, Heidelberg, Germany.,Faculty of Physics and Astronomy and Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | | | - Alexander Radbruch
- German Cancer Research Center, Division of Radiology, Heidelberg, Germany.,Department of Radiology, University Hospital Essen, Essen, Germany
| |
Collapse
|
22
|
Abstract
For newly diagnosed patients, the standard has remained largely unchanged for the past decade and concept-driven approaches like anti-angiogenic therapies or use of molecularly targeted drugs in all-comers populations have failed. Tumor-treating fields appear as a new option. Most current immunotherapy or molecularly targeted, precision medicine trials are also focusing on this newly diagnosed patient population. At progression, no standard exists and most treatments offer little beyond supportive care. Past trials lacked target precision and all-comers approaches have produced false negative results. Molecular precision approaches at progression need workup of recent rather than archival tissue.
Collapse
Affiliation(s)
- Wolfgang Wick
- Neurology Clinic, University of Heidelberg, INF 400, 69120 Heidelberg, Germany; Clinical Cooperation Unit (CCU) Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Michael Platten
- Department of Neurology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany; Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
23
|
Dusoswa SA, Horrevorts SK, Ambrosini M, Kalay H, Paauw NJ, Nieuwland R, Pegtel MD, Würdinger T, Van Kooyk Y, Garcia-Vallejo JJ. Glycan modification of glioblastoma-derived extracellular vesicles enhances receptor-mediated targeting of dendritic cells. J Extracell Vesicles 2019; 8:1648995. [PMID: 31489145 PMCID: PMC6713149 DOI: 10.1080/20013078.2019.1648995] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma is the most prevalent and aggressive primary brain tumour for which total tumour lysate-pulsed dendritic cell vaccination is currently under clinical evaluation. Glioblastoma extracellular vesicles (EVs) may represent an enriched cell-free source of tumour-associated (neo-) antigens to pulse dendritic cells (DCs) for the initiation of an anti-tumour immune response. Capture and uptake of EVs by DCs could occur in a receptor-mediated and presumably glycan-dependent way, yet the glycan composition of glioblastoma EVs is unknown. Here, we set out to characterize the glycocalyx composition of glioblastoma EVs by lectin-binding ELISA and comprehensive immunogold transmission electron microscopy (immuno-TEM). The surface glycan profile of human glioblastoma cell line-derived EVs (50-200 nm) was dominated by α-2,3- and α-2,6 linked sialic acid-capped complex N-glycans and bi-antennary N-glycans. Since sialic acids can trigger immune inhibitory sialic acid-binding Ig-like lectin (Siglec) receptors, we screened for Siglec ligands on the EVs. Glioblastoma EVs showed significant binding to Siglec-9, which is highly expressed on DCs. Surprisingly, however, glioblastoma EVs lack glycans that could bind Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN, CD209), a receptor that mediates uptake and induction of CD4+ and CD8+ T cell activation. Therefore, we explored whether modification of the EV glycan surface could reduce immune inhibitory Siglec binding, while enhancing EV internalization by DCs in a DC-SIGN dependent manner. Desialylation with a pan-sialic acid hydrolase led to reduction of sialic acid expression on EVs. Moreover, insertion of a high-affinity ligand (LewisY) for DC-SIGN resulted in a four-fold increase of uptake by monocyte-derived DCs. In conclusion, we show that the glycocalyx composition of EVs is a key factor of efficient DC targeting and that modification of the EV glycocalyx potentiates EVs as anti-cancer vaccine.
Collapse
Affiliation(s)
- Sophie A. Dusoswa
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sophie K. Horrevorts
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martino Ambrosini
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nanne J. Paauw
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, and Vesicle Observation Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel D. Pegtel
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tom Würdinger
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yvette Van Kooyk
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan J. Garcia-Vallejo
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Linsenmann T, Jawork A, Westermaier T, Homola G, Monoranu CM, Vince GH, Kessler AF, Ernestus RI, Löhr M. Tumor growth under rhGM-CSF application in an orthotopic rodent glioma model. Oncol Lett 2019; 17:4843-4850. [PMID: 31186691 PMCID: PMC6507467 DOI: 10.3892/ol.2019.10179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Regulation of the host immune response serves a pivotal role in the persistence and progression of malignant glioma. To date, cytotoxic cluster of differentiation (CD)-8+ T and natural killer cells are considered the main cellular components of host tumor control. The influence of macrophages in an orthotropic C6 tumor implantation model was investigated and the aim of the present study was to characterize the effects of systemic macrophage-activation on glioma growth by using the granulocyte macrophage colony stimulating factor (rhGM-CSF). A total of 20 male Sprague-Dawley rats were orthotopically implanted with C6 glioma spheroids and treated subcutaneously with 10 µg/kg rhGM-CSF every other day; 9 animals served as controls. Serial magnetic resonance imaging was performed on days 7, 14, 21, 28, 32 and 42 post-implantation to monitor tumor volume. Histological work-up included hematoxylin and eosin, CD68/ED-1 macrophage, CD8 T-cell and Ki-67 MIB1 proliferation staining in gliomas and spleen. Experimental C6-gliomas developed in 15/20 (75%) animals. In rhGM-CSF treated rats, tumors developed significantly later and reached a smaller size (median, 134 mm3) compared with the controls (median, 262 mm3). On day 14, solid tumors presented in 11/17 (65%) rhGM-CSF-treated animals; in control animals tumor growth was detected in 3/9 animals on day 7 and in all animals on day 14. The mean survival time was 35 days in the rhGM-CSF group and significantly longer when compared with the control group (24 days). Immunohistochemistry exhibited significantly more macrophages in tumors, particularly in the perivascular zone of the rhGM-CSF group when compared with untreated animals; intratumoral CD8+ counts were equal in both groups. A systemic stimulation of macrophages by rhGM-CSF resulted in significantly reduced and delayed tumor growth in the rodent C6 glioma model. The present data suggested a significant role of macrophages in host control of experimental gliomas on the innate immune response. Until now, the role of macrophages may have been underestimated in host glioma control.
Collapse
Affiliation(s)
- Thomas Linsenmann
- Department of Neurosurgery, Julius Maximilians University, Wuerzburg, D-97080 Wuerzburg, Germany
| | - Anna Jawork
- Department of Neurosurgery, Julius Maximilians University, Wuerzburg, D-97080 Wuerzburg, Germany
| | - Thomas Westermaier
- Department of Neurosurgery, Julius Maximilians University, Wuerzburg, D-97080 Wuerzburg, Germany
| | - György Homola
- Department of Neuroradiology, Julius Maximilians University, Wuerzburg, D-97080 Wuerzburg, Germany
| | - Camelia Maria Monoranu
- Department of Neuropathology, Julius Maximilians University, Wuerzburg, D-97080 Wuerzburg, Germany
| | - Giles Hamilton Vince
- Department of Neurosurgery, Clinical Centre of Aschaffenburg-Alzenau, D-63739 Aschaffenburg, Germany
| | | | - Ralf-Ingo Ernestus
- Department of Neurosurgery, Julius Maximilians University, Wuerzburg, D-97080 Wuerzburg, Germany
| | - Mario Löhr
- Department of Neurosurgery, Julius Maximilians University, Wuerzburg, D-97080 Wuerzburg, Germany
| |
Collapse
|
25
|
Current Approaches and Challenges in the Molecular Therapeutic Targeting of Glioblastoma. World Neurosurg 2019; 129:90-100. [PMID: 31152883 DOI: 10.1016/j.wneu.2019.05.205] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 12/30/2022]
Abstract
Surgical resection continues to predominate as the primary treatment modality in glioblastoma (GBM). Effective chemotherapeutic/biologic agents capable of targeting GBM have yet to be developed in part because of the exceptionally heterogeneous nature and unique microenvironmental conditions associated with this malignant neoplasm. Temozolomide and bevacizumab represent the only U.S. Food and Drug Administration-approved agents for primary and recurrent GBM, respectively. Given the high therapeutic resistance of GBM to current therapies, as well as the failure of bevacizumab to prolong overall survival, new therapeutic agents are urgently warranted and are now in the preclinical and clinical phases of development. Accordingly, clinical trials evaluating the efficacy of immune checkpoint inhibition, chimeric antigen receptor T cell therapy, virotherapies, and tumor vaccination therapy are all under way in GBM. Herein, we review the application of current/novel therapeutics in GBM and in so doing attempt to highlight the most promising solutions to overcome current failures.
Collapse
|
26
|
Carpenter CD, Alnahhas I, Gonzalez J, Giglio P, Puduvalli VK. Changing paradigms for targeted therapies against diffuse infiltrative gliomas: tackling a moving target. Expert Rev Neurother 2019; 19:663-677. [PMID: 31106606 DOI: 10.1080/14737175.2019.1621169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Introduction: Gliomas are highly heterogeneous primary brain tumors which result in a disproportionately high degree of morbidity and mortality despite their locoregional occurrence. Advances in the understanding of the biological makeup of these malignancies have yielded a number of potential tumor-driving pathways which have been identified as rational targets for therapy. However, early trials of agents that target these pathways have uniformly failed to yield improvement in outcomes in patients with malignant gliomas. Areas covered: This review provides an overview of the most common biological features of gliomas and the strategies to target the same; in addition, the current status of immunotherapy and biological therapies are outlined and the future directions to tackle the challenges of therapy for gliomas are examined. Expert opinion: The limitations of current treatments are attributed to the inability of most of these agents to cross the blood-brain barrier and to the intrinsic heterogeneity of the tumors that result in treatment resistance. The recent emergence of immune-mediated and biological therapies and of agents that target metabolic pathways in gliomas have provided strategies that may overcome tumor heterogeneity and ongoing trials of such agents are anticipated to yield improved outcomes.
Collapse
Affiliation(s)
- Candice D Carpenter
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Iyad Alnahhas
- b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Javier Gonzalez
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Pierre Giglio
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| | - Vinay K Puduvalli
- a Department of Neurosurgery , The Ohio State University Wexner Medical Center , Columbus , OH , USA.,b Division of Neurooncology , The Ohio State University Wexner Medical Center , Columbus , OH , USA
| |
Collapse
|
27
|
Young JS, Dayani F, Morshed RA, Okada H, Aghi MK. Immunotherapy for High Grade Gliomas: A Clinical Update and Practical Considerations for Neurosurgeons. World Neurosurg 2019; 124:397-409. [PMID: 30677574 PMCID: PMC6642850 DOI: 10.1016/j.wneu.2018.12.222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
The current standard of care for patients with high grade gliomas includes surgical resection, chemotherapy, and radiation; but even still the majority of patients experience disease progression and succumb to their illness within a few years of diagnosis. Immunotherapy, which stimulates an anti-tumor immune response, has been revolutionary in the treatment of some hematological and solid malignancies, generating substantial excitement for its potential for patients with glioblastoma. The most commonly used immunotherapies include dendritic cell and peptide vaccines, checkpoint inhibitors, and adoptive T cell therapy. However, to date, the preclinical success of these approaches against high-grade glioma models has not been replicated in human clinical trials. Moreover, the complex response to these biologically active treatments can complicate management decisions, and the neurosurgical oncology community needs to be actively involved in and up to date on the use of these agents in high grade glioma patients. In this review, we discuss the challenges immunotherapy faces for high grade gliomas, the completed and ongoing clinical trials for the major immunotherapies, and the nuances in management for patients being actively treated with one of these agents.
Collapse
Affiliation(s)
- Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Fara Dayani
- School of Medicine, University of California, San Francisco
| | - Ramin A Morshed
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| |
Collapse
|
28
|
Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas C, Platten M, Tabatabai G, Dutoit V, van der Burg SH, Thor Straten P, Martínez-Ricarte F, Ponsati B, Okada H, Lassen U, Admon A, Ottensmeier CH, Ulges A, Kreiter S, von Deimling A, Skardelly M, Migliorini D, Kroep JR, Idorn M, Rodon J, Piró J, Poulsen HS, Shraibman B, McCann K, Mendrzyk R, Löwer M, Stieglbauer M, Britten CM, Capper D, Welters MJP, Sahuquillo J, Kiesel K, Derhovanessian E, Rusch E, Bunse L, Song C, Heesch S, Wagner C, Kemmer-Brück A, Ludwig J, Castle JC, Schoor O, Tadmor AD, Green E, Fritsche J, Meyer M, Pawlowski N, Dorner S, Hoffgaard F, Rössler B, Maurer D, Weinschenk T, Reinhardt C, Huber C, Rammensee HG, Singh-Jasuja H, Sahin U, Dietrich PY, Wick W. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 2019; 565:240-245. [PMID: 30568303 DOI: 10.1038/s41586-018-0810-y] [Citation(s) in RCA: 590] [Impact Index Per Article: 118.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022]
Abstract
Patients with glioblastoma currently do not sufficiently benefit from recent breakthroughs in cancer treatment that use checkpoint inhibitors1,2. For treatments using checkpoint inhibitors to be successful, a high mutational load and responses to neoepitopes are thought to be essential3. There is limited intratumoural infiltration of immune cells4 in glioblastoma and these tumours contain only 30-50 non-synonymous mutations5. Exploitation of the full repertoire of tumour antigens-that is, both unmutated antigens and neoepitopes-may offer more effective immunotherapies, especially for tumours with a low mutational load. Here, in the phase I trial GAPVAC-101 of the Glioma Actively Personalized Vaccine Consortium (GAPVAC), we integrated highly individualized vaccinations with both types of tumour antigens into standard care to optimally exploit the limited target space for patients with newly diagnosed glioblastoma. Fifteen patients with glioblastomas positive for human leukocyte antigen (HLA)-A*02:01 or HLA-A*24:02 were treated with a vaccine (APVAC1) derived from a premanufactured library of unmutated antigens followed by treatment with APVAC2, which preferentially targeted neoepitopes. Personalization was based on mutations and analyses of the transcriptomes and immunopeptidomes of the individual tumours. The GAPVAC approach was feasible and vaccines that had poly-ICLC (polyriboinosinic-polyribocytidylic acid-poly-L-lysine carboxymethylcellulose) and granulocyte-macrophage colony-stimulating factor as adjuvants displayed favourable safety and strong immunogenicity. Unmutated APVAC1 antigens elicited sustained responses of central memory CD8+ T cells. APVAC2 induced predominantly CD4+ T cell responses of T helper 1 type against predicted neoepitopes.
Collapse
Affiliation(s)
- Norbert Hilf
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | | | | | | | - Stefan Stevanović
- Eberhard Karls Universität Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Partner Site Tübingen, Tübingen, Germany
| | - Cécile Gouttefangeas
- Eberhard Karls Universität Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Partner Site Tübingen, Tübingen, Germany
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
| | - Michael Platten
- University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
- Medical Faculty Mannheim, Mannheim, Germany
| | - Ghazaleh Tabatabai
- Eberhard Karls Universität Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Partner Site Tübingen, Tübingen, Germany
- University Hospital Tübingen, Tübingen, Germany
| | | | - Sjoerd H van der Burg
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
- Leiden University Medical Center, Leiden, The Netherlands
| | - Per Thor Straten
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Hideho Okada
- University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | | | - Arie Admon
- Technion - Israel Institute of Technology, Haifa, Israel
| | | | | | - Sebastian Kreiter
- BioNTech AG, Mainz, Germany
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
| | - Andreas von Deimling
- University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | | | | | - Judith R Kroep
- Leiden University Medical Center, Leiden, The Netherlands
| | - Manja Idorn
- Center for Cancer Immune Therapy (CCIT), Department of Hematology, University Hospital Herlev, Herlev, Denmark
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jordi Rodon
- Vall d'Hebron University Hospital, Barcelona, Spain
- M. D. Anderson Cancer Center, University of Texas, Houston, TX, USA
| | | | | | | | | | | | | | - Monika Stieglbauer
- Eberhard Karls Universität Tübingen, Tübingen, Germany
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
| | - Cedrik M Britten
- BioNTech AG, Mainz, Germany
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
- Oncology R&D, GlaxoSmithKline, Stevenage, UK
| | - David Capper
- University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
- Charité, University Medicine Berlin, Berlin, Germany
| | - Marij J P Welters
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
- Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | - Elisa Rusch
- Eberhard Karls Universität Tübingen, Tübingen, Germany
- CIMT/CIP - Association for Cancer Immunotherapy, working group Cancer Immunoguiding Program, Mainz, Germany
| | - Lukas Bunse
- University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
| | - Colette Song
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | | | | | | | - Jörg Ludwig
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | - John C Castle
- BioNTech AG, Mainz, Germany
- Agenus Inc., Lexington, KY, USA
| | | | - Arbel D Tadmor
- TRON GmbH - Translational Oncology at the University Medical Center of Johannes Gutenberg University, Mainz, Germany
| | - Edward Green
- German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany
- Medical Faculty Mannheim, Mannheim, Germany
| | | | - Miriam Meyer
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | | | - Sonja Dorner
- Immatics Biotechnologies GmbH, Tübingen, Germany
| | | | | | | | | | | | | | - Hans-Georg Rammensee
- Eberhard Karls Universität Tübingen, Tübingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Partner Site Tübingen, Tübingen, Germany
| | | | | | | | - Wolfgang Wick
- University Hospital Heidelberg, Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
29
|
Teng YD, Abd-El-Barr M, Wang L, Hajiali H, Wu L, Zafonte RD. Spinal cord astrocytomas: progresses in experimental and clinical investigations for developing recovery neurobiology-based novel therapies. Exp Neurol 2018; 311:135-147. [PMID: 30243796 DOI: 10.1016/j.expneurol.2018.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/07/2018] [Accepted: 09/16/2018] [Indexed: 12/25/2022]
Abstract
Spinal cord astrocytomas (SCAs) have discernibly unique signatures in regards to epidemiology, clinical oncological features, genetic markers, pathophysiology, and research and therapeutic challenges. Overall, there are presently very limited clinical management options for high grade SCAs despite progresses made in validating key molecular markers and standardizing tumor classification. The endeavors were aimed to improve diagnosis, therapy design and prognosis assessment, as well as to define more effective oncolytic targets. Efficacious treatment for high grade SCAs still remains an unmet medical demand. This review is therefore focused on research state updates that have been made upon analyzing clinical characteristics, diagnostic classification, genetic and molecular features, tumor initiation cell biology, and current management options for SCAs. Particular emphasis was given to basic and translational research endeavors targeting SCAs, including establishment of experimental models, exploration of unique profiles of SCA stem cell-like tumor survival cells, characterization of special requirements for effective therapeutic delivery into the spinal cord, and development of donor stem cell-based gene-directed enzyme prodrug therapy. We concluded that precise understanding of molecular oncology, tumor survival mechanisms (e.g., drug resistance, metastasis, and cancer stem cells/tumor survival cells), and principles of Recovery Neurobiology can help to create clinically meaningful experimental models of SCAs. Establishment of such systems will expedite the discovery of efficacious therapies that not only kill tumor cells but simultaneously preserve and improve residual neural function.
Collapse
Affiliation(s)
- Yang D Teng
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA.
| | - Muhammad Abd-El-Barr
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA; Current affiliation: Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Lei Wang
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| | - Hadi Hajiali
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| | - Liqun Wu
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| | - Ross D Zafonte
- Departments of Physical Medicine & Rehabilitation and Neurosurgery, Harvard Medical School, Spaulding Rehabilitation Hospital and Brigham and Women's Hospital, Division of Spinal Cord Injury Research, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
30
|
Alphandéry E. Glioblastoma Treatments: An Account of Recent Industrial Developments. Front Pharmacol 2018; 9:879. [PMID: 30271342 PMCID: PMC6147115 DOI: 10.3389/fphar.2018.00879] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/20/2018] [Indexed: 12/28/2022] Open
Abstract
The different drugs and medical devices, which are commercialized or under industrial development for glioblastoma treatment, are reviewed. Their different modes of action are analyzed with a distinction being made between the effects of radiation, the targeting of specific parts of glioma cells, and immunotherapy. Most of them are still at a too early stage of development to firmly conclude about their efficacy. Optune, which triggers antitumor activity by blocking the mitosis of glioma cells under the application of an alternating electric field, seems to be the only recently developed therapy with some efficacy reported on a large number of GBM patients. The need for early GBM diagnosis is emphasized since it could enable the treatment of GBM tumors of small sizes, possibly easier to eradicate than larger tumors. Ways to improve clinical protocols by strengthening preclinical studies using of a broader range of different animal and tumor models are also underlined. Issues related with efficient drug delivery and crossing of blood brain barrier are discussed. Finally societal and economic aspects are described with a presentation of the orphan drug status that can accelerate the development of GBM therapies, patents protecting various GBM treatments, the different actors tackling GBM disease, the cost of GBM treatments, GBM market figures, and a financial analysis of the different companies involved in the development of GBM therapies.
Collapse
Affiliation(s)
- Edouard Alphandéry
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR 7590 CNRS, Sorbonne Universités, UPMC, University Paris 06, Paris, France.,Nanobacterie SARL, Paris, France
| |
Collapse
|
31
|
Zou CY, Guan GF, Zhu C, Liu TQ, Guo Q, Cheng W, Wu AH. Costimulatory checkpoint SLAMF8 is an independent prognosis factor in glioma. CNS Neurosci Ther 2018; 25:333-342. [PMID: 30105842 DOI: 10.1111/cns.13041] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS Immune checkpoint blockade has made breakthroughs in immunotherapy for glioma. However, current immunotherapy has therapeutic benefits only in a subset of patients and accompanied by immune-related side effects. SLAMF8 is a costimulatory molecule that affects the activation of macrophages in inflammation. The study of SLAMF8 may provide new information for immunological research and treatment of glioma. METHODS CGGA and TCGA cohorts of 946 patients with RNA sequencing data and full clinical information were analyzed using R language and GraphPad Prism 7. RESULTS SLAMF8 was overexpressed along with malignancy progression and was a biomarker of mesenchymal subtype. As an independent prognostic factor, high SLAMF8 conferred reduced overall survival and chemotherapy resistance. SLAMF8 implied lower proportion of cancer cells along with increasing enrichment of monocytic lineage, myeloid dendritic cells. Functional analysis showed higher SLAMF8 indicated activation of antigen processing and presenting and the IFN-γ/TNF/TLR-mediated signaling. Meanwhile, coexpressing with classical checkpoint SLAMF8 aggravated immunosuppression and enhanced inflammation response. CONCLUSION Our study highlighted the important role of SLAMF8 in malignancy progression, shortened survival, and immune disorders. Further research on SLAMF8 in immunosuppression and inflammation response to glioma cells could aid immunotherapy for glioma.
Collapse
Affiliation(s)
- Cun-Yi Zou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Ge-Fei Guan
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Tian-Qi Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Qing Guo
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Wen Cheng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - An-Hua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Rahmani Kukia N, Alipanah-Moghadam R, Delirezh N, Mazani M. Mesenchymal Stromal Stem Cell-Derived Microvesicles Enhance Tumor Lysate Pulsed Dendritic Cell Stimulated
Autologous T lymphocyte Cytotoxicity. Asian Pac J Cancer Prev 2018; 19:1895-1902. [PMID: 30049202 PMCID: PMC6165664 DOI: 10.22034/apjcp.2018.19.7.1895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Immunotherapy is one promising therapeutic strategy against glioma, an aggressive form of brain cancer. Previous studies have demonstrated that multiple tumor antigens exist and can be used to induce tumor specific T cell responses. Furthermore, recently it was shown that TLR4-primed mesenchymal stem cells (MSCs), also known as MSC1, mostly elaborate pro-inflammatory mediators. Compared to MSCs, MSC-derived microvesicles (MVs) have advantageous properties that present them as stable, long lasting effectors with no risk of immune rejection. Therefore, peripheral blood monocyte derived dendritic cells (MoDCs) have been used to load tumor antigens and stimulate T cell mediated responses in the presence of MSC1-derived MVs in vitro. Methods The B92 tumor cell line was heated to 43°C for 90 min prior to preparation of tumor cell lysates. MVs were purified by differential ultracentrifugation after isolation, stimulation of proliferation and treatment of MSCs. Autologous T cells isolated from non-adherent cells were harvested during the procedure to generate MoDCs and then incubated with heat stressed tumor cell lysate pulsed DCs in the presence of MSC1-derived MVs. T cells were then co-cultured with tumor cells in 96-well plates at a final volume of 200 μl CM at an effector: target ratio of 100:1 to determine their specific cytotoxic activity. Results Flow cytometric analysis, T cell mediated cytotoxicity showed that heat stressed tumor antigen pulsed MoDCs and MSC1-derived MVs primed T cells elicited non-significantly enhanced cytotoxic activity toward B92 tumor cells (P≥0.05). Conclusion These findings may offer new insights into tumor antigen presenting technology involving dendritic cells and MSC1-derived MVs. Further exploration of the potential of such nanoscale particles in immunotherapy and in novel cancer vaccine settings appears warranted.
Collapse
Affiliation(s)
- Nasim Rahmani Kukia
- Department of Clinical Biochemistry, Ardabil University of Medical Sciences, Ardabil, Iran. ,
| | | | | | | |
Collapse
|
33
|
Platten M, Bunse L, Riehl D, Bunse T, Ochs K, Wick W. Vaccine Strategies in Gliomas. Curr Treat Options Neurol 2018; 20:11. [PMID: 29594595 DOI: 10.1007/s11940-018-0498-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW To discuss the current state of glioma vaccine development and highlight the challenges associated with clinical implementation of these approaches. RECENT FINDINGS Vaccination strategies against gliomas have matured considerably during the past years, although proof-of efficacy from controlled clinical trials is still lacking. Advances in antigen discovery, including the definition of neoepitopes including epidermal growth factor receptor variant III (EGFRvIII), isocitrate dehydrogenase (IDH)1R132H and Histone (H)3.3K27M, using multi-omic approaches and computational algorithms allow targeting single antigens, but also implementing truly personalized approaches. In addition, new concepts of vaccine manufacturing including RNA and DNA vaccines improve immunogenicity and applicability in personalized settings. As an increasing amount of clinical data defy the concept of the central nervous system (CNS) as a strictly immunoprivileged site, novel vaccine approaches enter the clinic including critical efforts to identify biomarkers of response and resistance and strategies to overcome the immunosuppressive glioma microenvironment.
Collapse
Affiliation(s)
- Michael Platten
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, INF 280, 69120, Heidelberg, Germany.
- Department of Neurology, Mannheim Medical Center, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Lukas Bunse
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, INF 280, 69120, Heidelberg, Germany
- Department of Neurology, Heidelberg Medical Center, University of Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Dennis Riehl
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, INF 280, 69120, Heidelberg, Germany
- Immune Monitoring Unit, DKTK, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
| | - Theresa Bunse
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, INF 280, 69120, Heidelberg, Germany
- Department of Neurology, Mannheim Medical Center, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Katharina Ochs
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, INF 280, 69120, Heidelberg, Germany
- Department of Neurology, Heidelberg Medical Center, University of Heidelberg, INF 400, 69120, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg Medical Center, University of Heidelberg, INF 400, 69120, Heidelberg, Germany
- DKTK Clinical Cooperation Unit Neurooncology, German Cancer Research Center, INF 280, 69120, Heidelberg, Germany
| |
Collapse
|
34
|
Immunotherapy of Gliomas. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
35
|
Zhang H, Wu Y, Wang J, Tang Z, Ren Y, Ni D, Gao H, Song R, Jin T, Li Q, Bu W, Yao Z. In Vivo MR Imaging of Glioma Recruitment of Adoptive T-Cells Labeled with NaGdF 4 -TAT Nanoprobes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1702951. [PMID: 29168917 DOI: 10.1002/smll.201702951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Adoptive T lymphocyte immunotherapy is one of the most promising methods to treat residual lesions after glioma surgery. However, the fate of the adoptively transferred T-cells in vivo is unclear, hampering the understanding of this emerging therapy. Thus, it is highly desirable to develop noninvasive and quantitative in vivo tracking of these T-cells to glioma for better identification of the migratory fate and to provide objective evaluation of outcomes of adoptive T-cell immunotherapy targeting glioma. In this work, ultrasmall T1 MR-based nanoprobes, NaGdF4 -TAT, as molecular probes with high longitudinal relaxivity (8.93 mm-1 s-1 ) are designed. By means of HIV-1 transactivator (TAT) peptides, nearly 95% of the adoptive T-cells are labeled with the NaGdF4 -TAT nanoprobes without any measurable side effects on the labeled T-cells, which is remarkably superior to that of the control fluorescein isothiocyanate-NaGdF4 concerning labeling efficacy. Labeled adoptive T-cell clusters can be sensitively tracked in an orthotopic GL261-glioma model 24 h after intravenous infusion of 107 labeled T-cells by T1 -weighted MR imaging. Both in vitro and in vivo experiments show that the NaGdF4 -TAT nanoprobes labeling of T-cells may be a promising method to track adoptive T-cells to improve our understanding of the pathophysiology in adoptive immunotherapy for gliomas.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Yue Wu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Jing Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Zhongmin Tang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Yan Ren
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Dalong Ni
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Hongbo Gao
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Ruixue Song
- Shanghai Key laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Teng Jin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Qiao Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| | - Wenbo Bu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Shanghai Key laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, P. R. China
| |
Collapse
|
36
|
NFAT1-regulated IL6 signalling contributes to aggressive phenotypes of glioma. Cell Commun Signal 2017; 15:54. [PMID: 29258522 PMCID: PMC5735798 DOI: 10.1186/s12964-017-0210-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/12/2017] [Indexed: 02/07/2023] Open
Abstract
Background We previously demonstrated that the local immune status correlated with the glioma prognosis. Interleukin-6 (IL6) was identified as an important local immune-related risk marker related to unfavourable prognosis. In this study, we further investigated the role and regulation of IL6 signalling in glioma. Methods The expression and prognostic value of IL6 and the IL6 receptor (IL6R) were explored in The Cancer Genome Atlas (TCGA) and REMBRANDT databases and clinical samples. Functional effects of genetic knockdown and overexpression of IL6R or IL6 stimulation were examined in vitro and in tumours in vivo. The effects of the nuclear factor of activated T cells-1 (NFAT1) on the promoter activities of IL6R and IL6 were also examined. Results High IL6- and IL6R-expression were significantly associated with mesenchymal subtype and IDH-wildtype gliomas, and were predictors of poor survival. Knockdown of IL6R decreased cell proliferation, invasion and neurosphere formation in vitro, and inhibited tumorigenesis in vivo. IL6R overexpression or IL6 stimulation enhanced the invasion and growth of glioma cells. TCGA database searching revealed that IL6- and IL6R-expression were correlated with that of NFAT1. In glioma cells, NFAT1 enhanced the promoter activities of IL6R and IL6, and upregulated the expression of both IL6R and IL6. Conclusion NFAT1-regulated IL6 signalling contributes to aggressive phenotypes of gliomas, emphasizing the role of immunomodulatory factors in glioma malignant progression. Electronic supplementary material The online version of this article (10.1186/s12964-017-0210-1) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Chimeric antigen receptor T-cell therapy for glioblastoma. Transl Res 2017; 187:93-102. [PMID: 28755873 DOI: 10.1016/j.trsl.2017.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/25/2017] [Accepted: 07/11/2017] [Indexed: 02/06/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has shown great promise in the treatment of hematological disease, and its utility for treatment of solid tumors is beginning to unfold. Glioblastoma continues to portend a grim prognosis and immunotherapeutic approaches are being explored as a potential treatment strategy. Identification of appropriate glioma-associated antigens, barriers to cell delivery, and presence of an immunosuppressive microenvironment are factors that make CAR T-cell therapy for glioblastoma particularly challenging. However, insights gained from preclinical studies and ongoing clinical trials indicate that CAR T-cell therapy will continue to evolve and likely become integrated with current therapeutic strategies for malignant glioma.
Collapse
|
38
|
Herskind C, Wenz F, Giordano FA. Immunotherapy Combined with Large Fractions of Radiotherapy: Stereotactic Radiosurgery for Brain Metastases-Implications for Intraoperative Radiotherapy after Resection. Front Oncol 2017; 7:147. [PMID: 28791250 PMCID: PMC5522878 DOI: 10.3389/fonc.2017.00147] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Brain metastases (BM) affect approximately a third of all cancer patients with systemic disease. Treatment options include surgery, whole-brain radiotherapy, or stereotactic radiosurgery (SRS) while chemotherapy has only limited activity. In cases where patients undergo resection before irradiation, intraoperative radiotherapy (IORT) to the tumor bed may be an alternative modality, which would eliminate the repopulation of residual tumor cells between surgery and postoperative radiotherapy. Accumulating evidence has shown that high single doses of ionizing radiation can be highly efficient in eliciting a broad spectrum of local, regional, and systemic tumor-directed immune reactions. Furthermore, immune checkpoint blockade (ICB) has proven effective in treating antigenic BM and, thus, combining IORT with ICB might be a promising approach. However, it is not known if a low number of residual tumor cells in the tumor bed after resection is sufficient to act as an immunizing event opening the gate for ICB therapies in the brain. Because immunological data on tumor bed irradiation after resection are lacking, a rationale for combining IORT with ICB must be based on mechanistic insight from experimental models and clinical studies on unresected tumors. The purpose of the present review is to examine the mechanisms by which large radiation doses as applied in SRS and IORT enhance antitumor immune activity. Clinical studies on IORT for brain tumors, and on combined treatment of SRS and ICB for unresected BM, are used to assess the safety, efficacy, and immunogenicity of IORT plus ICB and to suggest an optimal treatment sequence.
Collapse
Affiliation(s)
- Carsten Herskind
- Medical Faculty Mannheim, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany.,Cellular and Molecular Radiation Oncology Laboratory, Medical Faculty Mannheim, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Frederik Wenz
- Medical Faculty Mannheim, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank A Giordano
- Medical Faculty Mannheim, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany.,Translational Radiation Oncology, Department of Radiation Oncology, Universitätsmedizin Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
39
|
Vasquez JC, Huttner A, Zhang L, Marks A, Chan A, Baehring JM, Kahle KT, Dhodapkar KM. SOX2 immunity and tissue resident memory in children and young adults with glioma. J Neurooncol 2017. [PMID: 28620836 DOI: 10.1007/s11060-017-2515-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Therapies targeting immune checkpoints are effective in tumors with a high mutation burden that express multiple neo-antigens. However, glial tumors including those seen in children carry fewer mutations and there is an unmet need to identify new antigenic targets of anti-tumor immunity. SOX2 is an embryonal stem cell antigen implicated in the biology of glioma initiating cells. Expression of SOX2 by pediatric glial tumors and the capacity of the immune system in these patients to recognize SOX2 has not been previously studied. We examined the expression of SOX2 on archived paraffin-embedded tissue from pediatric glial tumors. The presence of T-cell immunity to SOX2 was examined in both blood and tumor-infiltrating T-cells in children and young adults with glioma. The nature of tumor-infiltrating immune cells was analyzed with a 37-marker panel using single-cell mass cytometry. SOX2 is expressed by tumor cells but not surrounding normal tissue in pediatric gliomas of all grades. T-cells against this antigen can be detected in blood and tumor tissue in glioma patients. Glial tumors are enriched for CD8/CD4 T-cells with tissue resident memory (TRM; CD45RO+, CD69+, CCR7-) phenotype, which co-express multiple inhibitory checkpoints including PD-1, PD-L1 and TIGIT. Tumors also contain natural killer cells with reduced expression of lytic granzyme. Our data demonstrate immunogenicity of SOX2, which is specifically overexpressed on pediatric glial tumor cells. Harnessing tumor immunity in glioma will likely require the combined targeting of multiple inhibitory checkpoints.
Collapse
Affiliation(s)
- Juan C Vasquez
- Department of Pediatrics, Yale School of Medicine, 333 Cedar Street, LMP 2073, New Haven, CT, 06510, USA
| | - Anita Huttner
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Lin Zhang
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Asher Marks
- Department of Pediatrics, Yale School of Medicine, 333 Cedar Street, LMP 2073, New Haven, CT, 06510, USA
| | - Amy Chan
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Kavita M Dhodapkar
- Department of Pediatrics, Yale School of Medicine, 333 Cedar Street, LMP 2073, New Haven, CT, 06510, USA.
| |
Collapse
|
40
|
Radiation-agent combinations for glioblastoma: challenges in drug development and future considerations. J Neurooncol 2017; 134:551-557. [PMID: 28560665 DOI: 10.1007/s11060-017-2458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/30/2017] [Indexed: 10/19/2022]
Abstract
Glioblastoma is an aggressive disease characterized by moderate initial response rates to first-line radiation-chemotherapy intervention followed by low poor response rates to second-line intervention. This article discusses novel strategic platforms for the development of radiation-investigational agent combination clinical trials for primary and recurrent glioblastoma in a NCI-NCTN settings with simultaneous analysis of challenges in the drug development process.
Collapse
|
41
|
Management of GBM: a problem of local recurrence. J Neurooncol 2017; 134:487-493. [PMID: 28378194 DOI: 10.1007/s11060-016-2347-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/23/2016] [Indexed: 01/22/2023]
Abstract
Forty years ago, adjuvant treatment of patients with GBM using fractionated radiotherapy following surgery was shown to substantially improve survival compared to surgery alone. However, even with the addition of temozolomide to radiotherapy, overall survival is quite limited and local failure remains a fundamental problem, despite multiple attempts to increase dose to the tumor target. This review presents the historical background and clinical rationale leading to the current standard of care consisting of 60 Gy total dose in 2 Gy fractions to the MRI-defined targets in younger, high performance status patients and more hypofractionated regimens in elderly and/or debilitated patients. Particle therapies offer the potential to increase local control while reducing dose and, potentially, long-term neurocognitive toxicity. However, improvements in systemic therapies for GBM will need to be implemented before the full benefits of improved local control can be realized.
Collapse
|
42
|
Srinivasan VM, Ferguson SD, Lee S, Weathers SP, Kerrigan BCP, Heimberger AB. Tumor Vaccines for Malignant Gliomas. Neurotherapeutics 2017; 14:345-357. [PMID: 28389997 PMCID: PMC5398993 DOI: 10.1007/s13311-017-0522-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite continued research efforts, glioblastoma multiforme (GBM) remains the deadliest brain tumor. Immunotherapy offers a novel way to treat this disease, the genetic signature of which is not completely elucidated. Additionally, these tumors are known to induce immunosuppression in the surrounding tumor microenvironment via an array of mechanisms, making effective treatment all the more difficult. The immunotherapeutic strategy of using tumor vaccines offers a way to harness the activity of the host immune system to potentially control tumor progression. GBM vaccines can react to a variety of tumor-specific antigens, which can be harvested from the patient's unique pathological condition using selected immunotherapy techniques. This article reviews the rationale behind and development of GBM vaccines, the relevant clinical trials, and the challenges involved in this treatment strategy.
Collapse
Affiliation(s)
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Sungho Lee
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Shiao-Pei Weathers
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
43
|
Ansari M, Mosalaei A, Ahmadloo N, Rasekhi A, Geramizadeh B, Razmkon A, Anvari K, Afarid M, Dadras A, Nafarieh L, Mohammadianpanah M, Nasrolahi H, Hamedi SH, Omidvari S, Nami M. A comprehensive approach in high-grade glioma management: position statement from the Neuro-Oncology Scientific Club (NOSC), Shiraz, Iran. GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2017; 15:Doc05. [PMID: 28325997 PMCID: PMC5332812 DOI: 10.3205/000246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/09/2017] [Indexed: 12/21/2022]
Abstract
Establishing a robust teamwork model in the practice of neuro-oncology requires continued interdisciplinary efforts. The Neuro-Oncology Scientific Club (NOSC) initiative is an interdisciplinary clinical forum promoting the comprehensive approach across involved disciplines in the management of central nervous system (CNS) malignancies. With its provincial founding panels and national steering board, NOSC has been operational in Iran since 2011. This initiative has pursued its mission through interval strategic meetings, tumor boards, case discussions as well as publishing neuro-oncology updates, case study periodicals, and newsletters. A provincial meeting of NOSC in Shiraz put together insights from international practice guidelines, emerging evidence, and expert opinions to draw a position statement on high-grade glioma management in adults. The present report summarizes key highlights from the above clinical forum.
Collapse
Affiliation(s)
- Mansour Ansari
- Department of Radiation Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Mosalaei
- Department of Radiation Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Niloufar Ahmadloo
- Department of Radiation Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Rasekhi
- Department of Radiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Razmkon
- Department of Neurosurgery, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Afarid
- Behestan Medical Scientific Committee, Behestan Group, Tehran, Iran
| | - Ali Dadras
- Behestan Medical Scientific Committee, Behestan Group, Tehran, Iran; Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Leila Nafarieh
- Behestan Medical Scientific Committee, Behestan Group, Tehran, Iran
| | - Mohammad Mohammadianpanah
- Department of Radiation Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Nasrolahi
- Department of Radiation Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Hasan Hamedi
- Department of Radiation Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shapour Omidvari
- Department of Radiation Oncology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nami
- Behestan Medical Scientific Committee, Behestan Group, Tehran, Iran; Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Neuroscience Laboratory (Brain, Cognition and Behavior), Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
44
|
Puduvalli VK, Chaudhary R, McClugage SG, Markert J. Beyond Alkylating Agents for Gliomas: Quo Vadimus? Am Soc Clin Oncol Educ Book 2017; 37:175-186. [PMID: 28561663 PMCID: PMC5803081 DOI: 10.1200/edbk_175003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent advances in therapies have yielded notable success in terms of improved survival in several cancers. However, such treatments have failed to improve outcome in patients with gliomas for whom surgery followed by radiation therapy and chemotherapy with alkylating agents remain the standard of care. Genetic and epigenetic studies have helped identify several alterations specific to gliomas. Attempts to target these altered pathways have been unsuccessful due to various factors, including tumor heterogeneity, adaptive resistance of tumor cells, and limitations of access across the blood-brain barrier. Novel therapies that circumvent such limitations have been the focus of intense study and include approaches such as immunotherapy, targeting of signaling hubs and metabolic pathways, and use of biologic agents. Immunotherapeutic approaches including tumor-targeted vaccines, immune checkpoint blockade, antibody-drug conjugates, and chimeric antigen receptor-expressing cell therapies are in various stages of clinical trials. Similarly, identification of key metabolic pathways or converging hubs of signaling pathways that are tumor specific have yielded novel targets for therapy of gliomas. In addition, the failure of conventional therapies against gliomas has led to a growing interest among patients in the use of alternative therapies, which in turn has necessitated developing evidence-based approaches to the application of such therapies in clinical studies. The development of these novel approaches bears potential for providing breakthroughs in treatment of more meaningful and improved outcomes for patients with gliomas.
Collapse
Affiliation(s)
- Vinay K Puduvalli
- From The Ohio State University Comprehensive Cancer Center, Columbus, OH; University of Cincinnati, Cincinnati, OH; University of Alabama at Birmingham, Birmingham, AL
| | - Rekha Chaudhary
- From The Ohio State University Comprehensive Cancer Center, Columbus, OH; University of Cincinnati, Cincinnati, OH; University of Alabama at Birmingham, Birmingham, AL
| | - Samuel G McClugage
- From The Ohio State University Comprehensive Cancer Center, Columbus, OH; University of Cincinnati, Cincinnati, OH; University of Alabama at Birmingham, Birmingham, AL
| | - James Markert
- From The Ohio State University Comprehensive Cancer Center, Columbus, OH; University of Cincinnati, Cincinnati, OH; University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|