1
|
Merchand-Reyes G, Bull MF, Santhanam R, Valencia-Pena ML, Murugesan RA, Chordia A, Mo XM, Robledo-Avila FH, Ruiz-Rosado JDD, Carson WE, Byrd JC, Woyach JA, Tridandapani S, Butchar JP. NOD2 activation enhances macrophage Fcγ receptor function and may increase the efficacy of antibody therapy. Front Immunol 2024; 15:1409333. [PMID: 38919608 PMCID: PMC11196781 DOI: 10.3389/fimmu.2024.1409333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Therapeutic antibodies have become a major strategy to treat oncologic diseases. For chronic lymphocytic leukemia, antibodies against CD20 are used to target and elicit cytotoxic responses against malignant B cells. However, efficacy is often compromised due to a suppressive microenvironment that interferes with cellular immune responses. To overcome this suppression, agonists of pattern recognition receptors have been studied which promote direct cytotoxicity or elicit anti-tumoral immune responses. NOD2 is an intracellular pattern recognition receptor that participates in the detection of peptidoglycan, a key component of bacterial cell walls. This detection then mediates the activation of multiple signaling pathways in myeloid cells. Although several NOD2 agonists are being used worldwide, the potential benefit of these agents in the context of antibody therapy has not been explored. Methods Primary cells from healthy-donor volunteers (PBMCs, monocytes) or CLL patients (monocytes) were treated with versus without the NOD2 agonist L18-MDP, then antibody-mediated responses were assessed. In vivo, the Eµ-TCL1 mouse model of CLL was used to test the effects of L18-MDP treatment alone and in combination with anti-CD20 antibody. Results Treatment of peripheral blood mononuclear cells with L18-MDP led to activation of monocytes from both healthy donors and CLL patients. In addition, there was an upregulation of activating FcγR in monocytes and a subsequent increase in antibody-mediated phagocytosis. This effect required the NF-κB and p38 signaling pathways. Treatment with L18-MDP plus anti-CD20 antibody in the Eµ-TCL model of CLL led to a significant reduction of CLL load, as well as to phenotypic changes in splenic monocytes and macrophages. Conclusions Taken together, these results suggest that NOD2 agonists help overturn the suppression of myeloid cells, and may improve the efficacy of antibody therapy for CLL.
Collapse
MESH Headings
- Nod2 Signaling Adaptor Protein/agonists
- Nod2 Signaling Adaptor Protein/metabolism
- Nod2 Signaling Adaptor Protein/immunology
- Animals
- Humans
- Receptors, IgG/metabolism
- Receptors, IgG/immunology
- Mice
- Macrophages/immunology
- Macrophages/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Acetylmuramyl-Alanyl-Isoglutamine/pharmacology
- Female
- Mice, Inbred C57BL
- Signal Transduction
- Phagocytosis
- Rituximab/pharmacology
- Rituximab/therapeutic use
Collapse
Affiliation(s)
- Giovanna Merchand-Reyes
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Mikayla F. Bull
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Ramasamy Santhanam
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Maria L. Valencia-Pena
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | | | - Aadesh Chordia
- College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Xiaokui-Molly Mo
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, United States
| | - Frank H. Robledo-Avila
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Juan De Dios Ruiz-Rosado
- Kidney and Urinary Tract Center, Abigail Wexner Research Institute, Nationwide Children’s Hospital, Columbus, OH, United States
- Division of Pediatric Nephrology and Hypertension, Nationwide Children’s Hospital, Columbus, OH, United States
| | | | - John C. Byrd
- Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Jennifer A. Woyach
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Susheela Tridandapani
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jonathan P. Butchar
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
2
|
Ringelstein-Harlev S, Fanadka M, Horowitz NA, Bettman NP, Katz T. In chronic lymphocytic leukemia, activation of the thrombopoietin receptor promotes T-cell inhibitory properties, contributing to immunosuppression. Eur J Haematol 2023; 110:371-378. [PMID: 36478591 DOI: 10.1111/ejh.13912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
In chronic lymphocytic leukemia (CLL), the immune system is skewed towards a suppressive milieu. Levels of thrombopoietin (TPO), promoting cellular immune regulatory activity in immune thrombocytopenic purpura, were shown to be elevated in CLL patients. This study explored TPO as a potential immunomodulator, supporting CLL progression. We evaluated CLL cell-induced expression of TPO receptor (TPO-R) on T-cells and effects of its activation on T-cell responses. CLL cell involvement in TPO generation was also assessed. Baseline TPO-R expression on CD4 + T-cells was found to be higher in CLL patients than in healthy controls (HC). Exposure of HC-T-cells to B-cells, especially to CLL-B-cells stimulated with B-cell activating molecules, resulted in enhanced TPO-R expression on T-cells. CLL-T-cell stimulation with TPO reduced their proliferation and expanded the regulatory T-cell (Treg) population. At baseline, phosphorylation of STAT5, known to impact the Treg phenotype, was elevated in CLL-T-cells relative to those of HC. Exposure to TPO further enhanced STAT5 phosphorylation in CLL-T-cells, possibly driving the observed Treg expansion. The CLL immune milieu is involved in promotion of inhibitory features in T-cells through increased TPO-R levels and TPO-induced intracellular signaling. TPO and its signaling pathway could potentially support immunosuppression in CLL, and may emerge as novel therapeutic targets.
Collapse
Affiliation(s)
- Shimrit Ringelstein-Harlev
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Mona Fanadka
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Netanel A Horowitz
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Noam P Bettman
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Tami Katz
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
3
|
Yang S, Huang X, Gale RP. Cell therapy of chronic lymphocytic leukaemia: Transplants and chimeric antigen receptor (CAR)-T cells. Blood Rev 2021; 51:100884. [PMID: 34489116 DOI: 10.1016/j.blre.2021.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022]
Abstract
There is substantial progress in the therapy of chronic lymphocytic leukaemia (CLL), much of it the result of new drug development. As such the definition of high-risk CLL is changing. Nevertheless, few persons with CLL are cured with current therapy. Two types of cell therapies of CLL are currently being evaluated or re-evaluated in the context of these advances: haematopoietic cell transplants and chimeric antigen receptor (CAR)-T-cells. We discuss the potential role of these cell therapies in the context of the evolving therapy topography of CLL including how these therapies work and who, if anyone, is an appropriate candidate for cell therapy.
Collapse
Affiliation(s)
- Shenmiao Yang
- Peking University Peoples Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China
| | - Xiaojun Huang
- Peking University Peoples Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing, China.
| | - Robert Peter Gale
- Centre for Haematology Research, Department of Immunology and Inflammation, Imperial College London, London, United Kingdom.
| |
Collapse
|
4
|
Balakrishna J, Basumallik N, Matulonis R, Scott D, Salem D, Jasper G, Wiestner A, Stetler-Stevenson M, Marti G, Sun C, Yuan CM. Intensity of antigen expression reflects IGHV mutational status and Dohner-defined prognostic categories in chronic lymphocytic leukemia, monoclonal B-cell lymphocytosis, and small lymphocytic lymphoma. Leuk Lymphoma 2021; 62:1828-1839. [PMID: 33734005 PMCID: PMC9464423 DOI: 10.1080/10428194.2021.1894641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 02/04/2021] [Accepted: 02/14/2021] [Indexed: 10/21/2022]
Abstract
We demonstrate the prognostic utility of antigen quantitation in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and monoclonal B-cell lymphocytosis (MBL). Median antibody-bound-per-cell (ABC) of CD20, CD22, CD25, CD19, and %CD38(+) was determined in CLL (185/208), SLL (8/208) and MBL (15/208) cases by flow cytometry, then compared to Dohner-classification, immunoglobulin status (mutated, IGHV-M; unmutated, IGHV-U), CLL-IPI risk and time to first treatment (TTFT). Trisomy 12 cases showed increased %CD38-expression (p = .0379). Higher %CD38 was observed in IGHV-U versus IGHV-M (p = .0003). CD20ABC was increased in IGHV-U versus IGHV-M (p = .006). Del13q cases demonstrated lower CD22ABC (p = .0198). Cases without cytogenetic abnormality exhibited higher CD19ABC (p = .0295) and CD22ABC (p = .0078). Del17p cases demonstrated lower CD25ABC (p = .0097). High and very-high CLL-IPI risk groups were associated with high CD38-expression (p = .02) and low CD25ABC (p = .0004). Shortened TTFT was associated with high CD38-expression (p < .0001). Interestingly, high CD25ABC trended toward shortened TTFT (p = .07). Quantitative antigen expression reflects CLL-IPI risk groups and Dohner-classification.
Collapse
Affiliation(s)
- Jayalakshmi Balakrishna
- Flow Cytometry, Laboratory of Pathology, Center for Cancer Research, NCI, NIH
- Hematopathology, Ohio State University Wexner Medical Center
| | | | - Robert Matulonis
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Drake Scott
- Flow Cytometry, Laboratory of Pathology, Center for Cancer Research, NCI, NIH
| | - Dalia Salem
- Flow Cytometry, Laboratory of Pathology, Center for Cancer Research, NCI, NIH
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Egypt
| | - Gregory Jasper
- Flow Cytometry, Laboratory of Pathology, Center for Cancer Research, NCI, NIH
| | | | | | | | | | - Constance M. Yuan
- Flow Cytometry, Laboratory of Pathology, Center for Cancer Research, NCI, NIH
| |
Collapse
|
5
|
Revisiting TLR9 as a target for CLL therapy. Blood 2021; 137:3006-3008. [PMID: 34081121 DOI: 10.1182/blood.2020010618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Arruga F, Serra S, Vitale N, Guerra G, Papait A, Baffour Gyau B, Tito F, Efremov D, Vaisitti T, Deaglio S. Targeting of the A2A adenosine receptor counteracts immunosuppression in vivo in a mouse model of chronic lymphocytic leukemia. Haematologica 2021; 106:1343-1353. [PMID: 32299906 PMCID: PMC8094100 DOI: 10.3324/haematol.2019.242016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 11/09/2022] Open
Abstract
Tumor immunosuppression is a major cause for treatment failure and disease relapse, both in solid tumors and leukemia. Local hypoxia is among the conditions that cause immunosuppression, acting at least in part through the upregulation of extracellular adenosine levels, which potently suppress T cell responses and skew macrophages towards an M2 phenotype. Hence, there is intense investigation to identify drugs that target this axis. By using the TCL1 adoptive transfer CLL mouse model, we show that adenosine production and signaling are upregulated in the hypoxic lymphoid niches, where intense colonization of leukemic cells occurs. This leads to a progressive remodeling of the immune system towards tolerance, with expansion of T regulatory cells (Tregs), loss of CD8+ T cell cytotoxicity and differentiation of murine macrophages towards the patrolling (M2-like) subset. In vivo administration of SCH58261, an inhibitor the A2A adenosine receptor, re-awakens T cell responses, while limiting Tregs expansion, and re-polarizes monocytes towards the inflammatory (M1-like) phenotype. These results show for the first time the in vivo contribution of adenosine signaling to immune tolerance in CLL, and the translational implication of drugs interrupting this pathway. Although the effects of SCH58261 on leukemic cells are limited, interfering with adenosine signaling may represent an appealing strategy for combination-based therapeutic approaches.
Collapse
Affiliation(s)
- Francesca Arruga
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sara Serra
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Nicoletta Vitale
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giulia Guerra
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrea Papait
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Benjamin Baffour Gyau
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Francesco Tito
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Tiziana Vaisitti
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Deaglio
- Lab of Cancer Immunogenetics, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Maharaj K, Powers JJ, Mediavilla-Varela M, Achille A, Gamal W, Quayle S, Jones SS, Sahakian E, Pinilla-Ibarz J. HDAC6 Inhibition Alleviates CLL-Induced T-Cell Dysfunction and Enhances Immune Checkpoint Blockade Efficacy in the Eμ-TCL1 Model. Front Immunol 2020; 11:590072. [PMID: 33329575 PMCID: PMC7719839 DOI: 10.3389/fimmu.2020.590072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
Development of chronic lymphocytic leukemia (CLL) is associated with severe immune dysfunction. T-cell exhaustion, immune checkpoint upregulation, and increase of regulatory T cells contribute to an immunosuppressive tumor microenvironment. As a result, CLL patients are severely susceptible to infectious complications that increase morbidity and mortality. CLL B-cell survival is highly dependent upon interaction with the supportive tumor microenvironment. It has been postulated that the reversal of T-cell dysfunction in CLL may be beneficial to reduce tumor burden. Previous studies have also highlighted roles for histone deacetylase 6 (HDAC6) in regulation of immune cell phenotype and function. Here, we report for the first time that HDAC6 inhibition exerts beneficial immunomodulatory effects on CLL B cells and alleviates CLL-induced immunosuppression of CLL T cells. In the Eμ-TCL1 adoptive transfer murine model, genetic silencing or inhibition of HDAC6 reduced surface expression of programmed death-ligand 1 (PD-L1) on CLL B cells and lowered interleukin-10 (IL-10) levels. This occurred concurrently with a bolstered T-cell phenotype, demonstrated by alteration of coinhibitory molecules and activation status. Analysis of mice with similar tumor burden indicated that the majority of T-cell changes elicited by silencing or inhibition of HDAC6 in vivo are likely secondary to decrease of tumor burden and immunomodulation of CLL B cells. The data reported here suggest that CLL B cell phenotype may be altered by HDAC6-mediated hyperacetylation of the chaperone heat shock protein 90 (HSP90) and subsequent inhibition of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. Based on the beneficial immunomodulatory activity of HDAC6 inhibition, we rationalized that HDAC6 inhibitors could enhance immune checkpoint blockade in CLL. Conclusively, combination treatment with ACY738 augmented the antitumor efficacy of anti-PD-1 and anti-PD-L1 monoclonal antibodies in the Eμ-TCL1 adoptive transfer murine model. These combinatorial antitumor effects coincided with an increased cytotoxic CD8+ T-cell phenotype. Taken together, these data highlight a role for HDAC inhibitors in combination with immunotherapy and provides the rationale to investigate HDAC6 inhibition together with immune checkpoint blockade for treatment of CLL patients.
Collapse
Affiliation(s)
- Kamira Maharaj
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Cancer Biology PhD Program, University of South Florida & H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - John J Powers
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Melanie Mediavilla-Varela
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Alex Achille
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Wael Gamal
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | | | - Simon S Jones
- Regenacy Pharmaceuticals, Inc., Waltham, MA, United States
| | - Eva Sahakian
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| | - Javier Pinilla-Ibarz
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States.,Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, United States
| |
Collapse
|
8
|
Alizadeh M, Safarzadeh A, Hoseini SA, Piryaei R, Mansoori B, Hajiasgharzadeh K, Baghbanzadeh A, Baradaran B. The potentials of immune checkpoints for the treatment of blood malignancies. Crit Rev Oncol Hematol 2020; 153:103031. [PMID: 32622320 DOI: 10.1016/j.critrevonc.2020.103031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoints are the regulators of the immune system, which include stimulatory and inhibitory receptors. They play substantial roles in the maintenance of immune system homeostasis and the prevention of autoimmunity and cancer. In the current review, immune checkpoints roles are surveyed in the initiation, progression, and treatment of blood malignancies. The significant roles of immune checkpoints are discussed as clinical markers in the diagnosis and prognosis of a plethora of blood malignancies and also as potential targets for the treatment of these malignancies. It could be concluded that the regulation of immune checkpoints in various blood cancers can be employed as a novel strategy to obtain effective results in leukemia treatment and introduce immune checkpoint inhibitors as sufficient weapons against blood cancers in the future.
Collapse
Affiliation(s)
- Mohsen Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Safarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Seyed Ali Hoseini
- Department of Genetic, Faculty of Basic Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Reza Piryaei
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Behzad Mansoori
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | | | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Ringelstein-Harlev S. Immune dysfunction complexity in chronic lymphocytic leukemia ‒ an issue to consider when designing novel therapeutic strategies. Leuk Lymphoma 2020; 61:2050-2058. [PMID: 32336174 DOI: 10.1080/10428194.2020.1755857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A complex interplay between chronic lymphocytic leukemia (CLL) cells and different constituents of the immune system generally results in immune tolerance. As targeted therapies are gaining a critical role in the therapeutic landscape of this disease, their impact on the already perturbed immune milieu needs to be considered. This review addresses the issues of basic immune dysfunction in CLL which is further complicated by the effects of a number of novel targeted therapies used for this malignancy. These new approaches may simultaneously facilitate both anti- and pro-cancer activity, potentially compromising the depth of response to therapy. Current evidence suggests that exploiting combination therapy could potentially overcome at least part of these deleterious effects, thereby prolonging response to treatment and helping to restore immune activity.
Collapse
Affiliation(s)
- Shimrit Ringelstein-Harlev
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|