1
|
Xiong Y, Sun M, Yang Q, Zhang W, Song A, Tan Y, Mao J, Liu G, Xue P. Nanoparticle-based drug delivery systems to modulate tumor immune response for glioblastoma treatment. Acta Biomater 2025:S1742-7061(25)00070-4. [PMID: 39884522 DOI: 10.1016/j.actbio.2025.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/28/2024] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Glioblastoma (GBM) is a primary central nervous system neoplasm, characterized by a grim prognosis and low survival rates. This unfavorable therapeutic outcome is partially attributed to the inadequate immune infiltration and an immunosuppressive microenvironment, which compromises the effectiveness of conventional radiotherapy and chemotherapy. To this end, precise modulation of cellular dynamics in the immune system has emerged as a promising approach for therapeutic intervention. The advent of nanoparticle-based therapies has revolutionized cancer treatment and provided highly effective options. Consequently, various strategically designed nano-delivery platforms have been established to promote the efficacy of immune therapy against GBM. This review delves into the recent advancements in nano-based delivery systems that are designed to modulate immune cells in GBM microenvironment, and explores their multifaceted mechanisms, including the blockade of immune checkpoints, the restraint of immunosuppressive cells, the coordination of tumor-associated macrophages, the activation of innate immune cells, and the stimulation of adaptive immunity. Collectively, this summary not only advances the comprehension involved in modulating antitumor immune responses in GBM, but also paves the way for the development of innovative therapeutic strategies to conquer GBM. STATEMENT OF SIGNIFICANCE: Glioblastoma (GBM) is the most lethal brain tumor, with a median survival rate of merely 12-16 months after diagnosis. Despite surgical, radiation and chemotherapy treatments, the two-year survival rate for GBM patients is less than 10 %. The treatment of GBM is challenging mainly because several issues associated with the GBM microenvironment have not yet been resolved. Most recently, novel drug delivery approaches, based on the clear understanding of the intrinsic properties of GBM, have shown promise in overcoming some of the obstacles. In particular, taking account of the highly immunosuppressive tumor microenvironment in GBM, recent advancements in nano-based delivery systems are put forward to stimulate immune cells in GBM and unravel their multifaceted mechanisms. This review summarizes the latest nanoparticle-based drug delivery systems to modulate tumor immune response for glioblastoma treatment. Moreover, the development trends and challenges of nanoparticle-based drug delivery systems in modulating the immunity of GBM are predicted, which may facilitate widespread regimens springing up for successfully treating GBM.
Collapse
Affiliation(s)
- Yongqi Xiong
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Maoyuan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qinhao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenli Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Anchao Song
- College of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Jinning Mao
- Health Medical Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644005, China.
| |
Collapse
|
2
|
Coënon L, Geindreau M, Ghiringhelli F, Villalba M, Bruchard M. Natural Killer cells at the frontline in the fight against cancer. Cell Death Dis 2024; 15:614. [PMID: 39179536 PMCID: PMC11343846 DOI: 10.1038/s41419-024-06976-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/26/2024]
Abstract
Natural Killer (NK) cells are innate immune cells that play a pivotal role as first line defenders in the anti-tumor response. To prevent tumor development, NK cells are searching for abnormal cells within the body and appear to be key players in immunosurveillance. Upon recognition of abnormal cells, NK cells will become activated to destroy them. In order to fulfill their anti-tumoral function, they rely on the secretion of lytic granules, expression of death receptors and production of cytokines. Additionally, NK cells interact with other cells in the tumor microenvironment. In this review, we will first focus on NK cells' activation and cytotoxicity mechanisms as well as NK cells behavior during serial killing. Lastly, we will review NK cells' crosstalk with the other immune cells present in the tumor microenvironment.
Collapse
Affiliation(s)
- Loïs Coënon
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Mannon Geindreau
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
| | - François Ghiringhelli
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France
- University of Bourgogne Franche-Comté, Dijon, France
- Platform of Transfer in Biological Oncology, Georges-François Leclerc Cancer Center, Dijon, France
| | - Martin Villalba
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, Montpellier, France
- Institut du Cancer Avignon-Provence Sainte Catherine, Avignon, France
- IRMB, Univ Montpellier, INSERM, CHU Montpellier, CNRS, Montpellier, France
| | - Mélanie Bruchard
- Equipe TIRECs, Labellisée Ligue Contre le Cancer, Centre de Recherche INSERM CTM-UMR1231, Dijon, France.
- University of Bourgogne Franche-Comté, Dijon, France.
- Platform of Transfer in Biological Oncology, Georges-François Leclerc Cancer Center, Dijon, France.
| |
Collapse
|
3
|
Kirkpatrick C, Lu YCW. Deciphering CD4 + T cell-mediated responses against cancer. Mol Carcinog 2024; 63:1209-1220. [PMID: 38725218 PMCID: PMC11166516 DOI: 10.1002/mc.23730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/05/2024] [Indexed: 05/15/2024]
Abstract
It's been long thought that CD8+ cytotoxic T cells play a major role in T cell-mediated antitumor responses, whereas CD4+ T cells merely provide some assistance to CD8+ T cells as the "helpers." In recent years, numerous studies support the notion that CD4+ T cells play an indispensable role in antitumor responses. Here, we summarize and discuss the current knowledge regarding the roles of CD4+ T cells in antitumor responses and immunotherapy, with a focus on the molecular and cellular mechanisms behind these observations. These new insights on CD4+ T cells may pave the way to further optimize cancer immunotherapy.
Collapse
Affiliation(s)
- Catherine Kirkpatrick
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yong-Chen William Lu
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
4
|
Arora J, Ayyappan S, Yin C, Smith BJ, Lemke-Miltner CD, Wang Z, Farooq U, Weiner GJ. T-cell help in the tumor microenvironment enhances rituximab-mediated NK-cell ADCC. Blood 2024; 143:1816-1824. [PMID: 38457360 PMCID: PMC11076912 DOI: 10.1182/blood.2023023370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/10/2024] Open
Abstract
ABSTRACT Rituximab (RTX) and other monoclonal antibodies (mAbs) that bind directly to malignant cells are of great clinical value but are not effective for all patients. A major mechanism of action of RTX is antibody-dependent cellular cytotoxicity (ADCC) mediated by natural killer (NK) cells. Prior in vitro studies in our laboratory demonstrated that T cells contribute to maintaining the viability and cytotoxic potential of NK cells activated by anti-CD20-coated target B cells. Here, we conducted studies using a novel mouse model and clinical correlative analysis to assess whether T-cell help contribute to RTX-mediated NK-cell ADCC in the tumor microenvironment (TME) in vivo. A humanized mouse model was developed using Raji lymphoma cells and normal donor peripheral blood mononuclear cells that allows for control of T-cell numbers in the lymphoma TME. In this model, NK-cell viability and CD16 and CD25 expression dropped after RTX in the absence of T cells but increased in the presence of T cells. RTX therapy was more effective when T cells were present and was ineffective when NK cells were depleted. In patients with indolent lymphoma, fine needle aspirates were obtained before and ∼1 week after treatment with a RTX-containing regimen. There was a strong correlation between CD4+ T cells as well as total T cells in the pretherapy TME and an increase in NK-cell CD16 and CD25 expression after RTX. We conclude that T-cell help in the TME enhances RTX-mediated NK-cell viability and ADCC.
Collapse
Affiliation(s)
- Jyoti Arora
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA
| | - Sabarish Ayyappan
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - Chaobo Yin
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Brian J. Smith
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Biostatistics, University of Iowa, Iowa City, IA
| | | | - Zhaoming Wang
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
| | - Umar Farooq
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| | - George J. Weiner
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA
- Department of Internal Medicine, University of Iowa, Iowa City, IA
| |
Collapse
|
5
|
Taylor RP. T cells reinforce NK cell-mediated ADCC. Blood 2024; 143:1786-1787. [PMID: 38696196 DOI: 10.1182/blood.2024024444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
|
6
|
Wu L, Gao G, Mi H, Luo Z, Wang Z, Liu Y, Wu L, Long H, Shen Y. Validation of CDC45 as a novel biomarker for diagnosis and prognosis of gastric cancer. PeerJ 2024; 12:e17130. [PMID: 38515458 PMCID: PMC10956518 DOI: 10.7717/peerj.17130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
Background Cell division cycle protein 45 (CDC45) has been demonstrated to play vital roles in the progression of various malignancies. However, the clinical significance of CDC45 in gastric cancer (GC) remains unreported. Method In this study, we employed the TCGA database and the TCGA & GTEx dataset to compare the mRNA expression levels of CDC45 between gastric cancer tissues and adjacent or normal tissues (p < 0.05 was considered statistically significant), which was further validated in multiple datasets including GSE13911, GSE29272, GSE118916, GSE66229, as well as RT-qPCR. Furthermore, we harnessed the Human Protein Atlas (HPA) to evaluate the protein expression of CDC45, which was subsequently verified through immunohistochemistry (IHC). To ascertain the diagnostic utility of CDC45, receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were calculated in TCGA database, and further validated it in TCGA & GTEx and GSE66229 datasets. The Kaplan-Meier method was used to reveal the prognostic importance of CDC45 in The Cancer Genome Atlas (TCGA) database and authenticated through the GSE66229, GSE84433, and GSE84437 datasets. Through cBioPortal, we identified co-expressed genes of CDC45, and pursued enrichment analysis. Additionally, we availed gene set enrichment analysis (GSEA) to annotate the biological functions of CDC45. Results Differential expression analysis revealed that CDC45 was significantly upregulated at both the mRNA and protein levels in GC (all p < 0.05). Remarkably, CDC45 emerged as a promising prognostic indicator and a novel diagnostic biomarker for GC. In a comprehensive the drug susceptibility analysis, we found that patients with high expression of CDC45 had high sensitivity to various chemotherapeutic agents, among which 5-fluorouracil, docetaxel, cisplatin, and elesclomol were most evident. Furthermore, our findings suggested a plausible association between CDC45 and immune cell infiltration. Enrichment analysis revealed that CDC45 and its associated genes may play crucial roles in muscle biofunction, whereas GSEA demonstrated significant enrichment of gene sets pertaining to G protein-coupled receptor ligand binding and G alpha (i) signaling events. Conclusion Our study elucidates that upregulation of CDC45 is intricately associated with immune cell infiltration and holds promising potential as a favorable prognostic marker and a novel diagnostic biomarker for GC.
Collapse
Affiliation(s)
- Lihua Wu
- Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Gan Gao
- Clinical Laboratory, Liuzhou Hospital of Guangzhou Women and Children’s Medical Center, Liuzhou, Guangxi, China
- Guangxi Clinical Research Center for Obstetrics and Gynecology, liuzhou, Guangxi, China
| | - Hui Mi
- Changzhi People’s Hospital, Changzhi, china
| | - Zhou Luo
- Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Zheng Wang
- Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Yongdong Liu
- Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Liangyan Wu
- Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Haihua Long
- Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| | - Yongqi Shen
- Affiliated Liutie Central Hospital of Guangxi Medical University, Liuzhou, China
| |
Collapse
|
7
|
Cattaneo I, Choblet S, Valgardsdottir R, Roth M, Massafra A, Beeg M, Gobbi M, Duonor-Cerutti M, Golay J. Development of a Bispecific IgG1 Antibody Targeting BCMA and PDL1. Antibodies (Basel) 2024; 13:15. [PMID: 38390876 PMCID: PMC10885062 DOI: 10.3390/antib13010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
We designed, produced, and purified a novel IgG1-like, bispecific antibody (bsAb) directed against B-cell maturation antigen (BCMA), expressed by multiple myeloma (MM) cells, and an immune checkpoint inhibitor (ICI), PDL1, expressed in the MM microenvironment. The BCMA×PDL1 bsAb was fully characterized in vitro. BCMA×PDL1 bound specifically and simultaneously, with nM affinity, to both native membrane-bound antigens and to the recombinant soluble antigen fragments, as shown by immunophenotyping analyses and surface plasmon resonance (SPR), respectively. The binding affinity of bsAb for PDL1 and BCMA was similar to each other, but PDL1 affinity was about 10-fold lower in the bsAb compared to parent mAb, probably due to the steric hindrance associated with the more internal anti-PDL1 Fab. The bsAb was also able to functionally block both antigen targets with IC50 in the nM range. The bsAb Fc was functional, inducing human-complement-dependent cytotoxicity as well as ADCC by NK cells in 24 h killing assays. Finally, BCMA×PDL1 was effective in 7-day killing assays with peripheral blood mononuclear cells as effectors, inducing up to 75% of target MM cell line killing at a physiologically attainable, 6 nM, concentration. These data provide the necessary basis for future optimization and in vivo testing of this novel bsAb.
Collapse
Affiliation(s)
- Irene Cattaneo
- Division of Hematology, Center of Cellular Therapy "G. Lanzani", Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24122 Bergamo, Italy
| | - Sylvie Choblet
- Centre National de la Recherche Scientifique UAR3426 "Baculovirus et Therapie", 30380 Saint-Christol-Lez-Alès, France
| | - Rut Valgardsdottir
- Division of Hematology, Center of Cellular Therapy "G. Lanzani", Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24122 Bergamo, Italy
| | - Muriel Roth
- Centre National de la Recherche Scientifique UAR3426 "Baculovirus et Therapie", 30380 Saint-Christol-Lez-Alès, France
| | - Annamaria Massafra
- Laboratory of Pharmacodynamics and Pharmacokinetics, Department of Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20157 Milan, Italy
| | - Marten Beeg
- Laboratory of Pharmacodynamics and Pharmacokinetics, Department of Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20157 Milan, Italy
| | - Marco Gobbi
- Laboratory of Pharmacodynamics and Pharmacokinetics, Department of Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20157 Milan, Italy
| | - Martine Duonor-Cerutti
- Centre National de la Recherche Scientifique UAR3426 "Baculovirus et Therapie", 30380 Saint-Christol-Lez-Alès, France
| | - Josée Golay
- Division of Hematology, Center of Cellular Therapy "G. Lanzani", Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, 24122 Bergamo, Italy
| |
Collapse
|
8
|
Xie L, Fang J, Yu J, Zhang W, He Z, Ye L, Wang H. The role of CD4 + T cells in tumor and chronic viral immune responses. MedComm (Beijing) 2023; 4:e390. [PMID: 37829505 PMCID: PMC10565399 DOI: 10.1002/mco2.390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapies are mainly aimed to promote a CD8+ T cell response rather than a CD4+ T cell response as cytotoxic T lymphocytes (CTLs) can directly kill target cells. Recently, CD4+ T cells have received more attention due to their diverse roles in tumors and chronic viral infections. In antitumor and antichronic viral responses, CD4+ T cells relay help signals through dendritic cells to indirectly regulate CD8+ T cell response, interact with B cells or macrophages to indirectly modulate humoral immunity or macrophage polarization, and inhibit tumor blood vessel formation. Additionally, CD4+ T cells can also exhibit direct cytotoxicity toward target cells. However, regulatory T cells exhibit immunosuppression and CD4+ T cells become exhausted, which promote tumor progression and chronic viral persistence. Finally, we also outline immunotherapies based on CD4+ T cells, including adoptive cell transfer, vaccines, and immune checkpoint blockade. Overall, this review summarizes diverse roles of CD4+ T cells in the antitumor or protumor and chronic viral responses, and also highlights the immunotherapies based on CD4+ T cells, giving a better understanding of their roles in tumors and chronic viral infections.
Collapse
Affiliation(s)
- Luoyingzi Xie
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Jingyi Fang
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Juncheng Yu
- Department of Thoracic SurgeryXinqiao Hospital Third Military Medical University (Army Medical University)ChongqingChina
| | - Weinan Zhang
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Zhiqiang He
- Department of Plastic & Cosmetic SurgeryArmy Medical Center of PLAAmy Medical UniversityChongqingChina
| | - Lilin Ye
- The Institute of ImmunologyThird Military Medical University (Army Medical University)ChongqingChina
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary SurgeryChongqing General HospitalChongqingChina
| |
Collapse
|
9
|
Zhao Y, Liang X, Duan X, Zhang C. Exploring the prognostic function of TMB-related prognostic signature in patients with colon cancer. BMC Med Genomics 2023; 16:116. [PMID: 37237274 DOI: 10.1186/s12920-023-01555-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023] Open
Abstract
Tumor mutation burden (TMB) level is identified as a useful predictor in multiple tumors including colon adenocarcinoma (COAD). However, the function of TMB related genes has not been explored previously. In this study, we obtained patients' expression and clinical data from The Cancer Genome Atlas (TCGA) and the National Center for Biotechnology Information (NCBI). TMB genes were screened and subjected to differential expression analysis. Univariate Cox and LASSO analyses were utilized to construct the prognostic signature. The efficiency of the signature was tested by using a receiver operating characteristic (ROC) curve. A nomogram was further plotted to assess the overall survival (OS) time of patients with COAD. In addition, we compared the predictive performance of our signature with other four published signatures. Functional analyses indicated that patients in the low-risk group have obviously different enrichment of tumor related pathways and tumor infiltrating immune cells from that of high-risk patients. Our findings suggested that the ten genes' prognostic signature could exert undeniable prognostic functions in patients with COAD, which might provide significant clues for the development of personalized management of these patients.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Nuclear Medicine, Zigong First People's Hospital, Zigong, 643000, Sichuan, PR China
| | - Xiaolong Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Xudong Duan
- Oncology Department, Zigong First People's Hospital, Zigong, 643000, Sichuan, PR China.
| | - Chengli Zhang
- Department of Nuclear Medicine, Zigong First People's Hospital, Zigong, 643000, Sichuan, PR China.
| |
Collapse
|
10
|
Wang Z, Yin C, Lum LG, Simons A, Weiner GJ. Bispecific antibody-activated T cells enhance NK cell-mediated antibody-dependent cellular cytotoxicity. J Hematol Oncol 2021; 14:204. [PMID: 34886888 PMCID: PMC8656063 DOI: 10.1186/s13045-021-01216-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/25/2021] [Indexed: 11/10/2022] Open
Abstract
Resistance to anti-cancer monoclonal antibody (mAb) therapy remains a clinical challenge. Previous work in our laboratory has shown that T cell help in the form of interleukin-2 maintains long-term NK cell viability and NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Lack of such T cell help may be a potential mechanism for resistance to mAb therapy. Here, we evaluate whether concomitant treatment with anti-CD3 × anti-cancer bispecific antibodies (bsAbs) can overcome this resistance by enhancing T cell help, and thereby maintaining long-term NK cell-mediated ADCC. Normal donor peripheral blood mononuclear cells were depleted of T cells, replenished with defined numbers of autologous T cells (from 0.75 to 50%) and co-cultured with mono-/bispecific antibody-treated target tumor cells for up to 7 days. At low T cell concentrations, bsAb-activated T cells (mainly CD4+ T cells) were more effective than resting T cells at maintaining NK cell viability and ADCC. Brief (4 h to 2 day) bsAb exposure was sufficient to enhance long-term ADCC by NK cells. These findings raise the hypothesis that local T cell activation mediated by systemic treatment with anti-CD3 X anti-cancer bsAb may enhance the anti-tumor efficacy of monospecific mAbs that mediate their primary therapeutic effect via NK-mediated ADCC.
Collapse
Affiliation(s)
- Zhaoming Wang
- Holden Comprehensive Cancer Center, University of Iowa, 5970-Z JPP, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA
| | - Chaobo Yin
- Holden Comprehensive Cancer Center, University of Iowa, 5970-Z JPP, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Lawrence G Lum
- Division of Hematology/Oncology, Department of Medicine, The University of Virginia, Charlottesville, VA, USA
| | - Andrean Simons
- Holden Comprehensive Cancer Center, University of Iowa, 5970-Z JPP, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - George J Weiner
- Holden Comprehensive Cancer Center, University of Iowa, 5970-Z JPP, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
- Cancer Biology Graduate Program, University of Iowa, Iowa City, IA, USA.
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|