1
|
Chen Z, Ding W, Duan P, Lv X, Feng Y, Yin Z, Luo Z, Li Z, Zhang H, Zhou T, Tan H. HWJMSC-derived extracellular vesicles ameliorate IL-1β-induced chondrocyte injury through regulation of the BMP2/RUNX2 axis via up-regulation TFRC. Cell Signal 2023; 105:110604. [PMID: 36669606 DOI: 10.1016/j.cellsig.2023.110604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/29/2022] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Articular osteochondral injury is a common and frequently occurring disease in orthopedics that is caused by aging, disease, and trauma. The cytokine interleukin-1β (IL-1β) is a crucial mediator of the inflammatory response, which exacerbates damage during chronic disease and acute tissue injury. Human Wharton's jelly mesenchymal stem cell (HWJMSC) extracellular vesicles (HWJMSC-EVs) have been shown to promote cartilage regeneration. The study aimed to investigate the influence and mechanisms of HWJMSC-EVs on the viability, apoptosis, and cell cycle of IL-1β-induced chondrocytes. HWJMSC-EVs were isolated by Ribo™ Exosome Isolation Reagent kit. Nanoparticle tracking analysis was used to determine the size and concentration of HWJMSC-EVs. We characterized HWJMSC-EVs by western blot and transmission electron microscope. The differentiation, viability, and protein level of chondrocytes were measured by Alcian blue staining, Cell Counting Kit-8, and western blot, respectively. Flow cytometer was used to determine apoptosis and cell cycle of chondrocytes. The results showed that HWJMSCs relieved IL-1β-induced chondrocyte injury by inhibiting apoptosis and elevating viability and cell cycle of chondrocyte, which was reversed with exosome inhibitor (GW4869). HWJMSC-EVs were successfully extracted and proven to be uptake by chondrocytes. HWJMSC-EVs ameliorate IL-1β-induced chondrocyte injury by inhibiting cell apoptosis and elevating viability and cycle of cell, but these effects were effectively reversed by knockdown of transferrin receptor (TFRC). Notably, using bone morphogenetic protein 2 (BMP2) pathway agonist and inhibitor suggested that HWJMSC-EVs ameliorate IL-1β-induced chondrocyte injury through activating the BMP2 pathway via up-regulation TFRC. Furthermore, over-expression of runt-related transcription factor 2 (RUNX2) reversed the effects of BMP2 pathway inhibitor promotion of IL-1β-induced chondrocyte injury. These results suggested that HWJMSC-EVs ameliorate IL-1β-induced chondrocyte injury by regulating the BMP2/RUNX2 axis via up-regulation TFRC. HWJMSC-EVs may play a new insight for early medical interventions in patients with articular osteochondral injury.
Collapse
Affiliation(s)
- Zhian Chen
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Wei Ding
- College of Medicine Technology, Yunnan Medical Health College, Kunming City, Yunnan Province, China
| | - Peiya Duan
- Department of Neurosurgery, The First People's Hospital of Yunnan Province, Kunming City, Yunnan Province, China
| | - Xiaoyu Lv
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Yujiao Feng
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Zhengbo Yin
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Zhihong Luo
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Zhigui Li
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Hua Zhang
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China
| | - Tianhua Zhou
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China.
| | - Hongbo Tan
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China.
| |
Collapse
|
2
|
Vayas R, Reyes R, Arnau MR, Évora C, Delgado A. Injectable Scaffold for Bone Marrow Stem Cells and Bone Morphogenetic Protein-2 to Repair Cartilage. Cartilage 2021; 12:293-306. [PMID: 30971092 PMCID: PMC8236655 DOI: 10.1177/1947603519841682] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE The limits of the microfracture (MFX) treatment in terms of lesion size and long-term tissue functionality makes it necessary to investigate different alternatives to repair focal cartilage lesions. The present study aims at evaluating the efficacy of a minimally invasive approach against the conventional MFX to repair a chondral defect in rabbits. An injectable scaffold of BMP-2 pre-encapsulated in PLGA microspheres dispersed in a Pluronic F-127 solution is proposed as support of cells and controlled delivery system for the growth factor. DESIGN MFX was compared versus the injectable system seeded with mesenchymal stem cells (MSCs), both without BMP-2 and under controlled release of BMP-2 at 2 different doses (3 and 12 µg/scaffold). The different treatments were evaluated on a 4-mm diameter chondral defect model using 9 experimental groups of 4 rabbits (8 knees) each, throughout 24 weeks. RESULTS Histologically, all the treated groups, except MFX treated, responded significantly better than the control group (nontreated defect). Although no significant differences were found between the treated groups, only BMP(12), MSC-BMP(12), and MFX-BMP(3) groups showed nonsignificant differences when compared with the normal cartilage. CONCLUSIONS The hydrogel system proposed to control the release rate of the BMP-2 was safe, easily injectable, and also provided good support for cells. Treatments with MSCs or BMP-2 repaired efficiently the chondral lesion created in rabbits, being less invasive than MFX treatment.
Collapse
Affiliation(s)
- Raquel Vayas
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, La Laguna, Spain
- Servicio de Cirugía Ortopédica y Traumatología, Complejo Hospitalario Universitario Ntra, Sra. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Ricardo Reyes
- Institute of Biomedical Technologies, Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, La Laguna, Spain
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, La Laguna, Spain
| | - María Rosa Arnau
- Servicio de Estabulario y Animalario del Servicio General de Apoyo a la Investigación, Universidad de La Laguna, La Laguna, Spain
| | - Carmen Évora
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, La Laguna, Spain
- Institute of Biomedical Technologies, Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, La Laguna, Spain
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, La Laguna, Spain
- Institute of Biomedical Technologies, Center for Biomedical Research of the Canary Islands, Universidad de La Laguna, La Laguna, Spain
| |
Collapse
|
3
|
Gromov AV, Poponova MS, Karyagina AS. Recombinant Human Bone Growth Factor BMP-2 Synthesized in Escherichia coli Cells. Part 2: From Combined Use with Other Protein Factors in Animal Models to Application in Medicine. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2020. [DOI: 10.3103/s0891416820020056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Bicho D, Pina S, Oliveira JM, Reis RL. In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:373-394. [PMID: 29736583 DOI: 10.1007/978-3-319-76735-2_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In embryonic development, pure cartilage structures are in the basis of bone-cartilage interfaces. Despite this fact, the mature bone and cartilage structures can vary greatly in composition and function. Nevertheless, they collaborate in the osteochondral region to create a smooth transition zone that supports the movements and forces resulting from the daily activities. In this sense, all the hierarchical organization is involved in the maintenance and reestablishment of the equilibrium in case of damage. Therefore, this interface has attracted a great deal of interest in order to understand the mechanisms of regeneration or disease progression in osteoarthritis. With that purpose, in vitro tissue models (either static or dynamic) have been studied. Static in vitro tissue models include monocultures, co-cultures, 3D cultures, and ex vivo cultures, mostly cultivated in flat surfaces, while dynamic models involve the use of bioreactors and microfluidic systems. The latter have emerged as alternatives to study the cellular interactions in a more authentic manner over some disadvantages of the static models. The current alternatives of in vitro mimetic models for bone-cartilage interface regeneration are overviewed and discussed herein.
Collapse
Affiliation(s)
- Diana Bicho
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Sandra Pina
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - J Miguel Oliveira
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| | - Rui L Reis
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Guimarães, Portugal
| |
Collapse
|
5
|
Betz VM, Keller A, Foehr P, Thirion C, Salomon M, Rammelt S, Zwipp H, Burgkart R, Jansson V, Müller PE, Betz OB. BMP-2 gene activated muscle tissue fragments for osteochondral defect regeneration in the rabbit knee. J Gene Med 2017; 19. [PMID: 28744947 DOI: 10.1002/jgm.2972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/19/2017] [Accepted: 07/19/2017] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Previously published data indicate that BMP-2 gene activated muscle tissue grafts can repair large bone defects in rats. This innovative abbreviated ex vivo gene therapy is appealing because it does not require elaborative and time-consuming extraction and expansion of cells. Hence, in the present study, we evaluated the potential of this expedited tissue engineering approach for regenerating osteochondral defects in rabbits. METHODS Autologous muscle tissue grafts from female White New Zealand rabbits were directly transduced with an adenoviral BMP-2 vector or remained unmodified. Osteochondral defects in the medial condyle of rabbit knees were treated with either BMP-2 activated muscle tissue implants or unmodified muscle tissue or remained empty. After 13 weeks, repair of osteochondral defects was examined by biomechanical indentation testing and by histology/imunohistochemistry applying an extended O'Driscoll scoring system and histomorphometry. RESULTS Biomechanical investigations revealed a trend towards slightly improved mechanical properties of the group receiving BMP-2 activated muscle tissue compared to unmodified muscle treatment and empty defect controls. However, a statistically significant difference was noted only between BMP-2 muscle and unmodified muscle treatment. Also, histological evaluation resulted in slightly higher histological scores and improved collagen I/II ratio without statistical significance in the BMP-2 treatment group. Histomorphometry indicated enhanced repair of subchondral bone after treatment with BMP-2 muscle, with a significantly larger bone area compared to untreated defects. CONCLUSIONS Gene activated muscle tissue grafts showed potential for osteochondral defect repair. There is room for improvement via the use of appropriate growth factor combinations.
Collapse
Affiliation(s)
- Volker M Betz
- University Center of Orthopaedics and Traumatology and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany
| | - Alexander Keller
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Peter Foehr
- Department of Orthopaedics and Sportsorthopaedics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | - Stefan Rammelt
- University Center of Orthopaedics and Traumatology and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany.,DFG-Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Hans Zwipp
- University Center of Orthopaedics and Traumatology and Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany.,DFG-Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Rainer Burgkart
- Department of Orthopaedics and Sportsorthopaedics, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Volkmar Jansson
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Peter E Müller
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver B Betz
- Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital Grosshadern, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
6
|
Vayas R, Reyes R, Rodríguez-Évora M, Del Rosario C, Delgado A, Évora C. Evaluation of the effectiveness of a bMSC and BMP-2 polymeric trilayer system in cartilage repair. ACTA ACUST UNITED AC 2017; 12:045001. [PMID: 28675146 DOI: 10.1088/1748-605x/aa6f1c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this study a poly(lactide-co-glycolide) acid (PLGA) tri-layer scaffold is proposed for cartilage repair. The trilayer system consists of a base layer formed by a tablet of PLGA microspheres, a second layer composed of a microsphere suspension placed on top of the tablet, and the third layer, which constitutes an external electrospun PLGA thin polymeric membrane. Combinations of bone morphogenetic protein-2 (BMP-2) encapsulated in the microspheres of the suspension layer, and bone marrow mesenchymal stem cells (bMSC) seeded on the electrospun membrane, are evaluated by histologic analyses and immunohistochemistry in a critical size osteochondral defect in rabbits. Five experimental groups, including a control group (empty defect), a blank group (blank scaffold), a bMSC treated group, two groups treated with 2.5 μg or 8.5 μg of BMP-2 and another two groups implanted with bMSC-BMP-2 combination are evaluated. The repair area increases throughout the experimental time (24 weeks). The repair observed in the treated groups is statistically higher than in control and blank groups. However, the bMSC-BMP-2 combination does not enhance the BMP-2 response. In conclusion, BMP-2 and bMSC repaired effectively the osteochondral defect in the rabbits. The bMSC-BMP-2 combination did not produce synergism.
Collapse
Affiliation(s)
- Raquel Vayas
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, E-38200 La Laguna, Spain. Servicio de Cirugía Ortopédica y Traumatología, Complejo Hospitalario Universitario Ntra. Sra. de Candelaria, E-38010 Santa Cruz de Tenerife, Spain
| | | | | | | | | | | |
Collapse
|
7
|
D'Este M, Sprecher CM, Milz S, Nehrbass D, Dresing I, Zeiter S, Alini M, Eglin D. Evaluation of an injectable thermoresponsive hyaluronan hydrogel in a rabbit osteochondral defect model. J Biomed Mater Res A 2016; 104:1469-78. [PMID: 26833870 DOI: 10.1002/jbm.a.35673] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/14/2016] [Accepted: 01/29/2016] [Indexed: 01/06/2023]
Abstract
Articular cartilage displays very little self-healing capabilities, generating a major clinical need. Here, we introduce a thermoresponsive hyaluronan hydrogel for cartilage repair obtained by covalently grafting poly(N-isopropylacrylamide) to hyaluronan, to give a brush co-polymer HpN. The gel is fluid at room temperature and becomes gel at body temperature. In this pilot study HpN safety and repair response were evaluated in an osteochondral defect model in rabbit. Follow-up was of 1 week and 12 weeks and the empty defect served as a control, for a total of four experimental groups. At 12 weeks the defect sites were evaluated macroscopically and histologically. Local lymph nodes, spleen, liver, and kidneys were analyzed for histopathological evaluation. HpN could be easily injected and remained into the defect throughout the study. The macroscopic score was statistically superior for HpN versus empty. Histological score gave opposite trend but not statistically significant. A slight tissue reaction was observed around HpN, however, vascularization and subchondral bone formation were not impeded. An upper proteoglycans rich fibro-cartilaginous tissue with fairly good continuity and lateral integration into the existing articular cartilage was observed in all cases. No signs of local or systemic acute or subacute toxicity were observed. In conclusion, HpN is easily injectable, remains into an osteochondral defect within a moving synovial joint, is biocompatible and does not interfere with the intrinsic healing response of osteochondral defects in a rabbit model. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1469-1478, 2016.
Collapse
Affiliation(s)
- Matteo D'Este
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, 7270, Switzerland
| | | | - Stefan Milz
- Department of Anatomy II-Neuroanatomy, Ludwig-Maximilian-University of Munich, Bavaria, Germany
| | - Dirk Nehrbass
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, 7270, Switzerland
| | - Iska Dresing
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, 7270, Switzerland
| | - Stephan Zeiter
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, 7270, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, 7270, Switzerland
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, Davos Platz, 7270, Switzerland
| |
Collapse
|
8
|
Lu S, Lam J, Trachtenberg JE, Lee EJ, Seyednejad H, van den Beucken JJJP, Tabata Y, Kasper FK, Scott DW, Wong ME, Jansen JA, Mikos AG. Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites. Tissue Eng Part C Methods 2015; 21:1216-25. [PMID: 26177155 DOI: 10.1089/ten.tec.2015.0117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and bone repair, respectively, at 6 and 12 weeks. Correlation analysis revealed significant associations between specific cartilage indices and subchondral bone parameters that varied with location in the defect (cortical vs. trabecular region), time point (6 vs. 12 weeks), and experimental group (insulin-like growth factor-1 only, bone morphogenetic protein-2 only, or both growth factors). In particular, significant correlations consistently existed between cartilage surface regularity and bone quantity parameters. Overall, correlation analysis between cartilage and bone repair provided a fuller understanding of osteochondral repair and can help drive informed studies for future osteochondral regeneration strategies.
Collapse
Affiliation(s)
- Steven Lu
- 1 Department of Bioengineering, Rice University , Houston, Texas
| | - Johnny Lam
- 1 Department of Bioengineering, Rice University , Houston, Texas
| | | | - Esther J Lee
- 1 Department of Bioengineering, Rice University , Houston, Texas
| | - Hajar Seyednejad
- 1 Department of Bioengineering, Rice University , Houston, Texas
| | | | - Yasuhiko Tabata
- 3 Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University , Kyoto, Japan
| | - F Kurtis Kasper
- 4 Department of Orthodontics, University of Texas School of Dentistry at Houston , Houston, Texas
| | - David W Scott
- 5 Department of Statistics, Rice University , Houston, Texas
| | - Mark E Wong
- 6 Department of Oral and Maxillofacial Surgery, University of Texas School of Dentistry at Houston , Houston, Texas
| | - John A Jansen
- 2 Department of Biomaterials, Radboudumc , Nijmegen, The Netherlands
| | - Antonios G Mikos
- 1 Department of Bioengineering, Rice University , Houston, Texas
| |
Collapse
|
9
|
Taniyama T, Masaoka T, Yamada T, Wei X, Yasuda H, Yoshii T, Kozaka Y, Takayama T, Hirano M, Okawa A, Sotome S. Repair of osteochondral defects in a rabbit model using a porous hydroxyapatite collagen composite impregnated with bone morphogenetic protein-2. Artif Organs 2015; 39:529-35. [PMID: 25865039 DOI: 10.1111/aor.12409] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Articular cartilage has a limited capacity for spontaneous repair, and an effective method to repair damaged articular cartilage has not yet been established. The purpose of this study was to evaluate the effect of transplantation of porous hydroxyapatite collagen (HAp/Col) impregnated with bone morphogenetic protein-2 (BMP-2). To evaluate the characteristics of porous HAp/Col as a drug delivery carrier of recombinant human BMP-2 (rhBMP-2), the rhBMP-2 adsorption capacity and release kinetics of porous HAp/Col were analyzed. Porous HAp/Col impregnated with different amounts of rhBMP-2 (0, 5, and 25 μg) was implanted into osteochondral defects generated in the patellar groove of Japanese white rabbits to evaluate the effect on osteochondral defect regeneration. At 3, 6, 12, and 24 weeks after operation, samples were harvested and subjected to micro-computed tomography analysis and histological evaluation of articular cartilage and subchondral bone repair. The adsorption capacity was 329.4 μg of rhBMP-2 per cm(3) of porous HAp/Col. Although 36% of rhBMP-2 was released within 24 h, more than 50% of the rhBMP-2 was retained in the porous HAp/Col through the course of the experiment. Defects treated with 5 μg of rhBMP-2 showed the most extensive subchondral bone repair and the highest histological regeneration score, and differences against the untreated defect group were significant. The histological regeneration score of defects treated with 25 μg of rhBMP-2 increased up to 6 weeks after implantation, but then decreased. Porous HAp/Col, therefore, is an appropriate carrier for rhBMP-2. Implantation of porous HAp/Col impregnated with rhBMP-2 is effective for rigid subchondral bone repair, which is important for the repair of the smooth articular surface.
Collapse
Affiliation(s)
- Takashi Taniyama
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomokazu Masaoka
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tsuyoshi Yamada
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Xuetao Wei
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Yasuda
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshitaka Yoshii
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuko Kozaka
- HOYA Technosurgical Corporation, Tokyo, Japan
| | | | | | - Atsushi Okawa
- Department of Orthopaedic and Spinal Surgery, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinichi Sotome
- Department of Orthopaedic Research and Development, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
10
|
Sieker JT, Kunz M, Weißenberger M, Gilbert F, Frey S, Rudert M, Steinert AF. Direct bone morphogenetic protein 2 and Indian hedgehog gene transfer for articular cartilage repair using bone marrow coagulates. Osteoarthritis Cartilage 2015; 23:433-42. [PMID: 25463442 DOI: 10.1016/j.joca.2014.11.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/01/2014] [Accepted: 11/05/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Bone morphogenetic protein 2 (BMP-2, encoded by BMP2) and Indian hedgehog protein (IHH, encoded by IHH) are well known regulators of chondrogenesis and chondrogenic hypertrophy. Despite being a potent chondrogenic factor BMP-2 was observed to induce chondrocyte hypertrophy in osteoarthritis (OA), growth plate cartilage and adult mesenchymal stem cells (MSCs). IHH might induce chondrogenic differentiation through different intracellular signalling pathways without inducing subsequent chondrocyte hypertrophy. The primary objective of this study is to test the efficacy of direct BMP2 and IHH gene delivery via bone marrow coagulates to influence histological repair cartilage quality in vivo. METHOD Vector-laden autologous bone marrow coagulates with 10(11) adenoviral vector particles encoding BMP2, IHH or the Green fluorescent protein (GFP) were delivered to 3.2 mm osteochondral defects in the trochlea of rabbit knees. After 13 weeks the histological repair cartilage quality was assessed using the ICRS II scoring system and the type II collagen positive area. RESULTS IHH treatment resulted in superior histological repair cartilage quality than GFP controls in all of the assessed parameters (with P < 0.05 in five of 14 assessed parameters). Results of BMP2 treatment varied substantially, including severe intralesional bone formation in two of six joints after 13 weeks. CONCLUSION IHH gene transfer is effective to improve repair cartilage quality in vivo, whereas BMP2 treatment, carried the risk intralesional bone formation. Therefore IHH protein can be considered as an attractive alternative candidate growth factor for further preclinical research and development towards improved treatments for articular cartilage defects.
Collapse
Affiliation(s)
- J T Sieker
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Julius-Maximilians-University of Würzburg, Germany.
| | - M Kunz
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Julius-Maximilians-University of Würzburg, Germany.
| | - M Weißenberger
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Julius-Maximilians-University of Würzburg, Germany.
| | - F Gilbert
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Julius-Maximilians-University of Würzburg, Germany; Department of Trauma, Hand, Plastic and Reconstructive Surgery, Julius-Maximilians-University of Würzburg, Germany.
| | - S Frey
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, Julius-Maximilians-University of Würzburg, Germany.
| | - M Rudert
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Julius-Maximilians-University of Würzburg, Germany.
| | - A F Steinert
- Department of Orthopaedic Surgery, König-Ludwig-Haus, Julius-Maximilians-University of Würzburg, Germany.
| |
Collapse
|
11
|
Lu S, Lam J, Trachtenberg JE, Lee EJ, Seyednejad H, van den Beucken JJJP, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK. Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials 2014; 35:8829-8839. [PMID: 25047629 DOI: 10.1016/j.biomaterials.2014.07.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/02/2014] [Indexed: 12/11/2022]
Abstract
The present work investigated the use of biodegradable hydrogel composite scaffolds, based on the macromer oligo(poly(ethylene glycol) fumarate) (OPF), to deliver growth factors for the repair of osteochondral tissue in a rabbit model. In particular, bilayered OPF composites were used to mimic the structural layers of the osteochondral unit, and insulin-like growth factor-1 (IGF-1) and bone morphogenetic protein-2 (BMP-2) were loaded into gelatin microparticles and embedded within the OPF hydrogel matrix in a spatially controlled manner. Three different scaffold formulations were implanted in a medial femoral condyle osteochondral defect: 1) IGF-1 in the chondral layer, 2) BMP-2 in the subchondral layer, and 3) IGF-1 and BMP-2 in their respective separate layers. The quantity and quality of osteochondral repair was evaluated at 6 and 12 weeks with histological scoring and micro-computed tomography (micro-CT). While histological scoring results at 6 weeks showed no differences between experimental groups, micro-CT analysis revealed that the delivery of BMP-2 alone increased the number of bony trabecular islets formed, an indication of early bone formation, over that of IGF-1 delivery alone. At 12 weeks post-implantation, minimal differences were detected between the three groups for cartilage repair. However, the dual delivery of IGF-1 and BMP-2 had a higher proportion of subchondral bone repair, greater bone growth at the defect margins, and lower bone specific surface than the single delivery of IGF-1. These results suggest that the delivery of BMP-2 enhances subchondral bone formation and that, while the dual delivery of IGF-1 and BMP-2 in separate layers does not improve cartilage repair under the conditions studied, they may synergistically enhance the degree of subchondral bone formation. Overall, bilayered OPF hydrogel composites demonstrate potential as spatially-guided, multiple growth factor release vehicles for osteochondral tissue repair.
Collapse
Affiliation(s)
- Steven Lu
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | - Johnny Lam
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | - Jordan E Trachtenberg
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | - Esther J Lee
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | - Hajar Seyednejad
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA
| | | | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mark E Wong
- Department of Surgery, Division of Oral and Maxilofacial Surgery, The University of Texas School of Dentistry at Houston, Houston, USA
| | - John A Jansen
- Department of Biomaterials, Radboud University, Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA.
| | - F Kurtis Kasper
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77005-1892, USA.
| |
Collapse
|
12
|
Wang H, Zhang F, Lv F, Jiang J, Liu D, Xia X. Osteoinductive activity of ErhBMP-2 after anterior cervical diskectomy and fusion with a ß-TCP interbody cage in a goat model. Orthopedics 2014; 37:e123-31. [PMID: 24679197 DOI: 10.3928/01477447-20140124-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/26/2013] [Indexed: 02/03/2023]
Abstract
Bone morphogenetic protein (BMP)-2 induces bone and cartilage tissue formation. Large amounts of BMP-2 are difficult to purify or to produce in vitro using eukaryotic cells. The goal of the present study was to assess the clinical use of Escherichia coli-derived recombinant human BMP-2 (ErhBMP-2) on bone fusion after cervical and lumbar spine surgery in a goat model, compared with the standard autogenous iliac bone grafting. Thirty-six goats were randomized to 3 groups: (A) autogenous iliac bone grafting, (B) cervical interbody fusion cage containing ß-tricalcium phosphate (ß-TCP), or (C) cervical interbody fusion cage containing ß-TCP+ErhBMP-2 (2.5 mg). Cervical bone repair was evaluated using radiographs and computed tomography scans at 0, 3, and 6 months. Histological analyses were performed on cervical samples. Two goats died from infection. The differences in intervertebral height among the groups were not significant 3 months postoperatively but became significant after 6 months between groups A vs B and C (P=.04); there was no difference between groups B and C at 6 months. Adding ErhBMP-2 significantly increased cervical fusion at 6 months (P=.04). Histological examinations showed that ß-TCP+ErhBMP-2 increased new bone area, material degradation rate, and depth of tissue penetration and decreased residual material area, all in a time-dependent manner. Escherichia coli-derived rhBMP-2 combined with an enhanced fusion cage containing ß-TCP induced bone formation in a goat model. Furthermore, its ability to promote bone fusion was similar to autogenous iliac bone grafting.
Collapse
|
13
|
Sakata R, Kokubu T, Mifune Y, Inui A, Nishimoto H, Fujioka H, Kuroda R, Kurosaka M. A new bioabsorbable cotton-textured synthetic polymer scaffold for osteochondral repair. INTERNATIONAL ORTHOPAEDICS 2014; 38:2413-20. [PMID: 24384940 DOI: 10.1007/s00264-013-2253-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 12/06/2013] [Indexed: 11/24/2022]
Abstract
PURPOSE We have previously reported that a cylindrical bioabsorbable synthetic polymer scaffold made of poly (DL-lactide-co-glycolide) (PLG) can be used to repair osteochondral defects without using cultured cells in a rabbit model. This cylindrical scaffold has a solid and pre-formed design, which limits its widespread application. Therefore, we created a cotton-textured PLG scaffold, which would be superior to other scaffolds in terms of plastic property and operability. The purpose of the present study was to examine the efficacy of the cotton-textured PLG scaffold in the repair of osteochondral defects. METHODS Cotton-textured PLG scaffolds were prepared using the electrospinning method and used to repair osteochondral defects produced on the right femoral condyle in 36 rabbits. As a control, the defect was left untreated. The outcomes of repair were examined histologically at postoperative weeks four, eight, and 12. RESULTS In the untreated control group, the surface of the defect remained concave and the regenerated cartilaginous tissue partially covered the articular surface even at postoperative week 12. In the scaffold group, cartilaginous tissue covered the surface of the defect at postoperative week four, and the surface was smooth and the cartilaginous tissue was well regenerated and integrated with the native cartilage at postoperative week 12. CONCLUSIONS The cotton-textured PLG scaffold could repair the osteochondral defect with good outcomes similar to those previously reported for the cylindrical scaffold, with its characteristic advantages of better plasticity and operability. We conclude that the cotton-textured PLG scaffold has potential for clinical application in comminuted osteochondral injury.
Collapse
Affiliation(s)
- Ryosuke Sakata
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Reyes R, Delgado A, Solis R, Sanchez E, Hernandez A, Roman JS, Evora C. Cartilage repair by local delivery of transforming growth factor-β1 or bone morphogenetic protein-2 from a novel, segmented polyurethane/polylactic-co
-glycolic bilayered scaffold. J Biomed Mater Res A 2013. [DOI: 10.1002/jbm.a.34769] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ricardo Reyes
- Department of Chemical Engineering and Pharmaceutical Technology; Universidad de La Laguna; San Cristóbal de La Laguna 38200 Spain
| | - Araceli Delgado
- Department of Chemical Engineering and Pharmaceutical Technology; Universidad de La Laguna; San Cristóbal de La Laguna 38200 Spain
| | - Raul Solis
- Department of Macromolecular Chemistry; CSIC, Instituto de Ciencia y Tecnología de Polimeros; Madrid Spain
| | - Esther Sanchez
- Department of Chemical Engineering and Pharmaceutical Technology; Universidad de La Laguna; San Cristóbal de La Laguna 38200 Spain
| | - Antonio Hernandez
- Traumatology Service; Hospiten Rambla Ltd; Santa Cruz de Tenerife Spain
| | - Julio San Roman
- Department of Macromolecular Chemistry; CSIC, Instituto de Ciencia y Tecnología de Polimeros; Madrid Spain
| | - Carmen Evora
- Department of Chemical Engineering and Pharmaceutical Technology; Universidad de La Laguna; San Cristóbal de La Laguna 38200 Spain
| |
Collapse
|
15
|
Reyes R, Delgado A, Sánchez E, Fernández A, Hernández A, Evora C. Repair of an osteochondral defect by sustained delivery of BMP-2 or TGFβ1 from a bilayered alginate-PLGA scaffold. J Tissue Eng Regen Med 2012; 8:521-33. [PMID: 22733683 DOI: 10.1002/term.1549] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 02/04/2012] [Accepted: 05/14/2012] [Indexed: 01/03/2023]
Abstract
Regeneration of cartilage defects can be accelerated by localized delivery of appropriate growth factors (GFs) from scaffolds. In the present study we analysed the in vitro and in vivo release rates and delivery efficacies of transforming growth factor-β1 (TGFβ1) and bone morphogenetic protein-2 (BMP-2) from a bilayered system, applied for osteochondral defect repair in a rabbit model. A bone-orientated, porous PLGA cylinder was overlaid with GF containing PLGA microspheres, dispersed in an alginate matrix. Four microsphere formulations were incorporated: (a) blank ones; (b) microspheres containing 50 ng TGFβ1; (c) microspheres containing 2.5 µg BMP-2; and (d) microspheres containing 5 µg BMP-2. Release kinetics and tissue distributions were determined using iodinated ((125) I) GFs. Bioactivity of in vitro released BMP-2 and TGFβ1 was confirmed in cell-based assays. In vivo release profiles indicated good GF release control. 20% of BMP-2 and 15% of TGFβ1 were released during the first day. Virtually the total dose was delivered at the end of week 6. Significant histological differences were observed between untreated and GF-treated specimens, there being especially relevant short-term outcomes with 50 ng TGFβ1 and 5 µg BMP-2. Although the evaluation scores for the newly formed cartilage did not differ significantly, 5 µg BMP-2 gave rise to higher quality cartilage with improved surface regularity, tissue integration and increased collagen-type II and aggrecan immunoreactivity 2 weeks post-implantation. Hence, the bilayered system controlled GF release rates and led to preserved cartilage integrity from 12 weeks up to at least 24 weeks.
Collapse
Affiliation(s)
- R Reyes
- Department of Chemical Engineering and Pharmaceutical Technology and Institute of Biomedical Technologies (ITB), University of La Laguna, La Laguna, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Huh JB, Kim SE, Song SK, Yun MJ, Shim JS, Lee JY, Shin SW. The effect of immobilization of heparin and bone morphogenic protein-2 to bovine bone substitute on osteoblast-like cell's function. J Adv Prosthodont 2011; 3:145-51. [PMID: 22053246 PMCID: PMC3204451 DOI: 10.4047/jap.2011.3.3.145] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/07/2011] [Accepted: 08/09/2011] [Indexed: 12/28/2022] Open
Abstract
PURPOSE This study was performed to investigate the ability of recombinant human-bone morphogenic protein-2 immobilized on a heparin-grafted bone substrate to enhance the osteoblastic functions. MATERIALS AND METHODS The Bio-Oss®, not coated with any material, was used as a control group. In rhBMP-2-Bio-Oss® group, rhBMP-2 was coated with Bio-Oss® using only deep and dry methods (50 ng/mL, 24 h). In heparinized rhBMP-2-Bio-Oss® group, dopamine was anchored to the surface of Bio-Oss®, and coated with heparin. rhBMP-2 was immobilized onto the heparinized- Bio-Oss® surface. The release kinetics of the rhBMP-2-Bio-Oss® and heparinized rhBMP-2-Bio-Oss® were analyzed using an enzyme-linked immunosorbent assay. The biological activities of the MG63 cells on the three groups were investigated via cytotoxicity assay, cell proliferation assay, alkaline phosphatase (ALP) measurement, and calcium deposition determination. Statistical comparisons were carried out by one-way ANOVA test. Differences were considered statistically significant at *P<.05 and **P<.001. RESULTS The heparinized rhBMP-2-Bio-Oss® showed more sustained release compared to the rhBMP-2-Bio-Oss® over an extended time. In the measurement of the ALP activity, the heparinized group showed a significantly higher ALP activity when compared with the non-heparinized groups (P<.05). The MG63 cells cultivated in the group with rhBMP-2 showed increased calcium deposition, and the MG63 cells from the heparinized group increased more than those that were cultivated in the non-heparinized groups. CONCLUSION Heparin increased the rhBMP-2 release amount and made sustained release possible, and heparinized Bio-Oss® with rhBMP-2 successfully improved the osteoblastic functions.
Collapse
Affiliation(s)
- Jung-Bo Huh
- Department of Prosthodontics, School of Dentistry, Pusan National University, Yangsan, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Petrochenko P, Narayan RJ. Novel approaches to bone grafting: porosity, bone morphogenetic proteins, stem cells, and the periosteum. J Long Term Eff Med Implants 2011; 20:303-15. [PMID: 21488823 DOI: 10.1615/jlongtermeffmedimplants.v20.i4.50] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The disadvantages involving the use of a patient's own bone as graft material have led surgeons to search for alternative materials. In this review, several characteristics of a successful bone graft material are discussed. In addition, novel synthetic materials and natural bone graft materials are being considered. Various factors can determine the success of a bone graft substitute. For example, design considerations such as porosity, pore shape, and interconnection play significant roles in determining graft performance. The effective delivery of bone morphogenetic proteins and the ability to restore vascularization also play significant roles in determining the success of a bone graft material. Among current approaches, shorter bone morphogenetic protein sequences, more efficient delivery methods, and periosteal graft supplements have shown significant promise for use in autograft substitutes or autograft extenders.
Collapse
Affiliation(s)
- Peter Petrochenko
- Joint Department of Biomedical Engineering, University of North Carolina, Raleigh, NC, USA.
| | | |
Collapse
|
18
|
Kim JW, Choi KH, Yun JH, Jung UW, Kim CS, Choi SH, Cho KS. Bone formation of block and particulated biphasic calcium phosphate lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 in rat calvarial defects. ACTA ACUST UNITED AC 2011; 112:298-306. [PMID: 21292513 DOI: 10.1016/j.tripleo.2010.10.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/14/2010] [Indexed: 11/28/2022]
Abstract
The objective of this study was to evaluate bone formation in rat calvarial defects after surgical implantation of block or particulated biphasic calcium phosphate (BCP) lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 (ErhBMP-2). Critical-size calvarial osteotomy defects were created in 5 groups of Sprague-Dawley rats. Each group received one of the following: 1) sham surgery control; 2) biphasic calcium phosphate particles (CPP); 3) biphasic calcium phosphate block (CPB); 4) ErhBMP-2-coated CPP; or 5) ErhBMP-2-coated CPB. ErhBMP was coated on BCP by a stepwise lyophilizing protocol. The new bone formation was significantly greater in ErhBMP-2-treated groups compared with the untreated group. In particular, the ErhBMP-2/CPB group showed stability of augmented areas during the period of healing, due to relevant space-providing capacity. Thus, it can be concluded that CPP and CPB lyophilized with ErhBMP-2 enhance the formation of new bone, and CPB appears to be a suitable carrier for ErhBMP-2 in which a 3-dimensional structural integrity is an important consideration factor.
Collapse
Affiliation(s)
- Jin-Woo Kim
- Research Institute for Periodontal Regeneration, Department of Periodontology, College of Dentistry, Yonsei University, Seodaemun-gu, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|