1
|
Morphological and Biological Evaluations of Human Periodontal Ligament Fibroblasts in Contact with Different Bovine Bone Grafts Treated with Low-Temperature Deproteinisation Protocol. Int J Mol Sci 2022; 23:ijms23095273. [PMID: 35563664 PMCID: PMC9101062 DOI: 10.3390/ijms23095273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Several types of deproteinised bovine bone mineral (DBBM) are available on the market, and each one is obtained with a thermic and chemical process that can differ, achieving different results. Currently, several protocols using low temperature are suggested to reduce the possible particle crystallisation during the production process. This study aimed to evaluate the biomorphological reaction of periodontal fibroblast cultures in contact with different DBBM particles treated with a low-temperature protocol (Thermagen®) and without exposure to sodium hydroxide (NaOH). Morphological evaluation was performed using light, confocal laser, and scanning electron microscopy, and the biological reaction in terms of proliferation was performed using an XTT proliferation assay at 24 h (T1), 72 h (T2), and 7 days (T3). The morphological analysis highlighted how the presence of the materials stimulated a change in the morphology of the cells into a polygonal shape, surface reactions with the thickening of the membrane, and expression of actin. In particular, the morphological changes were appreciable from T1, with a progressive increase in the considered morphological characteristics at T2 and T3 follow-ups. The proliferation assay showed a statistical significance between the different experimental materials and the negative control in T2 and T3 follow-ups. The post hoc analysis did not reveal any differences between the materials. In conclusion, the grafts obtained with the low-temperature extractions protocol and not exposed to NaOH solution showed positive morphological reactions with no differences in the sizes of particles.
Collapse
|
2
|
Duta L, Dorcioman G, Grumezescu V. A Review on Biphasic Calcium Phosphate Materials Derived from Fish Discards. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2856. [PMID: 34835621 PMCID: PMC8620776 DOI: 10.3390/nano11112856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/28/2022]
Abstract
This review summarizes the results reported on the production of biphasic calcium phosphate (BCP) materials derived from fish wastes (i.e., heads, bones, skins, and viscera), known as fish discards, and offers an in-depth discussion on their promising potential for various applications in many fields, especially the biomedical one. Thus, considerable scientific and technological efforts were recently focused on the capability of these sustainable materials to be transformed into economically attractive and highly valuable by-products. As a consequence of using these wastes, plenty of beneficial social effects, with both economic and environmental impact, will arise. In the biomedical field, there is a strong and continuous interest for the development of innovative solutions for healthcare improvement using alternative materials of biogenic origin. Thus, the orthopedic field has witnessed a significant development due to an increased demand for a large variety of implants, grafts, and/or scaffolds. This is mainly due to the increase of life expectancy and higher frequency of bone-associated injuries and diseases. As a consequence, the domain of bone-tissue engineering has expanded to be able to address a plethora of bone-related traumas and to deliver a viable and efficient substitute to allografts or autografts by combining bioactive materials and cells for bone-tissue ingrowth. Among biomaterials, calcium phosphate (CaP)-based bio-ceramics are widely used in medicine, in particular in orthopedics and dentistry, due to their excellent bioactive, osteoconductive, and osteointegrative characteristics. Recently, BCP materials (synthetic or natural), a class of CaP, which consist of a mixture of two phases, hydroxyapatite (HA) and beta tricalcium phosphate (β-TCP), in different concentrations, gained increased attention due to their superior overall performances as compared to single-phase formulations. Moreover, the exploitation of BCP materials from by-products of fish industry was reported to be a safe, cheap, and simple procedure. In the dedicated literature, there are many reviews on synthetic HA, β-TCP, or BCP materials, but to the best of our knowledge, this is the first collection of results on the effects of processing conditions on the morphological, compositional, structural, mechanical, and biological properties of the fish discard-derived BCPs along with the tailoring of their features for various applications.
Collapse
Affiliation(s)
| | | | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (L.D.); (G.D.)
| |
Collapse
|
3
|
Hayashi K, Ishikawa K. Effects of nanopores on the mechanical strength, osteoclastogenesis, and osteogenesis in honeycomb scaffolds. J Mater Chem B 2021; 8:8536-8545. [PMID: 32822446 DOI: 10.1039/d0tb01498b] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The scaffold chemical composition and pore architecture are critical for successful bone regeneration. Although the effects of chemical composition, micron-scale pores, and macropores (≥100 μm) are known, those of nanometer-scale pores (nanopores) are unknown. Here, honeycomb scaffolds (HCSs) composed of carbonate apatite and bone mineral, were fabricated with three distinct nanopore volumes, while other parameters were comparable between HCSs. Their compressive strengths and nanopore volumes linearly correlated. The HCSs were implanted into critical-sized bone defects (CSDs) in the rabbit femur distal epiphyses. The nanopore volume affected both osteoclastogenesis and osteogenesis. HCSs with nanopore volumes of ≥0.15 cm3 g-1 promoted osteoclastogenesis, contributing to bone maturation and bone formation within 4 weeks. However, HCSs with nanopore volumes of 0.07 cm3 g-1 promoted significantly less bone maturation and neoformation. Nevertheless, HCSs with nanopore volumes of ≥0.18 cm3 g-1 did not undergo continuous bone regeneration throughout the 12 week period due to excessive osteoclastogenesis, which favored HCS resorption over bone neoformation. When the nanopore volume was 0.15 cm3 g-1, osteoclastogenesis and osteogenesis progressed harmonically, resulting in HCS replacement with new bone. Our results demonstrate that the nanopore volume is critical for controlling osteoclastogenesis and osteogenesis. These insights may help establish a coherent strategy for developing scaffolds for different applications.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
4
|
Popescu-Pelin G, Ristoscu C, Duta L, Pasuk I, Stan GE, Stan MS, Popa M, Chifiriuc MC, Hapenciuc C, Oktar FN, Nicarel A, Mihailescu IN. Fish Bone Derived Bi-Phasic Calcium Phosphate Coatings Fabricated by Pulsed Laser Deposition for Biomedical Applications. Mar Drugs 2020; 18:md18120623. [PMID: 33297346 PMCID: PMC7762251 DOI: 10.3390/md18120623] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 11/16/2022] Open
Abstract
We report on new biomaterials with promising bone and cartilage regeneration potential, from sustainable, cheap resources of fish origin. Thin films were fabricated from fish bone-derived bi-phasic calcium phosphate targets via pulsed laser deposition with a KrF * excimer laser source (λ = 248 nm, τFWHM ≤ 25 ns). Targets and deposited nanostructures were characterized by SEM and XRD, as well as by Energy Dispersive X-ray (EDX) and FTIR spectroscopy. Films were next assessed in vitro by dedicated cytocompatibility and antimicrobial assays. Films were Ca-deficient and contained a significant fraction of β-tricalcium phosphate apart from hydroxyapatite, which could contribute to an increased solubility and an improved biocompatibility for bone regeneration applications. The deposited structures were biocompatible as confirmed by the lack of cytotoxicity on human gingival fibroblast cells, making them promising for fast osseointegration implants. Pulsed laser deposition (PLD) coatings inhibited the microbial adhesion and/or the subsequent biofilm development. A persistent protection against bacterial colonization (Escherichia coli) was demonstrated for at least 72 h, probably due to the release of the native trace elements (i.e., Na, Mg, Si, and/or S) from fish bones. Progress is therefore expected in the realm of multifunctional thin film biomaterials, combining antimicrobial, anti-inflammatory, and regenerative properties for advanced implant coatings and nosocomial infections prevention applications.
Collapse
Affiliation(s)
- Gianina Popescu-Pelin
- National Institute for Lasers, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (G.P.-P.); (C.R.); (L.D.); (C.H.)
| | - Carmen Ristoscu
- National Institute for Lasers, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (G.P.-P.); (C.R.); (L.D.); (C.H.)
| | - Liviu Duta
- National Institute for Lasers, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (G.P.-P.); (C.R.); (L.D.); (C.H.)
| | - Iuliana Pasuk
- National Institute of Materials Physics, RO-077125 Magurele, Romania; (I.P.); (G.E.S.)
| | - George E. Stan
- National Institute of Materials Physics, RO-077125 Magurele, Romania; (I.P.); (G.E.S.)
| | - Miruna Silvia Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, RO-050095 Bucharest, Romania;
| | - Marcela Popa
- Microbiology Department, Faculty of Biology, University of Bucharest, RO-060101 Bucharest, Romania; (M.P.); (M.C.C.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, RO-050095 Bucharest, Romania
| | - Mariana C. Chifiriuc
- Microbiology Department, Faculty of Biology, University of Bucharest, RO-060101 Bucharest, Romania; (M.P.); (M.C.C.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, RO-050095 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street no. 3, RO-050711 Bucharest, Romania
| | - Claudiu Hapenciuc
- National Institute for Lasers, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (G.P.-P.); (C.R.); (L.D.); (C.H.)
| | - Faik N. Oktar
- Department of Bioengineering, Faculty of Engineering, Goztepe Campus, University of Marmara, Kadikoy, 34722 Istanbul, Turkey;
- Center for Nanotechnology & Biomaterials Research, Goztepe Campus, University of Marmara, Kadikoy, 34722 Istanbul, Turkey
| | - Anca Nicarel
- Physics Department, University of Bucharest, RO-077125 Magurele, Romania;
| | - Ion N. Mihailescu
- National Institute for Lasers, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (G.P.-P.); (C.R.); (L.D.); (C.H.)
- Correspondence: ; Tel.: +40-214-574-491
| |
Collapse
|
5
|
Wu N, Liu J, Ma W, Dong X, Wang F, Yang D, Xu Y. Degradable calcium deficient hydroxyapatite/PLGA bilayer scaffold through integral molding 3D printing for bone defect repair. Biofabrication 2020; 13. [PMID: 33202398 DOI: 10.1088/1758-5090/abcb48] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/17/2020] [Indexed: 11/12/2022]
Abstract
A novel method was developed for calcium deficient hydroxyapatite (CDHA) scaffold 3D printing, through which a bilayer scaffold was fabricated by integral molding of individual CDHA and PLGA. The hydration reaction of α-TCP was utilized to form CDHA, and a mixed solution of gelatin, glycerine, glutaraldehyde was applied as the dispersant and adhesive. The concentration of the glutaraldehyde (1 ‱(v/v)) and the mixing ratio of α-TCP (0.6, 0.8, 1.0, 1.2(g/mL)) was studied in the effect on the forming ability of the CDHA ink. The influence of α-TCP proportion (0.6, 0.8, 1.0, 1.2 (g/mL)) on the formation of CDHA was also researched in phase analysis, morphology and compressive strength measurements. The CDHA/PLGA bilayer scaffold was fabricated with a good combination of the two components by 3D printing. The in vitro degradation, cytotoxicity, and cell proliferation behavior were studied. Meanwhile the in-vivo performances in terms of surgical safety, biodegradation, and osteogenic capacity were investigated with a cortical bone defect model in a rabbit femur. The results showed that the CDHA/PLGA bilayer scaffold had excellent biocompatibility and no cytotoxicity. The scaffolds were successfully implanted and presented remarkable osteogenic capacity within 6 months through analyses in radiography and histology. In conclusion, the method has a potential clinical application in diverse bone repair practices by varied 3D-printing fabrication.
Collapse
Affiliation(s)
- Ning Wu
- Shanghai University of Medicine and Health Sciences, Shanghai, Shanghai, CHINA
| | - Jia Liu
- Changzheng Hospital, Shanghai, Shanghai, CHINA
| | - Weibo Ma
- Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, CHINA
| | - Xian Dong
- Shanghai University of Medicine and Health Sciences Affiliated Jia Ding Hospital Shanghai, Shanghai, Shanghai, CHINA
| | - Feng Wang
- Shanghai University of Traditional Chinese Medicine, Shanghai, Shanghai, CHINA
| | - Dicheng Yang
- Shanghai University of Medicine and Health Sciences, Shanghai, CHINA
| | - Yan Xu
- National Engineering Research Center for Nanotechnology, Shanghai, Shanghai, CHINA
| |
Collapse
|
6
|
Magnesium Doped Hydroxyapatite-Based Coatings Obtained by Pulsed Galvanostatic Electrochemical Deposition with Adjustable Electrochemical Behavior. COATINGS 2020. [DOI: 10.3390/coatings10080727] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The aim of this study was to adapt the electrochemical behavior in synthetic body fluid (SBF) of hydroxyapatite-based coatings obtained by pulsed galvanostatic electrochemical deposition through addition of Mg in different concentrations. The coatings were obtained by electrochemical deposition in a typical three electrodes electrochemical cell in galvanic pulsed mode. The electrolyte was obtained by subsequently dissolving Ca(NO3)2·4H2O, NH4H2PO4, and Mg(NO3)2·6H2O in ultra-pure water and the pH value was set to 5. The morphology consists of elongated and thin ribbon-like crystals for hydroxyapatite (HAp), which after the addition of Mg became a little wider. The elemental and phase composition evidenced that HAp was successfully doped with Mg through pulsed galvanostatic electrochemical deposition. The characteristics and properties of hydroxyapatite obtained electrochemically can be controlled by adding Mg in different concentrations, thus being able to obtain materials with different properties and characteristics. In addition, the addition of Mg can lead to the control of hydroxyapatite bioactive ceramics in terms of dissolution rate.
Collapse
|
7
|
The Role of Marine Organic Extract in Bone Regeneration: A Pilot Study. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2925879. [PMID: 32149098 PMCID: PMC7049417 DOI: 10.1155/2020/2925879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 11/25/2022]
Abstract
Novel biomaterials capable of accelerating the healing process of skeletal tissues are urgently needed in dentistry. The present in vivo study assessed the osteoconductive and osteoinductive properties of experimental biphasic bioceramics (HA-TCP) modified or not by a nacre extract (marine organic extract, MOE) in a sheep model. Fabrication of MOE involved mixing ground nacre (0.05 g, particle sizes < 0.1 mm) with glacial ethanoic acid (5 mL, pH 7) for 72 hours using external magnetic stirring (25°C). Nonreactive carriers (sterile polythene tubes; 3/animal, radius: 2.5 mm, length: 10.0 mm) pertaining to the control (empty) or experimental groups (HA-TCP or MOE-modified HA-TCP) were implanted intramuscularly into the abdominal segment of the torso in sheep (n = 8, age: 2 years, weight: 45 kg). Euthanization of animals was performed at 3 and 6 months after surgery. Tissues harvested were subjected to macroscopic and radiographic assessments. Specimens were then stained for histological analysis. Both control and experimental animals were capable of inducing the neoformation of fibrous connective tissue at both time points where superior amounts of tissue formation and mineralization were detected for experimental groups (unaltered (at 3 and 6 mos) and MOE-modified HA-TCP (at 3 mos)). Histological results, however, revealed that mature bone formation was only observed for specimens fabricated with MOE-modified HA-TCP in a time-dependent manner. The present study has successfully demonstrated the in vivo utility of experimental biphasic bioceramics modified by MOE in an ectopic grafting sheep model. Promising osteoconductive and osteoinductive properties must be further developed and confirmed by subsequent research.
Collapse
|
8
|
Pomini KT, Buchaim DV, Andreo JC, Rosso MPDO, Della Coletta BB, German ÍJS, Biguetti ACC, Shinohara AL, Rosa Júnior GM, Cosin Shindo JVT, Alcalde MP, Duarte MAH, de Bortoli Teixeira D, Buchaim RL. Fibrin Sealant Derived from Human Plasma as a Scaffold for Bone Grafts Associated with Photobiomodulation Therapy. Int J Mol Sci 2019; 20:E1761. [PMID: 30974743 PMCID: PMC6479442 DOI: 10.3390/ijms20071761] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/02/2019] [Accepted: 04/07/2019] [Indexed: 12/14/2022] Open
Abstract
Fibrin sealants derived from human blood can be used in tissue engineering to assist in the repair of bone defects. The objective of this study was to evaluate the support system formed by a xenograft fibrin sealant associated with photobiomodulation therapy of critical defects in rat calvaria. Thirty-six rats were divided into four groups: BC (n = 8), defect filled with blood clot; FSB (n = 10), filled with fibrin sealant and xenograft; BCPBMT (n = 8), blood clot and photobiomodulation; FSBPBMT (n = 10), fibrin sealant, xenograft, and photobiomodulation. The animals were killed after 14 and 42 days. In the histological and microtomographic analysis, new bone formation was observed in all groups, limited to the defect margins, and without complete wound closure. In the FSB group, bone formation increased between periods (4.3 ± 0.46 to 6.01 ± 0.32), yet with lower volume density when compared to the FSBPBMT (5.6 ± 0.45 to 10.64 ± 0.97) group. It was concluded that the support system formed by the xenograft fibrin sealant associated with the photobiomodulation therapy protocol had a positive effect on the bone repair process.
Collapse
Affiliation(s)
- Karina Torres Pomini
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | - Daniela Vieira Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
- Department of Human Morphophysiology, Medical and Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, Brazil.
- Department of Human Anatomy and Neuroanatomy, Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil.
| | - Jesus Carlos Andreo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | | | - Bruna Botteon Della Coletta
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | - Íris Jasmin Santos German
- Department of Dentistry, Faculty of Health Science, Universidad Iberoamericana (UNIBE), Santo Domingo 10203, Dominic Republic.
| | - Ana Carolina Cestari Biguetti
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | - André Luis Shinohara
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | - Geraldo Marco Rosa Júnior
- Department of Health Science, University of the Sacred Heart (USC), Bauru 17011-160, Brazil.
- Department of Anatomy, University of the Ninth of July (UNINOVE), Bauru 17011-102, Brazil.
| | - João Vitor Tadashi Cosin Shindo
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | - Murilo Priori Alcalde
- Department of Health Science, University of the Sacred Heart (USC), Bauru 17011-160, Brazil.
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | - Marco Antônio Hungaro Duarte
- Department of Dentistry, Endodontics and Dental Materials, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
| | - Daniel de Bortoli Teixeira
- Department of Human Morphophysiology, Medical and Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, Brazil.
| | - Rogério Leone Buchaim
- Department of Biological Sciences (Anatomy), Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, Brazil.
- Department of Human Morphophysiology, Medical and Dentistry School, University of Marilia (UNIMAR), Marília 17525-902, Brazil.
| |
Collapse
|
9
|
Santos GGD, Vasconcelos LQ, Poy SCDS, Almeida RDS, Barbosa Júnior ADA, Santos SRDA, Rossi AM, Miguel FB, Rosa FP. Influence of the geometry of nanostructured hydroxyapatite and alginate composites in the initial phase of bone repair1. Acta Cir Bras 2019; 34:e201900203. [PMID: 30843936 PMCID: PMC6585910 DOI: 10.1590/s0102-8650201900203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/22/2019] [Indexed: 11/24/2022] Open
Abstract
Purpose To analyze, histomorphologically, the influence of the geometry of
nanostructured hydroxyapatite and alginate (HAn/Alg) composites in the
initial phase of the bone repair. Methods Fifteen rats were distributed to three groups: MiHA - bone defect filled with
HAn/Alg microspheres; GrHA - bone defect filled with HAn/Alg granules; and
DV - empty bone defect; evaluated after 15 days postoperatively. The
experimental surgical model was the critical bone defect, ≅8.5 mm, in rat
calvaria. After euthanasia the specimens were embedded in paraffin and
stained with hematoxylin and eosin, picrosirius and Masson-Goldner’s
trichrome. Results The histomorphologic analysis showed, in the MiHA, deposition of osteoid
matrix within some microspheres and circumjacent to the others, near the
bone edges. In GrHA, the deposition of this matrix was scarce inside and
adjacent to the granules. In these two groups, chronic granulomatous
inflammation was noted, more evident in GrHA. In the DV, it was observed
bone neoformation restricted to the bone edges and formation of connective
tissue with reduced thickness in relation to the bone edges, throughout the
defect. Conclusion The geometry of the biomaterials was determinant in the tissue response,
since the microspheres showed more favorable to the bone regeneration in
relation to the granules.
Collapse
Affiliation(s)
- George Gonçalves Dos Santos
- Master, Fellow PhD degree, Postgraduate Program in Interactive Processes of Organs and Systems, Health Sciences Institute, Universidade Federal da Bahia (UFBA), Salvador-BA, Brazil. Technical procedures, manuscript writing
| | - Luisa Queiroz Vasconcelos
- Master, Fellow PhD degree, Postgraduate Program in Interactive Processes of Organs and Systems, Health Sciences Institute, UFBA, Salvador-BA, Brazil. Technical procedures
| | | | - Renata Dos Santos Almeida
- PhD, Postgraduate Program in Interactive Processes of Organs and Systems, Health Sciences Institute, UFBA, Salvador-BA, Brazil. Histomorphometric examinations
| | - Aryon de Almeida Barbosa Júnior
- PhD, Researcher Collaborator, Laboratory of Tissue Bioengineering and Biomaterials (LBTB), Health Sciences Institute, UFBA, Salvador-BA, Brazil. Histopathological examinations
| | - Silvia Rachel de Albuquerque Santos
- Chemistry, LABIOMAT, Brazilian Center for Physics Research, CBPF, Rio de Janeiro-RJ, Brazil. Analysis, synthesis and physicochemical characterization of biomaterials
| | - Alexandre Malta Rossi
- PhD, LABIOMAT, Brazilian Center for Physics Research, CBPF, Rio de Janeiro-RJ, Brazil. Analysis, synthesis and physicochemical characterization of biomaterials
| | - Fúlvio Borges Miguel
- PhD, Associate Professor, Health Sciences Center, Universidade Federal do Recôncavo da Bahia (UFRB), Santo Antonio de Jesus-BA, Brazil. Technical procedures, critical revision
| | - Fabiana Paim Rosa
- PhD, Associate Professor, Health Sciences Institute, UFBA, Salvador-BA, Brazil. Conception of the study, critical revision
| |
Collapse
|
10
|
Osteogenesis by foamed and 3D-printed nanostructured calcium phosphate scaffolds: Effect of pore architecture. Acta Biomater 2018; 79:135-147. [PMID: 30195084 DOI: 10.1016/j.actbio.2018.09.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/31/2018] [Accepted: 09/05/2018] [Indexed: 01/12/2023]
Abstract
There is an urgent need of synthetic bone grafts with enhanced osteogenic capacity. This can be achieved by combining biomaterials with exogenous growth factors, which however can have numerous undesired side effects, but also by tuning the intrinsic biomaterial properties. In a previous study, we showed the synergistic effect of nanostructure and pore architecture of biomimetic calcium deficient hydroxyapatite (CDHA) scaffolds in enhancing osteoinduction, i.e. fostering the differentiation of mesenchymal stem cells to bone forming cells. This was demonstrated by assessing bone formation after implanting the scaffolds intramuscularly. The present study goes one step forward, since it analyzes the effect of the geometrical features of the same CDHA scaffolds, obtained either by 3D-printing or by foaming, on the osteogenic potential and resorption behaviour in a bony environment. After 6 and 12 weeks of intraosseous implantation, both bone formation and material degradation had been drastically affected by the macropore architecture of the scaffolds. Whereas nanostructured CDHA was shown to be highly osteoconductive both in the robocast and foamed scaffolds, a superior osteogenic capacity was observed in the foamed scaffolds, which was associated with their higher intrinsic osteoinductive potential. Moreover, they showed a significantly higher cell-mediated degradation than the robocast constructs, with a simultaneous and progressive replacement of the scaffold by new bone. In conclusion, these results demonstrate that the control of macropore architecture is a crucial parameter in the design of synthetic bone grafts, which allows fostering both material degradation and new bone formation. Statement of Significance 3D-printing technologies open new perspectives for the design of patient-specific bone grafts, since they allow customizing the external shape together with the internal architecture of implants. In this respect, it is important to design the appropriate pore geometry to maximize the bone healing capacity of these implants. The present study analyses the effect of pore architecture of nanostructured hydroxyapatite scaffolds, obtained either by 3D-printing or foaming, on the osteogenic potential and scaffold resorption in an in vivo model. While nanostructured hydroxyapatite showed excellent osteoconductive properties irrespective of pore geometry, we demonstrated that the spherical, concave macropores of foamed scaffolds significantly promoted both material resorption and bone regeneration compared to the 3D-printed scaffolds with orthogonal-patterned struts and therefore prismatic, convex macropores.
Collapse
|
11
|
Zielak JC, Neto DG, Cazella Zielak MA, Savaris LB, Esteban Florez FL, Deliberador TM. In vivo regeneration functionalities of experimental organo-biomaterials containing water-soluble nacre extract. Heliyon 2018; 4:e00776. [PMID: 30229137 PMCID: PMC6141258 DOI: 10.1016/j.heliyon.2018.e00776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/08/2018] [Accepted: 09/05/2018] [Indexed: 12/01/2022] Open
Abstract
Background Novel multifunctional biomaterials were recently designed to allow for an optimized tissue regeneration process. Purpose To comprehensively assess (photographic, radiographic and histological) the in vivo functionality of demineralized bovine bone matrix (DBM) associated with an experimental marine organic extract (MOE) from nacre in a sheep ectopic grafting model. Materials and methods Synthesis of MOE was based on mixing powdered nacre (0.05 g, particles average size <0.1 mm) with acetic acid (5 mL, pH 7) under constant stirring for 72 hours (25 °C). Polyethylene tubes (3/animal, n = 4, diameter: 5.0 mm × length: 10.0 mm) from the control (empty) or experimental groups (DBM or DBM + MOE) were then intramuscularly implanted into the lumbar regions of sheep (n = 8, 2-years old, ≈45 kg). Animals were euthanized at 3 and 6 months to allow for the collection of tissue samples. Tissue samples were fixed in formalin 10% (buffered, 7 days) in preparation for photographic, radiographic and histological assessments. Acquired images were then analyzed using digital image analysis software to quantify the amount of neoformed tissues, whereas radiographic and histological analyses were performed to determine radiopacity and classification of tissues deposited inside of the tubes. Results Photographic and radiographic analyses have shown that both pure (unaltered) and MOE-modified DBM were capable of depositing neoformed tissues (at 3 and 6 months), where higher levels of deposition and radiopacity were observed on groups treated with experimental materials. Histological results, however, demonstrated that tissues formed from both unaltered and MOE-modified DBM were only fibrous connective in origin. Conclusions As an ectopic grafting in sheep, the experimental organo-biomaterial association applied did not reveal any osteoinductive property but led to a fibrous tissue repair only.
Collapse
Affiliation(s)
- João César Zielak
- Graduate Program in Dentistry, Universidade Positivo, Rua Professor Pedro Viriato Parigot de Souza, 5300, Curitiba, Paraná, 81280-330, Brazil
| | - David Gulin Neto
- Graduate Program in Dentistry, Universidade Positivo, Rua Professor Pedro Viriato Parigot de Souza, 5300, Curitiba, Paraná, 81280-330, Brazil
| | - Makeli Aparecida Cazella Zielak
- Graduate Program in Dentistry, Universidade Positivo, Rua Professor Pedro Viriato Parigot de Souza, 5300, Curitiba, Paraná, 81280-330, Brazil
| | - Leonardo Brunet Savaris
- Graduate Program in Dentistry, Universidade Positivo, Rua Professor Pedro Viriato Parigot de Souza, 5300, Curitiba, Paraná, 81280-330, Brazil
| | - Fernando Luis Esteban Florez
- Department of Restorative Sciences, Division of Dental Biomaterials, The University of Oklahoma Health Sciences Center, 1201 N. Stonewall Ave., Oklahoma City, OK, 73117, USA
| | - Tatiana Miranda Deliberador
- Graduate Program in Dentistry, Universidade Positivo, Rua Professor Pedro Viriato Parigot de Souza, 5300, Curitiba, Paraná, 81280-330, Brazil
| |
Collapse
|
12
|
Qiao W, Ren X, Shi H, Li J, Yang T, Ma S, Zhao Y, Su C, Li B. [Biocompatibility research of true bone ceramics]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1250-1255. [PMID: 29806330 PMCID: PMC8498122 DOI: 10.7507/1002-1892.201705001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/13/2017] [Indexed: 11/03/2022]
Abstract
Objective To investigate the biocompatibility of true bone ceramic (TBC) and provide experimental basis for clinic application. Methods TBC was prepared from healthy adult bovine cancellous bone by deproteinization and high temperature calcinations. Mouse fibroblast cell line (L929 cells) were cultured with the leaching liquor of TBC in vitro, and the cytotoxicity was evaluated at 2nd, 4th, and 7th days. L929 cells were inoculated into the TBC and cultured for 4 days. The cell adhesion and proliferation on the surface of the TBC were observed by scanning electron microscopy, and evaluated the cell compatibility of TBC. Ten New Zealand white rabbits were divided into 2 groups, and drilled holes at the tibia of both hind limbs. TBC and hydroxyapatite (HA) were implanted into the left side (experimental group) and the right side (control group), respectively. And the biocompatibility of TBC was evaluated by general observation and histological observation at 4 and 26 weeks after implantation. Results Cytotoxicity test showed that the cytotoxicity level of leaching liquor of TBC was grade 0-1. Cell compatibility experiments showed that the L929 cells adhered well on the surface of TBC and migrated into the pores. The implantation test in vivo showed that experimental group and control group both had mild or moderate inflammatory response at 4 weeks, and new bone formation occurred. At 26 weeks, there was no inflammatory reaction observed in both groups, and new bone formation was observed in varying degrees. Conclusion TBC have good biocompatibility and can be used to repair bone defect in clinic.
Collapse
Affiliation(s)
- Wei Qiao
- Shanxi Province Tissue Bank of China Institute for Radiation Protection, Shanxi Osteorad Biomaterial Co. Ltd, Taiyuan Shanxi, 030006, P.R.China
| | - Xiaoqi Ren
- Shanxi Province Tissue Bank of China Institute for Radiation Protection, Shanxi Osteorad Biomaterial Co. Ltd, Taiyuan Shanxi, 030006, P.R.China
| | - Hao Shi
- Shanxi Province Tissue Bank of China Institute for Radiation Protection, Shanxi Osteorad Biomaterial Co. Ltd, Taiyuan Shanxi, 030006, P.R.China
| | - Jing Li
- Shanxi Province Tissue Bank of China Institute for Radiation Protection, Shanxi Osteorad Biomaterial Co. Ltd, Taiyuan Shanxi, 030006, P.R.China
| | - Ting Yang
- Shanxi Province Tissue Bank of China Institute for Radiation Protection, Shanxi Osteorad Biomaterial Co. Ltd, Taiyuan Shanxi, 030006, P.R.China
| | - Shaoying Ma
- Shanxi Province Tissue Bank of China Institute for Radiation Protection, Shanxi Osteorad Biomaterial Co. Ltd, Taiyuan Shanxi, 030006, P.R.China
| | - Yaping Zhao
- Shanxi Province Tissue Bank of China Institute for Radiation Protection, Shanxi Osteorad Biomaterial Co. Ltd, Taiyuan Shanxi, 030006, P.R.China
| | - Chengzhong Su
- Shanxi Province Tissue Bank of China Institute for Radiation Protection, Shanxi Osteorad Biomaterial Co. Ltd, Taiyuan Shanxi, 030006, P.R.China
| | - Baoxing Li
- Shanxi Province Tissue Bank of China Institute for Radiation Protection, Shanxi Osteorad Biomaterial Co. Ltd, Taiyuan Shanxi, 030006,
| |
Collapse
|
13
|
Li J, Huang Z, Chen L, Tang X, Fang Y, Liu L. Restoration of bone defects using modified heterogeneous deproteinized bone seeded with bone marrow mesenchymal stem cells. Am J Transl Res 2017; 9:3200-3211. [PMID: 28804540 PMCID: PMC5553872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
The aim of the present study was to investigate the effect of modified heterogeneous deproteinized bone combined with bone marrow mesenchymal stem cells (BMSCs) in the restoration of a validated bone defect model. BMSCs were identified by flow cytometry and multilineage differentiation assay. The structural features of the modified heterogeneous deproteinized bone scaffold and biocompatibility between BMSCs and the scaffold were confirmed by scanning electron microscope (SEM) detection. The cytotoxicity of the modified heterogeneous deproteinized bone scaffolds were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenytetrazolium bromide (MTT) assay. SEM detection proved that modified heterogeneous deproteinized bone scaffold had no negative impact on the proliferation of BMSCs. MTT assay results demonstrated that the scaffold had no apparent cytotoxicity. Biomechanical detection showed that the stiffness and ultimate loading of tibias in the scaffold + BMSCs group were significantly higher than those of the scaffold alone group (P < 0.05) and the control group (P < 0.01). Histological analyses confirmed that the greatest quantity of new bone was generated in the scaffold + BMSCs group, when compared with all other groups, at 8 weeks' post-operation. The bone mineral density (BMD) in the scaffold + BMSC group was significantly higher than that of the scaffold alone group (P < 0.05) and the control group (P < 0.01). Fluorometric analyses confirmed the presence of BMSCs at high concentration within the bone defect areas in the scaffold + BMSCs group at 4 weeks after transplantation. These findings suggest that the modified heterogeneous deproteinized bone scaffold seeded with BMSCs can effectively enhance the restoration of bone defects.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopaedics, West China Hospital, Sichuan University37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | - Zeyu Huang
- Department of Orthopaedics, West China Hospital, Sichuan University37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | - Liyan Chen
- Department of Orthopaedics, West China Hospital, Sichuan University37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | - Xin Tang
- Department of Orthopaedics, West China Hospital, Sichuan University37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | - Yue Fang
- Department of Orthopaedics, West China Hospital, Sichuan University37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| | - Lei Liu
- Department of Orthopaedics, West China Hospital, Sichuan University37# Wainan Guoxue Road, Chengdu 610041, People's Republic of China
| |
Collapse
|
14
|
Utilizing Autologous Multipotent Mesenchymal Stromal Cells and β-Tricalcium Phosphate Scaffold in Human Bone Defects: A Prospective, Controlled Feasibility Trial. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2076061. [PMID: 27144159 PMCID: PMC4838782 DOI: 10.1155/2016/2076061] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/09/2016] [Indexed: 12/28/2022]
Abstract
The purpose of this prospective controlled study was to compare healing quality following the implantation of ultraporous β-tricalcium phosphate, containing either expanded autologous mesenchymal stromal cells (trial group, 9 patients) or β-tricalcium phosphate alone (control group, 9 patients), into femoral defects during revision total hip arthroplasty. Both groups were assessed using the Harris Hip Score, radiography, and DEXA scanning at 6 weeks and 3, 6, and 12 months postoperatively. A significant difference in the bone defect healing was observed between both groups of patients (P < 0.05). In the trial group, trabecular remodeling was found in all nine patients and in the control group, in 1 patient only. Whereas, over the 12-month follow-up period, no significant difference was observed between both groups of patients in terms of the resorption of β-tricalcium phosphate, the significant differences were documented in the presence of radiolucency and bone trabeculation through the defect (P < 0.05). Using autologous mesenchymal stromal cells combined with a β-tricalcium phosphate scaffold is a feasible, safe, and effective approach for management of bone defects with compromised microenvironment. The clinical trial was registered at the EU Clinical Trials Register before patient recruitment has begun (EudraCT number 2012-005599-33).
Collapse
|
15
|
Elgali I, Turri A, Xia W, Norlindh B, Johansson A, Dahlin C, Thomsen P, Omar O. Guided bone regeneration using resorbable membrane and different bone substitutes: Early histological and molecular events. Acta Biomater 2016; 29:409-423. [PMID: 26441123 DOI: 10.1016/j.actbio.2015.10.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/03/2015] [Accepted: 10/02/2015] [Indexed: 11/26/2022]
Abstract
Bone insufficiency remains a major challenge for bone-anchored implants. The combination of guided bone regeneration (GBR) and bone augmentation is an established procedure to restore the bone. However, a proper understanding of the interactions between the bone substitute and GBR membrane materials and the bone-healing environment is lacking. This study aimed to investigate the early events of bone healing and the cellular activities in response to a combination of GBR membrane and different calcium phosphate (CaP) materials. Defects were created in the trabecular region of rat femurs, and filled with deproteinized bovine bone (DBB), hydroxyapatite (HA) or strontium-doped HA (SrHA) or left empty (sham). All the defects were covered with an extracellular matrix membrane. Defects were harvested after 12h, 3d and 6d for histology/histomorphometry, immunohistochemistry and gene expression analyses. Histology revealed new bone, at 6d, in all the defects. Larger amount of bone was observed in the SrHA-filled defect. This was in parallel with the reduced expression of osteoclastic genes (CR and CatK) and the osteoblast-osteoclast coupling gene (RANKL) in the SrHA defects. Immunohistochemistry indicated fewer osteoclasts in the SrHA defects. The observations of CD68 and periostin-expressing cells in the membrane per se indicated that the membrane may contribute to the healing process in the defect. It is concluded that the bone-promoting effects of Sr in vivo are mediated by a reduction in catabolic and osteoblast-osteoclast coupling processes. The combination of a bioactive membrane and CaP bone substitute material doped with Sr may produce early synergistic effects during GBR. STATEMENT OF SIGNIFICANCE The study provides novel molecular, cellular and structural evidence on the promotion of early bone regeneration in response to synthetic strontium-containing hydroxyapatite (SrHA) substitute, in combination with a resorbable, guided bone regeneration (GBR) membrane. The prevailing view, based mainly upon in vitro data, is that the beneficial effects of Sr are exerted by the stimulation of bone-forming cells (osteoblasts) and the inhibition of bone-resorbing cells (osteoclasts). In contrast, the present study demonstrates that the local effect of Sr in vivo is predominantly via the inhibition of osteoclast number and activity and the reduction of osteoblast-osteoclast coupling. This experimental data will form the basis for clinical studies, using this material as an interesting bone substitute for guided bone regeneration.
Collapse
|
16
|
He X, Liu Y, Yuan X, Lu L. Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds. PLoS One 2014; 9:e104061. [PMID: 25084008 PMCID: PMC4118996 DOI: 10.1371/journal.pone.0104061] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/08/2014] [Indexed: 02/05/2023] Open
Abstract
In this study, we designed a chitosan/alginate/hydroxyapatite scaffold as a carrier for recombinant BMP-2 (CAH/B2), and evaluated the release kinetics of BMP-2. We evaluated the effect of the CAH/B2 scaffold on the viability and differentiation of bone marrow mesenchymal stem cells (MSCs) by scanning electron microscopy, MTS, ALP assay, alizarin-red staining and qRT-PCR. Moreover, MSCs were seeded on scaffolds and used in a 8 mm rat calvarial defect model. New bone formation was assessed by radiology, hematoxylin and eosin staining 12 weeks postoperatively. We found the release kinetics of BMP-2 from the CAH/B2 scaffold were delayed compared with those from collagen gel, which is widely used for BMP-2 delivery. The BMP-2 released from the scaffold increased MSC differentiation and did not show any cytotoxicity. MSCs exhibited greater ALP activity as well as stronger calcium mineral deposition, and the bone-related markers Col1α, osteopontin, and osteocalcin were upregulated. Analysis of in vivo bone formation showed that the CAH/B2 scaffold induced more bone formation than other groups. This study demonstrates that CAH/B2 scaffolds might be useful for delivering osteogenic BMP-2 protein and present a promising bone regeneration strategy.
Collapse
Affiliation(s)
- Xiaoning He
- Department of Stomatology, the 4th Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Oral Biology, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Yang Liu
- Department of Stomatology, the 4th Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Yuan
- Department of Oral Biology, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Li Lu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
17
|
Qi X, Li H, Qiao B, Li W, Hao X, Wu J, Su B, Jiang D. Development and characterization of an injectable cement of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer/calcium sulfate hemihydrate for bone repair. Int J Nanomedicine 2013; 8:4441-52. [PMID: 24293996 PMCID: PMC3839801 DOI: 10.2147/ijn.s54289] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
A novel injectable bone cement was developed by integration of nano calcium-deficient hydroxyapatite/multi(amino acid) copolymer (n-CDHA/MAC) and calcium sulfate hemihydrate (CSH; CaSO4 · 1/2H2O). The structure, setting time, and compressive strength of the cement were investigated. The results showed that the cement with a liquid to powder ratio of 0.8 mL/g exhibited good injectability and appropriate setting time and mechanical properties. In vitro cell studies indicated that MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite spread well and showed a good proliferation state. The alkaline phosphatase activity of the MC3T3-E1 cells cultured on the n-CDHA/MAC/CSH composite was significantly higher than that of the cells on pure CSH at 4 and 7 days of culture. The n-CDHA/MAC/CSH cement was implanted into critical size defects of the femoral condyle in rabbits to evaluate its biocompatibility and osteogenesis in vivo. Radiological and histological results indicated that introduction of the n-CDHA/MAC into CSH enhanced new bone formation, and the n-CDHA/MAC/CSH cement exhibited good biocompatibility and degradability. In conclusion, the injectable n-CDHA/MAC/CSH composite cement has a significant clinical advantage over pure CSH cement, and may be a promising bone graft substitute for the treatment of bone defects.
Collapse
Affiliation(s)
- Xiaotong Qi
- Department of Orthopedics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Despang F, Bernhardt A, Lode A, Dittrich R, Hanke T, Shenoy SJ, Mani S, John A, Gelinsky M. Synthesis and physicochemical,in vitroandin vivoevaluation of an anisotropic, nanocrystalline hydroxyapatite bisque scaffold with parallel-aligned pores mimicking the microstructure of cortical bone. J Tissue Eng Regen Med 2013; 9:E152-66. [DOI: 10.1002/term.1729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/12/2012] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Affiliation(s)
- F. Despang
- Technische Universität Dresden; Medical Faculty and University Hospital, Centre for Translational Bone, Joint and Soft Tissue Research; Dresden Germany
- Technische Universität Dresden; Institute for Materials Science, Max Bergmann Centre of Biomaterials; Dresden Germany
| | - A. Bernhardt
- Technische Universität Dresden; Medical Faculty and University Hospital, Centre for Translational Bone, Joint and Soft Tissue Research; Dresden Germany
- Technische Universität Dresden; Institute for Materials Science, Max Bergmann Centre of Biomaterials; Dresden Germany
| | - A. Lode
- Technische Universität Dresden; Medical Faculty and University Hospital, Centre for Translational Bone, Joint and Soft Tissue Research; Dresden Germany
- Technische Universität Dresden; Institute for Materials Science, Max Bergmann Centre of Biomaterials; Dresden Germany
| | - R. Dittrich
- TU Bergakademie Freiberg; Institute of Electronic und Sensor Materials; Freiberg Germany
| | - T. Hanke
- Technische Universität Dresden; Institute for Materials Science, Max Bergmann Centre of Biomaterials; Dresden Germany
| | - S. J. Shenoy
- Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram Kerala India
| | - S. Mani
- Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram Kerala India
| | - A. John
- Sree Chitra Tirunal Institute for Medical Sciences and Technology; Thiruvananthapuram Kerala India
| | - M. Gelinsky
- Technische Universität Dresden; Medical Faculty and University Hospital, Centre for Translational Bone, Joint and Soft Tissue Research; Dresden Germany
- Technische Universität Dresden; Institute for Materials Science, Max Bergmann Centre of Biomaterials; Dresden Germany
| |
Collapse
|
19
|
Gerhardt LC, Widdows KL, Erol MM, Nandakumar A, Roqan IS, Ansari T, Boccaccini AR. Neocellularization and neovascularization of nanosized bioactive glass-coated decellularized trabecular bone scaffolds. J Biomed Mater Res A 2012; 101:827-41. [PMID: 22968899 DOI: 10.1002/jbm.a.34373] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 06/02/2012] [Accepted: 07/02/2012] [Indexed: 11/07/2022]
Abstract
In this study, the in vivo recellularization and neovascularization of nanosized bioactive glass (n-BG)-coated decellularized trabecular bone scaffolds were studied in a rat model and quantified using stereological analyses. Based on the highest amount of vascular endothelial growth factor (VEGF) secreted by human fibroblasts grown on n-BG coatings (0-1.245 mg/cm(2)), decellularized trabecular bone samples (porosity: 43-81%) were coated with n-BG particles. Grown on n-BG particles at a coating density of 0.263 mg/cm(2), human fibroblasts produced 4.3 times more VEGF than on uncoated controls. After 8 weeks of implantation in Sprague-Dawley rats, both uncoated and n-BG-coated samples were well infiltrated with newly formed tissue (47-48%) and blood vessels (3-4%). No significant differences were found in cellularization and vascularization between uncoated bone scaffolds and n-BG-coated scaffolds. This finding indicates that the decellularized bone itself may exhibit growth-promoting properties induced by the highly interconnected pore microarchitecture and/or proteins left behind on decellularized scaffolds. Even if we did not find proangiogenic effects in n-BG-coated bone scaffolds, a bioactive coating is considered to be beneficial to impart osteoinductive and osteoconductive properties to decellularized bone. n-BG-coated bone grafts have thus high clinical potential for the regeneration of complex tissue defects given their ability for recellularization and neovascularization.
Collapse
Affiliation(s)
- L-C Gerhardt
- Department of Materials, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Wang Z, Li M, Yu B, Cao L, Yang Q, Su J. Nanocalcium-deficient hydroxyapatite-poly (e-caprolactone)-polyethylene glycol-poly (e-caprolactone) composite scaffolds. Int J Nanomedicine 2012; 7:3123-31. [PMID: 22848159 PMCID: PMC3405873 DOI: 10.2147/ijn.s31162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A bioactive composite of nano calcium-deficient apatite (n-CDAP) with an atom molar ratio of calcium to phosphate (Ca/P) of 1.50 and poly(ɛ-caprolactone)–poly(ethylene glycol)–poly(ɛ-caprolactone) (PCL–PEG–PCL) was synthesized, and a composite scaffold was fabricated. The composite scaffolds with 40 wt% n-CDAP contained well interconnected macropores around 400 μm, and exhibited a porosity of 75%. The weight-loss ratio of the n-CDAP/PCL–PEG–PCL was significantly greater than nano hydroxyapatite (n-HA, Ca/P = 1.67)/PCL–PEG–PCL composite scaffolds during soaking into phosphate-buffered saline (pH 7.4) for 70 days, indicating that n-CDAP-based composite had good degradability compared with n-HA. The viability ratio of MG-63 cells was significantly higher on n-CDAP than n-HA-based composite scaffolds at 3 and 5 days. In addition, the alkaline phosphatase activity of the MG-63 cells cultured on n-CDAP was higher than n-HA-based composite scaffolds at 7 days. Histological evaluation showed that the introduction of n-CDAP into PCL–PEG–PCL enhanced the efficiency of new bone formation when the composite scaffolds were implanted into rabbit bone defects. The results suggested that the n-CDAP-based composite exhibits good biocompatibility, biodegradation, and osteogenesis in vivo.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Orthopedics, Shanghai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|