1
|
Volz M, Wyse-Sookoo KR, Travascio F, Huang CY, Best TM. MECHANOBIOLOGICAL APPROACHES FOR STIMULATING CHONDROGENESIS OF STEM CELLS. Stem Cells Dev 2022; 31:460-487. [PMID: 35615879 DOI: 10.1089/scd.2022.0049] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chondrogenesis is the process of differentiation of stem cells into mature chondrocytes. Such a process consists of chemical, functional, and structural changes which are initiated and mediated by the host environment of the cells. To date, the mechanobiology of chondrogenesis has not been fully elucidated. Hence, experimental activity is focused on recreating specific environmental conditions for stimulating chondrogenesis, and to look for a mechanistic interpretation of the mechanobiological response of cells in the cartilaginous tissues. There are a large number of studies on the topic that vary considerably in their experimental protocols used for providing environmental cues to cells for differentiation, making generalizable conclusions difficult to ascertain. The main objective of this contribution is to review the mechanobiological stimulation of stem cell chondrogenesis and methodological approaches utilized to date to promote chondrogenesis of stem cells in-vitro. In-vivo models will also be explored, but this area is currently limited. An overview of the experimental approaches used by different research groups may help the development of unified testing methods that could be used to overcome existing knowledge gaps, leading to an accelerated translation of experimental findings to clinical practice.
Collapse
Affiliation(s)
- Mallory Volz
- University of Miami, 5452, Biomedical Engineering, Coral Gables, Florida, United States;
| | | | - Francesco Travascio
- University of Miami, 5452, Mechanical and Aerospace Engineering, 1251 Memorial Drive, MEB 217B, Coral Gables, Florida, United States, 33146;
| | - Chun-Yuh Huang
- University of Miami, 5452, Biomedical Engineering, Coral Gables, Florida, United States;
| | - Thomas M Best
- University of Miami Miller School of Medicine, 12235, School of Medicine, Miami, Florida, United States;
| |
Collapse
|
2
|
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021; 6:4830-4855. [PMID: 34136726 PMCID: PMC8175243 DOI: 10.1016/j.bioactmat.2021.05.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
In spite of the considerable achievements in the field of regenerative medicine in the past several decades, osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition, structure and functions. In order to repair the hierarchical tissue involving different layers of articular cartilage, cartilage-bone interface and subchondral bone, traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling. It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional, structural and functional characteristics to the native osteochondral tissues. Here in this review, some basic knowledge of the osteochondral units including the anatomical structure and composition, the defect classification and clinical treatments will be first introduced. Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design, cell encapsulation and signaling factor incorporation including bioreactor application. Clinical products for osteochondral defect repair will be analyzed and summarized later. Moreover, we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
3
|
Boosting in vitro cartilage tissue engineering through the fabrication of polycaprolactone-gelatin 3D scaffolds with specific depth-dependent fiber alignments and mechanical stimulation. J Mech Behav Biomed Mater 2021; 117:104373. [PMID: 33618241 DOI: 10.1016/j.jmbbm.2021.104373] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 11/21/2022]
Abstract
Due to the limited self-healing ability of natural cartilage, several tissue engineering strategies have been explored to develop functional replacements. Still, most of these approaches do not attempt to recreate in vitro the anisotropic organization of its extracellular matrix, which is essential for a suitable load-bearing function. In this work, different depth-dependent alignments of polycaprolactone-gelatin electrospun fibers were assembled into three-dimensional scaffold architectures to assess variations on chondrocyte response under static, unconfined compressed and perfused culture conditions. The in vitro results confirmed that not only the 3D scaffolds specific depth-dependent fiber alignments potentiated chondrocyte proliferation and migration towards the fibrous systems, but also the mechanical stimulation protocols applied were able to enhance significantly cell metabolic activity and extracellular matrix deposition, respectively.
Collapse
|
4
|
In vitro chondral culture under compression and shear stimuli. From mesenchymal stem cells to hyaline cartilage. Rev Esp Cir Ortop Traumatol (Engl Ed) 2020. [DOI: 10.1016/j.recote.2020.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Sánchez-Pérez C, Fernández-Santos ME, Chana-Rodríguez F, Vaquero-Martín J, Crego-Vita D, Carbó Laso E, González de Torre I, Narbona-Cárceles J. In vitro chondral culture under compression and shear stimuli. From mesenchymal stem cells to hyaline cartilage. Rev Esp Cir Ortop Traumatol (Engl Ed) 2020; 64:380-387. [PMID: 32792287 DOI: 10.1016/j.recot.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/29/2020] [Accepted: 06/14/2020] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The in vitro creation of hyaline joint cartilage is a challenge since, to date, the ex vivo synthesis of a structured tissue with the same biomechanical and histological properties of the joint cartilage has not been achieved. To simulate the physiological conditions we have designed an in vitro culture system that reproduces joint movement. MATERIAL AND METHOD We have developed a cell culture bioreactor that prints a mechanical stimulus on an elastin matrix, in which mesenchymal stem cells (MSC) are embedded. The first phase of study corresponds to the development of a bioreactor for hyaline cartilage culture and the verification of cell viability in the elastin matrix in the absence of stimulus. The second phase of the study includes the MSC culture under mechanical stimulus and the analysis of the resulting tissue. RESULTS After culture under mechanical stimulation we did not obtain hyaline tissue due to lack of cellularity and matrix destructuring. CONCLUSION The stimulus pattern used has not been effective in generating hyaline cartilage, so other combinations should be explored in future research.
Collapse
Affiliation(s)
- C Sánchez-Pérez
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España.
| | - M E Fernández-Santos
- Unidad de Producción Celular, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - F Chana-Rodríguez
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - J Vaquero-Martín
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - D Crego-Vita
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Central de la Defensa Gómez Ulla, Madrid, España
| | - E Carbó Laso
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España
| | | | - J Narbona-Cárceles
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España
| |
Collapse
|
6
|
Wang Q, Xu J, Jin H, Zheng W, Zhang X, Huang Y, Qian Z. Artificial periosteum in bone defect repair—A review. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.07.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
7
|
Li K, Zhang C, Qiu L, Gao L, Zhang X. Advances in Application of Mechanical Stimuli in Bioreactors for Cartilage Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:399-411. [PMID: 28463576 DOI: 10.1089/ten.teb.2016.0427] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Articular cartilage (AC) is the weight-bearing tissue in diarthroses. It lacks the capacity for self-healing once there are injuries or diseases due to its avascularity. With the development of tissue engineering, repairing cartilage defects through transplantation of engineered cartilage that closely matches properties of native cartilage has become a new option for curing cartilage diseases. The main hurdle for clinical application of engineered cartilage is how to develop functional cartilage constructs for mass production in a credible way. Recently, impressive hyaline cartilage that may have the potential to provide capabilities for treating large cartilage lesions in the future has been produced in laboratories. The key to functional cartilage construction in vitro is to identify appropriate mechanical stimuli. First, they should ensure the function of metabolism because mechanical stimuli play the role of blood vessels in the metabolism of AC, for example, acquiring nutrition and removing wastes. Second, they should mimic the movement of synovial joints and produce phenotypically correct tissues to achieve the adaptive development between the micro- and macrostructure and function. In this article, we divide mechanical stimuli into three types according to forces transmitted by different media in bioreactors, namely forces transmitted through the liquid medium, solid medium, or other media, then we review and summarize the research status of bioreactors for cartilage tissue engineering (CTE), mainly focusing on the effects of diverse mechanical stimuli on engineered cartilage. Based on current researches, there are several motion patterns in knee joints; but compression, tension, shear, fluid shear, or hydrostatic pressure each only partially reflects the mechanical condition in vivo. In this study, we propose that rolling-sliding-compression load consists of various stimuli that will represent better mechanical environment in CTE. In addition, engineers often ignore the importance of biochemical factors to the growth and development of engineered cartilage. In our point of view, only by fully considering synergistic effects of mechanical and biochemical factors can we find appropriate culture conditions for functional cartilage constructs. Once again, rolling-sliding-compression load under appropriate biochemical conditions may be conductive to realize the adaptive development between the structure and function of engineered cartilage in vitro.
Collapse
Affiliation(s)
- Ke Li
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Chunqiu Zhang
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Lulu Qiu
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Lilan Gao
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| | - Xizheng Zhang
- Tianjin Key Laboratory of Design and Intelligent Control of the Advanced Mechatronical System, School of Mechanical Engineering, Tianjin University of Technology , Tianjin, China
| |
Collapse
|
8
|
SCHRÖDER CHRISTIAN, HÖLZER ANDREAS, ZHU GE, WOICZINSKI MATTHIAS, BETZ OLIVERB, GRAF HELENA, MAYER-WAGNER SUSANNE, MÜLLER PETERE. A CLOSED LOOP PERFUSION BIOREACTOR FOR DYNAMIC HYDROSTATIC PRESSURE LOADING AND CARTILAGE TISSUE ENGINEERING. J MECH MED BIOL 2016. [DOI: 10.1142/s0219519416500251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the present study, a novel bioreactor for dynamic hydrostatic pressure loading that simultaneously permits medium perfusion was established. This bioreactor enables continuous cultivation without manual attendance. Additional emphasis was placed on a simple bioreactor design which was achieved by pressurizing the medium directly and by applying pressure loading and perfusion through the same piping. Straight forward pressure control and at the same time maintaining sterility were achieved by using a peristaltic pump including inlet and outlet magnetic pinch valves connected with a real-time control. Cell tests using chondrocytes were performed and similar cell proliferation rates in the bioreactor and in the incubator were found. We conclude that the novel bioreactor introduced here, has the potential to be easily applied for cartilage tissue engineering on a larger scale.
Collapse
Affiliation(s)
- CHRISTIAN SCHRÖDER
- Department of Orthopaedic Surgery, University Hospital of Munich (LMU), Physical Medicine and Rehabilitation, Marchioninistrasse 15, Campus Grosshadern, Munich D-81377, Germany
| | - ANDREAS HÖLZER
- Department of Orthopaedic Surgery, University Hospital of Munich (LMU), Physical Medicine and Rehabilitation, Marchioninistrasse 15, Campus Grosshadern, Munich D-81377, Germany
| | - GE ZHU
- Department of Orthopaedic Surgery, University Hospital of Munich (LMU), Physical Medicine and Rehabilitation, Marchioninistrasse 15, Campus Grosshadern, Munich D-81377, Germany
| | - MATTHIAS WOICZINSKI
- Department of Orthopaedic Surgery, University Hospital of Munich (LMU), Physical Medicine and Rehabilitation, Marchioninistrasse 15, Campus Grosshadern, Munich D-81377, Germany
| | - OLIVER B. BETZ
- Department of Orthopaedic Surgery, University Hospital of Munich (LMU), Physical Medicine and Rehabilitation, Marchioninistrasse 15, Campus Grosshadern, Munich D-81377, Germany
| | - HELENA GRAF
- Department of Medical Engineering, RWTH Aachen University, Aachen, Germany
| | - SUSANNE MAYER-WAGNER
- Department of Orthopaedic Surgery, University Hospital of Munich (LMU), Physical Medicine and Rehabilitation, Marchioninistrasse 15, Campus Grosshadern, Munich D-81377, Germany
| | - PETER E. MÜLLER
- Department of Orthopaedic Surgery, University Hospital of Munich (LMU), Physical Medicine and Rehabilitation, Marchioninistrasse 15, Campus Grosshadern, Munich D-81377, Germany
| |
Collapse
|
9
|
Application of cell and biomaterial-based tissue engineering methods in the treatment of cartilage, menisci and ligament injuries. INTERNATIONAL ORTHOPAEDICS 2016; 40:615-24. [PMID: 26762517 DOI: 10.1007/s00264-015-3099-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/23/2015] [Indexed: 02/07/2023]
Abstract
Over 20 years ago it was realized that the traditional methods of the treatment of injuries to joint components: cartilage, menisci and ligaments, did not give satisfactory results and so there is a need of employing novel, more effective therapeutic techniques. Recent advances in molecular biology, biotechnology and polymer science have led to both the experimental and clinical application of various cell types, adapting their culture conditions in order to ensure a directed differentiation of the cells into a desired cell type, and employing non-toxic and non-immunogenic biomaterial in the treatment of knee joint injuries. In the present review the current state of knowledge regarding novel cell sources, in vitro conditions of cell culture and major important biomaterials, both natural and synthetic, used in cartilage, meniscus and ligament repair by tissue engineering techniques are described, and the assets and drawbacks of their clinical application are critically evaluated.
Collapse
|
10
|
Harhaus L, Huang JJ, Kao SW, Wu YL, Mackert GA, Höner B, Cheng MH, Kneser U, Cheng CM. The vascularized periosteum flap as novel tissue engineering model for repair of cartilage defects. J Cell Mol Med 2015; 19:1273-83. [PMID: 25754287 PMCID: PMC4459843 DOI: 10.1111/jcmm.12485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/07/2014] [Indexed: 11/28/2022] Open
Abstract
Periosteum is a promising tissue engineering scaffold in research of cartilage repair; so far however, periosteum transfers have not been realized successfully because of insufficient nourishment of the graft. In a translational approach we, for the first time, designed a vascularized periosteum flap as ‘independent’ biomaterial with its own blood supply to address this problem and to reconstruct circumscript cartilage defects. In six 3-month-old New Zealand rabbits, a critical size cartilage defect of the medial femur condyle was created and covered by a vascularized periosteum flap pedicled on the saphenous vessels. After 28 days, formation of newly built cartilage was assessed macroscopically, histologically and qualitatively via biomechanical compression testing, as well as on molecular biological level via immunohistochemistry. All wounds healed completely, all joints were stable and had full range of motion. All flaps survived and were perfused through their pulsating pedicles. They showed a stable attachment to the bone, although partially incomplete adherence. Hyaline cartilage with typical columnar cell distribution and positive Collagen II staining was formed in the transferred flaps. Biomechanical testing revealed a significantly higher maximum load than the positive control, but a low elasticity. This study proved that vascularization of the periosteum flap is the essential step for flap survival and enables the flap to transform into cartilage. Reconstruction of circumscript cartilage defects seems to be possible. Although these are the first results out of a pilot project, this technique, we believe, can have a wide range of potential applications and high relevance in the clinical field.
Collapse
Affiliation(s)
- Leila Harhaus
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Care Center, Department of Plastic Surgery of Heidelberg University, BG Traumacenter Ludwigshafen, Ludwigshafen, Germany.,Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Jung-Ju Huang
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Shu-Wei Kao
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Yen-Lin Wu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| | - Gina Alicia Mackert
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Care Center, Department of Plastic Surgery of Heidelberg University, BG Traumacenter Ludwigshafen, Ludwigshafen, Germany
| | - Bernd Höner
- Department of Social and Legal Sciences, SRH University, Heidelberg, Germany
| | - Ming-Huei Cheng
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan, Taiwan
| | - Ulrich Kneser
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Care Center, Department of Plastic Surgery of Heidelberg University, BG Traumacenter Ludwigshafen, Ludwigshafen, Germany
| | - Chao-Min Cheng
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
11
|
Ferretti C, Mattioli-Belmonte M. Periosteum derived stem cells for regenerative medicine proposals: Boosting current knowledge. World J Stem Cells 2014; 6:266-277. [PMID: 25126377 PMCID: PMC4131269 DOI: 10.4252/wjsc.v6.i3.266] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/09/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
Periosteum is a thin fibrous layer that covers most bones. It resides in a dynamic mechanically loaded environment and provides a niche for pluripotent cells and a source for molecular factors that modulate cell behaviour. Elucidating periosteum regenerative potential has become a hot topic in orthopaedics. This review discusses the state of the art of osteochondral tissue engineering rested on periosteum derived progenitor cells (PDPCs) and suggests upcoming research directions. Periosteal cells isolation, characterization and migration in the site of injury, as well as their differentiation, are analysed. Moreover, the role of cell mechanosensing and its contribution to matrix organization, bone microarchitecture and bone stenght is examined. In this regard the role of periostin and its upregulation under mechanical stress in order to preserve PDPC survival and bone tissue integrity is contemplated. The review also summarized the role of the periosteum in the field of dentistry and maxillofacial reconstruction. The involvement of microRNAs in osteoblast differentiation and in endogenous tissue repair is explored as well. Finally the novel concept of a guided bone regeneration based on the use of periosteum itself as a smart material and the realization of constructs able to mimic the extracellular matrix features is talked out. Additionally, since periosteum can differentiate into insulin producing cells it could be a suitable source in allogenic transplantations. That innovative applications would take advantage from investigations aimed to assess PDPC immune privilege.
Collapse
|
12
|
Mayer-Wagner S, Hammerschmid F, Redeker JI, Schmitt B, Holzapfel BM, Jansson V, Betz OB, Müller PE. Simulated microgravity affects chondrogenesis and hypertrophy of human mesenchymal stem cells. INTERNATIONAL ORTHOPAEDICS 2014; 38:2615-21. [PMID: 25030964 DOI: 10.1007/s00264-014-2454-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 06/26/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE During in vitro chondrogenesis of human mesenchymal stem cells (hMSCs) hypertrophy is an inadvertent event associated with cell differentiation toward the osteogenic lineage. Up to now, there is no stringent experimental control mechanism to prevent hypertrophy of MSCs. Microgravity is known to have an impact on osteogenesis. In this study, the influence of simulated microgravity (SMG) on both chondrogenesis and hypertrophy of hMSCs was evaluated. METHODS A bioreactor using a rotating wall vessel was constructed to simulate microgravity. Pellet cultures formed from hMSCs (P5) were supplemented with human transforming growth factor-β3 (TGF-β3). The hMSC pellet cultures treated with TGF-β3 were either kept in SMG or in a control system. After three weeks of culture, the chondrogenic differentiation status and level of hypertrophy were examined by safranin-O staining, immunohistochemistry and quantitative real-time PCR. RESULTS SMG reduced the staining for safranin-O and collagen type II. The expression of collagen type X α1 chain (COL10A1) and collagen type II α1 chain (COL2A1) were both significantly reduced. There was a higher decrease in COL2A1 than in COL10A1 expression, resulting in a low COL2A1/COL10A1 ratio. CONCLUSIONS SMG reduced hypertrophy of hMSCs during chondrogenic differentiation. However, the expression of COL2A1 was likewise reduced. Even more, the COL2A1/COL10A1 ratio decreased under SMG conditions. We therefore assume that SMG has a significant impact on the chondrogenic differentiation of hMSCs. However, due to the high COL2A1 suppression under SMG, this culture system does not yet seem to be suitable for a potential application in cartilage repair.
Collapse
Affiliation(s)
- Susanne Mayer-Wagner
- Department of Orthopaedic Surgery, Ludwig-Maximilians-University, Campus Großhadern, Marchioninistr. 15, 81377, Munich, Germany,
| | | | | | | | | | | | | | | |
Collapse
|
13
|
No effect of subperiosteal growth factor application on periosteal neo-chondrogenesis in osteoperiosteal bone grafts for osteochondral defect repair. INTERNATIONAL ORTHOPAEDICS 2013; 37:1171-8. [PMID: 23503670 DOI: 10.1007/s00264-013-1827-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/03/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE The purpose of this study was to examine the effect of subperiosteal injection of chondroinductive growth factors on the histological and biomechanical outcome of autologous osteoperiosteal grafts. METHODS Thirty six standardised osteochondral defects were created in the trochlear groove of 18 Göttinger Minipigs and evaluated after six, 12 and 52 weeks. Defects were treated with press-fit implantation of autologous osteoperiosteal cylindrical block-grafts with or without subperiosteal injection of a chondroinductive growth factor mixture (GFM). RESULTS Histomorphological analysis showed complete osseointegration of all grafts from six weeks. The periosteum remained in place in 35 of 36 cases. Fibrocartilagineous repair tissue formation occurred at the cambium layer with a maximum at 12 weeks in both groups. Histomorphological grading and biomechanical testing showed highest values at 12 weeks, with signs of tissue degradation at one year. There was no significant difference between both groups. CONCLUSION Transplantation of autologous osteoperiosteal grafts is an effective method to restore subchondral bone defects, but not the overlying cartilage as the repair tissue deteriorates in the long term. Subperiosteal growth factors injection did not stimulate tissue differentiation on a biomechanical and histomorphological level.
Collapse
|
14
|
Podichetty JT, Dhane DV, Madihally SV. Dynamics of diffusivity and pressure drop in flow-through and parallel-flow bioreactors during tissue regeneration. Biotechnol Prog 2012; 28:1045-54. [DOI: 10.1002/btpr.1547] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/27/2012] [Indexed: 11/06/2022]
|