1
|
Xue M, Liu P, Zhang J, Sun Y, Fang Y, Yang J, Zeng C, Huang B, Chen X, Xie M, Ye Z. Does a Video-Based and 3D Animation Hybrid Learning System Improve Teaching Outcomes in Orthopedic Surgery? A Randomized Controlled Trial. JOURNAL OF SURGICAL EDUCATION 2024; 81:1305-1319. [PMID: 38944585 DOI: 10.1016/j.jsurg.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/03/2024] [Accepted: 05/15/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVE This study aims to evaluate the instructional efficacy of a 3D Surgical Training System (3DSTS), which combines real surgical footage with high-definition 3D animations, against conventional surgical videos and textbooks in the context of orthopedic proximal humerus fracture surgeries. DESIGN Before the experiment, 89 participants completed a pre-educational knowledge assessment. They were then randomized into 3 groups: the 3DSTS group (n = 30), the surgical video (SV) group (n = 29), and the textbook group (n = 30). After their respective teaching courses, all participants took a posteducational assessment and completed a perceived cognitive load test. The 3DSTS group also filled out a satisfaction survey. Once all assessments were finished, the SV and textbook groups were introduced to the 3DSTS course and subsequently completed a satisfaction survey. All statistical analyses were executed using IBM SPSS version 24 (IBM Corp., Armonk, NY). For data fitting normal distribution, we employed one-way analysis of variance (one-way ANOVA) and Tukey HSD tests, whereas, for non-normally distributed data, we used Kruskal-Wallis H tests and Dunn's tests. The significance level for all tests was set at p < 0.05. SETTING Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P. R. China. PARTICIPANTS About 89 doctors who undergoing standardized residents training. RESULT The initial assessment scores among the three groups were comparable, showing no significant statistical difference. Post-education revealed a marked difference in the scores, with the 3DSTS group outperforming both the SV and textbook groups. Specifically, the 3DSTS group exhibited statistically greater improvement in areas such as procedural steps, and specialized surgical techniques compared to the SV and textbook groups. During the 3DSTS teaching process, participants reported the least perceived cognitive load and expressed strong satisfaction, highlighting that the instructional materials are well-prepared, and considering this teaching method superior and more innovative than previous courses they had encountered. CONCLUSION The 3D Surgical Training System, integrating real videos with 3D animations, significantly enhances orthopedic surgery education over conventional methods, providing improved comprehension, lower cognitive load, and standardized learning outcomes. Its efficacy and high participant satisfaction underscore its potential for broader adoption in surgical disciplines. This study is registered with ClinicalTrials. gov ID: ChiCTR2300074730.
Collapse
Affiliation(s)
- Mingdi Xue
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengran Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiayao Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yudong Sun
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Fang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zeng
- School of Computer, Wuhan University, Wuhan, China
| | - Biqiang Huang
- Digital Medical R&D Transformation Center of People's Medical Publishing House, Chengdu, China
| | - Xiaoliang Chen
- People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Ningxia Hui Autonomous Region, China
| | - Mao Xie
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhewei Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Intelligent Medical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
De Jesus Encarnacion Ramirez M, Chmutin G, Nurmukhametov R, Soto GR, Kannan S, Piavchenko G, Nikolenko V, Efe IE, Romero AR, Mukengeshay JN, Simfukwe K, Mpoyi Cherubin T, Nicolosi F, Sharif S, Roa JC, Montemurro N. Integrating Augmented Reality in Spine Surgery: Redefining Precision with New Technologies. Brain Sci 2024; 14:645. [PMID: 39061386 PMCID: PMC11274952 DOI: 10.3390/brainsci14070645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION The integration of augmented reality (AR) in spine surgery marks a significant advancement, enhancing surgical precision and patient outcomes. AR provides immersive, three-dimensional visualizations of anatomical structures, facilitating meticulous planning and execution of spine surgeries. This technology not only improves spatial understanding and real-time navigation during procedures but also aims to reduce surgical invasiveness and operative times. Despite its potential, challenges such as model accuracy, user interface design, and the learning curve for new technology must be addressed. AR's application extends beyond the operating room, offering valuable tools for medical education and improving patient communication and satisfaction. MATERIAL AND METHODS A literature review was conducted by searching PubMed and Scopus databases using keywords related to augmented reality in spine surgery, covering publications from January 2020 to January 2024. RESULTS In total, 319 articles were identified through the initial search of the databases. After screening titles and abstracts, 11 articles in total were included in the qualitative synthesis. CONCLUSION Augmented reality (AR) is becoming a transformative force in spine surgery, enhancing precision, education, and outcomes despite hurdles like technical limitations and integration challenges. AR's immersive visualizations and educational innovations, coupled with its potential synergy with AI and machine learning, indicate a bright future for surgical care. Despite the existing obstacles, AR's impact on improving surgical accuracy and safety marks a significant leap forward in patient treatment and care.
Collapse
Affiliation(s)
| | - Gennady Chmutin
- Department of Neurosurgery, Russian People’s Friendship University, 117198 Moscow, Russia
| | - Renat Nurmukhametov
- Department of Neurosurgery, Russian People’s Friendship University, 117198 Moscow, Russia
| | - Gervith Reyes Soto
- Department of Head and Neck, Unidad de Neurociencias, Instituto Nacional de Cancerología, Mexico City 14080, Mexico
| | - Siddarth Kannan
- School of Medicine, University of Central Lancashire, Preston PR0 2AA, UK
| | - Gennadi Piavchenko
- Department of Human Anatomy and Histology, Sechenov University, 119911 Moscow, Russia
| | - Vladmir Nikolenko
- Department of Neurosurgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ibrahim E. Efe
- Department of Neurosurgery, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10178 Berlin, Germany
| | | | | | - Keith Simfukwe
- Department of Neurosurgery, Russian People’s Friendship University, 117198 Moscow, Russia
| | | | - Federico Nicolosi
- Department of Medicine and Surgery, Neurosurgery, University of Milano-Bicocca, 20126 Milan, Italy
| | - Salman Sharif
- Department of Neurosurgery, Liaquat National Hospital and Medical College, Karachi 05444, Pakistan
| | - Juan Carlos Roa
- Department of Pathology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), 56100 Pisa, Italy
| |
Collapse
|
3
|
Kenanidis E, Boutos P, Voulgaris G, Zgouridou A, Gkoura E, Gamie Z, Papagiannakis G, Tsiridis E. Effectiveness of virtual reality compared to video training on acetabular cup and femoral stem implantation accuracy in total hip arthroplasty among medical students: a randomised controlled trial. INTERNATIONAL ORTHOPAEDICS 2024; 48:625-633. [PMID: 37993676 PMCID: PMC10901922 DOI: 10.1007/s00264-023-06038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
PURPOSE Virtual reality (VR) training effectiveness in improving hip arthroplasty surgical skills requires further evaluation. We hypothesised VR training could improve accuracy and the time taken by medical students compared to a control group with only video teaching. METHODS This single-centre randomized controlled clinical trial collected data from March to June 2023. Surgically naïve volunteer undergraduate medical students performed three sessions on a VR training platform, either cup (VR-Cup=Control-Stem) or stem (VR-Stem=Control-Cup) implantation. The primary outcome was the mean difference between predefined cup inclination (60°) and stem anteversion (20°) compared to the actual implanted values in sawbones between VR and control groups. Secondary outcomes were task completion time and mistake number between the groups. RESULTS A total of 101 students participated (VR-Cup 47, VR-Stem 54). Groups did not significantly differ concerning age (p = 0.879), gender (p = 0.408), study year (p = 0.938), previous VR use (p = 0.269) and baseline medical and procedural knowledge. The VR-Cup implanted the cup closer to the intended target (p < 0.001) and faster than the Control-Cup group (p = 0.113). The VR-Stem implanted the stem closer to the intended target (p = 0.008) but not faster than the Control-Cup group (p = 0.661). Stem retroversion was commoner in the Control-Stem than in the VR-Stem group (p = 0.016). CONCLUSIONS VR training resulted in higher rates of accurate procedure completion, reduced time and fewer errors compared to video teaching. VR training is an effective method for improving skill acquisition in THA. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT05807828.
Collapse
Affiliation(s)
- Eustathios Kenanidis
- Academic Orthopaedic Department, Aristotle University Medical School, General Hospital Papageorgiou, Ring Road Efkarpia, 56403, Thessaloniki, Greece.
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Balkan Center, Buildings A & B, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, GR, Greece.
| | - Panagiotis Boutos
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Balkan Center, Buildings A & B, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, GR, Greece
| | - Grigorios Voulgaris
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Balkan Center, Buildings A & B, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, GR, Greece
| | - Aikaterini Zgouridou
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Balkan Center, Buildings A & B, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, GR, Greece
| | - Eleni Gkoura
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Balkan Center, Buildings A & B, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, GR, Greece
| | - Zakareya Gamie
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Balkan Center, Buildings A & B, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, GR, Greece
| | - George Papagiannakis
- Institute of Computer Science, Foundation for Research and Technology (FORTH), Heraklion, Greece
- Department of Computer Science, University of Crete, Heraklion, Greece
| | - Eleftherios Tsiridis
- Academic Orthopaedic Department, Aristotle University Medical School, General Hospital Papageorgiou, Ring Road Efkarpia, 56403, Thessaloniki, Greece
- Centre of Orthopaedic and Regenerative Medicine (CORE), Center for Interdisciplinary Research and Innovation (CIRI)-Aristotle University of Thessaloniki (AUTH), Balkan Center, Buildings A & B, Thessaloniki, 10th km Thessaloniki-Thermi Rd, P.O. Box 8318, 57001, Thessaloniki, GR, Greece
| |
Collapse
|
4
|
Bui T, Ruiz-Cardozo MA, Dave HS, Barot K, Kann MR, Joseph K, Lopez-Alviar S, Trevino G, Brehm S, Yahanda AT, Molina CA. Virtual, Augmented, and Mixed Reality Applications for Surgical Rehearsal, Operative Execution, and Patient Education in Spine Surgery: A Scoping Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:332. [PMID: 38399619 PMCID: PMC10890632 DOI: 10.3390/medicina60020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Advances in virtual reality (VR), augmented reality (AR), and mixed reality (MR) technologies have resulted in their increased application across many medical specialties. VR's main application has been for teaching and preparatory roles, while AR has been mostly used as a surgical adjunct. The objective of this study is to discuss the various applications and prospects for VR, AR, and MR specifically as they relate to spine surgery. Materials and Methods: A systematic review was conducted to examine the current applications of VR, AR, and MR with a focus on spine surgery. A literature search of two electronic databases (PubMed and Scopus) was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The study quality was assessed using the MERSQI score for educational research studies, QUACS for cadaveric studies, and the JBI critical appraisal tools for clinical studies. Results: A total of 228 articles were identified in the primary literature review. Following title/abstract screening and full-text review, 46 articles were included in the review. These articles comprised nine studies performed in artificial models, nine cadaveric studies, four clinical case studies, nineteen clinical case series, one clinical case-control study, and four clinical parallel control studies. Teaching applications utilizing holographic overlays are the most intensively studied aspect of AR/VR; the most simulated surgical procedure is pedicle screw placement. Conclusions: VR provides a reproducible and robust medium for surgical training through surgical simulations and for patient education through various platforms. Existing AR/MR platforms enhance the accuracy and precision of spine surgeries and show promise as a surgical adjunct.
Collapse
Affiliation(s)
- Tim Bui
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Miguel A. Ruiz-Cardozo
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harsh S. Dave
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karma Barot
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael Ryan Kann
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Karan Joseph
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sofia Lopez-Alviar
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gabriel Trevino
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samuel Brehm
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alexander T. Yahanda
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Camilo A Molina
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Ali JT, Yang G, Green CA, Reed BL, Madani A, Ponsky TA, Hazey J, Rothenberg SS, Schlachta CM, Oleynikov D, Szoka N. Defining digital surgery: a SAGES white paper. Surg Endosc 2024; 38:475-487. [PMID: 38180541 DOI: 10.1007/s00464-023-10551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Digital surgery is a new paradigm within the surgical innovation space that is rapidly advancing and encompasses multiple areas. METHODS This white paper from the SAGES Digital Surgery Working Group outlines the scope of digital surgery, defines key terms, and analyzes the challenges and opportunities surrounding this disruptive technology. RESULTS In its simplest form, digital surgery inserts a computer interface between surgeon and patient. We divide the digital surgery space into the following elements: advanced visualization, enhanced instrumentation, data capture, data analytics with artificial intelligence/machine learning, connectivity via telepresence, and robotic surgical platforms. We will define each area, describe specific terminology, review current advances as well as discuss limitations and opportunities for future growth. CONCLUSION Digital Surgery will continue to evolve and has great potential to bring value to all levels of the healthcare system. The surgical community has an essential role in understanding, developing, and guiding this emerging field.
Collapse
Affiliation(s)
- Jawad T Ali
- University of Texas at Austin, Austin, TX, USA
| | - Gene Yang
- University at Buffalo, Buffalo, NY, USA
| | | | | | - Amin Madani
- University of Toronto, Toronto, ON, Canada
- Surgical Artificial Intelligence Research Academy, University Health Network, Toronto, ON, Canada
| | - Todd A Ponsky
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | - Dmitry Oleynikov
- Monmouth Medical Center, Robert Wood Johnson Barnabas Health, Rutgers School of Medicine, Long Branch, NJ, USA
| | - Nova Szoka
- Department of Surgery, West Virginia University, Suite 7500 HSS, PO Box 9238, Morgantown, WV, 26506-9238, USA.
| |
Collapse
|
6
|
Yi WS, Rouhi AD, Duffy CC, Ghanem YK, Williams NN, Dumon KR. A Systematic Review of Immersive Virtual Reality for Nontechnical Skills Training in Surgery. JOURNAL OF SURGICAL EDUCATION 2024; 81:25-36. [PMID: 38036388 DOI: 10.1016/j.jsurg.2023.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 12/02/2023]
Abstract
OBJECTIVE Immersive virtual reality (IVR) can be utilized to provide low cost and easily accessible simulation on all aspects of surgical education. In addition to technical skills training in surgery, IVR simulation has been utilized for nontechnical skills training in domains such as clinical decision-making and pre-operative planning. This systematic review examines the current literature on the effectiveness of IVR for nontechnical skill acquisition in surgical education. DESIGN A literature search was performed using MEDLINE, EMBASE, and Web of Science for primary studies published between January 1, 1995 and February 9, 2022. Four reviewers screened titles, abstracts, full texts, extracted data, and analyzed included studies to answer 5 key questions: How is IVR being utilized in nontechnical skills surgical education? What is the methodological quality of studies? What technologies are being utilized? What metrics are reported? What are the findings of these studies? RESULTS The literature search yielded 2340 citations, with 12 articles included for qualitative synthesis. Of included articles, 33% focused on clinical decision-making and 67% on anatomy/pre-operative planning. Motion sickness was a recorded metric in 25% of studies, with an aggregate incidence of 13% (11/87). An application score was reported in 33% and time to completion in 16.7%. A commercially developed application was utilized in 25%, while 75% employed a noncommercial application. The Oculus Rift was used in 41.7% of studies, HTC Vive in 25%, Samsung Gear in 16.7% of studies, Google Daydream in 8%, and 1 study did not report. The mean Medical Education Research Quality Instrument (MERSQI) score was 10.3 ± 2.3 (out of 18). In all studies researching clinical decision-making, participants preferred IVR to conventional teaching methods and in a nonrandomized control study it was found to be more effective. Averaged across all studies, mean scores were 4.33 for enjoyment, 4.16 for utility, 4.11 for usability, and 3.73 for immersion on a 5-point Likert scale. CONCLUSIONS The IVR nontechnical skills applications for surgical education are designed for clinical decision-making or anatomy/pre-operative planning. These applications are primarily noncommercially produced and rely upon a diverse array of HMDs for content delivery, suggesting that development is primarily coming from within academia and still without clarity on optimal utilization of the technology. Excitingly, users find these applications to be immersive, enjoyable, usable, and of utility in learning. Although a few studies suggest that IVR is additive or superior to conventional teaching or imaging methods, the data is mixed and derived from studies with weak design. Motion sickness with IVR remains a complication of IVR use needing further study to determine the cause and means of mitigation.
Collapse
Affiliation(s)
- William S Yi
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Surgical Education, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Penn Medicine Clinical Simulation Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Armaun D Rouhi
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Caoimhe C Duffy
- Department of Anesthesiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yazid K Ghanem
- Department of Surgery, Cooper University Hospital, Camden, New Jersey
| | - Noel N Williams
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Surgical Education, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Penn Medicine Clinical Simulation Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kristoffel R Dumon
- Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Surgical Education, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; Penn Medicine Clinical Simulation Center, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
7
|
Woodall WJ, Chang EH, Toy S, Lee DR, Sherman JH. Does Extended Reality Simulation Improve Surgical/Procedural Learning and Patient Outcomes When Compared With Standard Training Methods?: A Systematic Review. Simul Healthc 2024; 19:S98-S111. [PMID: 38240622 DOI: 10.1097/sih.0000000000000767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
INTRODUCTION The use of extended reality (XR) technologies, including virtual, augmented, and mixed reality, has increased within surgical and procedural training programs. Few studies have assessed experiential learning- and patient-based outcomes using XR compared with standard training methods. METHODS As a working group for the Society for Simulation in Healthcare, we used Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and a PICO strategy to perform a systematic review of 4238 articles to assess the effectiveness of XR technologies compared with standard training methods. Outcomes were grouped into knowledge, time-to-completion, technical proficiency, reactions, and patient outcomes. Because of study heterogeneity, a meta-analysis was not feasible. RESULTS Thirty-two studies met eligibility criteria: 18 randomized controlled trials, 7 comparative studies, and 7 systematic reviews. Outcomes of most studies included Kirkpatrick levels of evidence I-III (reactions, knowledge, and behavior), while few reported level IV outcomes (patient). The overall risk of bias was low. With few exceptions, included studies showed XR technology to be more effective than standard training methods in improving objective skills and performance, shortening procedure time, and receiving more positive learner ratings. However, XR use did not show significant differences in gained knowledge. CONCLUSIONS Surgical or procedural XR training may improve technical skill development among trainees and is generally favored over standard training methods. However, there should be an additional focus on how skill development translates to clinically relevant outcomes. We recommend longitudinal studies to examine retention and transfer of training to clinical settings, methods to improve timely, adaptive feedback for deliberate practice, and cost analyses.
Collapse
Affiliation(s)
- William J Woodall
- From the Medical College of Georgia (W.J.W.), Augusta, GA; Department of Otolaryngology (E.H.C.), University of Arizona, Tucson, AZ; Departments of Basic Science Education and Health Systems & Implementation Science (S.T.), Virginia Tech Carilion School of Medicine, Roanoke, VA; University of Michigan School of Nursing (D.R.L.), Ann Arbor, MI; and WVU Rockefeller Neuroscience Institute (J.H.S.), Morgantown, WV
| | | | | | | | | |
Collapse
|
8
|
Farah GJ, Rogers JL, Lopez AM, Brown NJ, Pennington Z, Kuo C, Gold J, Bui NE, Koester SW, Gendreau JL, Diaz-Aguilar LD, Oh MY, Pham MH. Resident Training in Spine Surgery: A Systematic Review of Simulation-Based Educational Models. World Neurosurg 2023; 174:81-115. [PMID: 36921712 DOI: 10.1016/j.wneu.2023.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
OBJECTIVE With the increasing prevalence of spine surgery, ensuring effective resident training is becoming of increasing importance. Training safe, competent surgeons relies heavily on effective teaching of surgical indications and adequate practice to achieve a minimum level of technical proficiency before independent practice. American Council of Graduate Medical Education work-hour restrictions have complicated the latter, forcing programs to identify novel methods of surgical resident training. Simulation-based training is one such method that can be used to complement traditional training. The present review aims to evaluate the educational success of simulation-based models in the spine surgical training of residents. METHODS Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, the PubMed, Web of Science, and Google Scholar databases were systematically screened for English full-text studies examining simulation-based spine training curricula. Studies were categorized based on simulation model class, including animal-cadaveric, human-cadaveric, physical/3-dimensional, and computer-based/virtual reality. Outcomes studied included participant feedback regarding the simulator and competency metrics used to evaluate participant performance. RESULTS Seventy-two studies were identified. Simulators displayed high face validity and were useful for spine surgery training. Objective measures used to evaluate procedural performance included implant placement evaluation, procedural time, and technical skill assessment, with numerous simulators demonstrating a learning effect. CONCLUSIONS While simulation-based educational models are one potential means of training residents to perform spine surgery, traditional in-person operating room training remains pivotal. To establish the efficacy of simulators, future research should focus on improving study quality by leveraging longitudinal study designs and correlating simulation-based training with clinical outcome measures.
Collapse
Affiliation(s)
- Ghassan J Farah
- Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California, USA
| | - James L Rogers
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alexander M Lopez
- Department of Neurosurgery, University of California, Irvine, Orange, California, USA
| | - Nolan J Brown
- Department of Neurosurgery, University of California, Irvine, Orange, California, USA
| | - Zach Pennington
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Cathleen Kuo
- Department of Neurological Surgery, University at Buffalo Jacobs SOM, Buffalo, New York, USA
| | - Justin Gold
- Department of Neurological Surgery, Cooper Medical of Rowan University, Camden, New Jersey, USA
| | - Nicholas E Bui
- Department of Neurosurgery, Loma Linda University Medical Center, Loma Linda, California, USA
| | - Stefan W Koester
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Julian L Gendreau
- Department of Biomedical Engineering, Johns Hopkins Whiting School of Engineering, Baltimore, Maryland, USA
| | - Luis Daniel Diaz-Aguilar
- Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California, USA
| | - Michael Y Oh
- Department of Neurosurgery, University of California, Irvine, Orange, California, USA
| | - Martin H Pham
- Department of Neurosurgery, University of California San Diego School of Medicine, San Diego, California, USA.
| |
Collapse
|
9
|
McCloskey K, Turlip R, Ahmad HS, Ghenbot YG, Chauhan D, Yoon JW. Virtual and Augmented Reality in Spine Surgery: A Systematic Review. World Neurosurg 2023; 173:96-107. [PMID: 36812986 DOI: 10.1016/j.wneu.2023.02.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Augmented reality (AR) and virtual reality (VR) implementation in spinal surgery has expanded rapidly over the past decade. This systematic review summarizes the use of AR/VR technology in surgical education, preoperative planning, and intraoperative guidance. METHODS A search query for AR/VR technology in spine surgery was conducted through PubMed, Embase, and Scopus. After exclusions, 48 studies were included. Included studies were then grouped into relevant subsections. Categorization into subsections yielded 12 surgical training studies, 5 preoperative planning, 24 intraoperative usage, and 10 radiation exposure. RESULTS VR-assisted training significantly reduced penetration rates or increased accuracy rates compared to lecture-based groups in 5 studies. Preoperative VR planning significantly influenced surgical recommendations and reduced radiation exposure, operating time, and estimated blood loss. For 3 patient studies, AR-assisted pedicle screw placement accuracy ranged from 95.77% to 100% using the Gertzbein grading scale. Head-mounted display was the most common interface used intraoperatively followed by AR microscope and projector. AR/VR also had applications in tumor resection, vertebroplasty, bone biopsy, and rod bending. Four studies reported significantly reduced radiation exposure in AR group compared to fluoroscopy group. CONCLUSIONS AR/VR technologies have the potential to usher in a paradigm shift in spine surgery. However, the current evidence indicates there is still a need for 1) defined quality and technical requirements for AR/VR devices, 2) more intraoperative studies that explore usage outside of pedicle screw placement, and 3) technological advancements to overcome registration errors via the development of an automatic registration method.
Collapse
Affiliation(s)
- Kyle McCloskey
- Department of Neurosurgery, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Ryan Turlip
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hasan S Ahmad
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yohannes G Ghenbot
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daksh Chauhan
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jang W Yoon
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
10
|
Cate G, Barnes J, Cherney S, Stambough J, Bumpass D, Barnes CL, Dickinson KJ. Current status of virtual reality simulation education for orthopedic residents: the need for a change in focus. GLOBAL SURGICAL EDUCATION : JOURNAL OF THE ASSOCIATION FOR SURGICAL EDUCATION 2023; 2:46. [PMID: 38013875 PMCID: PMC10032253 DOI: 10.1007/s44186-023-00120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 02/23/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023]
Abstract
Introduction Advances in technology are changing surgical education. Simulation provides an important adjunct to operative experience. This pedagogy has arguably become more important in light of the COVID-19 pandemic, with resultant reduction in operative exposure for trainees. Virtual reality (VR) simulators may provide significant contribution to experiential learning; however, much of the investigative focus to date has, correctly, been on establishing validity evidence for these constructs. The aim of this work was to perform a scoping review to assess the current status of VR simulation education to determine curricular development efforts for orthopedic residents. Methods With a trained medical librarian, searches of PubMed, EMBASE, and Web of Science were conducted for all articles in the last 10 years (September 2011-September 2021). Controlled vocabulary Medical Subject Headings (MeSH) terms and natural language developed with subject matter experts describing virtual reality or VR simulation and orthopedic training were used. Two trained reviewers evaluated all abstracts for inclusion. Exclusion criteria were all articles that did not assess VR simulation education involving orthopedic residents. Data were extracted from the included full-text articles including: study design, type of participants, type of VR simulation, simulated orthopedic skill, type of educational event, learner assessment including Kirkpatrick's level, assessment of quality using the Medical Education Research Study Quality Instrument (MERSQI), and level of effectiveness (LoE). Results Initial search identified 1,394 articles, of which 61 were included in the final qualitative synthesis. The majority (54%) were published in 2019- 2021, 49% in Europe. The commonest VR simulator was ArthroS (23%) and the commonest simulated skill was knee arthroscopy (33%). The majority of studies (70%) focused on simulator validation. Twenty-three studies described an educational module or curriculum, and of the 21 (34%) educational modules, 43% were one-off events. Most modules (18/21, 86%) assessed learners at Kirkpatrick level 2. With regard to methodological quality, 44% of studies had MERSQI 11.5-15 and 89% of studies had LoE of 2. Two studies had LoE of 3. Conclusion Current literature pertaining to VR training for orthopedic residents is focused on establishing validity and rarely forms part of a curriculum. Where the focus is education, the majority are discrete educational modules and do not teach a comprehensive amalgam of orthopedic skills. This suggests focus is needed to embed VR simulation training within formal curricula efforts guided by the work of Kern, and assess the efficacy of these against patient outcomes.
Collapse
Affiliation(s)
- Graham Cate
- College of Medicine, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Jack Barnes
- Department of Orthopedics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Steven Cherney
- Department of Orthopedics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Jeffrey Stambough
- Department of Orthopedics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - David Bumpass
- Department of Orthopedics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - C. Lowry Barnes
- Department of Orthopedics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Karen J. Dickinson
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR USA
- Office of Interprofessional Education, University of Arkansas for Medical Sciences, Little Rock, USA
| |
Collapse
|
11
|
Zhang J, Lu V, Khanduja V. The impact of extended reality on surgery: a scoping review. INTERNATIONAL ORTHOPAEDICS 2023; 47:611-621. [PMID: 36645474 PMCID: PMC9841146 DOI: 10.1007/s00264-022-05663-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/03/2022] [Indexed: 01/17/2023]
Abstract
PURPOSE Extended reality (XR) is defined as a spectrum of technologies that range from purely virtual environments to enhanced real-world environments. In the past two decades, XR-assisted surgery has seen an increase in its use and also in research and development. This scoping review aims to map out the historical trends in these technologies and their future prospects, with an emphasis on the reported outcomes and ethical considerations on the use of these technologies. METHODS A systematic search of PubMed, Scopus, and Embase for literature related to XR-assisted surgery and telesurgery was performed using Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for scoping reviews (PRISMA-ScR) guidelines. Primary studies, peer-reviewed articles that described procedures performed by surgeons on human subjects and cadavers, as well as studies describing general surgical education, were included. Non-surgical procedures, bedside procedures, veterinary procedures, procedures performed by medical students, and review articles were excluded. Studies were classified into the following categories: impact on surgery (pre-operative planning and intra-operative navigation/guidance), impact on the patient (pain and anxiety), and impact on the surgeon (surgical training and surgeon confidence). RESULTS One hundred and sixty-eight studies were included for analysis. Thirty-one studies investigated the use of XR for pre-operative planning concluded that virtual reality (VR) enhanced the surgeon's spatial awareness of important anatomical landmarks. This leads to shorter operating sessions and decreases surgical insult. Forty-nine studies explored the use of XR for intra-operative planning. They noted that augmented reality (AR) headsets highlight key landmarks, as well as important structures to avoid, which lowers the chance of accidental surgical trauma. Eleven studies investigated patients' pain and noted that VR is able to generate a meditative state. This is beneficial for patients, as it reduces the need for analgesics. Ten studies commented on patient anxiety, suggesting that VR is unsuccessful at altering patients' physiological parameters such as mean arterial blood pressure or cortisol levels. Sixty studies investigated surgical training whilst seven studies suggested that the use of XR-assisted technology increased surgeon confidence. CONCLUSION The growth of XR-assisted surgery is driven by advances in hardware and software. Whilst augmented virtuality and mixed reality are underexplored, the use of VR is growing especially in the fields of surgical training and pre-operative planning. Real-time intra-operative guidance is key for surgical precision, which is being supplemented with AR technology. XR-assisted surgery is likely to undertake a greater role in the near future, given the effect of COVID-19 limiting physical presence and the increasing complexity of surgical procedures.
Collapse
Affiliation(s)
- James Zhang
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP UK
| | - Victor Lu
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP UK
| | - Vikas Khanduja
- Young Adult Hip Service, Department of Trauma and Orthopaedics, Addenbrooke's Hospital, Cambridge University Hospital, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
12
|
Chatelain LS, Khalifé M, Riouallon G, Guigui P, Ferrero E. Pedagogy in spine surgery: developing a free and open-access virtual simulator for lumbar pedicle screws placement. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2023; 32:712-717. [PMID: 36576538 DOI: 10.1007/s00586-022-07501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/20/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Simulators for pedicle screws placement range from basic sawbones to virtual reality. Yet, they remain expensive and often require specific devices. No free online virtual simulator has yet been developed. The goal was to design a freely accessible Web-based simulator. METHODS The computer simulator consisted of a lumbar spine, a red box hiding the pedicles and five pairs of screws. After inserting the screws, the red box was removed to assess their position. A validation study was conducted with 24 medical students randomized into a simulation and a control group. All had a basic course on pedicle screws. The 12 simulation group students performed two sessions on computer. All 24 students then conducted a final common step on sawbones. The number of misplaced screws, types of breaches, and simulation times were analyzed. RESULTS In the final sawbones simulation, 96 real screws were studied. Control group misplaced 50% of their screws compared with only 20.8% in the simulation group (p < 0.05). More careful, simulation group students were slower to insert their real screws. Over the two computer simulations, the rate of misplaced screws decreased (12.5% vs. 38.3%), showing a good handling of the simulator. Students were able to analyze and correct their pedicle breaches. CONCLUSION This tool is the first free online lumbar pedicle screws simulator. Simulation helped students to better position the final real screws on sawbones. This project showed it was possible to create a free educational tool with no special equipment. LEVEL OF EVIDENCE Level 3.
Collapse
Affiliation(s)
- Léonard Swann Chatelain
- Department of Orthopedic Surgery, Hôpital Européen Georges Pompidou (HEGP), 20 Rue Leblanc, 75015, Paris, France.
| | - Marc Khalifé
- Department of Orthopedic Surgery, Hôpital Européen Georges Pompidou (HEGP), 20 Rue Leblanc, 75015, Paris, France
| | - Guillaume Riouallon
- Department of Orthopedic Surgery, Hôpital Paris Saint-Joseph, 185 Rue Raymond Losserand, 75014, Paris, France
| | - Pierre Guigui
- Department of Orthopedic Surgery, Hôpital Européen Georges Pompidou (HEGP), 20 Rue Leblanc, 75015, Paris, France
| | - Emmanuelle Ferrero
- Department of Orthopedic Surgery, Hôpital Européen Georges Pompidou (HEGP), 20 Rue Leblanc, 75015, Paris, France
| |
Collapse
|
13
|
Bhogal H, Martinov S, Buteau P, Bath O, Hernigou J. Bone conductivity and spine fluoroscopy, Hand-Eye-Ear dialogue, during pedicle screw positioning: a new human cognitive system for precision and radiation-decrease; better than artificial intelligence and machine learning system? INTERNATIONAL ORTHOPAEDICS 2023; 47:421-428. [PMID: 35931830 DOI: 10.1007/s00264-022-05533-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/24/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE There is an increasing need for pedicle screw positioning while decreasing radiation exposure. This study compares intra-operative radiation dose using posterior internal fixation using impedancemetry-guided pedicle positioning by the Pediguard system versus standard free-hand sighting when surgery was performed with a trainee or expert surgeon. MATERIAL AND METHODS Using the electrical properties of bone, the Pediguard detects iatrogenic penetration of the pedicle wall and gives auditory feedback to the surgeon. A single centre, two surgeons (one experienced and the other novice) conducted a continuous prospective randomized study for one year. Twenty patients were randomized into one group (free-hand control group) receiving pedicle instrumentation without the use of the Pediguard and the second group receiving pedicle instrumentation with the use of the Pediguard. The total screw placement times and fluoroscopic times for each screw was recorded and pedicle screw position was analyzed on post-operative CT scan. RESULTS Among the 104 screwed pedicles, 22 unrecognized perforations were detected by CT scan, while no perforation signal was observed intra-operatively. Only one perforation was greater than 2 mm. The overall screwing time was 4.33 ± 1.2 minutes per screw for experienced surgeon and 5.84 ± 2.5 minutes per screw for the novice. Pediguard did not increased significantly the time (0.3 mn per screw) for the experienced surgeon, but the time with Pediguard was longer (2 mn more per screw) for the novice surgeon, particularly at the thoracic level. The overall fluoroscopic average time per screw for the experienced surgeon is 5.8 ± 2.3 s and 10.4 ± 4.5 s for the novice surgeon. For the novice surgeon, radiation time reduced from 12 (without Pediguard) to 6 s (with Pediguard). There was no significant difference for the experienced surgeon in terms of improvement in radiation time with the use of Pediguard. CONCLUSION The overall time was longer for the novice surgeon with the Pediguard system, but allowed to decrease by 50% the fluoroscopy time.
Collapse
Affiliation(s)
- Harkirat Bhogal
- Orthopedic Department, EpiCURA Baudour Hornu Ath Hospital, Saint-Ghislain, Hainaut, Belgium
| | - Sagi Martinov
- Orthopedic Department, EpiCURA Baudour Hornu Ath Hospital, Saint-Ghislain, Hainaut, Belgium
| | - Pauline Buteau
- Orthopedic Department, EpiCURA Baudour Hornu Ath Hospital, Saint-Ghislain, Hainaut, Belgium
| | - Olivier Bath
- Orthopedic Department, EpiCURA Baudour Hornu Ath Hospital, Saint-Ghislain, Hainaut, Belgium
| | - Jacques Hernigou
- Orthopedic Department, EpiCURA Baudour Hornu Ath Hospital, Saint-Ghislain, Hainaut, Belgium. .,Université Libre de Bruxelles, Bruxelles, Belgium.
| |
Collapse
|
14
|
Portnoy Y, Koren J, Khoury A, Factor S, Dadia S, Ran Y, Benady A. Three-dimensional technologies in presurgical planning of bone surgeries: current evidence and future perspectives. Int J Surg 2023; 109:3-10. [PMID: 36799780 PMCID: PMC10389328 DOI: 10.1097/js9.0000000000000201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/20/2022] [Indexed: 02/18/2023]
Abstract
BACKGROUND The recent development of three-dimensional (3D) technologies introduces a novel set of opportunities to the medical field in general, and specifically to surgery. The preoperative phase has proven to be a critical factor in surgical success. Utilization of 3D technologies has the potential to improve preoperative planning and overall surgical outcomes. In this narrative review article, the authors describe existing clinical data pertaining to the current use of 3D printing, virtual reality, and augmented reality in the preoperative phase of bone surgery. METHODS The methodology included keyword-based literature search in PubMed and Google Scholar for original articles published between 2014 and 2022. After excluding studies performed in nonbone surgery disciplines, data from 61 studies of five different surgical disciplines were processed to be included in this narrative review. RESULTS Among the mentioned technologies, 3D printing is currently the most advanced in terms of clinical use, predominantly creating anatomical models and patient-specific instruments that provide high-quality operative preparation. Virtual reality allows to set a surgical plan and to further simulate the procedure via a 2D screen or head mounted display. Augmented reality is found to be useful for surgical simulation upon 3D printed anatomical models or virtual phantoms. CONCLUSIONS Overall, 3D technologies are gradually becoming an integral part of a surgeon's preoperative toolbox, allowing for increased surgical accuracy and reduction of operation time, mainly in complex and unique surgical cases. This may eventually lead to improved surgical outcomes, thereby optimizing the personalized surgical approach.
Collapse
Affiliation(s)
- Yotam Portnoy
- First Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Jonathan Koren
- First Faculty of Medicine, Charles University in Prague, Prague, Czechia
| | - Amal Khoury
- Sackler School of Medicine, Tel Aviv University
- Division of Orthopaedic Surgery
| | - Shai Factor
- Sackler School of Medicine, Tel Aviv University
- Division of Orthopaedic Surgery
| | - Solomon Dadia
- Sackler School of Medicine, Tel Aviv University
- Levin Center of 3D Printing and Surgical Innovation
- National Unit of Orthopedic Oncology
| | - Yuval Ran
- Sackler School of Medicine, Tel Aviv University
- Office of the Deputy Medical Manager, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Amit Benady
- Sackler School of Medicine, Tel Aviv University
- Division of Orthopaedic Surgery
- Levin Center of 3D Printing and Surgical Innovation
| |
Collapse
|
15
|
Berthold DP, Muench LN, Rupp MC, Siebenlist S, Cote MP, Mazzocca AD, Quindlen K. Head-Mounted Display Virtual Reality Is Effective in Orthopaedic Training: A Systematic Review. Arthrosc Sports Med Rehabil 2022; 4:e1843-e1849. [PMID: 36312724 PMCID: PMC9596866 DOI: 10.1016/j.asmr.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/19/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose To conduct a systematic review to determine the efficacy of head-mounted display (HMD) virtual reality (VR) in orthopaedic surgical training. Methods A thorough search was conducted on PubMed for articles published between January 2000 and August 2020. Studies were included if they (1) concerned orthopaedic surgery, (2) dealt with an HMD VR device, (3) the technology was being used for training purposes, and (4) was a randomized control trial (RCT). Results Eight articles met the inclusion criteria. Analysis of the 8 RCTs reveals 6 of the 8 demonstrating HMD VR to be a superior training method to traditional-based training modules. However, in the remaining 2 articles, authors found no significant difference between the VR group and controls, but showed at least equivalent ability to train novice surgeons. Conclusions RCTs show promising evidence that HMD VR is an efficacious tool in surgical training for orthopaedic procedures, with most randomized clinical trials showing improvement in novice students/surgeons compared with controls. Clinical Relevance As VR technology advances, so must the research directed at determining the efficacy of such technologies at educating our novice surgeons. RCTs are already demonstrating the role HMD VR can play in the education of novice orthopaedic surgeons.
Collapse
Affiliation(s)
- Daniel P. Berthold
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Munich, Germany
- Address correspondence to Daniel P. Berthold, M.D., Department of Orthopaedic Sports Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany.
| | - Lukas N. Muench
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Munich, Germany
| | - Marco-Christopher Rupp
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Munich, Germany
| | - Sebastian Siebenlist
- Department of Orthopaedic Sports Medicine, Technical University of Munich, Munich, Germany
| | - Mark P. Cote
- Department of Orthopaedic Surgery, University of Connecticut, Storrs, Connecticut, U.S.A
| | - Augustus D. Mazzocca
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, U.S.A
| | - Kevin Quindlen
- Department of Orthopaedic Surgery, University of Connecticut, Storrs, Connecticut, U.S.A
| |
Collapse
|
16
|
Goldberg JL, Hussain I, Sommer F, Härtl R, Elowitz E. The Future of Minimally Invasive Spinal Surgery. World Neurosurg 2022; 163:233-240. [PMID: 35729825 DOI: 10.1016/j.wneu.2022.03.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/15/2022]
Abstract
Strong forces are pushing minimally invasive spinal surgery (MISS) to the forefront of spine care. Less-invasive surgical techniques have been enabled by a variety of technical advances. Despite the promise of MISS, however, several factors, including few training opportunities, perception of a steep learning curve, and high upfront costs, have limited the adoption of these techniques. The "6 T's" is a framework highlighting key factors that must be accounted for to ensure safe and effective MISS as techniques continually evolve. Further, technological advancement in endoscopy, robotics, and augmented/virtual reality is enhancing minimally invasive surgeries to make them even less invasive and safer for patients. The evolution of these new techniques and technologies is driving the future of MISS.
Collapse
Affiliation(s)
- Jacob L Goldberg
- Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York, USA
| | - Ibrahim Hussain
- Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York, USA
| | - Fabian Sommer
- Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York, USA
| | - Roger Härtl
- Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York, USA
| | - Eric Elowitz
- Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York, USA.
| |
Collapse
|
17
|
Thevendran G, Khanduja V. SICOT PIONEER (Programme of Innovative Orthopaedic Networking Education and Research): Re-inventing global orthopaedic education, training and research. INTERNATIONAL ORTHOPAEDICS 2022; 46:669-676. [PMID: 35267073 PMCID: PMC8907392 DOI: 10.1007/s00264-022-05354-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/30/2022]
Affiliation(s)
- Gowreeson Thevendran
- Mount Elizabeth Novena Hospital, 38 Irrawaddy Road, Singapore, 329563, Singapore
| | - Vikas Khanduja
- Young Adult Hip Service, Department of Trauma and Orthopaedics, Addenbrooke's - Cambridge University Hospital, Box 37, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
18
|
Bedir D, Erhan SE. The Effect of Virtual Reality Technology on the Imagery Skills and Performance of Target-Based Sports Athletes. Front Psychol 2021; 11:2073. [PMID: 33551887 PMCID: PMC7862137 DOI: 10.3389/fpsyg.2020.02073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
The aim of this study is the examination of the effect of virtual reality based imagery (VRBI) training programs on the shot performance and imagery skills of athletes and, and to conduct a comparison with Visual Motor Behavior Rehearsal and Video Modeling (VMBR + VM). In the research, mixed research method and sequential explanatory design were used. In the quantitative dimension of the study the semi-experimental model was used, and in the qualitative dimension the case study design was adopted. The research participants were selected from athletes who were involved in our target sports: curling (n = 14), bowling (n = 13), and archery (n = 7). All participants were randomly assigned to VMBR + VM (n = 11), VRBI (n = 12), and Control (n = 11) groups through the "Research Randomizer" program. The quantitative data of the study was: the weekly shot performance scores of the athletes and the data obtained from the "Movement Imagery Questionnaire-Revised." The qualitative data was obtained from the data collected from the semi-structured interview guide, which was developed by researchers and field experts. According to the results obtained from the study, there were statistically significant differences between the groups in terms of shot performance and imagery skills. VRBI training athletes showed more improvement in the 4-week period than the athletes in the VMBR + VM group, in terms of both shot performance and imagery skills. In addition, the VRBI group adapted to the imagery training earlier than the VMBR + VM group. As a result, it was seen that they showed faster development in shot performances. From these findings, it can be said that VRBI program is more efficient in terms of shot performance and imagery skills than VMBR + VM, which is the most used imaging training model.
Collapse
Affiliation(s)
- Deniz Bedir
- Erzurum Technical University, Erzurum, Turkey
| | - Süleyman Erim Erhan
- College of Physical Education and Sports, Tekirdağ Namık Kemal Üniversitesi, Tekirdağ, Turkey
| |
Collapse
|